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ABSTRACT

In this work, we investigate the accumulative polarization (P) switching characteristics in ferroelectric (FE) thin films under the influence of
sequential sub-coercive electric-field pulses. Performing the dynamic phase-field simulation (based on time-dependent Landau-Ginzburg
model) and experimental measurement on Hf0.4Zr0.6O2 (HZO), we analyze the electric field induced domain-wall (DW) motion and the
resultant P accumulation process in FE. According to our analysis, even in the absence of an applied electric field, the DW can potentially
undergo spontaneous motion. Such a DW instability leads to spontaneous P-excitation and relaxation processes, which play a pivotal role in
accumulative P-switching in an FE grain. We show that the extent of such P accumulation increases with the increase in the applied electric
field, increase in excitation time and decrease in relaxation time. Finally, by considering an ensemble of grains with local and global coercive
field distributions, we model the P-accumulation process in a large area HZO sample. In such a multi-grain scenario, the dependency of P
accumulation on the applied electric field pulse attributes follows similar features as that of a single-grain, although the spontaneous
processes (excitation/relaxation) are less prominent in large area sample.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5092707

Ferroelectric (FE) materials, particularly Zr doped HfO2

(Hf1–xZrxO2:HZO
1), have drawn significant research interest in recent

times due to CMOS process compatibility,2 thickness scalability,2 and
many promising attributes of ferroelectric field effect transistors2

(FEFETs) for multiple applications.2–4 Furthermore, a newly reported
accumulative polarization (P)-switching process5 in FE leads to many
appealing opportunities for novel applications6 and computing.7 For
such emerging applications of FEFETs, the P-switching dynamics in
response to sub/super-coercive voltage pulse trains play an important
role and are, therefore, critical to understand.

To that effect, this letter analyzes spatially local P-switching
dynamics and its participation in globally observable P-accumulation
characteristics in response to a voltage pulse train. Our analysis is
based on a dynamic phase field model8,9 coupled with measured accu-
mulation characteristics of HZO. By providing the spatial distribution
of P (P-map) in different electric field (E-field) excitation and relaxa-
tion steps, we discuss different types of P excitation and relaxation pro-
cesses and their corresponding dependency on E-field (E) amplitude
(Eapp

max), ON time (or excitation time Ton), and OFF time of the pulse
(or relaxation time Toff). Finally, considering a coercive-field distribu-
tion among different FE grains, we analyze the overall P-accumulation
characteristics.

Let us start by describing the experimentally observed trends in
P-switching characteristics in HZO. Figure 1(a) shows the measured
charge vs E-field (Q–E) characteristics of a 10 nm HZO film [x¼ 0.6,
grown by atomic layer deposition (ALD) with the tungsten (W) cap-
ping layer as top and bottom contacts]. Here, Q¼Pþ �0E, where �0 is
the vacuum permittivity. We observe accumulative P-switching in
HZO as the response of successive E-field stimulation [Fig. 1(b)],
where the P-accumulation (Pacc) characteristics exhibit a strong depen-
dence on the E-pulse properties. For example, we observe faster Pacc

with the increase in Eapp
max [Fig. 1(c)], increase in Ton [Fig. 1(d)], and/or

decrease in Toff [Fig. 1(e)]. Also, P
acc saturates after a certain number

of pulses. Such saturation occurs at higher P with the increase in Eapp
max ,

increase in Ton, and decrease in Toff. It is noteworthy that such accu-
mulated-P observed in the experiments is the average of locally accu-
mulated-P in different grains.10 Hence, to explain the experimental
results described above, it is critical to understand the spatially local P-
switching dynamics in an individual grain. We analyze such processes
in detail based on our phase-field model, calibrated to the experiments.
Note that several sophisticated 2D/3D phase-field models have been
developed for multiaxial ferroelectrics.11–13 However, in this paper,
our motivation is not to develop such a comprehensive model for
HZO, but to establish a physical understanding of the underlying
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mechanism of accumulative polarization switching based on a simpli-
fied approach.14,15

According to recent studies,16,17 the origin of ferroelectricity in
HZO has been regarded as the stability of the polar orthorhombic (o)
phase, where the polarization (P) direction is along the c-axis of the o-
phase.16,17 In our model, we assume that the c-axis is parallel to the
film thickness direction (z-axis). This implies that the P direction is
only along the thickness (z-axis). Hence, Px¼ 0, Py¼ 0, and Pz 6¼ 0. Pz
can have a spatial distribution in the x–y plane. However, we assume
uniform Pz along the z-axis (dPz/dz¼ 0) owing to the ultrathin nature
of the film (�10nm). The time-dependent and spatial evolution of
polarization switching can be described by the time (t)-dependent
Landau-Ginzburg (TDLG) equation:9,18 dF/dPz¼�q(@Pz/@t). Here, q
is the kinetic coefficient and F is the total energy18 of the system.
Considering up to the 6th order terms in Landau’s free energy expan-
sion,19 the normalized representation of the TDLG equation within the
FE is given by the following equation:14,15

�qn
@Pn
@t

¼ �Kn
Pr2Pn � Eapp

n þ âPn þ b̂P3
n þ ĉP5

n: (1)

