Research 9: Query Processing & Optimization 2

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

iIQCAR: inter-Query Contention Analyzer for Data
Analytics Frameworks

Prajakta Kalmegh Shivnath Babu Sudeepa Roy
Duke University Unravel Data Systems Duke University
Durham, North Carolina Palo Alto, California Durham, North Carolina
pkalmegh@cs.duke.edu shivnath@unraveldata.com sudeepa@cs.duke.edu
ABSTRACT 1 INTRODUCTION

Resource interferences caused by concurrent queries is one of
the key reasons for unpredictable performance and missed
workload SLAs in cluster computing systems. Analyzing
these inter-query resource interactions is critical in order
to answer time-sensitive questions like ‘who is creating re-
source conflicts to my query’. More importantly, diagnosing
whether the resource blocked times of a ‘victim’ query are
caused by other queries or some other external factor can
help the database administrator narrow down the many pos-
sibilities of query performance degradation. We introduce
iQCAR, an inter-Query Contention Analyzer, that attributes
blame for the slowdown of a query to concurrent queries.
iQCAR models the resource conflicts using a multi-level di-
rected acyclic graph that can help administrators compare
impacts from concurrent queries, identify most contentious
queries, resources and hosts in an online execution for a se-
lected time window. Our experiments using TPCDS queries
on Apache Spark show that our approach is substantially
more accurate than other methods based on overlap time
between concurrent queries.

KEYWORDS

Performance evaluation; contention analysis; blame attribu-
tion; resource interference; data analytics frameworks

ACM Reference Format:

Prajakta Kalmegh, Shivnath Babu, and Sudeepa Roy. 2019. iQCAR:
inter-Query Contention Analyzer for Data Analytics Frameworks.
In 2019 International Conference on Management of Data (SIGMOD
’19), June 30-Fuly 5, 2019, Amsterdam, Netherlands. ACM, New York,
NY, USA, 18 pages. https://doi.org/10.1145/3299869.3319904

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SIGMOD 19, June 30-July 5, 2019, Amsterdam, Netherlands

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5643-5/19/06. .. $15.00
https://doi.org/10.1145/3299869.3319904

918

In today’s data-driven world, there is a growing demand of
autonomous data processing systems [10]. One of the critical
roadblocks in achieving the desired goal of automation is
ensuring predictable query performance in multi-tenant sys-
tems. The question — “Why is my query slow?" - is nontrivial
to answer in standard big data processing systems employ-
ing shared clusters. The authors have seen firsthand how
enterprises use an army of support staff to solve problem
tickets filed by end users whose queries are not perform-
ing as they expect. An end user can usually troubleshoot
causes of slow performance that arise from her query (e.g.,
when the query did not use the appropriate index, data skew,
change in execution plans, etc.). However, often the primary
cause of a poorly-performing query is low-level resource
contentions caused by other concurrently executing queries
in a multi-tenant system [5, 9, 14, 16, 32]. For example, in one
of our experiments, one query was found to be 178% slower
than its unconstrained execution due to resource conflicts.
Diagnosing such causes of unpredictable performance is dif-
ficult and time consuming requiring in-depth expertise of
the system and the workload. Today, cluster administrators
have to manually traverse through intricate cycles of query
interactions to identify how interferences on resources affect
desired performances of concurrently running queries.

Should the solution be prevention or diagnosis (and
cure)? To ensure a predictable query performance, preven-
tive measures often provide query execution isolation at
the resource allocation level. For example, an admin tries
to reduce conflicts by partitioning resources among tenants
using capped capacities [2], reserving shares of the cluster
[18], or dynamically regulating offers to queries based on
the configured scheduling policies like max-min fair [30] or
First-In-First-Out (FIFO). Despite such meticulous measures,
providing performance isolation guarantees is still challeng-
ing since resources are not governed at a fine-granularity.
The allocations are primarily based on only a subset of the re-
sources leaving the requirements for other shared resources
unaccounted for. An approach solely based on preventive
techniques will also have other limitations since real-life

Research 9: Query Processing & Optimization 2

SELECT i.i_brand_id, sum(ss_ext_sales_price)
FROM date_dim dt, store sales ss, item i
WHERE dt.d _date_sk = ss.ss_sold_date_sk
AND ss.ss_item sk = i.i_item_sk AND i.i manufact_id = 128
GROUP BY i.i_brand id;

sum_agg

s2 S0 |Scan: store_sales

delay-path1 [51::/Scan: item

50
Yitical-path §
s

s2 |Scan: date_dim

s3 s4 |Joins

§i S5 | Group By

delay-path2
Figure 1: Execution DAG of TPCDS Query 3 showing the
computation that each stage performs). Stages S0, S1 and S2

are IO intensive as they scan input data. S3, S4 are network,
10 intensive owing to shuffle operation required for Join. S5
is more CPU bound due to the aggregate operation.

workloads are a mix of very diverse types of queries. There-
fore, low-level resource conflicts continue to impact queries
in shared clusters, thus inviting a need to supplement preven-
tion techniques with techniques for diagnosis of contentions
such that required actions can be taken.

Our research focuses on the latter. In this paper, we present
iQCAR - a tool to detect resource contentions between con-
current queries using blocked times (time a task is blocked
for a resource) [24]. While there have been several attempts
to diagnose root causes (systemic, configuration, external
or plan-related) for the slowdown of a query [17, 20, 23, 29],
to the best of our knowledge iQCAR is the first attempt to
answer an important question - whether and how the blocked
times of a query are affected by low-level conflicts caused by
other concurrent queries.

1.1 Data analytics frameworks

This paper focuses on query/job execution on data analyt-
ics frameworks like MapReduce [19] and Spark [31]. These
frameworks are designed to perform complex logic on large
distributed datasets by parallelizing computations. Every
query is broken down into a DAG of stages where each stage
accomplishes a particular piece of overall logic on the input
or intermediate data. Figure 1 shows an example of a query
that is broken into six stages. A stage consists of multiple
parallel tasks, where the tasks are the actual execution units
that perform the same computation on different blocks of
the input data. Since these blocks are distributed across the
cluster, tasks of a stage execute in parallel on different hosts
and their output is exchanged in a shuffle operation with
tasks of dependent stages.

In these frameworks, tasks are executed using pipelining
to enable parallel use of CPU, disk and network. They ex-
ecute in a single thread and use an iterator model to read,
process and output each record through the pipeline. As disk
and network requests are handled in the background by OS,
a task can use and wait for multiple resources at the same

919

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

B Network Data Ready
[l Network Data wait
|:| Disk Data Ready
(7] oisk Data wait

I vask blocked
Task Running

Blocked for
Network use][] I T D"'{"a“‘

CPU use - I

tortl tZ’\t}/" 15 6 t7
\ ’

\ SN/
Blocked for Blocked for
Network 0S CPU

Data allocation

Figure 2: The execution timeline of a single task. Task exe-
cution is blocked for different resources during its execution
and does not always synchronize with resource wait times.

time. It can however be completely blocked only when the
specific resource required for the execution of next line of
code is not available. Figure 2 shows the execution timeline
of a single task. It uses network and disk for reading data,
CPU for processing and again disk for writing the results.
The execution logic of this task is to first read and process
data from remote machine and then process local disk data.
The program flow of the task is the following: a network
read request is issued at time #; and the task is blocked for
availability of first block of network data until ;. Task execu-
tion continues until ¢, when it is blocked for CPU allocation
by the OS. The task resumes and continues execution until #3
on previously retrieved network data (even though no new
data is received from network in this duration). At t3, the
task blocks again for more remote data until ¢4 when data is
ready. The task blocks again at 5 for OS CPU allocation and
completes processing remote data by #. At fg, it issues re-
quest for disk IO read and is blocked until ; when some data
is available. The task continues its execution without any
further blocking despite more wait time for disk IO. This is
because it has enough data to process without being blocked
at every instance of its remaining execution.

BlockedTime: During its execution, a task can wait mul-
tiple times for network and disk data (refer to Disk Data Wait
and Network Data Wait in Figure 2). However, the sum of
these wait times does not add up to its total blocked time
(refer to Task Blocked in Figure 2). This is because waiting
for a resource does not imply that a task is unable to make
progress. The effective impact of any concurrent task/pro-
cess on the slowdown of a task is therefore only to the ex-
tent to which it increases the blocked time of the task. In
[24], authors demonstrated the role of using the time tasks
are blocked on disk IO and network for effective perfor-
mance analysis of data analytical workloads; in 1QCAR, we
use blocked times of tasks on disk IO, network, CPU and
memory as the basis to calculate the metrics of slowdown
and blame attribution.

1.2 Challenges in Contention Analysis

Consider the dataflow-DAG of a data analytical TPCDS Query
3 (referred to as Qp henceforth) shown in Figure 1. Suppose

Research 9: Query Processing & Optimization 2

¥ 1 3 Using Ntwrk
Taskl E . Task4 ; I

: : ; Using Disk
Tk nmnm

h o i Using CPU

ty ot

Task3 i I. - Blocked

LI SUR PR Y bt

i Tasks 4 Impact >
Task 3 Impact

Tasks 1,2
i No Contention

Tasks 2,3
| High Contention !

Figure 3: Example overlap between four tasks.

an admin notices a slowdown for Q, compared to a previous
execution using some automated tool or manual analysis -
then we designate Qy as our victim query. As a first step of
troubleshooting, she wants to identify whether Q, was a vic-
tim of concurrency-caused contention or not (i.e., whether
the reasons were systemic or configuration instead). If yes,
which of the concurrent queries, say, Q; or Q is more re-
sponsible for the slowdown of Qy.

The common approach adopted today toward addressing
such questions may involve different steps: (1) using histori-
cal executions, identify which stages of the query slowed it
down. (2) for each stage, use low-level monitoring tools (e.g.,
[8]) to identify the intervals or hosts with unusual activity,
and find resources responsible for its bottlenecks. (3) finally,
find the overlapping queries/stages/tasks and analyze their
resource utilization further to diagnose whether and why
they caused the bottlenecks. We call this approach of blame
attribution as Deep-Overlap. This process is time-consuming
and error-prone since it requires expertise of the involved
systems, and an in-depth understanding of the workload. In
particular, an administrator faces the following challenges.

