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ABSTRACT

Resource interferences caused by concurrent queries is one of
the key reasons for unpredictable performance and missed
workload SLAs in cluster computing systems. Analyzing
these inter-query resource interactions is critical in order
to answer time-sensitive questions like ‘who is creating re-
source conflicts to my query’. More importantly, diagnosing
whether the resource blocked times of a ‘victim’ query are
caused by other queries or some other external factor can
help the database administrator narrow down the many pos-
sibilities of query performance degradation. We introduce
iQCAR, an inter-Query Contention Analyzer, that attributes
blame for the slowdown of a query to concurrent queries.
iQCAR models the resource conflicts using a multi-level di-
rected acyclic graph that can help administrators compare
impacts from concurrent queries, identify most contentious
queries, resources and hosts in an online execution for a se-
lected time window. Our experiments using TPCDS queries
on Apache Spark show that our approach is substantially
more accurate than other methods based on overlap time
between concurrent queries.
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1 INTRODUCTION

In today’s data-driven world, there is a growing demand of
autonomous data processing systems [10]. One of the critical
roadblocks in achieving the desired goal of automation is
ensuring predictable query performance in multi-tenant sys-
tems. The question ś łWhy is my query slow?" ś is nontrivial
to answer in standard big data processing systems employ-
ing shared clusters. The authors have seen firsthand how
enterprises use an army of support staff to solve problem
tickets filed by end users whose queries are not perform-
ing as they expect. An end user can usually troubleshoot
causes of slow performance that arise from her query (e.g.,
when the query did not use the appropriate index, data skew,
change in execution plans, etc.). However, often the primary
cause of a poorly-performing query is low-level resource
contentions caused by other concurrently executing queries
in a multi-tenant system [5, 9, 14, 16, 32]. For example, in one
of our experiments, one query was found to be 178% slower
than its unconstrained execution due to resource conflicts.
Diagnosing such causes of unpredictable performance is dif-
ficult and time consuming requiring in-depth expertise of
the system and the workload. Today, cluster administrators
have to manually traverse through intricate cycles of query
interactions to identify how interferences on resources affect
desired performances of concurrently running queries.

Should the solution be prevention or diagnosis (and

cure)? To ensure a predictable query performance, preven-
tive measures often provide query execution isolation at
the resource allocation level. For example, an admin tries
to reduce conflicts by partitioning resources among tenants
using capped capacities [2], reserving shares of the cluster
[18], or dynamically regulating offers to queries based on
the configured scheduling policies like max-min fair [30] or
First-In-First-Out (FIFO). Despite such meticulous measures,
providing performance isolation guarantees is still challeng-
ing since resources are not governed at a fine-granularity.
The allocations are primarily based on only a subset of the re-
sources leaving the requirements for other shared resources
unaccounted for. An approach solely based on preventive
techniques will also have other limitations since real-life
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definition, the blame value in Equation 6 is re-written as:

β̂ct→vt ≙ ∑
δt∈m

RATP-blocked vt

RATPct
(8)

Any concurrent task (irrespective of the amount of its
resource consumption) is considered blocking if it consumes
the same resource on which the impacted task is blocked.
However, in this new formulation, the blame attributed is
more for tasks that consume more resource. As a result,
while all concurrent tasks block each other, the impact from
a concurrent task with the highest resource share is highest.
The RATP value of a concurrent task ct (denominator) is

still based on the entire time interval for two reasons: First,
it ensures that the slowdown based on blocked time has
an upper bound as derived in Equation 5. The numerator
on every term on the right hand side (RHS) decreases (as
blocked time in any interval strictly bound by it) but the
denominators have no change. If we were to change the RATP
of concurrent tasks also to be based on blocked time then
terms on the RHS could either increase or decrease which
does not guarantee any bound. Second, for the other known
and unknown processes entities in p2 term in Equation 5, it
is easier to obtain the resource consumed in an interval by
any external process in comparison to its blocked time.