Here, Pn(¼ Pz/PC0) and Eapp
n ð¼ Eapp=EC0) are the polarization and

applied E-field normalized with respect to EC0 (coercive field of a non-
interacting lattice, E at dP/dE¼ 0) and PC0 (P at E¼ EC0), respectively.
Note that the normalized coercive field¼ 1. â; b̂, and ĉ are the nor-
malized effective Landau coefficients,14,20,21 and the calibrated values
are �1.499,þ0.498, and 0.001, respectively. Also, qn is the normalized

kinetic coefficient and Kn
P is the normalized domain-interaction

parameter (equivalent to the gradient energy coefficient). In our simu-
lations, we self-consistently solve Eq. (1) in a real space grid
(Dx¼ 0.25 nm and Dy¼ 0.25 nm) by considering the Neumann
boundary at the edges.22 We include a comprehensive discussion on
parameter extraction, normalization, and simulation methodology in
the supplementary material. It is noteworthy that Pn denotes normal-
ized microscopic P in each grid point, while the analogous quantity of
experimentally measured P is the spatial average of Pn, denoted as �Pn.
Also, Kn

Pr2Pn can be thought of as the local effective interaction E-
field, Eint

n . Therefore, the P-switching depends on Eapp
n þ Eint

n . For
instance, P-switching will occur for jEapp

n þ Eint
n j > 1 (since the nor-

malized coercive field¼ 1).
In general, P-switching can take place in two different ways,

namely, (i) direct nucleation and (ii) domain-wall (DW) assisted
nucleation. To understand these processes, let us start by considering
the FE sample in Fig. 2(a), where region R1 exhibits Pn ¼ þjPn;r j and
R2 exhibits Pn ¼ �jPn;r j and they are separated by a DW within
which Pn varies gradually along the x-axis [Fig. 2(b)]. Here, Pn,r is the
remanent polarization. In this case, the domain structure is effectively
1D as d2Pn/dy

2¼ 0. Note that the considered width (along y-axis) of
the grain is lower than a DW width (�3nm, for Kn

P ¼ 1), and there-
fore, a DW formation will not occur in the y-axis direction. Now,
direct nucleation occurs for super-coercive applied fields (jEapp

n j > 1),
wherein region R2 will switch toþP at once if the E-field is applied for
a sufficient time. On the other hand, DW assisted nucleation (which is
the main focus of this work) is observed for subcoercive applied fields
(jEapp

n j < 1), in which Eint
n plays a key role. To explain this, let us con-

sider Eapp
n ¼ 0 and static condition (dPn/dt¼ 0). Hence, Eq. (1) can be

written as Eint
n ¼ Kn

Pr2Pn ¼ âPn þ b̂P3
n þ ĉP5

n. Note that Eint
n is

localized and nonzero only within DW [Fig. 2(c)] (except the DW cen-
ter, at the DW center Eint

n ¼ 0). Figure 2(d) shows the relation between
Eint
n and Pn, signifying that the symmetric spatial distribution of Pn

provides a symmetric Eint
n for a 1D DW. Here, the symmetric Eint

n
yields a stable and static DW for Eapp

n ¼ 0 by balancing the forces due
to Eint

n ð/ PEintn Þ on the two sides of the DW. This can also be under-
stood by noting that jEint

n j � 1, which leads to stable DW due to no P-
switching in the absence of an applied E-field. However, by applying a

FIG. 1. (a) Q-E curves of a 10 nm HZO film. (b) Applied E-field pulses showing
pulse-amplitude (Eapp

max), excitation time (Ton), and relaxation time (Toff).
Accumulated polarization (Pacc) vs number of E-field pulses (j) for different (c)
Eapp
max , (d) Ton, and (e) Toff. Here, the results shown in (a), (c), and (e) are measured

on the same HZO sample (sample: A) and the results shown in (d) are measured
on a different HZO sample (sample: B).

FIG. 2. (a) FE structure showing the 1D domain-wall (DW) and spatial distribution
of (b) polarization, Pn, and (c) interaction E-field, Eint

n , that shows symmetric Eint
n

distribution in R1 and R2 domains. (d) Static Pn-Eint
n relation. (e) FE structure show-

ing 2D DW and spatial distribution of (f) Eint
n along the x-axis showing asymmetric

Eint
n distribution in the R1 domain (jEint

n j > 1 at the inner interface) and R2 domain
(jEint

n j < 1 at the outer interface).
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subcoercive E-field, 0 < jEapp
n j < 1, we can get a total local E-field,

jEapp
n þ Eint

n j > 1, and that can eventually initiate P-switching. Such P-
switching is a spatially local and a gradual process with respect to time,
which is referred to as DW motion or DW assisted nucleation. (For
more details on 1D DWmotion-based P-switching, see supplementary
material.)