Challenge 1. Analyzing Contentions on Dataflows: A
query can slowdown due to delay in one or more of its com-
ponent stages. Some delays propagate to the end while others
get mitigated by faster later stages. Figure 1 has two such
paths, delay-path1and delay-path2 that get mitigated, but the
critical-path contributes to the final slowdown. Identifying
and accounting for paths of highest impact is important and
challenging for contention analysis’.

Challenge 2. Analyzing Multi-Resource Contentions:
In data analytics frameworks, tasks interleave their resource
usages due to the pipelining model of execution (see Sec-
tion 1.1). The consumption and contention for any resource
is non-uniform and depends on the mix of concurrent tasks.
We identify two issues that arise from this:

Challenge 2a: Deep-Overlap can be misleading: As an
example, consider the tasks in Figure 3. Though all three
tasks (Task1, Task2 and Task3) execute in parallel between

IThe number of paths is typically very high for analytical queries that
involve many joins and aggregations.

920

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

time fy to t4, tasks Task2 and Task3 do not cause any con-
tention to each other due to no overlap for any resource.
On the other hand, they have complete overlap for both re-
sources (CPU and disk I0) between time t; and t7, thereby
facing high contention.

Challenge 2b: Quantifying blame for contentions is
hard: Since tasks contend for multiple resources simultane-
ously, a task may get one resource faster but other resource
slower than a competing task. Even when tasks are con-
tending for single resource, some tasks may cause greater
slowdown than others. In Figure 3, both Task3 and Task4
overlap for same resource with Task2 between t; and t5. The
impact caused by Task4 is however higher as it gets the
highest share. In fact, Task3 and Task2 impact each other
equally. Identifying such complex interactions is difficult but
necessary to accurately capture and quantify contentions.

1.3 Our Contributions

We have built the system iQCAR with a goal to address the
above challenges. The explanations generated by iQCAR can
help an admin understand why a query is slow in an exe-
cution, or isolate the most contentious queries that use the
same resources or nodes in the cluster, which might take
hours of effort without the help of iQCAR. We present the
system architecture of iQCAR in Section 2, and make the
following contributions:

e Blame Attribution: We use the Blocked Times [24] val-
ues for multiple resources (CPU, Network, IO, Memoryz)
to develop a metric called Resource Acquire Time Penalty
(RATP) that aids us in computing blame towards a concur-
rent task while addressing Challenge 2 (Section 3).
Explanations and blame analysis: We present a multi-
level Directed Acyclic Graph (DAG), called iQC-Graph,
that enables distribution of blame at different granularity.
We generate explanations for resource conflicts faced by a
query by traversing this graph (Section 4).

e End-to-end system: We have instrumented Apache Spark
[31] to collect the time-series data on the blocked time and
resource usage metrics for tasks. Our web-based front-
end [22] allows users to get workload-level contention
summary plots, or perform step-wise exploration of im-
pacts using 1QC-Graph. We discuss our implementation
and the current limitations of 1QCAR system (Section 5).

o Experimental evaluations: We evaluated iQCAR using
various test-cases conducted on TPCDS workloads run-
ning on Apache Spark. We also compare iQCAR with two
alternative approaches and demonstrate its better accuracy
compared to them (Section 6).

2It is not the physical memory but application memory cache managed by
frameworks like [31] to dynamically trade between storage of intermediate
data and execution requirements [4].

Research 9: Query Processing & Optimization 2

.<‘,o"b B} q‘! - (9) Explore
S ith iQCAR
R o@ee .&‘Q"{&" '(3') Inputs_ with iQ
N0 (o (¢ Victim Queries Admin Dashboard
AN, Creates Visualize Visualize Visualize
U
\\é‘ Configuration history Impacts ‘ iQC-Graph Apply Rules
Master
! iQCAR Modules
(7) Detect Rul
iQC-Graph Blame Explanations | culpritand ules
Sl Constructor Attributor Generator | victim queries Generator
Slave (4) Constructiqc- (5) Distribute (6) Generate (8) Store and
: Graph Blame gyplanations Prioritize rules
» REST : iQCAR-store
AP| Data Streaming N Spark Metrics LAN
Plpgllne Timeseries Data
Slavey) Logs *neoﬁd iQC-Graphs

Figure 4: iQCAR System Architecture

Section 7 discusses the related work and we conclude in
Section 8 with directions for future research. Some details
are moved to the appendix due to space constraints.

2 SYSTEM OVERVIEW OF IQCAR

The 1QCAR system enables users to detect contentions online
while the queries are executing, and perform a deep explo-
ration of contentious scenarios in the cluster offline. Figure 4
shows the architecture of iQCAR. In Step (1), an admin uses
the available user interface (UI) to identify a set of queries to
be analyzed. Each of the queries chosen for deep exploration
in Step (2) is termed as a victim query, its stages as victim
stages, and its tasks as victim tasks. Once the user submits
victim queries to 1QCAR in Step (3), the Graph Constructor
builds a multi-level DAG (Section 4) for these queries in Step
(4). In addition, users can configure the resources or hosts for
which they want to analyze the contentions. For example,
users can diagnose the impact of concurrency on only CPU
contention on all or a subset of hosts, or originating from
potential culprit queries submitted by a particular user, etc.
The Blame Attributor module (Section 3) then computes
and distributes blame to all vertices in the graph in Step
(5), which are then used to update the edge weights of the
graph subsequently. The edge weights are then used by the
Explanations Generator module to generate explanations
(defined in Section 4.2) of one query impacting another in
Step (6). The edge weights are also used to update a degree of
responsibility (DOR) metric for each node in the graph to as-
sign relative impact values and enable a ranking. Finally, the
potential queries (creating contention) with their scores pro-
duced by the Explanation Generator module are examined
by the admin to understand the contention in the system in
Step (7) 3.

30ur system also includes a prototype of a basic Rule Generator module that
suggests heuristics to avoid contentions (like alternate query placement,

dynamic priority readjustment for stages and queries, etc.). However, build-
ing a sophisticated rule generator is a focus of our current research and is

921

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

3 BLAME ATTRIBUTION

In this section we explain the key concept in iQCAR: how
it attributes blame to concurrent queries. An important as-
pect of iQCAR is that it does not rely on any information of
previous executions. A query is considered to be running
slow if its execution is blocked (see Blocked Time in Sec-
tion 1.1) because some other concurrent query is using the
same resource. A concurrent query is blamed for slowdown
if it consumes resources at a higher rate than the victim
query*. If more than one concurrent query is responsible
for blocking then their blame values are in the ratio of their
resource consumption rates. Specifically, a concurrent query
acquires blame for the slowdown of a victim query if its tasks
(1) execute on the same machine as the victim tasks, (2) have
overlapping run times with the victim tasks, and (3) consume
the same resources at a higher rate than the victim tasks.

3.1 Resource Acquire Time Penalty (RATP)

First we define a measure called RATP to denote the time
spent by a task to acquire one unit of resource (e.g., CPU,
Disk, Network, etc.) on a host. For example, RATP ;¢ svork 1S
the time spent fetching a single record (or byte) of data from
the network.

DEFINITION 3.1. For a given resourcer and a host h, suppose
a victim task vt consumes r units of resource in a small
time interval 5t seconds. Then the Resource Acquire Time
Penalty (RATP) for task vt for resource r on host h in the

interval 6t is
ot

or

In the remaining section, we assume that the resource 7,
host h and the interval §t are fixed unless mentioned oth-
erwise, so we omit r, h in the subscripts and &t from super-
scripts for simplicity where it is clear from the context. This
simplifies Equation (1) for a task vt to

S
RATPY; , 1 = (1)

@)

ot .
RATPyy = 6—sec / unit resource
r

3.2 Slowdown of a Task

Let the capacity of host h to serve resource r be C unit re-
source/sec. The minimum time to acquire one unit of r on
this host can be expressed as (omitting subscript h):

®)

1
RATP = c sec / unit resource

out of scope of this paper. Instead, here we focus on the topic of contention
analysis and detection of contention creating queries.

4This assumes that both queries have equal right on the resource. It is easy
to incorporate weights/priorities into this definition by normalizing the
consumption rates by weights/priorities.

Research 9: Query Processing & Optimization 2

DEFINITION 3.2. The total slowdown of task vt in time
interval 8t due to unavailability of resource r is defined as:

(RATPy; — RATP™)
Svt = T (4)

where RATP™ is the capacity of host h for resource r (see (3)).

ExaMPLE 3.3. Consider three tasks Task1, Task2 and Task3
reading 30, 60 and 120 bytes of data from disk in 1 second
on a machine with 210 bytes/sec IO speed. In this single time

interval, vt = Task1 is thus slowed by 6 times the ideal rate
(Sor = 22 —1 =6 from (4)).

30

Intuitively, the slowdown captures the deviation from the
ideal resource acquisition rate on the host h and gives a
measure of the excess delay incurred for unit resource in the
&t execution interval. The slowdown of vt will be zero when
it has the entire resource to itself. Thus, S,; is the slowdown
caused by all other running processes in the system. We
classify them into 3 categories:

(1) concurrently running tasks,

(2) known external processes (e.g., framework processes
common to all tasks), and

(3) unknown external processes (e.g., processes not known
in advance or not managed).

Thus the slowdown is expressed as:

n M
Sor = (Z ﬁ”—’vt) +(Zﬁknown,i—>vt) +ﬂunknown—>vt (5)
i=1

ct=1

P P2
Here fct—o: is the blame assigned to each of the n tasks
ct = 1,---,n concurrently running with vt; Brnown, imor 18

the blame assigned to other known i = 1, -+, M non-conflict-

related causes that contribute to the wait time of vt. By nknown—ot

captures the blame attributable to unknown factors.

3.3 Blame with RATPs

The first term, p;, in equation (5) is a sum of the blame values
of n concurrent tasks of a victim task. The blame f.;_,; for
the contention caused for resource r by a concurrent task ct
to a victim task vt on host h can be expressed as equation (6).
How equation (6) can be derived from equations (4) and (5)
is given in Appendix A and B, and we outline the intuition
and illustrate with examples below:

2

5teO

RATPS!] ©

St
RATP;;

ﬁct—wt = [

Here O is the set of §¢ time intervals in which tasks ct and vt
overlap, and we omit the subscripts r and h. Figure 5 shows
an example overlap of four concurrent tasks with vt in m +1
intervals of its execution.