4 GLOBAL BLAME DISTRIBUTION

In the previous section, we discussed our methodology to
assign blame to a concurrent task ct for causing contention
to a victim task vt . As discussed in Section 1.1, a query in
data analytics frameworks is processed by multiple stages
that have many parallel tasks. iQCAR uses a multi-layered
directed acyclic graph to capture, aggregate, and compute
contentions between queries at different granularity and
dimensions (i.e., stage level, resource level and also host level).
The different levels in our graph-based model are chosen
carefully to address the challenges discussed in Section 1.2.

4.1 iQC-Graph

Our graph model consists of seven levels designed to (i) drill
down from a query to its tasks for every resource and host,
(b) assign blame to concurrent tasks, and finally (c) aggregate
blame to concurrent stages and queries. The vertices are con-
structed bottom-up from Level-0 to Level-6. For each node u
in the graph, we assign weights, called Blame Contributions

(denoted by BCu ) that are used later for analyzing impact
and generating explanations. The BC values are computed
for Level-3 first using Equation 9 (discussed shortly), and
are then updated middle-out for all other levels. This blame
value represents accountability towards the blocked time
faced by the victim query, and is distributed to all nodes in
the graph. Thus, the unit of BC for each node at every level is

in seconds . Intuitively, it represents the fraction of the total
blocked time in seconds faced by a victim query that is attrib-
uted to that node. A detailed construction of the graph is ex-
plained in Appendix C. Thus for all levels, BCu measures the
blame assigned to u for causing slowdown to a single victim
query vertex in Level-0. Figure 6 illustrates the distribution of
blame for all levels in an example iQC-Graph. Level-5 shows
the stages of only concurrent queries. There are, however,
other causes that can cause contention like external known
processes and unknown processes (see Section 5.1), which
are not broken down into stages. In Figure 6, we therefore
short-circuit their impact from Level-4 to Level-6 (notice no
vertices at Level-5 for External-IO and Unknown).

Level-0 to 3 - TrackingBlockedTimes atDifferentGran-

ularity: The BC of vertices from Level-0 to 3 represent their
contribution towards the delay faced by Qi node at Level-0.
For a node u in each level, BCu gives the blocked time for the
entity represented at that level.

● BCℓ3u (Level-3): represents the cumulative blocked time for
all tasks of a victim stage node u for resource r on host h.
It is the lowest level of granularity in the iQC-Graph.

● BCℓ2u (Level-2): The values at Level-3 are aggregated per
resource to capture resource level blocked times in Level-2,

i.e., BCℓ2u ≙ ∑h∈hosts BC
ℓ3
h
. In data analytics frameworks, the

computation done by each task is completely independent
of other tasks in the same stage. The tasks can all run in
parallel or sequentially one at a time depending on the
cluster workload and scheduling situation. To make the
logic of iQC-Graph independent of task parallelism, the
blocked times are aggregated to reflect the total potential
improvement if there was no blocked time. Moreover, since
the unit of blame attributed is in seconds , these impacts
on tasks of the same stage executing across different hosts
can be aggregated at Level-2. The invariant in equation
(12) is valid per host/machine. Hence, the blame values
are assigned to concurrent tasks executing on same ma-
chine, and thus clock synchronization is not required when
aggregating the blame values.

● BCℓ1u (Level-1): The blame for victim stages at Level-1 is
the aggregate value of blocked times due to individual

resources i.e., BCℓ1u ≙ ∑r∈r esources BC
ℓ2
r .

● BCℓ0u (Level-0): BCℓ0u ≙ ∑vs∈vic_staдes BC
ℓ1
r . A query DAG

can consist of multiple parallel paths (see Challenge 1),
the blocked time of a query cannot be computed by sum-
ming up the blocked time of all its stages. To address this
concern, we consider only the stages on the critical path
of a query’s executionas its victim stages. These are the
sequence of stages that form the longest chain of execution
forQi (sum of run times of stages on the critical path gives
the total runtime of the query). In our example in Figure 1,
stages s0 → s3 → s4 → s5 form the critical path of Q0.
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wait owing to usage being 100% (as more tasks need CPU
than max runnable cores). It is computed by subtracting
all above blocked times from the interval wall time 5.