With the understanding of the 1D DW, let us now examine 2D
DW, for which we analyze two cases by considering a homogeneous
coercive field (case-1) and a distribution of a coercive field (case-2) in
an FE grain. Let us start with case-1 and consider a square FE sample
[Fig. 2(e)] where a circular region R1 exhibits Pn ¼ þjPn;r j, which is
surrounded by R2 with Pn ¼ �jPn;rj. Here, the DW is 2D, which
implies that the degree of freedom of DW motion is “2.” In this case,
r2Pn in the polar coordinate (assuming an angular independence) can
be written asr2Pn ¼ ½ð@2Pn=@r2Þ þ ð1=rÞð@Pn=@rÞ�. Now, a radially
symmetric polarization distribution (Pn(r)) with a center of symmetry
at r ¼ r0, both @2Pn/@r

2 and @Pn/@r will also be radially symmetric
with the same center of symmetry at r ¼ r0. Here, r ¼ r0 can be
regarded as the center of the DW. However, the 1/r term exhibits a
radial symmetry only with respect to r¼ 0. Therefore, r2Pn becomes
radially asymmetric for any arbitrary r0 6¼ 0. Consequently, Eint

n
becomes spatially asymmetric [Fig. 2(f)], where jEint

n j > 1 at the inner
interface and jEint

n j < 1 at the outer interface of DW. Such asymmetry
in the Eint

n causes the DW to undergo an effective inward force
(/ PEintn ). Hence, the DW becomes unstable and the R1 region shrinks
spontaneously with time. Such spontaneous phenomena play an
important role in the P-switching dynamics that we discuss subse-
quently. (Note that such a DW instability is in contrast to the 1D case
that we discussed above where symmetric Eint

n leads to stable DW).
Let us now consider a sequence of subcoercive E-field pulses

(Eapp
n;max ¼ Eapp

max=EC0 ¼ 0:8) applied to this sample of FE. Simulated
transient �Pn is shown in Fig. 3(a) and the initial P-map at t¼ 0ns is
shown in Fig. 3(b-i), where the initially switched region (red) can be
assumed as a pinned-type domain. After the arrival of the first E-field
pulse, the R1 domain grows circularly, nucleating new lattices sequen-
tially at the outer edge of the DW [Fig. 3(b-ii)]. This implies an
increase in the R1 area and a decrease in the R2 area by an amount
DAþ

j (j¼ E-field pulse number). The corresponding P-excitation char-
acteristics [Fig. 3(a-i–ii)] comprise three different components [Fig.
3(c)], i.e., type-1:�jPn;r j to�jPn;e1j (in R2), type-2:þjPn;rj toþjPn;e2j
(in R1), and type-3:�jPn;r j toþjPn;e2j (leads to DAþ

j > 0).
After the end of the first E-field pulse, the DW propagation stops

and the P changes due to type-1 and type-2 excitation components get
immediately relaxed to �jPn;r j andþjPn;r j, respectively. We call these
type-1 and 2 relaxations, respectively [Fig. 3(c)]. Similarly, the newly
nucleated area (DAþ

j ) also rapidly get relaxed to þjPn;r j by following
type-2 relaxation. The corresponding transient relaxation in �Pn can be
seen in Fig. 3(a) [from point ii to ii(a)]. Physically, the type-1 and
type-2 excitation/relaxation components can be understood as the
applied E-field driven soft dielectric23 type capacitive charging/dis-
charging event. Interestingly, followed by such rapid relaxation, there
is another relaxation component that gradually reduces �Pn until the
arrival of the next E-field pulse {Fig. 3[a-ii(a)–iii]}. Such spontaneous
P-relaxation is the outcome of DW instability (due to Eint

n asymmetry
we discussed above) that causes spontaneous shrinking of the R1
domain [Fig. 3(b-ii–iii)]. We define the spontaneous decrease in the
R1 area in the absence of the E-field as DA�

j .

Now, due to sequential E-field pulses, the R1 domain grows grad-
ually and the DWmoves further toward the grain boundary by follow-
ing P-excitation (type-1,2,3) and relaxation (type-1,2) sequences. Once
DW reaches sufficiently close to the grain boundary, the R2 domain
becomes very narrow. At this point, it is important to mention that
half of the DW width has Pn < 0 near the R2 region and another half
near the R1 domain has Pn > 0. The notation of “half of the DW
width (DW1/2)” implies the DW region within which polarization
varies either from “0” to “þjPn;r j” (in the R1 side) or from 0 to
“�jPn;r j” (in the R2 side). Interestingly, at some point, as the DW
approaches the grain edges, the R2 domain can become narrow and
the DW region on the side of R2 becomes less than DW1/2. In that
case, the variation of Pn becomes restricted within the narrower region
than the typical DW1/2. Therefore, the termr2Pn increases within the
R2 domain yielding jEint

n j > 1. Therefore, the R2 domain exhibits an
effective outward force which leads to a spontaneous polarization
switching in the R2 domain near the grain edge, as shown in Fig. 3(b-
v–vi). Therefore, when the R2 domain approaches the grain edge,
spontaneous P-relaxation is not observed in the absence of the E-
field (during Toff). Instead, spontaneous P-excitation {Fig. 3[a-
v(a)–vi]} takes place. After all the lattices switch to þjPn;r j, transient
�Pn exhibits only type-2 excitation and relaxation.