ExXAMPLE 3.4. In Example 3.3, the blame value for Task2 is
60/30 = 2 and blame for Task3 is 120/30 = 4 using (6).

922

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

8ty Bty 8ty 8t Oty
Victim vt :
task, :
task,
?fask3 |
3 task;;

Ostare task, overlap time Oend

All tasks concurrent to vt: task,, task,, tasks, task,
Only Tasks concurrent in k" interval: task,, tasks, task,

Figure 5: An example overlap between concurrent tasks.

The above blame formulation is based on RATP values
which are by definition resource specific (we are omitting
subscripts r for simplicity). A concurrent task can only be
blamed if it uses the same resource at a higher rate (addresses
Challenge 2a). Since blame is also a ratio of RATP values, the
value of blame is thus more for tasks consuming at higher
rate with respect to the victim task (addresses Challenge 2b).
In the next subsection, we give a more accurate computation
of blame using blocked times.

3.4 Incorporating Blocked Time in Blame

As discussed in Section 1.1, in data analytics frameworks
tasks can continue to execute even when they wait for some
of the resources. In such scenarios, the blame computed us-
ing equation (6) can be inaccurate. Suppose in Examples 3.3
and 3.4, while Task1 waits % = g sec within the 6t = 1
sec interval, it is only blocked for % sec (in the rest of the time
it is still running). The absence of concurrent tasks Task2
and Task3 can only speed it up by i sec at most and hence
they only deserve to be blamed to that extent. Therefore us-
ing blocked time for calculation of RATP of victim task gives
a more accurate blame value. In another scenario, say the
tasks also contend for CPU in the same 1sec and receive CPU
time slots in the same proportion. If we sum the blame for all
resources in an interval, then it will double although there
might be a overlap in wait times for resources (CPU and IO).
This can again be mitigated if we ensure that there is no
overlap between wait times used in blame calculation. The
solution again is to use blocked times. As by definition, the
blocked time of a task is from the view point of its computa-
tion progress, it is only counted once even if it is due to wait
on more than one resource. We now update the definition of
RATP from Equation 2 using blocked time as:

RATP-blockedy; = ?”t

()

vt

where BT,,; = the blocked time of the victim task vt when
it consumed &7y units of resource in interval §¢. Using this

Research 9: Query Processing & Optimization 2

definition, the blame value in Equation 6 is re-written as:

RATP-blocked ¢

8
RATP¢ ®)

ﬁct—)vt = z

Stem

Any concurrent task (irrespective of the amount of its
resource consumption) is considered blocking if it consumes
the same resource on which the impacted task is blocked.
However, in this new formulation, the blame attributed is
more for tasks that consume more resource. As a result,
while all concurrent tasks block each other, the impact from
a concurrent task with the highest resource share is highest.

The RATP value of a concurrent task ct (denominator) is
still based on the entire time interval for two reasons: First,
it ensures that the slowdown based on blocked time has
an upper bound as derived in Equation 5. The numerator
on every term on the right hand side (RHS) decreases (as
blocked time in any interval strictly bound by it) but the
denominators have no change. If we were to change the RATP
of concurrent tasks also to be based on blocked time then
terms on the RHS could either increase or decrease which
does not guarantee any bound. Second, for the other known
and unknown processes entities in p2 term in Equation 5, it
is easier to obtain the resource consumed in an interval by
any external process in comparison to its blocked time.

4 GLOBAL BLAME DISTRIBUTION

In the previous section, we discussed our methodology to
assign blame to a concurrent task ct for causing contention
to a victim task vt. As discussed in Section 1.1, a query in
data analytics frameworks is processed by multiple stages
that have many parallel tasks. iQCAR uses a multi-layered
directed acyclic graph to capture, aggregate, and compute
contentions between queries at different granularity and
dimensions (i.e., stage level, resource level and also host level).
The different levels in our graph-based model are chosen
carefully to address the challenges discussed in Section 1.2.

4.1 iQC-Graph

Our graph model consists of seven levels designed to (i) drill
down from a query to its tasks for every resource and host,
(b) assign blame to concurrent tasks, and finally (c) aggregate
blame to concurrent stages and queries. The vertices are con-
structed bottom-up from Level-0 to Level-6. For each node u
in the graph, we assign weights, called Blame Contributions
(denoted by BC,) that are used later for analyzing impact
and generating explanations. The BC values are computed
for Level-3 first using Equation 9 (discussed shortly), and
are then updated middle-out for all other levels. This blame
value represents accountability towards the blocked time
faced by the victim query, and is distributed to all nodes in
the graph. Thus, the unit of BC for each node at every level is

923

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

in seconds. Intuitively, it represents the fraction of the total
blocked time in seconds faced by a victim query that is attrib-
uted to that node. A detailed construction of the graph is ex-
plained in Appendix C. Thus for all levels, BC,, measures the
blame assigned to u for causing slowdown to a single victim
query vertex in Level-0. Figure 6 illustrates the distribution of
blame for all levels in an example iQC-Graph. Level-5 shows
the stages of only concurrent queries. There are, however,
other causes that can cause contention like external known
processes and unknown processes (see Section 5.1), which
are not broken down into stages. In Figure 6, we therefore
short-circuit their impact from Level-4 to Level-6 (notice no
vertices at Level-5 for External-IO and Unknown).

Level-0 to 3 - Tracking Blocked Times at Different Gran-
ularity: The BC of vertices from Level-0 to 3 represent their
contribution towards the delay faced by Q; node at Level-0.
For a node u in each level, BC,, gives the blocked time for the
entity represented at that level.

. BCﬁ3 (Level-3): represents the cumulative blocked time for
all tasks of a victim stage node u for resource r on host h.
It is the lowest level of granularity in the iQC-Graph.

e BCz (Level-2): The values at Level-3 are aggregated per
resource to capture resource level blocked times in Level-2,
ie,BC2 = Y hchosts BCZS. In data analytics frameworks, the
computation done by each task is completely independent
of other tasks in the same stage. The tasks can all run in
parallel or sequentially one at a time depending on the
cluster workload and scheduling situation. To make the
logic of iQC-Graph independent of task parallelism, the
blocked times are aggregated to reflect the total potential
improvement if there was no blocked time. Moreover, since
the unit of blame attributed is in seconds, these impacts
on tasks of the same stage executing across different hosts
can be aggregated at Level-2. The invariant in equation
(12) is valid per host/machine. Hence, the blame values
are assigned to concurrent tasks executing on same ma-
chine, and thus clock synchronization is not required when
aggregating the blame values.

e BC! (Level-1): The blame for victim stages at Level-1 is
the aggregate value of blocked times due to individual
resources i.e., BC' = ¥, esources BCL2.

o BCY (Level-0): BCY = ¥ cvic stages BCY'- A query DAG
can consist of multiple parallel paths (see Challenge 1),
the blocked time of a query cannot be computed by sum-
ming up the blocked time of all its stages. To address this
concern, we consider only the stages on the critical path
of a query’s executionas its victim stages. These are the
sequence of stages that form the longest chain of execution
for Q; (sum of run times of stages on the critical path gives
the total runtime of the query). In our example in Figure 1,
stages sy = s3 = s4 = $5 form the critical path of Q.

Research 9: Query Processing & Optimization 2

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

Level-0 Level-1 Level-2 Level-3 Level-4 Level-5 Level-6
(Victim Query) (Victim Stages) (Resources) (Hosts) (Blame Attribution) (Concurrent Stages) (Concurrent Queries)
V.R,H, V1 1 1c1
200 (R1,H2}
V,R;H,C
VlRl VIR Hzﬂ{clﬁ 1 1 2/ \Ql
700 800
L 500
Vl ﬁ{Rl,HZ} lele(:z
800 ViR, V R,H P {C;-Vy} 100
Q / 100 100 V,R,H,External-I0 External — 10
0
VZRIHZ 100 CZ 100
1000 v V,R,
2 100 VzR-_leUnknoWn 150
200 100 100
VRH, Unknown
100
V,R, 50 VR-H,Cy
100 VRH &
2272 V,R;H,C,
50 50

Figure 6: An example iQC-Graph. The labels above nodes represent the entity ID, and the values in the vertices give the
BC. The highlighted § values show an example of how Equation 8 is used to distribute blame (blocked-time) from Level-3
vertex to Level-4 vertices. The unit of blame contribution of each node in iQC-Graph is in seconds. The path in red shows the

highest-impact path. Figure shows how iQCAR attributes blame to other external apps causing, say, IO impact. All unaccounted

blocked-time is attributed to Unknown source.

Level-4 - Linking Cause to Effect: For every victim stage,
we begin by identifying all tasks concurrent to tasks of this
stage and compute their blames using Equation 8 for every
r, h combination. The blame for a single concurrent stage C;
of another query is then computed by aggregating individual
blames assigned to its tasks ct, and the victim tasks vt:

ﬁcs—»vs = Z ﬁct%‘ut

ct,vt

©

The B(fo at Level-3 for a u = (vs,r, h) is then distributed
among Level-4 nodes (we add m nodes P, in Level-4 for m
concurrent stages, see Appendix C) in proportion to their
blames values. That is,

BCL = _Pesows BCL (10)
ch’ePu ,Bcs’—ws

Intuitively, it gives the fraction of the total blocked-time

on host h for resource r (Level-3 node) which is attributed

to C;. For example, if BCf;3 = 500sec, and the ratio of blames

from C; : C; are 4 : 1 respectively (from above equation), then

¢ ¢ .
BCV41,R1,H2,C1 =400 and BCV41,R1,H2,C2 =100 (see Figure 6).

Level-5 and 6 - Aggregating Blame: After we compute
BC values at Level-4, we track the sources of their incoming
edges (concurrent stages). For each outgoing edge (u, v) from
Level-5 to all Level-4 vertices corresponding to a single victim
query, the value of BCﬁ5 = Yocedge_targets BC%. Similarly, we

compute BC's = Yocedge_targets BC>. These BCs give the total

924

impact originating from this source (stage or query) toward
a single victim query. For multiple victim queries at Level-0,
we maintain a map of BC values originating from each node
at Levels 5 and 6 towards each victim.