5.3 Frequency of Metrics Collection

For each task vt , we added support to collect the time-series
data for its blocked-time and the corresponding data pro-
cessed metrics at the boundaries of task start and finish for
all other tasks ct concurrent to vt . Figure 5 shows the four
cases of task start end boundaries concurrent to taskvt . Note
that with this approach, the length of intermediate δt de-
pends on the frequency of arrival and exit of concurrent
tasks, thus enabling us to capture the effects of concurrency
on the execution of a task more accurately. For workloads
consisting of tasks with sub-second latency, our approach
gives fine-grained windows for analysis. However, if the ar-
rival rate of concurrent tasks is low (long-running tasks), this
can affect the distributions of our metric values. To address
this, we also record the metrics at heartbeat intervals in ad-
dition to above task entry and exit boundaries. Section 6.3.1
compares the impact of both the approaches on the quality
of our explanations.

5.4 Limitations

Concurrently executing queries can cause impacts in many
indirect ways too. The indirect impacts are more profound
when queries share common framework and/or process re-
sources like process managed shared memory, shared cache
etc. As an example, in our environment (Spark SQL over
Thriftserver), tasks of multiple queries run in the same JVM
process thereby having a high heap memory coupling. If a
task related to one query puts stress on the heap memory
then the resultant garbage collection pause impacts all other
tasks. In iQCAR we handle this specific issue by creating
a separate GC task in the list of our known causes as dis-
cussed previously to avoid incorrect blame attribution but
still fall short of accurately pinning the blame to problematic
task. Another challenge arises when the impact from con-
current queries is not negative. In some cases they may aide
faster processing. Incorporating such indirect slowdowns
and accounting for positive vs negative impacts is part of
our on-going effort.

5.5 Discussion

While our focus in this paper is on SQL workloads on Spark,
iQCAR’s approach of (a) using blocked times, (b) its blame
attribution model and (c) DAG based blame propagation

5It is commonly recommended to run more task threads than CPU

threads [25] for increased CPU utilization; but, this also leads to contention

in some intervals. It is a trade off that users make based on experience. Our

implementation is on default values

generalize well to other workloads on any data-flow based
processing system. Spark was our choice of implementation
owing to its ability to process different workloads like SQL,
machine learning, graph analytics, etc. within a common
framework. All the existing metrics (except scan-time) and
those from our instrumentation are in its core engine and
could be used for any workload. iQCAR could be adapted
to work with any other similar system by implementing
metrics collection module for that system. The complexity
of this task depends on existing support (metrics) from the
system and instrumentation effort for missing metrics. In
Appendix F we describe the implementation of our metrics
collector module in another sql-on-hdfs system Presto [12].

6 EXPERIMENTAL EVALUATION

Our experiments were conducted on Apache Spark 2.2 [31]
deployed on a 20-node local cluster (master and 19 slaves).
Spark was setup to run using the standalone scheduler in
fair scheduling mode [30] with default configurations. Each
machine in the cluster has 8 cores, 16GB RAM, and 1 TB
storage. A 300 GB TPCDS [15] dataset was stored in HDFS
and accessed through Spark SQL in Parquet [3] format. The
SQL queries were taken from [27] without any modifications.

Workload: Our analysis uses a TPCDS benchmark work-
load that models multiple users running a mix of data ana-
lytical queries in parallel. We have 6 users (or tenants) sub-
mitting their queries to dedicated queues. Each user runs 15
sequential queries randomly chosen from the TPCDS query
set. The query schedules were serialized and re-used for all
experiments to compare results across executions. We iden-
tify a victim query as the one that took most hit (suffered
maximum slowdown) compared to its unconstrained execu-
tion (when run in isolation). The queryQ43, which was 178%
slower, is the victim discussed in the rest of this section.