Let us define the increase in �Pn during each excitation period
(jDþ�Pnjj). Recall that each jDþ�Pnjj consists of three excitation

FIG. 3. (a) Simulated transient �Pn considering case-1 for a sequence of E-field
pulses. Corresponding (b) P-map at points i–vi. (c) Static Pn vs E

app
n showing differ-

ent stimulated excitation/relaxation components. (d) Increase and decrease in Pn
(jDþ�Pnj and jD��Pnj, respectively) and accumulated P (Pacc

n ) in each excitation/
relaxation sequence with respect to the pulse number (j). Pacc

n vs j for different (e)
Eapp
n;max , (f) Ton, and (g) Toff. Here, E

app
n;max ¼ Eapp

max=EC0.
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components. It can be shown mathematically from Eq. (1) (see supple-
mentary material) that the P change due to type-1 excitation is higher
in magnitude than that due to type-2 excitation [Fig. 3(c)]. Now, with
the increase in the pulse number (j), the R1 area increases and the R2
area decreases. Therefore, the contribution from type-2 excitation (in
R1) increases and that from type-1 excitation (in R2) decreases.
Hence, we expect an overall decrease in total excitation (type-1þ 2)
with respect to j. Now, for type-3 excitation (corresponding to the R1
area increase during the j-th excitation) DAþ

j ¼ p½ðrj þ drjÞ2
�r2j � ¼ p½dr2j þ 2rjdrj�. Here, rj is the domain radius before the j-th
excitation and drj is the increase in radius during the j-th excitation.
Note that a linear increase in drj with respect to time gives rise to a
quadratic increase in the R1 area. This implies that if we keep the E-
pulse ON for a long time, the �Pn dynamics will be quadratic with
respect to time [gray lines in Fig. 3(a)]. Similarly, assuming drj as con-
stant irrespective of the value of j, we can see that p � 2rjdrj increases
with j as rj increases. This implies an incremental change in DAþ

j , and
hence, the type-3 excitation component increases with j. Note that the
type-3 contribution is dominant over type-1þ 2, and therefore,
jDþ�Pnjj increase with the increase with j up to j¼ 6 [Fig. 3(d)]. For
j> 6, the R1 domain reaches the grain boundary and the quadratic
growth of R1 no longer holds true. Hence, type-3 contribution
decreases significantly, leading to the domination of type-1þ 2 excita-
tions and decrease in jDþ�Pnjj with j. After the R2 domain vanishes (or
switched toþP at j¼ 9), only type-2 excitation is observed.

Similarly, the decrease in �Pn during each relaxation period
(jD��Pnjj) consists of type-1þ 2 relaxation and a spontaneous compo-
nent. Like type-1þ 2 excitation, type-1þ 2 relaxation decreases as j
increases. However, the spontaneous component (DA�

j ) behaves non-
monotonically with respect to j. DA�

j (decrease in the R1 area)
changes sign from positive (þ) to negative (�) at j¼ 6 as the sponta-
neous component changes from relaxation to excitation characteris-
tics. Therefore, until the spontaneous contribution is relaxation (j� 6),
jD��Pnjj decreases with the increase in j. Once the spontaneous contri-
bution leads to excitation (j> 7), jD��Pnjj increases with j and becomes
constant at j¼ 9 (with only type-2 relaxation in R1).

�Pn at the end of each excitation-relaxation sequence, called accu-
mulated polarization (Pacc

n ), is shown in Fig. 3(a). Note that the change
in Pacc

n at each pulse is proportional toDAþ
j � DA�

j . We discussed ear-
lier that DAþ

j shows an incremental increase with the increase in j,
whereas DA�

j exhibits a nonmonotonic change along with a sign
change from “þ” to “�”. Therefore, Pacc

n initially increases slowly
when DA�

j is þ and once DA�
j becomes �, Pacc

n increases rapidly. On
the other hand, the flat region [Fig. 3(a), j� 9] in Pacc

n signifies an
absence in P-accumulation once the whole sample (or grain)
completely switches toþP.

The trends in P accumulation with respect to the pulse attributes
are illustrated in Figs. 3(e)–3(g). With the increase in the pulse ampli-
tude (Eapp

n;max), the R1 domain grows more rapidly (increase in dAþ/dt),
leading to faster accumulation [Fig. 3(e)]. Similarly, with the increase
in Ton, DA

þ
j increases during each pulse, and therefore, Pacc

n saturates
at a lower j [Fig. 3(f)]. Also, an increase in Toff leads to an increase in
spontaneous relaxation (increase in DA�

j ). Consequently, a larger
number of pulses are required for Pacc

n to saturate [Fig. 3(g)]. Note that
if Eapp

n;max and/or Ton are/is very low, so that ðDAþ
j � DA�

j Þ < 0, then,
rather than accumulation, R1 can get completely relaxed to �P. The
same is true for a high Toff. Such scenarios can be seen in Figs.

3(e)–3(g) (gray lines). Note here that we assume the pinned (or ini-
tially nucleated) domain at the center of the grain. However, depend-
ing on the position of the pinned domain, the pulse number (j)
corresponding to the spontaneous relaxation/excitation may vary,
while retaining the overall accumulative nature in P-switching dynam-
ics (see supplementary material).