4.2 Explanations and their Scores

While the BC values are sufficient to answer the question
“who is slowing me down?" for a particular victim query, we
cannot use this measure as-is to compare the impacts caused
or received by queries. For example, suppose Q3 causes an im-
pact of 500sec to each of Q; and Q. It is possible that this im-
pact was just 1% of the total impact received by Q, whereas
it was 100% of the impact received by Q,. The responsibility
of Q5 toward the slowdown of each query is thus different.
We thus cannot use the blame value of 1000sec originating
from it towards two victims to rank its outgoing impact. To
address this, the Explanations Generator module uses the BC
values to compute two measures, namely the Impact Factor
(IF) and the Degree of Responsibility (DOR) that together
provide a normalized basis for comparing impacts. We set
the IF as edge weights and DOR as the node properties.

Impact Factor (IF): From Level-0 to 4, for every edge (u,v)
in iQC-Graph, its Impact Factor IF,, is the normalized im-
pact received by each child node v from its parent nodes u-s.
For instance, the impact from a Level-3 node u to a Level-2

&3
node v is IF,, = BC—}’Z. Figure 7 shows an example of the

u

Research 9: Query Processing & Optimization 2

DOR3 = (DOR,; * IF3,4) + (DOR,, * IF ;3)

BC=10 BC=20 BC=30 BC=20
U1 u2 U3 u4
\\ | N
N IFR2/6 “E=3/5 _
IF=1/6. | / B35 iF=2/5
AN F=3/6)
Vi Vv,

Figure 7: Example computation of IF and DOR from BC.

impact received by child node v; from its parents uy, uy, us.

Bc’

For edges (u,v) from Level-5 to 4, IF,, = BC—;’:, and from

s
Level-6 to 5, IF, = EE—Z.
Degree of Responsiblility (DOR): 1QCAR consolidates the IF
further to aggregate responsibility of each entity (queries,
stages, resources and hosts) towards the contention faced by
every victim query. The value of DOR,, is in the range [0, 1]
and is computed as the sum of the weights of all paths from any
node u to the victim query node t, where the weight of a path
is the product of all IF ., values of all the edges (v, w) on this
path. However, the DOR values can be efficiently computed
in linear time by graph traversal as illustrated in Figure 7
for node vs. If we choose more than one query at Level-0 for
analysis, a mapping of the values of DOR toward each query
is stored on nodes at Level-5 and 6.
Candidate Explanations: A path in iQC-Graph starting
from a culprit query cq and culminating at a victim query
vq, thus, represents a candidate explanation for the con-
tention caused by cq to vq. We represent it as follows: ¢ =
Expl(vq, vs, res, res’, host, cs, cq, P)
where ,
vqg and vs denote the victim query and stage being explained
by ¢ resp;
res € CPU, Memory, IO, Network;
res’ is the type of resource impacted (see Section 5.2);
host is the host of impact;
cs is the impacting stage of the concurrent query;
cq is the impacting concurrent query;
‘P is the cumulative weight of the path originating from cq
and ending at vg. Users can rank the explanations using P to
filter top paths of contentions from cq Level-6 to its victim.

We show various use-cases in which iQCAR uses the can-
didate explanations and their DOR scores in Appendix E.

5 IMPLEMENTATION

In this section, we discuss some specific details of our im-
plementation of iQCAR on Apache Spark [31]. They include
the supported resources, instrumentation in the framework,
frequency of metrics collection and our approach to handle
the terms in p2 in Equation 5.

925

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

5.1 Impact of Non-Query Processes

In Section 3.2 we separated the causes for query slowdown

into three categories. While 1QCAR is designed to accurately

handle the blame due to the first category (concurrent queries)
it can also be used to identify contentions due the second

category (other known processes) and classify remaining

blame to final category.

Known Processes: iQCAR is pre-configured for attributing

blame to select known causes i.e., in every interval 1QCAR

identifies the resource consumption of these processes/threads
to calculate their blame. Its API allows users with domain

knowledge to configure support for more external processes.
For instance, consider the Java garbage collector (GC) pro-
cess. As Spark runs on JVM its tasks are subject to GC pauses.
We model this as a long running concurrent query GCp with

one task on every host. The metrics collector captures the

time spent on GC in every interval of blame calculation and

attributes the appropriate blame to this task. If a query is

running slow because of high garbage collection activity

then iQCAR identifies GCy as the cause.

External Processes We model two constant long running

queries External-IO, External-Network with one task each

on every host. We keep a track of the total system resource

usage for disk and network during each execution window.

This information is used to compute the resource consumed

by external processes (by subtracting the aggregate resource

usage for all tasks from the total system usage). The External-

IO and External-Network synthetic queries are then attributed

blame using these computed values.

5.2 Supported Resources

Our implementation supports contention analysis for all
four system resources network, disk, cpu and memory. We
collect system-level metrics by deploying per-host agents
that capture and report with every heartbeat. For query level
metrics, we use existing Spark metrics where available and
our instrumentation for additional metrics as outlined below:

o Network: Existing fetch-wait-time and shuffle-bytes-read
are used.

e Memory: Spark manages application memory by splitting
them into execution and storage memory buckets. Instru-
mentation is used to capture storage memory wait time,
storage memory acquired, execution memory wait time and
execution memory acquired metrics.

o I0O: Existing scan-time and bytes read metrics are used for
disk read. For disk write, shuffle-write-time and shuffle-
bytes-written metrics are used.

e CPU: This contention has two components (a) Lock and
Block wait due to contention for common data-structures
(locks, monitors, etc). Java JMX based instrumentation is
used to capture these wait time metrics (b) OS scheduling

Research 9: Query Processing & Optimization 2

wait owing to usage being 100% (as more tasks need CPU
than max runnable cores). It is computed by subtracting

all above blocked times from the interval wall time °.

5.3 Frequency of Metrics Collection

For each task vt, we added support to collect the time-series
data for its blocked-time and the corresponding data pro-
cessed metrics at the boundaries of task start and finish for
all other tasks ct concurrent to vt. Figure 5 shows the four
cases of task start end boundaries concurrent to task vt. Note
that with this approach, the length of intermediate &t de-
pends on the frequency of arrival and exit of concurrent
tasks, thus enabling us to capture the effects of concurrency
on the execution of a task more accurately. For workloads
consisting of tasks with sub-second latency, our approach
gives fine-grained windows for analysis. However, if the ar-
rival rate of concurrent tasks is low (long-running tasks), this
can affect the distributions of our metric values. To address
this, we also record the metrics at heartbeat intervals in ad-
dition to above task entry and exit boundaries. Section 6.3.1
compares the impact of both the approaches on the quality
of our explanations.

5.4 Limitations

Concurrently executing queries can cause impacts in many
indirect ways too. The indirect impacts are more profound
when queries share common framework and/or process re-
sources like process managed shared memory, shared cache
etc. As an example, in our environment (Spark SQL over
Thriftserver), tasks of multiple queries run in the same JVM
process thereby having a high heap memory coupling. If a
task related to one query puts stress on the heap memory
then the resultant garbage collection pause impacts all other
tasks. In 1QCAR we handle this specific issue by creating
a separate GC task in the list of our known causes as dis-
cussed previously to avoid incorrect blame attribution but
still fall short of accurately pinning the blame to problematic
task. Another challenge arises when the impact from con-
current queries is not negative. In some cases they may aide
faster processing. Incorporating such indirect slowdowns
and accounting for positive vs negative impacts is part of
our on-going effort.

5.5 Discussion

While our focus in this paper is on SQL workloads on Spark,
iQCAR’s approach of (a) using blocked times, (b) its blame
attribution model and (c) DAG based blame propagation

STt is commonly recommended to run more task threads than CPU
threads [25] for increased CPU utilization; but, this also leads to contention
in some intervals. It is a trade off that users make based on experience. Our
implementation is on default values

926

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

generalize well to other workloads on any data-flow based
processing system. Spark was our choice of implementation
owing to its ability to process different workloads like SQL,
machine learning, graph analytics, etc. within a common
framework. All the existing metrics (except scan-time) and
those from our instrumentation are in its core engine and
could be used for any workload. iQCAR could be adapted
to work with any other similar system by implementing
metrics collection module for that system. The complexity
of this task depends on existing support (metrics) from the
system and instrumentation effort for missing metrics. In
Appendix F we describe the implementation of our metrics
collector module in another sql-on-hdfs system Presto [12].

6 EXPERIMENTAL EVALUATION

Our experiments were conducted on Apache Spark 2.2 [31]
deployed on a 20-node local cluster (master and 19 slaves).
Spark was setup to run using the standalone scheduler in
fair scheduling mode [30] with default configurations. Each
machine in the cluster has 8 cores, 16GB RAM, and 1 TB
storage. A 300 GB TPCDS [15] dataset was stored in HDFS
and accessed through Spark SQL in Parquet [3] format. The
SQL queries were taken from [27] without any modifications.
Workload: Our analysis uses a TPCDS benchmark work-
load that models multiple users running a mix of data ana-
lytical queries in parallel. We have 6 users (or tenants) sub-
mitting their queries to dedicated queues. Each user runs 15
sequential queries randomly chosen from the TPCDS query
set. The query schedules were serialized and re-used for all
experiments to compare results across executions. We iden-
tify a victim query as the one that took most hit (suffered
maximum slowdown) compared to its unconstrained execu-
tion (when run in isolation). The query Qu3, which was 178%
slower, is the victim discussed in the rest of this section.

6.1 Debugging Challenges Without iQCAR

The purpose of this experiment is to show how iQCAR en-
ables deeper diagnosis of contentions compared to other ap-
proaches. For comparison with baseline, we use the following
metrics: (a) Blocked-Time Analysis (BTA): blocked times
for IO and Network [24] aggregated at stage and query levels,
(b) Naive-Overlap: based only on the overall query overlap
times (a technique popularly used by support staff trying
to resolve who is affecting my query tickets), and (c) Deep-
Overlap: we compute the cumulative overlap time between
all tasks of concurrent queries. In this approach, overlap time
of tasks executing in parallel is aggregated in comparison
to previous one where only the maximum overlap is consid-
ered. For both overlap-based approaches, highest blame is
attributed to query with most overlap.