6.1 Debugging Challenges Without iQCAR

The purpose of this experiment is to show how iQCAR en-
ables deeper diagnosis of contentions compared to other ap-
proaches. For comparisonwith baseline, we use the following
metrics: (a) Blocked-Time Analysis (BTA): blocked times
for IO and Network [24] aggregated at stage and query levels,
(b) Naive-Overlap: based only on the overall query overlap
times (a technique popularly used by support staff trying
to resolve who is affecting my query tickets), and (c) Deep-
Overlap: we compute the cumulative overlap time between
all tasks of concurrent queries. In this approach, overlap time
of tasks executing in parallel is aggregated in comparison
to previous one where only the maximum overlap is consid-
ered. For both overlap-based approaches, highest blame is
attributed to query with most overlap.
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Table 2: Comparison of iQCAR with other approaches

(Category)

Related Work

No

His-

torical

data

Detects

slow-

down

Detects

bottle-

necks

Blame

attri-

bu-

tion

Dataflow

Aware

(1) Ganglia,

Spark UI, Am-

bari

✓ ✓

(2) Starfish, Dr.

Elephant, Otter-

Tune

✓ ✓

(3) PerfXplain,

Blocked Time,

PerfAugur

✓ ✓

(3) Oracle

ADDM, DIADS

✓ ✓ ✓

(3) DBSherlock ✓ ✓
(4) CPI2 ✓ ✓ ✓CPU ✓

iQCAR
✓ ✓ ✓ ✓ ✓

7 RELATED WORK

iQCAR is designed to analyze inter-query resource contentions
in near real-time. It does not aim to understand impact of
configuration changes and does not use data of any pre-
vious execution. While the contention analysis logic of
iQCAR is not dependent on previous data, identifying specific
queries (among entire workload) to analyze will be easier
with some reference information. In this paper, we use the
unconstrained execution (without any interference) time of
a query for this purpose. In practice, as mentioned in Sec-
tion 1.2, an admin may identify victim queries using other
performance criteria (e.g., SLA, missed-deadline etc.). or by
simply looking for query with maximum blocked time. To
the best of our knowledge, there is no system today that
performs inter-query contention analysis on data analytics
frameworks without any data from previous executions. We
compare our work with other approaches below and give a
summary in Table 2.
(1) Monitoring Tools: Cluster monitoring tools like Ganglia
[8] and application tools like Spark UI [13] and Ambari [1]
provide query metrics at a high level. They do not capture
low-level resource interactions.
(2) Configuration recommendation: Tools like Starfish
[21], Dr.Elephant [7], and OtterTune [28] analyze perfor-
mance and suggest changes in configuration. However, it
is difficult to predict how these system-wide changes will
affect inter-query interactions in an online workload.
(3) Root Cause Diagnosis tools: Performance diagnosis has
been studied in the database community [17, 20, 29], for clus-
ter computing frameworks [23, 24], and in cloud based ser-
vices [26]. While the design of iQCAR is motivated by some

concepts from such prior work, the techniques and goals dif-
fer as follows: (a) Database Community: In ADDM [20],
Database Time of a SQL query is used for impact analysis.
iQCAR instead takes an approach to provide an end-to-end
contention analysis while also enabling deep exploration
of contention symptoms. DIADS [17] uses Annotated Plan
Graphs that combine the details of database operations and
Storage Area Networks (SANs) to provide an integrated diag-
nosis tool. The problem addressed in DIADS is not related,
but ourmulti-level explanation framework bears similarity to
their multi-level analysis. Causality based monitoring tools
like DBSherlock [29] diagnose problems using data from
previous executions. (b) Cluster Computing: PerfXplain