Now, we consider case-2, where we assume a Gaussian distribu-
tion of the coercive field (EC) in an FE grain [Fig. 4(a)] by considering
a spatial distribution of â; b̂, and ĉ (see supplementary material).
Note that EC is assumed to be less near the grain boundary [Fig. 4(b)],
which can be understood as the cause of strain relaxation near the
edges.24,25 Like the previous discussion, considering a sequence of E-
field pulses (Eapp

n;max ¼ 0:92), simulated �Pn is shown in Fig. 4(c). Note
that the FE grain was initially switched to �jPn;r j [Fig. 4(d-i)].
Therefore, P-switching occurs as a two-step process: (1) E-field
induced nucleation and (2) E-field assisted domain growth. Once the
first E-field pulse arrives, direct nucleation starts from the grain edges
(with lower EC) and propagates inward [Fig. 4(d-ii)]. After the end of
the E-field pulse, further nucleation stops and type-1–2 relaxation
takes place {Fig. 4[c-ii–ii(a)]} followed by a spontaneous relaxation
{Figs. 4[c-ii(a)–iii] and 4(d-iii)} due to DW instability. However, after
the 3rd pulse (j> 3), spontaneous excitation occurs in the absence of
the E-field {Fig. 4[c-v(a)–vi]}, rather than spontaneous relaxation.
Note that the origin of spontaneous excitation in this case is not the
instability of DW near the grain boundary. In contrast, when two
DWs are sufficiently close (distance being less than the DW width),
then the intermediate domain experiences the addition of two Eint

n
components governed by both the DWs. Therefore, total Eint

n > 1 at
DW interfaces alongside the intermediate domain. Consequently, the
intermediate domain becomes unstable and spontaneously switches to
þ P [Fig. 4(d-v–vi)]. Such spontaneous excitation continues up to
j¼ 4, until all the lattices have switched to þP. The corresponding
jDþ�Pnjj; jD��Pnjj, and Pacc

n values are shown in Figs. 4(e)–4(h) that
present similar trends like case-1. However, an important difference
between these two cases is stronger spontaneous excitation and relaxa-
tion in case-2 compared to that in case-1 (see supplementary material
for details), which yields relatively abrupt P-switching in case-2.

With the understanding of P-excitation/relaxation processes in
an FE grain, we now analyze the P-accumulation in HZO by consider-
ing an ensemble of grains. The global EC distribution for HZO (80lm
� 80lm) is shown in Fig. 5(a), which we extract from the measured
P–E curves (see supplementary material). Then, we use each sampled
EC as the mean value of a local Gaussian distribution of EC in a grain
(like case-2). Considering a large number of grains, the global distribu-
tion of EC is shown in Fig. 5(a).

By considering a sequence of E-field pulses (for Eapp
n;max ¼ 0:8, 1.0,

and 1.2), simulated �Pn and corresponding Pacc
n are shown in Figs. 5(b)

and 5(c). While the signatures of the dynamics of the single grain (dis-
cussed above) are manifested in HZO (ensemble of grains), two
important differences can be observed in HZO: (1) saturation of accu-
mulated P occurs at an intermediate value which increases for higher
Eapp
n;max , higher Ton, and or lower Toff [Figs. 5(c)–5(e)] and (2) for a long

relaxation time, the overall P does not relax completely [Fig. 5(b): gray
dashed lines]. The former observation is attributed to two processes.
First, grains with low mean EC switch completely after a sufficient
number of pulses and therefore do not contribute to P accumulation
further, leading to intermediate saturation. Second, grains with
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sufficiently high mean EC exhibit low initial nucleation for given
Eapp
n;max and Ton. Therefore, given a relaxation time, the grains with

higher EC are more likely to relax completely and hence do not partici-
pate in P-accumulation. Now, with the increase in Eapp

n;max and Ton, ini-
tial nucleation is enhanced, reducing the probability of complete
relaxation in high EC grains. A decrease in Toff also has a similar effect
on relaxation. Therefore, a larger number of grains contribute to P-
accumulation, leading to a saturation at higher P [Figs. 5(c)–5(e)]. The
second observation (incomplete relaxation for large Toff) can be attrib-
uted to the completely switching of low mean EC grains during the
excitation and hence, do not contribute to spontaneous relaxation.
Note that the large distribution of EC corresponds to the large area of
our fabricated HZO sample. However, by scaling the area of HZO, a
lower number of grains can be achieved. Therefore, the P-accumula-
tion of a scaled HZO should exhibit a lower number of saturation lev-
els as well as more prominent spontaneous P-excitation/relaxation
characteristics.

In summary, we experimentally demonstrated the accumulative
P-switching in HZO. Then, developing a phase-field model, we discuss
the P-switching dynamics by analyzing different stimulated and spon-
taneous P-excitation/relaxation mechanisms governed by the domain-
domain interaction and DW instability. We attribute the strength and
directional change in DW instability as one of the key factors for

accumulative P-switching. Finally, considering an inter/intragrain
coercive-field distribution in our simulations, we describe the experi-
mentally observed accumulative P-switching in HZO.

See the supplementary material for experimental calibration,
parameter extraction, derivation of equations, and other relevant
details.

This work was supported, in part, by NSF under Grant No.
1717999.
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Phase-field Model:  
 
The spatial and temporal evolution of polarization (P) can be calculated from the following time-dependent Landau-Ginzburg 
(TDLG) equation [1-2]. 
 