Research 9: Query Processing & Optimization 2

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

© 407 mBlockedTime-BTA m BlockedTime-iQCAR 107 mI0-BT mCPU-BT m N-BT w18 m20 m21 22 W23
S o = -
> 8
S e 2 S
@ 10¢ ‘_E’ 2
£1® £ =
g1 2 e
=10 F g

100 &=

18 20 21 22 23 18 20 21 22 23
Target Stages of Q43 Target Stages of Q43 10_RATP CPU_RATP
€Y (b) ()

Figure 8: (a) Cumulative blocked times from iQCAR and BTA approach; (b) Blocked times for 10, CPU and Network; (c) Com-
parison of RATP for IO and CPU for top-5 impacted stages of Qy3.

Figure 8a compares the blocked times observed (y-axis
is plotted on log-scale) with the BTA method vs captured
by iQCAR for its top-5 victim stages. Since iQCAR accrues
blocked times for additional supported resources (discussed
in Section 5.2), it gives more insight into the slowdown for
stages like 21 and 23. Figure 8b compares the relative per re-
source blocked times. However, to identify disproportionality
in these blocked-times (i.e. understanding impact) RATP is
better. Blocked-time gives the possible speed-up only if there
are no resource constraints, i.e., infinite resource supply, it
is still insufficient to provide relative impact in a real cluster
with resource constraints. Here it is difficult for the admin to
infer whether stage 20 or 22 caused more impact due to con-
currency. Based on cumulative-blocked times alone, stage 20
stands out as cause for query slowdown. However, when we
compare the RATPs for these stages using 1QCAR, we see in
Figure 8c that the CPU RATP was much higher for multiple
stages compared to their IO RATP, whereas the network RATP
was significantly low to even compare. If we analyze the im-
pact on each of these stages generated using the explanations
module of iQCAR, query Qus received highest impact from
victim stage 22 through CPU.

Clearly, Block Time helps in identifying the parts of a
query whose speed-up would help the most but not neces-
sarily the parts that are hit due to contention. In a resource
constrained environment it is the latter that is more help-
ful for administrators to align at-least the query scheduling
strategies.

We now compare the results of different overlap time
approaches for two stages 20 and 22. An admin, based on
higher blocked times, would infer that queries concurrent (or
the ones with highest overlap) to these stages have caused
highest impact to Q43. However, as shown in Figure 9, the
top overlapping or concurrent queries differ significantly
between Naive-Overlap and Deep-Overlap. The queries with
minimal overlap shown in Naive-Overlap (Q4 and Q27) have
relatively more tasks executing in parallel on the same host

927

as that of victim query, causing higher cumulative Deep-
Overlap. Clearly, using Naive-Overlap can lead to misleading
results for blame attribution.

The output from iQCAR is more comparable to Deep-Overlap,
but has different contributions. Especially for Q;;, where the
tasks had a high overlap with tasks of our victim query Qus,
the impact paths showed low path weights between these
end points. A further exploration revealed that only 18% of
the execution windows (captured via the time-series metrics),
showed increments in CPU and IO acquired values for Qy; in
the matching overlapping windows. Qy; itself was blocked
for these resources in 64% of the overlapping windows. With-
out the impact analysis API of iQCAR, an admin will need
significant effort to unravel this and is more subject to falsely
attribute blame to either Qs; with Naive-Overlap or to Q;;
with Deep-Overlap.

6.2 Test Cases

While it is important to diagnose and distribute accurate
blames, it is also required in a timely manner for any ac-
tionable measures. The purpose of these experiments is to
demonstrate how iQCAR can perform a time-series analysis
to detect culprit queries induced in an online workload. For
ease of exposition, we restrict our definition of culprit to the
most impacting query for a single victim. For each test-case,
the culprit query was formulated to create a specific resource

Naive Overlap Deep Overlap iQCAR-DOR
a7 2 o~ Q11

Q1 9 Q11 1% 1% Q27

31% 33% QSZ 31%

16%
3
19%

Figure 9: Compare top-5 impacting queries between (a)
Naive-Overlap (b) Deep-Overlap and (c) iQCAR.

Q3
19%

Research 9: Query Processing & Optimization 2

100 f 08
gp | M System Z,, mQ52 mQ5 mQ3 = Q27
So.
80 =X Induced CPU
70 Zo° Contentiop -
205
+60 2 -
§50 §_04 —
2
© 40 203
“ 30 5
gO.Z —
10
0
16: 20 16: 30 cpu_live_2 cpu_live_3
() (b)

Q11 mQ_cpu-int mI0-Other

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

Deep Overlap

Q52
10%

Q11
35%

Naive Overlap

Q3
16% Q27
Q7 Q11 14%

19% 19%

cpu_live_total

Q_cpu-int

Q_cpu-in

17%

(©

Figure 10: CPU-Internal experiment: (a) Ganglia snapshot showing higher CPU Utilization when Qcpy—in; was running; (b)

DOR of Qcpy-—in:t is about 27% towards query Q43 during CPU induction; (c) Overlap-based impact from concurrent queries.

Table 1: Summary of Induced Contention Scenarios

| Test-Case [| Detail |
CPU-Internal run CPU-intensive query after Q43 starts.
10-External read a large file on every host after Q3.

Mem-Internal Cache web_sales table before Qa3 starts.

contention scenario as summarized in Table 1. Note that, (a)
test-case of Memory-external is out of scope since iQCAR de-
tects contentions only for managed memory in Spark, (b)
inducing only network contention in our SQL workload was
not possible as our attempts to increase shuffle data resulted
in an increase 10 contention owing to heavy shuffle write.

6.2.1 CPU-Internal. Listing 1 shows our induced culprit
query Qcpu—int:

Listing 1: Qcpy—ini: CPU-Internal Induction query

with temp (select cl.c_first_name as first_name,
sum(sha2 (repeat(cl.c_last_name ,45000),512))
from customer cl,customer c2

as ssum

where c¢1.c_customer_sk = c¢2.c_customer_sk
group by cl.c_first_name)

select max(ssum) from temp limit 100;

We first discuss the characteristics of Qcpy—in:: (a) low-
overhead of 10 read owing to a scan over two small TPCDS
customer tables each containing 5 million records stored in
parquet format, (b) low network overhead since we project
only two columns, (c) minimal data skew between partitions
as the join is on c_customer_sk column which is a unique
sequential id for every row and shuffle operation used hash-
partitioning, and (d) high CPU requirements owing to the
sha2 function on a long string (generated by using the repeat
function on a string column). Figure 10a shows that the CPU
utilization reaches almost 80% during our induction.
Observations: iQCAR is used to analyze the contentions
in different time windows of the workload execution (here

928

cpu_live_1, cpu_live_2, cpu_live_3, and cpu_live_total). Fig-
ure 10b shows the change in DOR values of the concurrent
queries towards Qus. As it starts execution only in the second
window, we skip cpu_live_1in the figure. The stacked bars
show the relative contribution from each of the top-5 culprit
queries, and their heights denote the total contribution from
them. Qcpy—ins Was induced at the end of cpu_live_2, hence
no contribution from Qcpy—in, in this window. As seen in
cpu_live_3, once we induce Qcpy,—ins When Q3 starts, iQCAR
correctly detects its contribution of 27%.

The end-of-window analysis in cpu_live_total shows the
overall impact to Q43 from all concurrent queries during
its end-to-end execution. Although Qcpy—in; caused high
contention to Q43 for a period, its overall impact was still
limited (0.05%). Without iQCAR, if the admin performs Naive-
Overlap and Deep-Overlap in cpu_live_3 window to attribute
blame as shown in Figure 10c, she will be wrongly attributing
about 35% of received impact to Q;;, whereas, the actual
impact shows less than 10% overall impact from Q.

6.2.2 10-External. In this test-case, we show how iQCAR
can be used to detect impact from culprit processes that
run outside the Spark framework. To create an IO-intensive
external culprit process, we read and dump a large file on
every host in the cluster after the workload stabilizes (at least
one query is completed for each user). Let us call this culprit
process as IO — Other. The timing of induction was chosen
such that it overlaps with the scan stage of Q3. We created
a 60GB file on each host and used the command in Listing 2
to read in blocks of size 256MB using the below command:

Listing 2: IO — Other: I0-External Induction query
dd if=~/file_60GB of=/dev/null bs=256

Observations: Ganglia showed over 1600% aggregate disk
utilization for all nodes (19 slaves) in the cluster during this
period of IO induction. We analyze impacts for the following
windows: (a) Q43 had not started in io_live_1, (b) io_live_2

Research 9: Query Processing & Optimization 2

Zos mQ5 =Q43 mQ3 mQ27 mQll mI0-Other
& o0.

Sy . Induced 10 Contention

=0.

go04

203 [

=]

go2

&0.1

. .

io_live_2 io_live_3 io_live_5 io_live_total

Figure 11: DOR of culprit query IO —Other towards query Q43
changes as the workload progresses.

analysis was done for victim query Qus just before we in-
duced IO - Other, (c) io_live_3 to io_live_5 windows while
IO - Other is running concurrently with Q43 (we omit show-
ing io_live_4 due to plotting space constraints), (d) Q43 fin-
ishes execution before io_live_6, and (e) the io_live_total
window to analyze overall impact on Q43 from the beginning
of the workload till the end. Figure 11 shows the relative
contributions from each of the concurrent queries, show-
ing that iQCAR detects the culprit process first in io_live_3
(shown in dark blue), and outputs an increasing impact dur-
ing io_live_5 when it peaks.

6.2.3 Mem-Internal. In this third test-case we show how
1QCAR distinguishes between multi-resource interferences
and rightly detects a culprit that impacts a single resource
largely. To achieve this, we create a memory contention sce-
nario which should potentially also cause heavy IO conflict.
Since we monitor contention only for the managed mem-
ory within Spark, our internal memory-contention test-case
caches a large TPCDS table (web_sales) in memory just be-
fore Qg3 is submitted. Let’s call this query as Qpem—in:- Note,
with alternate approaches like CPU Stolen Time [9], this
induced culprit causing memory conflict will go undetected.

Observations: We now analyze the impact on Q43 for
the following four windows: (a) mem_live_2 is the period
where both Q43 and Qpem—in: had begun execution together

mQ52 mQ5 Q43 Q27 Qll mQ_mem-int mI0-Other

Induced Memory

B I
= O

mem_live_4

mem_live_2

mem_live_3 mem_live_5 mem_live_total

Figure 12: Impact of induced memory contention on Qy3.