is a debugging toolkit that uses a decision-tree approach
to provide explanations for the performance of MapReduce
jobs. Unlike iQCAR, it also depends on previous executions.
Blocked Time metric [24] emphasizes the need for using
resource blocked times for performance analysis of data an-
alytical workloads; we critically use blocked time but do
a finer analysis to identify the role of concurrent queries
in causing these blocked tmes. (c) Cloud: PerfAugur [26]
detects anomalous system behavior and generates detailed
explanations for them, whereas iQCAR generates explana-
tions for the slowdown due to resource conflicts.
(4) Detecting Antagonist Queries: CPI2 [32] uses Cycles-
Per-Instruction data from hardware counters to identify an-
tagonist queries but is limited to CPU contention.

8 CONCLUSION

Resource interferences due to concurrent executions are one
of the primary and yet highly misdiagnosed causes of query
slowdowns in shared clusters today. This paper discusses
some of thechallenges in detecting accurate causes of con-
tentions, and illustrateswhy blame attribution using existing
methodologies can be inaccurate. We propose a theory for
quantifying blame for slowdown, and present techniques to
filter genuine concurrency related slowdowns from other
known and unknown issues. We further showed how our
graph-based framework allows for consolidation of blame
and generate explanations allowing an admin to explore the
contentions and contributors of these contentions systemati-
cally. An interesting direction of future research is to develop
a contention-aware cluster scheduler that can dynamically
reprioritize contentious or victim queries, and/or delay stage
submissions to avoid possible resource conflicts.
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A SLOWDOWN OF A TASK FROM
CONCURRENCY

In this section, we derive Equation 6 from Equation 4. For
ease of presentation, we repeat some details as we intend to
present the entire derivation with a single continuity.

Consider a victim task vt that wants to consume resource
r on host h. In the δt interval, let the capacity of the host h
to serve the resource r be 𝒞 unit resource/sec. The minimum
time to acquire one unit of r on host h can be expressed as:

RATP
∗ ≙

1

𝒞
sec / unit resource (11)

The total capacity 𝒞 (of a resource) is consumed by all the
processes running on the system. These processes include (a)
tasks related to queries, (b) known processes (e.g.common
framework services) (refer Section 3 ) and (c) other unknown
system processes. This can be expressed as

𝒞 ≙ 𝒞vt + 𝒞1 + 𝒞2 + ⋅ ⋅ ⋅ + 𝒞n +
M

∑
i=1

𝒞known,i + 𝒞unknown (12)

Here, 𝒞vt is the capacity used by the victim taskvt ; 𝒞1, . . . 𝒞n
are the capacities used by n concurrent tasks; and 𝒞known,i ,
i ≙ 1⋯M , and 𝒞unknown denote capacities used byM known
causes and any unknown cause. Using Equation 3, for victim
task vt and concurrent tasks ct-s,

𝒞vt ≙
1

RATPvt
and 𝒞ct ≙

1

RATPct
for ct ≙ 1⋯n (13)
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We abuse the notation to extend this concept also to other
known and unknown causes as:

𝒞known,i ≙
1

RATPknown,i

for i ≙ 1⋯M and 𝒞unknown ≙
1

RATPunknown

(14)

Definition A.1. The total slowdown of task vt in time
interval δt due to unavailability of resource r is defined as:

𝒮vt ≙
(RATPvt − RATP∗)

RATP∗
(15)

where, RATPvt is computed as per Equation (2).

It is the deviation from ideal resource acquisition rate on
host h and gives a measure of the excess delay incurred for
unit resource in δt interval. The slowdown of vt will be zero
when the entire resources is available only to the task vt .