𝛿𝛿𝛿𝛿
𝛿𝛿𝑷𝑷

= −𝜌𝜌
𝜕𝜕𝑷𝑷
𝜕𝜕𝜕𝜕

             (𝑆𝑆1) 
 
Here, 𝜌𝜌 is the kinetic or viscosity coefficient, F is the total system energy and t is the time. We assume the polarization direction 
is only along the thickness (z-axis) of the FE i.e. Px=0, Py=0, Pz≠0. Taking into account different energy density terms (free 
energy, domain-wall energy, and electrostatic energy and eleastic) into account, eqn. (S1) can be written as [3-4], 
   

−𝜌𝜌
𝑑𝑑𝑃𝑃𝑍𝑍
𝑑𝑑𝑑𝑑

= −𝐸𝐸𝑍𝑍
𝑎𝑎𝑎𝑎𝑎𝑎 −𝐾𝐾𝑃𝑃∇2𝑃𝑃𝑍𝑍 +𝛼𝛼𝑃𝑃𝑍𝑍 +𝛽𝛽𝑃𝑃𝑍𝑍

3 + 𝛾𝛾𝑃𝑃𝑍𝑍
5             (𝑆𝑆2) 

 
Here, 𝐸𝐸𝑍𝑍

𝑎𝑎𝑎𝑎𝑎𝑎 is the applied electric field (E-field) along the z-axis and 𝐾𝐾𝑃𝑃 is the domain coupling parameter. Now, by assuming 
uniform polarization distribution (∇2𝑃𝑃𝑍𝑍 = 0) and static condition (dPZ/dt=0), we plot the PZ vs 𝐸𝐸𝑍𝑍

𝑎𝑎𝑎𝑎𝑎𝑎 characteristics (according 
to eqn. (S2)) and the corresponding PZ vs 𝑑𝑑𝐸𝐸𝑍𝑍

𝑎𝑎𝑎𝑎𝑎𝑎/𝑑𝑑𝑃𝑃𝑍𝑍  curve in Fig. S1(a) (for 𝛼𝛼 < 0, 𝛽𝛽 > 0 and 𝛾𝛾 > 0). Now, let us define the 
microscopic coercive field (EC0) as the applied E-field at which 𝑑𝑑𝐸𝐸𝑍𝑍

𝑎𝑎𝑎𝑎𝑎𝑎/𝑑𝑑𝑃𝑃𝑍𝑍 = 0 and the corresponding polarization as PC0 (see 
Fig. S1(a)). Normalizing the applied E-field with respect to EC0 and polarization with respect to PC0, we can write eqn. (S2) as 
the following equation. 
 

−
𝜌𝜌𝑃𝑃𝐶𝐶
𝐸𝐸𝐶𝐶0

𝑑𝑑� 𝑃𝑃𝑍𝑍𝑃𝑃𝐶𝐶0
�

𝑑𝑑𝑑𝑑
= −

𝐸𝐸𝑍𝑍
𝑎𝑎𝑎𝑎𝑎𝑎

𝐸𝐸𝐶𝐶0
−
𝐾𝐾𝑝𝑝𝑃𝑃𝐶𝐶0
𝐸𝐸𝐶𝐶0

∇2�
𝑃𝑃𝑍𝑍
𝑃𝑃𝐶𝐶0

�+
𝛼𝛼𝑃𝑃𝐶𝐶0
𝐸𝐸𝐶𝐶0

�
𝑃𝑃𝑍𝑍
𝑃𝑃𝐶𝐶0

�+
𝛽𝛽𝑃𝑃𝐶𝐶03

𝐸𝐸𝐶𝐶0
�
𝑃𝑃𝑍𝑍
𝑃𝑃𝐶𝐶0

�
3

+
𝛾𝛾𝑃𝑃𝐶𝐶05

𝐸𝐸𝐶𝐶0
�
𝑃𝑃𝑍𝑍
𝑃𝑃𝐶𝐶0

�
5

              (𝑆𝑆3) 

 
Eqn. (S3) can further be written as 
 

−𝜌𝜌𝑛𝑛
𝑑𝑑𝑃𝑃𝑛𝑛
𝑑𝑑𝑑𝑑

= −𝐸𝐸𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 −𝐾𝐾𝑃𝑃𝑛𝑛∇2𝑃𝑃𝑛𝑛 + 𝛼𝛼�𝑃𝑃𝑛𝑛 + 𝛽̂𝛽𝑃𝑃𝑛𝑛
3 + 𝛾𝛾�𝑃𝑃𝑛𝑛

5         (𝑆𝑆4) 
 
Here, 𝑃𝑃𝑛𝑛 = 𝑃𝑃𝑍𝑍

𝑃𝑃𝐶𝐶0
, 𝜌𝜌𝑛𝑛 = 𝜌𝜌𝑃𝑃𝐶𝐶0

𝐸𝐸𝐶𝐶0
, 𝐸𝐸𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐸𝐸𝑍𝑍

𝑎𝑎𝑎𝑎𝑎𝑎

𝐸𝐸𝐶𝐶0
, 𝐾𝐾𝑃𝑃𝑛𝑛 = 𝐾𝐾𝑝𝑝𝑃𝑃𝐶𝐶0

𝐸𝐸𝐶𝐶0
, 𝛼𝛼� = 𝛼𝛼𝑃𝑃𝐶𝐶0

𝐸𝐸𝐶𝐶0
, 𝛽̂𝛽 = 𝛽𝛽𝑃𝑃𝐶𝐶03

𝐸𝐸𝐶𝐶0
, 𝛾𝛾�= 𝛾𝛾𝑃𝑃𝐶𝐶05

𝐸𝐸𝐶𝐶0
.  