929

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

(Q43 had not started in mem_live_1), (b) mem_live_3
shows a window where some other queries had entered the
workload, and both Q43 and Qpem-—ins Were still running, (c)
mem_live_4 and mem_live_5 are the windows when Qg3
was still running and Qmem-ins had finished execution, and
(d) mem_live_total analyzes the overall impact on Q43 from
top-5 culprit queries during its complete execution window.
While Q43 was running concurrently with multiple other
queries, Qmem—in: causes more than 40% share of the total
impact received via memory once it begins as shown in Fig-
ure 12. Note that Q43 scans store and store_sales, whereas
we cached web_sales in our induction query. This created
high IO interference, but the value of blame distributed via
memory was noted to be highest.

6.3 Instrumentation

In this section, we analyze the impact of our instrumentation
on the quality of explanations and query runtimes.

6.3.1 Frequency of Data Collection. iQCAR aggregates re-
source usage and blocked times metrics from small intervals
to calculate blame. The explanations (i.e., DOR values) are
derived from these blame values and are sensitive to the
interval size. In this experiment, we show that the accuracy
of explanation improves with decrease in interval length. In
Section 5.3 we describe how a combination of regular interval
and task event based metrics gives most accurate blame (TE)
and use it as ideal value to calculate DOR deviation. Figure 13
shows that the DOR values vary for different heartbeat inter-
vals and their average deviation (vector distance) from ideal
(shown on secondary y-axis as ‘DOR distance from Ideal
(TE)’ and depicted in red) tends to improve with decreasing
intervals. While lower interval lengths give higher accuracy
the ideal interval size depends on average task runtimes of
the workload. In our workload (TPCDS), task runtimes vary
highly so we used a lower value (2s) to ensure better ac-
curacy. We next discuss the overheads associated with this
instrumentation.

6.3.2 Instrumentation Overhead. Many metrics relevant to
iQCAR are already provided by frameworks (e.g., Spark (Sec-
tion 5.2) and Presto (Section F)) and instrumentation for
additional metrics is very low (book-keeping instructions to
capture time and bytes used). Although the absolute over-
head increases with frequency of metrics collection for larger
tasks it is still a small fraction of their runtime. The metrics
are also collected asynchronously to avoid tasks from block-
ing. Figure 14 shows the overhead (collection interval of
2s) over baseline (collection interval 10s) as the query con-
currency increases. Increase in concurrency increases the
average runtime of tasks due to resource contentions. The

Research 9: Query Processing & Optimization 2

=10 8 _
009 6.75 7E
Sos 6T
Zo7 8-
206 > E
505 4 |.‘:"
@04 38
€03 5 £
0.2 a
(] || -4
00.1 . 1 S
Jdoo W W= 0
10 8 6 4 2 TE

Heartbeat Frequency (sec)
Q4 mQ43 mQ3 mQ27 mQ11 mQ5 mGC

Figure 13: Impact of varying intervals of metrics collection
on explanation DORs. TE denotes the metrics collection at
task-event boundaries (Section 5.3) in addition to 2s logging.

1.6

1.4

® 1.2

T 1
3

£ 0.8

206

Oo4

0.2

0

2 3 4 5 6 7 8 9 10 11
Number of Concurrent Queries

Figure 14: Instrumentation in Spark - Percentage overhead
over baseline.

overhead increases only by 1.4% for 5 fold increase in con-
currency.

6.4 Analysis

In this section we discuss the performance of analytic com-
ponents of iQCAR for entire workload (offline) and describe
the changes in online analysis.

6.4.1 Graph Construction. In Figure 15a, we observe (a) an
increase in size of 1QC-Graph and (b) time taken for execu-
tion of different components, as the number of concurrent
queries increases. The window of analysis here is the entire
runtime of workload and the graph is built for every query.
For example, for 6 concurrent queries, iQC-Graph was built
with six vertices at Level-0, all their stages in Level-1 and so
on. The size of the graph therefore grows very quickly as the
concurrency increases. This is shown on the right y-axis. The
graph size increases from under 100 for 2 queries to about
120k for 11 queries. The time for constructing the graph is
shown on the left y-axis. Even for a single threaded execution
it only grows at half the rate of graph size. It increases from
under 2s for 2 queries to 60s for 11 queries. This is still under
2.5% of the runtime of the workload. The computation time

930

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

5 120k

120k —Graph Size

100k — —parse and Stream 100k2
< 80k ——Graph Construction 80k €
$., —Computel F 3
2 6ok pute Impact Factors 60k T
= 1]
E —Compute DOR =
< 40k 40k
= s
@ 20k 20k ©
£ — &
F oo o “

2 3 4 5 6 7 8 9 10 11
Number of concurrent queries
(a)
3500 —Find Topk Culprits

< 3000 —Find Topk Explanations

8 2500 Find Topk-Explanations-Per Victim

% 2000 —Find Topk Culprit Queries

—Find Topk Impact Paths

£ 1500

o —Find Topk Victims

£ 1000 —Generating Explanatjghs

E

e ——

2 3 4 5 6 7 8 9
Number of concurrent queries

(b)
Figure 15: (a) Graph Construction - The time taken by the
Graph Constructor module in various steps. (b) Explana-
tions Generation - The time taken by the Explanations Gen-
erator module to invoke its Blame Analysis API for different
use-cases.

11

of IF and DORs is still lower, under 1% of the workload time.
In a live scenario the window of analysis is much smaller and
hence the size of the iQC-Graph reduces significantly. The
nodes in Levels 2, 3, and 4 corresponds to a particular victim
stage, the subgraph formed by these nodes for one victim
stage at Level 1 is disjoint from the subgraph formed by the
nodes for another victim stage. They are connected back at
Level 5 if multiple victim stages execute concurrently with
the same culprit stage. This property allows the construction
of subgraphs from Level 0 to Level 4 in parallel.

6.4.2 Explanations Generation. In Figure 15b, we present
the times spent for different types of analysis algorithms.
The process of generating textual explanations from the
contention iQC-Graph (the plot-line for ‘Generating Expla-
nations’ depicted in red) dominates the runtime of our Blame
Analysis process. The y-axis values for this measure ac-
count for the time to generate explanations for all the use-
cases (a top-k query) listed in the figure. However, in a live-
contention analysis scenario, a user will be performing a
single use-case at a time. Moreover, since our API uses cus-
tomized Cypher [6] queries on Neo4j to retrieve data and
generates plots in real-time using Plotly [11], users can in-
teractively explore contentions.

Research 9: Query Processing & Optimization 2

Table 2: Comparison of iQCAR with other approaches

(Category) No Detects| Detects| Blame | Dataflow

Related Work His- slow- | bottle- | attri- | Aware
torical | down | necks | bu-
data tion

(1) Ganglia, || v/ e

Spark UI, Am-

bari

(2) Starfish, Dr. v v

Elephant, Otter-

Tune

(3) PerfXplain, Ve v

Blocked Time,

PerfAugur

3) Oracle || v/ v v

ADDM, DIADS

(3) DBSherlock e v

(4) CPI? v v vePU T

ow |7 [7 7 |7 [V]

7 RELATED WORK

iQCAR is designed to analyze inter-query resource contentions
in near real-time. It does not aim to understand impact of
configuration changes and does not use data of any pre-
vious execution. While the contention analysis logic of
iQCAR is not dependent on previous data, identifying specific
queries (among entire workload) to analyze will be easier
with some reference information. In this paper, we use the
unconstrained execution (without any interference) time of
a query for this purpose. In practice, as mentioned in Sec-
tion 1.2, an admin may identify victim queries using other
performance criteria (e.g., SLA, missed-deadline etc.). or by
simply looking for query with maximum blocked time. To
the best of our knowledge, there is no system today that
performs inter-query contention analysis on data analytics
frameworks without any data from previous executions. We
compare our work with other approaches below and give a
summary in Table 2.

(1) Monitoring Tools: Cluster monitoring tools like Ganglia
[8] and application tools like Spark UI [13] and Ambari [1]
provide query metrics at a high level. They do not capture
low-level resource interactions.

(2) Configuration recommendation: Tools like Starfish
[21], Dr.Elephant [7], and OtterTune [28] analyze perfor-
mance and suggest changes in configuration. However, it
is difficult to predict how these system-wide changes will
affect inter-query interactions in an online workload.

(3) Root Cause Diagnosis tools: Performance diagnosis has
been studied in the database community [17, 20, 29], for clus-
ter computing frameworks [23, 24], and in cloud based ser-
vices [26]. While the design of iQCAR is motivated by some

931

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

concepts from such prior work, the techniques and goals dif-
fer as follows: (a) Database Community: In ADDM [20],
Database Time of a SQL query is used for impact analysis.
iQCAR instead takes an approach to provide an end-to-end
contention analysis while also enabling deep exploration
of contention symptoms. DIADS [17] uses Annotated Plan
Graphs that combine the details of database operations and
Storage Area Networks (SANs) to provide an integrated diag-
nosis tool. The problem addressed in DIADS is not related,
but our multi-level explanation framework bears similarity to
their multi-level analysis. Causality based monitoring tools
like DBSherlock [29] diagnose problems using data from
previous executions. (b) Cluster Computing: PerfXplain
is a debugging toolkit that uses a decision-tree approach
to provide explanations for the performance of MapReduce
jobs. Unlike 1QCAR, it also depends on previous executions.
Blocked Time metric [24] emphasizes the need for using
resource blocked times for performance analysis of data an-
alytical workloads; we critically use blocked time but do
a finer analysis to identify the role of concurrent queries
in causing these blocked tmes. (c) Cloud: PerfAugur [26]
detects anomalous system behavior and generates detailed
explanations for them, whereas iQCAR generates explana-
tions for the slowdown due to resource conflicts.

(4) Detecting Antagonist Queries: CPI° [32] uses Cycles-
Per-Instruction data from hardware counters to identify an-
tagonist queries but is limited to CPU contention.

8 CONCLUSION

Resource interferences due to concurrent executions are one
of the primary and yet highly misdiagnosed causes of query
slowdowns in shared clusters today. This paper discusses
some of thechallenges in detecting accurate causes of con-
tentions, and illustrateswhy blame attribution using existing
methodologies can be inaccurate. We propose a theory for
quantifying blame for slowdown, and present techniques to
filter genuine concurrency related slowdowns from other
known and unknown issues. We further showed how our
graph-based framework allows for consolidation of blame
and generate explanations allowing an admin to explore the
contentions and contributors of these contentions systemati-
cally. An interesting direction of future research is to develop
a contention-aware cluster scheduler that can dynamically
reprioritize contentious or victim queries, and/or delay stage
submissions to avoid possible resource conflicts.