The slowdown given in Definition 3.2 corresponds to the
total blame to be attributed to (p1) other tasks running con-
currently with vt on h during its execution, and (p2) other
known or unknown factors. This gives another expression
for slowdown:

𝒮vt ≙ (
n

∑
ct=1

βct→vt )

)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
p1

+(
M

∑
i=1

βknown,i→vt ) + βunknown→vt

)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
p2

(16)

Here βct→vt is the blame assigned to each of the n tasks ct ≙
1⋯n concurrently running with vt ; βknown,i→t t gives the
blame assigned to other known non-conflict-related causes
that contribute to the wait time of the task vt . However
these processes are identified and captured in iQCAR. Hence
we categorize them as known processes. Finally, slowdown
could be due to a variety of other causes which are either not
known or cannot be attributed to any concurrent tasks like
systemic issues (executors getting killed, external processes,
etc), and so on; βunknown→t t captures this value of slowdown
due to such unknown factors.

B COMPUTATION OF BLAME BY RATPS

We now derive the blame values (β terms) in Equation (5)
in terms of RATPs. First we discuss a simpler case to present
the main ideas - when there is a full overlap of vt with all
concurrent tasks. Then we discuss the general case with
arbitrary overlap between ct-s and vt .

B.1 Full overlap of vt with concurrent
tasks

Rewriting Equation (12) for 𝒞 ≙ 1
RATP∗

from Equations (3),
(13), and (14),

1

RATP∗
≙

1

RATPvt
+

n

∑
ct=1

1

RATPct
+
M

∑
i=1

1

RATPknown,i
+

1

RATPunknown

Multiplying by RATPvt and subtracting 1 on both sides yield,

RATPvt − RATP∗

RATP∗
≙

n

∑
ct=1

RATPvt

RATPct
+

M

∑
i=1

RATPvt

RATPknown,i
+

RATPvt

RATPunknown

The left hand side above represents the slowdown 𝒮vt of vt
given by Definition 3.2. Therefore,

𝒮δtvt ≙
n

∑
ct=1

RATPvt

RATPct

)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
p1

+
M

∑
i=1

RATPvt

RATPknown,i
+

RATPvt

RATPunknown
(17)

Each individual term inside the summation of p1 is con-
tributed by one of the tasks concurrent to task vt , and corre-
sponds to blame attributable to a concurrent task ct in this
interval. Comparing Equations (17) and (5) and assuming
full overlap we get,

β
f ull_over lap
ct→vt ≙

RATPvt

RATPct
(18)

Similarly, for known and unknown factors,

β
f ull_over lap
known,i→vt

≙
RATPvt

RATPknown,i
for i ≙ 1⋯M (19)

β
f ull_over lap
unknown→vt

≙
RATPvt

RATPunknown
(20)

B.2 Partial overlap of vt with concurrent
tasks

The above derivation assumes an interval δt in which all
concurrent tasks have a total overlap with vt . In practice,
they overlap for different length of intervals as illustrated in
Figure 5. So we divide the total duration T ≙ vtend −vtstar t
of the execution time of task vt into small δt intervals such
that in each δt time Equation (17) holds.

Let 𝒮1,𝒮2, . . . ,𝒮m be the slowdown in eachm ≙ T
δt

inter-
val of execution. The total slowdown of vt then is:

𝒮vt ≙
m

∑
k=1

𝒮k

Substituting the value of slowdown 𝒮k in the k-th interval
using Equation (17), 𝒮vt ≙

m

∑
k=1

⎨⎝⎝⎝⎝⎪
∑

ct∈θk

RATP
δt
vt

RATPδtct

+ ∑
known∈ηk

RATP
δt
vt

RATPδt
known

+
RATP

δt
vt

RATPδt
unknown

⎬⎠⎠⎠⎠⎮
where, θk and ηk are the set of concurrent tasks and known
factors respectively in the k-th interval impacting task vt .
Note that the RATP values in the above equation depend on
the intervals δt .
Rearranging the summations, we get the expression of

blame for general overlaps as follows:

Proposition B.1. The blame βct→vt for the contention
caused for resource r by a concurrent task ct of a victim task
vt on host h can be expressed as:

βct→vt ≙
⎨⎝⎝⎝⎪

m

∑
k=1

RATP
δt
vt

RATPδtct

⎬⎠⎠⎠⎮
(21)
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Figure 17: Pull vs Push based Query Engines

originating from other non-query sources, it enables an
admin to rule out slowdown due to concurrency issues if
the impact through these nodes is high.