 
Now, we derive the relations among normalized Landau coefficients (𝛼𝛼�, 𝛽̂𝛽 and 𝛾𝛾�) for a given value of normalized remnant 
polarization (𝑃𝑃𝑛𝑛,𝑟𝑟 = 𝑃𝑃𝑅𝑅 /𝑃𝑃𝐶𝐶0 , 𝑃𝑃𝑅𝑅=unnormalized remnant polarization). To do so, we consider steady state (𝑑𝑑𝑃𝑃𝑛𝑛

𝑑𝑑𝑡𝑡
= 0) and 

homogeneous 𝑃𝑃𝑛𝑛 , therefore, ∇2𝑃𝑃𝑛𝑛=0. Hence, eqn. (S4) can be written as the following equation by considering the static condition 
(𝑑𝑑𝑃𝑃𝑛𝑛
𝑑𝑑𝑑𝑑

= 0).  
 

𝐸𝐸𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 =𝛼𝛼�𝑃𝑃𝑛𝑛 + 𝛽̂𝛽𝑃𝑃𝑛𝑛
3 + 𝛾𝛾�𝑃𝑃𝑛𝑛

5             (𝑆𝑆5) 
 
Note that, in the normalized space, coercive field (𝐸𝐸𝑛𝑛,𝑐𝑐) = ±1 and at the coercive field (𝐸𝐸𝑛𝑛𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐸𝐸𝑛𝑛,𝑐𝑐), normalized polarization, 
𝑃𝑃𝑛𝑛 = 𝑃𝑃𝑛𝑛,𝑐𝑐 =∓1. Therefore, by putting 𝐸𝐸𝑛𝑛𝐴𝐴𝐴𝐴𝐴𝐴=1 and Pn=−1 in eqn. (S5), we can write, 
 

𝛼𝛼�+ 𝛽̂𝛽+ 𝛾𝛾�= −1              (S6) 
 

Also, 𝑑𝑑𝐸𝐸𝑛𝑛/𝑑𝑑𝑃𝑃𝑛𝑛 = 0 at 𝑃𝑃𝑛𝑛 = 𝑃𝑃𝑛𝑛,𝑐𝑐 = ∓1 (see Fig. S1(a)), therefore, 
 



𝛼𝛼�+ 3𝛽̂𝛽𝑃𝑃𝑛𝑛2+ 5𝛾𝛾�𝑃𝑃𝑛𝑛4 =
𝑑𝑑𝐸𝐸𝑛𝑛
𝑑𝑑𝑃𝑃𝑛𝑛

 

 
𝛼𝛼�+ 3𝛽̂𝛽+ 5𝛾𝛾�= 0        (S7) 

 
Solving eqn. (S6) and eqn. (S7), we can write, 

𝛼𝛼�= 𝛾𝛾� −
3
2

              (𝑆𝑆8) 

𝛽̂𝛽 = −2𝛾𝛾�+
1
2

            (𝑆𝑆9) 
 
Now, putting the value of 𝛼𝛼� and 𝛽̂𝛽 in eqn. (S5), we can write, 
 

𝐸𝐸𝑛𝑛𝐴𝐴𝐴𝐴𝐴𝐴 = �𝛾𝛾� −
3
2
�𝑃𝑃𝑛𝑛 + �−2𝛾𝛾�+

1
2
�𝑃𝑃𝑛𝑛3 + 𝛾𝛾�𝑃𝑃𝑛𝑛5 

At 𝐸𝐸𝑛𝑛𝐴𝐴𝐴𝐴𝐴𝐴 = 0, 𝑃𝑃𝑛𝑛 =𝑃𝑃𝑛𝑛 ,𝑟𝑟, therefore, 
 

0 = �𝛾𝛾� −
3
2
�𝑃𝑃𝑛𝑛 ,𝑟𝑟 + �−2𝛾𝛾�+

1
2
�𝑃𝑃𝑛𝑛,𝑟𝑟

3 + 𝛾𝛾�𝑃𝑃𝑛𝑛,𝑟𝑟
5  

 

𝛾𝛾�= −
1
2 �𝑃𝑃𝑛𝑛,𝑟𝑟

2 − 3�

�𝑃𝑃𝑛𝑛,𝑟𝑟
2 − 1�

2             (𝑆𝑆10) 

 
Now, by normalizing the experimentally measured P-E characteristics with respect to EC, PC and getting the corresponding 𝑃𝑃𝑛𝑛,𝑟𝑟, 
we calculate the normalized Landau coefficients from eqn. (S8)-(S10). The calibration is shown in Fig. S1(b) and that provides 
𝛼𝛼�= −1.499,𝛽̂𝛽 = 0.498 and 𝛾𝛾� = 0.001. In our phase-field simulation, we use 𝐾𝐾𝑝𝑝𝑛𝑛 = 1.     
 