ACKNOWLEDGMENTS

We are thankful to our anonymous reviewers for their valu-
able feedback that helped us improve the paper. This work
was supported in part by NSF awards IIS-1408846, IIS-1423124,
11S-1552538, 11S-1703431 and NIH Award 1R01EB025021-01.

Research 9: Query Processing & Optimization 2

REFERENCES

[1] 2019. Apache Ambari. http://ambari.apache.org.

[2] 2019. Apache Hadoop Capacity Scheduler. http://hadoop.apache.
org/docs/current/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.
html.

2019. Apache Parquet. https://parquet.apache.org.

2019. Apache Spark: Memory Management
. https://spark.apache.org/docs/latest/tuning.html#
memory-management-overview.

2019. Collection of small tips in further analyzing your hadoop cluster.
https://www.slideshare.net/Hadoop_Summit/t-325p210-cnoguchi.
2019. Cypher Query Language. https://neo4j.com/developer/cypher.
2019. Dr. Elephant. http://www.teradata.com.

2019. Ganglia Monitoring System. http://ganglia.info.

2019. Netflix and Stolen Time. https://www.sciencelogic.com/blog/
netflix-steals-time-in-the-cloud-and-from-users.

2019. Oracle Autonomous Database. https://www.oracle.com/
database/autonomous-database/index.html.

2019. Plotly: Modern Visualization for the Data Era. https://plot.ly.
2019. Presto: Distributed SQL Query Engine for Big Data. https:
//prestodb.github.io.

2019. Spark Monitoring and Instrumentation. http://spark.apache.org/
docs/latest/monitoring html.

2019. The Noisy Neighbor Problem. https://www.liquidweb.com/blog/
why-aws-is-bad-for-small-organizations-and-users/.

Overview

[15] 2019. TPC Benchmark™DS . http://www.tpc.org/tpcds/.
[16] 2019. Understanding AWS stolen CPU and how it af-
fects your apps. https://www.datadoghq.com/blog/

understanding-aws-stolen-cpu-and-how-it-affects-your-apps/.
Nedyalko Borisov, Shivnath Babu, Sandeep Uttamchandani, Ramani
Routray, and Aameek Singh. 2009. Why Did My Query Slow Down?
arXiv preprint arXiv:0907.3183 (2009).

Carlo Curino, Djellel E Difallah, Chris Douglas, Subru Krishnan, Raghu
Ramakrishnan, and Sriram Rao. 2014. Reservation-based scheduling:
If you’re late don’t blame us!. In Proceedings of the ACM Symposium
on Cloud Computing. ACM, 1-14.

[19] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data
processing on large clusters. Commun. ACM 51, 1 (2008), 107-113.
Karl Dias, Mark Ramacher, Uri Shaft, Venkateshwaran Venkataramani,
and Graham Wood. 2005. Automatic Performance Diagnosis and
Tuning in Oracle.. In CIDR. 84-94.

Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko Borisov, Liang
Dong, Fatma Bilgen Cetin, and Shivnath Babu. 2011. Starfish: a self-
tuning system for big data analytics.. In Cidr, Vol. 11. 261-272.
Prajakta Kalmegh, Harrison Lundberg, Frederick Xu, Shivnath Babu,
and Sudeepa Roy. 2018. iqcar: A demonstration of an inter-query
contention analyzer for cluster computing frameworks. In Proceedings
of the 2018 International Conference on Management of Data. ACM,
1721-1724.

Nodira Khoussainova, Magdalena Balazinska, and Dan Suciu. 2012.
Perfxplain: debugging mapreduce job performance. PVLDB 5, 7 (2012),
598-609.

Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, and
Byung-Gon Chun. 2015. Making Sense of Performance in Data An-
alytics Frameworks. In 12th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 15). USENIX Association, 293
307. https://www.usenix.org/conference/nsdil5/technical-sessions/
presentation/ousterhout

Iraklis Psaroudakis, Tobias Scheuer, Norman May, and Anastasia Ail-

amaki. 2013. Task scheduling for highly concurrent analytical and
transactional main-memory workloads. In Proceedings of the Fourth In-

ternational Workshop on Accelerating Data Management Systems Using

[20]

[21]

[22

—

[25

=

932

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

Modern Processor and Storage Architectures (ADMS 2013).

Sudip Roy, Arnd Christian Kénig, Igor Dvorkin, and Manish Kumar.
2015. Perfaugur: Robust diagnostics for performance anomalies in
cloud services. In 2015 IEEE 31st International Conference on Data
Engineering. IEEE, 1167-1178.

spark-sql-perf team. 2016. Spark SQL Performance. https://github.
com/databricks/spark-sql-perf. [Online; accessed 01-Nov-2016].
Dana Van Aken, Andrew Pavlo, Geoffrey J Gordon, and Bohan Zhang.
2017. Automatic database management system tuning through large-
scale machine learning. In Proceedings of the 2017 ACM International
Conference on Management of Data. ACM, 1009-1024.

Dong Young Yoon, Ning Niu, and Barzan Mozafari. 2016. DBSher-
lock: A Performance Diagnostic Tool for Transactional Databases. In
Proceedings of the 2016 International Conference on Management of
Data (SIGMOD ’16). ACM, New York, NY, USA, 1599-1614. https:
//doi.org/10.1145/2882903.2915218

Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmele-
egy, Scott Shenker, and Ion Stoica. 2010. Delay scheduling: a simple
technique for achieving locality and fairness in cluster scheduling. In
Proceedings of the 5th European conference on Computer systems. ACM,
265-278.

Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott
Shenker, and Ion Stoica. 2010. Spark: Cluster Computing with Work-
ing Sets. In Proceedings of the 2Nd USENLX Conference on Hot Topics in
Cloud Computing (HotCloud’10). USENIX Association, Berkeley, CA,
USA, 10-10. http://dl.acm.org/citation.cfm?id=1863103.1863113

Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale,
and John Wilkes. 2013. CPI 2: CPU performance isolation for shared
compute clusters. In Proceedings of the 8th ACM European Conference
on Computer Systems. ACM, 379-391.

[26]

[27]

[28]

[29]
[30]
[31]

[32]

A SLOWDOWN OF A TASK FROM
CONCURRENCY

In this section, we derive Equation 6 from Equation 4. For
ease of presentation, we repeat some details as we intend to
present the entire derivation with a single continuity.
Consider a victim task vt that wants to consume resource
r on host h. In the 8t interval, let the capacity of the host h
to serve the resource r be C unit resource/sec. The minimum
time to acquire one unit of » on host h can be expressed as:

1
RATP® = c sec / unit resource (11)
The total capacity C (of a resource) is consumed by all the
processes running on the system. These processes include (a)
tasks related to queries, (b) known processes (e.g.common
framework services) (refer Section 3) and (c) other unknown
system processes. This can be expressed as
M
C=Cut+ Cl + CZ +oo+Cn+ Z Cknown,i + Cunknown
i=1

(12)

Here, C,; is the capacity used by the victim task vt; Cy, ... Cy
are the capacities used by n concurrent tasks; and Cynown, i,
i =1--M, and Cypinown denote capacities used by M known
causes and any unknown cause. Using Equation 3, for victim
task vt and concurrent tasks ct-s,

1
Cpt = —— and C,; =
YL RATP,, ¢t

forct =1---n

—_— 13
RATP.; (13)

Research 9: Query Processing & Optimization 2 SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

We abuse the notation to extend this concept also to other The left hand side above represents the slowdown S,,; of vt
known and unknown causes as: given by Definition 3.2. Therefore,
1 1 M
Chnown.i = m—=——— for i =1.-M and Cunknown = —-—=——— g% _ i RATPu: RATPur RATPu: (17)
RATPknown,i RA(lez;nknown “f T U RATPe: 4 RATPkpown.i RATPunknown
DEFINITION A.1. The total slowdown of task vt in time b
interval 8t due to unavailability of resource r is defined as: Each individual term inside the summation of p; is con-

S o (RATPy; — RATP™) (15) tributed by one of the tasks concurrent to task vt, and corre-
vt~ RATP* sponds to blame attributable to a concurrent task ct in this
where, RATP,; is computed as per Equation (2). interval. Comparing Equations (17) and (5) and assuming

It is the deviation from ideal resource acquisition rate on full overlap we get,

host h and gives a measure of the excess delay incurred for ﬂ]: tu_l)l;(t)verlap _ RATPo; (18)
unit resource in &t interval. The slowdown of vt will be zero RATPct
when the entire resources is available only to the task vt. Similarly, for known and unknown factors,
The slowdown given in Definition 3.2 corresponds to the full_overlap RATPy¢ _
total blame to be attributed to (p;) other tasks running con- B = TP fori=1-M (19)

known,i—vt RATPknown,i

currently with vt on h during its execution, and (p;) other

known or unknown factors. This gives another expression ﬂlu(:ﬁ:ggiﬁ‘g’t = ﬁi (20)
for slowdown: unknown
n M
Sot = (Y Betoot) +(> Brnown.imot) + Bunknownoot (16) B.2 Partial overlap of vt with concurrent
ct=1 i=1 tasks

P P The above derivation assumes an interval ¢ in which all
Here fc;—o; is the blame assigned to each of the n tasks ct = concurrent tasks have a total overlap with vt. In practice,
1--:n concurrently running with vt; Brnown,i—s gives the they overlap for different length of intervals as illustrated in
blame assigned to other known non-conflict-related causes Figure 5. So we divide the total duration T = vt,pq — Vtsrars
that contribute to the wait time of the task vt. However of the execution time of task vt into small 8t intervals such
these processes are identified and captured in 1QCAR. Hence that in each dt time Equation (17) holds.
we categorize them as known processes. Finally, slowdown Let S1,Ss, ... ,Sm be the slowdown in each m = % inter-
could be due to a variety of other causes which are either not val of execution. The total slowdown of vt then is:
known or cannot be attributed to any concurrent tasks like m
systemic issues (executors getting killed, external processes, Sot = kz—:l Sk

etc), and so on; By nknown—e: captures this value of slowdown

due to such unknown factors. Substituting the value of slowdown Sy in the k-th interval

using Equation (17), Sy =

B COMPUTATION OF BLAME BY RATPS i » RATPO! .y RATPO! RATPSL
We now derive the blame values (f terms) in Equation (5) (21| cict, RATPOE kpommen, RATPOL RaTPOL

in terms of RATPs. First we discuss a simpler case to present
the main ideas - when there is a full overlap of vt with all
concurrent tasks. Then we discuss the general case with
arbitrary overlap between ct-s and vt.

where, 0 and n; are the set of concurrent tasks and known
factors respectively in the k-th interval impacting task vt.
Note that the RATP values in the above equation depend on
the intervals dt.