F IMPLEMENTATION ON PRESTO

Presto is a distributed query engine whose execution model
is similar to Spark. There are however some key differences
that need to be considered before adapting iQCAR .

(1) Tasks vs Drivers: In Presto a task contains one or more
parallel drivers which are the actual execution units. The
invariant in Equation 12 is thus applicable to drivers in
Presto (not Tasks). Adapting iQCAR required calculating
and aggregating blame over drivers (tasks were bypassed
and aggregation was done over all drivers of a stage on
a host).

(2) Split Multiplexing on Threads: The TaskExecutor on
worker nodes runs long running threads that process
splits using round robin scheduling. A driver could run
on different threads in different time quanta. This is differ-
ent compared to other systems where a task runs entirely
on one single thread.

(3) Pull vs Push: Presto Drivers use a push approach. An oper-
ator generates a page with getOutput and calls addInput
on its dependent. This is different from the pull based
approach, where getNext calls are chained in reverse
direction of data flow. This is depicted in Figure 17

We adapted iQCAR to run on Facebook Presto 0.216 de-
ployed on our cluster described in section 6. The same TPCDS
dataset was stored in HDFS and accessed through Hive (ver-
sion 2.33) using the Presto Hive Connector.

F.1 Supported Resources

In this section we describe our implementation to support
metrics collection for all four system resources:

● CPU: Presto already captures the totalCpuTime and elapsed-
Time for every driver in its DriverStats. We further instru-
mented the code to additionally capture cpulockwait and

cpublockwait time using the JMX API. The OSScheduling-
Wait is computed as described in section 5.2
● IO: Presto captures the rawInputDataSize for source oper-
ators. We instrumented the code to identify IO data based
on the source operator types used in our workload (Scan-
FilterProject, PageSource and TableScan). As the execution
follows a push based approach, IO blocked time does not
equate to time between page results of source operator.
In every interval we consider this wait time as blocking
only if other operators in pipeline could not make progress
due to missing input. This required instrumentation to the
operator pipeline execution in the processInternal method
of Driver.
● Network: Similar to IO, we use the rawInputDataSize met-
ric of source operators but only when the operator is of
type ExchangeOperator. The networkBlockTime is captured
by instrumenting the ExchangeClient to identify response
time of asynchronous HttpPageBufferClient requests. Due
to the push based approach this time is considered as net-
work blocked time only if other operators in the pipeline
cannot make progress due to missing data in an interval.
● Memory: Presto manages application memory by splitting
them into memory pools (General and Reserved). Queries
consume memory from the pools with limits defined by
configuration parameters. A query consumes three types
of memory: user, revocable and system. The memory con-
sumption of each driver is already captured in its driver-
MemoryContext. The time spent waiting for memory is
captured by tracking the memoryFuture of operator con-
texts. This time is considered blocking only if all dependent
operators in the pipeline cannot make progress.

F.2 Metrics Collection

Presto schedules drivers for small intervals (splitRunQuanta).
While this provides an opportunity to all queued drivers to
make progress, it also results in more dynamic resource inter-
actions. To ensure that iQCAR captures these accurately, we
captured the metrics with frequency close to splitRunQuanta
but in a separate thread to ensure that driver runtime is not
affected by metric collection.

F.3 Discussion

As discussed in section 5.5 iQCAR can work with a system
like Presto by implementing the required metrics collection
component. This specifically required three aspects (a) under-
standing its execution model (push vs pull, task vs driver etc)
(b) instrumenting some missing metrics and (c) collecting
the instrumented (and existing) metrics.
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