Rearranging the summations, we get the expression of

B.1 Full overlap of vt with concurrent blame for general overlaps as follows:

tasks
Rewriting Equation (12) for C =
(13), and (14),

ProrosITION B.1. The blame f.;—..: for the contention
caused for resource r by a concurrent task ct of a victim task
vt on host h can be expressed as:

1

mape from Equations (3),

1 1 noooq M 1 1 5t
— = + +3 + | & RATPY; -
RATP* RATPu: 52 RATPcr = RATPknown.i RATPunknown Ber—or = Z_: RATPO! (21)
Multiplying by RATP,,; and subtracting 1 on both sides yield, k=1 ct
RATPy; — RATPY i RATPo: M RATPy: L RATP:
RATP* S RATPe: i RATPknown.i RATPunknown

933

Research 9: Query Processing & Optimization 2

Level-0 Level-1 Level-2 Level-3 Level-4 Level-5 Level-6
AN <
S3 ve (SR, vce
SsRgH,C; C; Q1
Qo
S LU SR, **-*
4 st SsR3H,C, Cz
SsRy o s - .
@
SsR3H,Cq Cy
SR,

‘Denotes edges to next level vertices omitted
here due to space constraints

Figure 16: An instance of iQC-Graph illustrating the impact
on query depicted in Figure 1.

C IQC-GRAPH CONSTRUCTION

iQC-Graph has 7 levels from Level 0 to Level 6. Each level
in the graph represents an entity to which we assign the
blame for the slowdown of a victim query. Level-0 represents
victim queries; for every victim query vertex Q; we add its
victim stages as vertices in Level-1. Nodes in Levels 2 and 3
respectively capture the impacts coming from resources and
hosts. That is, for each victim stage vertex V; ; in Level-1, we
add five resource-level vertices (CPU, network, memory, IO,
slots) at Level-2 to store the blame originating from them.
For every Level-2 node, we add 7 vertices in Level-3 where
each node represents the host on which the tasks of victim
stage V; ; were executing and using resource r.

Nodes in Level 4 act as a bridge in connecting the con-
current stages (Level-5) with the host-level nodes at Level-3,
and do not represent any culpable entity unlike other levels.
Each Level-4 vertex captures the blame attributed to some
concurrent stage Cp, ,, of a concurrent query Q, executing
on host h and contending for resource r with victim stage
Vi,j- Finally, we connect these blame-attribution vertices to
the respective concurrent stages and their corresponding
queries at Level 5 and Level 6 respectively. Figure 6 shows a
subset of an example 1QC-Graph for a single victim query Qo
that captures the distribution of blame among two resources
Ry, R,, two hosts Hy, H,, two concurrent stages Cy,C; of a
single query Q;, an External-IO process (a known factor),
and an Unknown factor.

D IQC-GRAPH BY EXAMPLE

In the example of Q3 shown in Figure 1, suppose the user
selects Qy as the victim query, and wants to analyze the con-
tention of the stages on the critical path. First, we add a node
for Qy in Level 0, and nodes for sy, s3, 54,55 in Level 1. Then
in Level 2, for each of these stages, the admin can see five
nodes corresponding to different resources. Although both
s1 and s5 faced high contentions, using 1QC-Graph the admin

934

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

can understand questions such as whether the network con-
tention faced by stage s5 was higher than the IO contention
faced by stage s;, and so on.

Suppose only the trailing tasks of stage s; executing
on host Y faced IO contention due to data skew. Us-
ing iQC-Graph, a deep explanation tells the user that
I0O_BYTES_READ_RATP on host Y for these tasks of s; was
much less compared to the average RATP for tasks of stage
s1 executing on other hosts. This insight tells the user that
the slowdown on host Y for tasks of s; was not an issue due
to IO contention. If the user lists the top-k nodes at Level-3
using our blame analysis APL, she can see that the network
RATP for tasks of stage ss on host X was the highest, and can
further explore the Level-4 nodes to find the source of this
disproportionality.

Since stage r3 of culprit query Q,, and stages us, u7, ug of
another concurrent query Q; were executing concurrently
on host X with stage s5 of Qy, the user lists the top-k Level-4
vertices responsible for this network contention for ss. The
blame analysis API outputs stage u; of query Q, as the top
source of contention. Figure 16 shows some relevant vertices
for this example to help illustrate the levels in iQC-Graph.

E IQCAR USE-CASES

In this section, we present how iQCAR can be used to perform

the following use-cases:

¢ Finding Top-K Contentions for Victim Queries: For
any query, users can find answers for: (a) What is the im-
pact of resource r for slowdown? This is computed by
filtering the candidate explanations originating from all
concurrent queries for the input resource r, and then ag-
gregating the DOR values at Level-2. (b) What is the impact
through host h for resource r? The candidate explanations
with h and r on its paths are filtered and their DOR values
at Level-3 are aggregated. Finally, (c) What is the impact
through each culprit query or culprit stage for a host and
resource combination? The candidate explanations for cul-
prit query or culprit stage are filtered and the aggregate
DOR at Level-5 or Level-6 respectively are output.

o Identifying Slow Nodes and Hot Resources: Perform-
ing top-k analysis on levels 2 (resources) and 3 (hosts) will
yield the hot resource and its corresponding slow node
with respect to a particular victim query. To get the over-
all impact of each resource or host on all victim queries,
iQCAR provides an API to (i) detect slow nodes, i.e., for all
explanation paths in the graph, groups all nodes in Level
3 by hosts and returns the total outgoing impact per host,
and (ii) detect hot resources, i.e., - return the total outgoing
impact per resource nodes in Level 2.

o Detecting Culprit Queries: To detect culprit queries, we
find the top-k Level 6 nodes with highest total DOR to-
wards all queries. As the framework incorporates impacts

Research 9: Query Processing & Optimization 2

control flow

push addinput addinput “* data flow
page page

T-scan g Aggregate | gmmmmmm» Output
record record

T-scan pmmemmm, Aggregate | gmmmmmmie Output

pull

Figure 17: Pull vs Push based Query Engines
originating from other non-query sources, it enables an
admin to rule out slowdown due to concurrency issues if
the impact through these nodes is high.

F IMPLEMENTATION ON PRESTO

Presto is a distributed query engine whose execution model
is similar to Spark. There are however some key differences
that need to be considered before adapting iQCAR .

(1) Tasks vs Drivers: In Presto a task contains one or more
parallel drivers which are the actual execution units. The
invariant in Equation 12 is thus applicable to drivers in
Presto (not Tasks). Adapting iQCAR required calculating
and aggregating blame over drivers (tasks were bypassed
and aggregation was done over all drivers of a stage on
a host).

(2) Split Multiplexing on Threads: The TaskExecutor on
worker nodes runs long running threads that process
splits using round robin scheduling. A driver could run
on different threads in different time quanta. This is differ-
ent compared to other systems where a task runs entirely
on one single thread.

(3) Pull vs Push: Presto Drivers use a push approach. An oper-
ator generates a page with getOutput and calls addInput
on its dependent. This is different from the pull based
approach, where getNext calls are chained in reverse
direction of data flow. This is depicted in Figure 17

We adapted iQCAR to run on Facebook Presto 0.216 de-
ployed on our cluster described in section 6. The same TPCDS
dataset was stored in HDFS and accessed through Hive (ver-
sion 2.33) using the Presto Hive Connector.

F.1 Supported Resources

In this section we describe our implementation to support

metrics collection for all four system resources:

e CPU:Presto already captures the totalCpuTime and elapsed-
Time for every driver in its DriverStats. We further instru-
mented the code to additionally capture cpulockwait and

935

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

cpublockwait time using the JMX APIL The OSScheduling-
Wait is computed as described in section 5.2

o IO: Presto captures the rawlnputDataSize for source oper-
ators. We instrumented the code to identify IO data based
on the source operator types used in our workload (Scan-
FilterProject, PageSource and TableScan). As the execution
follows a push based approach, IO blocked time does not
equate to time between page results of source operator.
In every interval we consider this wait time as blocking
only if other operators in pipeline could not make progress
due to missing input. This required instrumentation to the
operator pipeline execution in the processInternal method
of Driver.

o Network: Similar to IO, we use the rawInputDataSize met-
ric of source operators but only when the operator is of
type ExchangeOperator. The networkBlockTime is captured
by instrumenting the ExchangeClient to identify response
time of asynchronous HttpPageBufferClient requests. Due
to the push based approach this time is considered as net-
work blocked time only if other operators in the pipeline
cannot make progress due to missing data in an interval.

e Memory: Presto manages application memory by splitting
them into memory pools (General and Reserved). Queries
consume memory from the pools with limits defined by
configuration parameters. A query consumes three types
of memory: user, revocable and system. The memory con-
sumption of each driver is already captured in its driver-
MemoryContext. The time spent waiting for memory is
captured by tracking the memoryFuture of operator con-
texts. This time is considered blocking only if all dependent
operators in the pipeline cannot make progress.

F.2 Metrics Collection

Presto schedules drivers for small intervals (splitRunQuanta).
While this provides an opportunity to all queued drivers to
make progress, it also results in more dynamic resource inter-
actions. To ensure that iQCAR captures these accurately, we
captured the metrics with frequency close to splitRunQuanta
but in a separate thread to ensure that driver runtime is not
affected by metric collection.

F.3 Discussion

As discussed in section 5.5 iQCAR can work with a system
like Presto by implementing the required metrics collection
component. This specifically required three aspects (a) under-
standing its execution model (push vs pull, task vs driver etc)
(b) instrumenting some missing metrics and (c) collecting
the instrumented (and existing) metrics.