Now, if we consider a non-homogeneous distribution of EC (𝐸𝐸𝑛𝑛,𝑐𝑐 exhibits spatial variation) in an FE grain, then by following a 
similar approach, we can derive the following set of equations. Note,  𝐸𝐸𝑛𝑛,𝑐𝑐, here, is a random variable with mean = 1)  

𝛾𝛾�= −
1
2 �𝐸𝐸𝑛𝑛,𝑐𝑐𝑃𝑃𝑛𝑛,𝑟𝑟

2 − 3𝐸𝐸𝑛𝑛,𝑐𝑐�

�𝑃𝑃𝑛𝑛,𝑟𝑟
2 − 1�

2             (𝑆𝑆14) 

𝛼𝛼�= 𝛾𝛾�−
3
2
𝐸𝐸𝑛𝑛,𝑐𝑐                       (𝑆𝑆15) 

  

𝛽̂𝛽 =−2𝛾𝛾�+
1
2
𝐸𝐸𝑛𝑛,𝑐𝑐             (𝑆𝑆16) 

Now, we can calculate the distribution in 𝛼𝛼�, 𝛽̂𝛽 and 𝛾𝛾� from eqn. (S14)-(S16) for a Gaussian distribution in 𝐸𝐸𝑛𝑛,𝑐𝑐 (mean = 1 and 
standard deviation = 0.125). To do so, we assume constant 𝑃𝑃𝑛𝑛,𝑟𝑟 and calculate 𝛼𝛼�, 𝛽̂𝛽 and 𝛾𝛾� by capturing the variation in 𝐸𝐸𝑛𝑛,𝑐𝑐. LGD 
equation (4) with 𝛼𝛼�, 𝛽̂𝛽 and 𝛾𝛾� treated as random variable is solved to simulate the dynamics of polarization switching in this work.   
 

 
Fig. S1: (a) Polarization (PZ) vs E-field (𝐸𝐸𝑍𝑍

𝑎𝑎𝑎𝑎𝑎𝑎) (red) and PZ vs 𝑑𝑑𝐸𝐸𝑍𝑍
𝑎𝑎𝑎𝑎𝑎𝑎/𝑑𝑑𝑃𝑃𝑍𝑍  characteristics (black) according to eqn. (S2) by assuming 

homogeneous PZ-distribution and static condition. (b) Calibration of model parameters (Landau coefficients) with experiment in normalized 
space. [𝛼𝛼� = −1.499,𝛽𝛽 = 0.498  and 𝛾𝛾� = 0.001], we use 𝐾𝐾𝑃𝑃

𝑛𝑛 = 1.0 in all the simulations.   



Note:  
In general, the definition of ‘EC is the electric field where P is zero’ is for average polarization that corresponds to a macroscopic 
definition of coercive field. Here, EC0 is for a single lattice/grid point (microscopic coercive field). From the perspective of 
polarization switching, EC0 serves as the threshold E-field responsible for polarization switching in a single lattice. Note, the 
distinction between PC and PC0 is that PC0 (microscopically polarization cannot be zero) is not 0, while PC (due to the definition 
of macroscopic EC) is 0.    
 

Note, in the un-normalized state, |Pr|>|PC0|.  PC0=~15𝜇𝜇𝜇𝜇/𝑐𝑐𝑚𝑚2 and PR~25𝜇𝜇𝜇𝜇/𝑐𝑐𝑚𝑚2 

After normalization, |Pn,C0| = 1 and therefore, |Pn,r|≈(25/15) = ~1.7. 
 
Polarization Excitation and Relaxation: 

Any increase in microscopic polarization from its remanent value (Pn,r) can be considered as the ‘P-excitation’, where a decrease 
can be denoted as the ‘P-relaxation’. Due to an applied electric field, stimulated increase in polarization occurs and can be 
referred as ‘P-excitation’. In a homogeneous mono-domain scenario (in absence of a DW), if the applied field is less than the 
coercive field, the polarization changes either (i) from -|Pn,r| to –|Pn,e1| or (ii) from +|Pn,r| to +|Pn,e2|. Here, we refer such P-
excitation as type-1 and type-2, respectively. When the applied electric field is removed, the polarization returns to its remanent 
value either (i) from –|Pn,e1| to -|Pn,r| or (ii) from +|Pn,e2| to +|Pn,r|. Such decrease in polarization can be referred as tyepe-1 and 
type-2 ‘P-relaxation’, respectively. Physically, the type-1 and type-2 excitation/relaxation components can be understood as the 
electric field driven soft dielectric [6] type capacitive charging/discharging event, where type-1 and type-2 excitation/relaxation 
occur in domains with the remnant polarization of -|Pn,r| and +|Pn,r|, respectively. Here, soft dielectricity means the change in 
dipole moment (dP/dE) due to an applied E-field without any polarization switching.    

 

 

 

 

 

 

 

 

 

Fig S2. 𝑃𝑃𝑛𝑛  versus 𝐸𝐸𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 relation showing type-1 and type-2 excitation and relaxation components. 

 
Here, type-1 excitation implies a change from -|𝑃𝑃𝑛𝑛,𝑟𝑟| to -|𝑃𝑃𝑛𝑛 ,𝑒𝑒1| and type-2 excitation implies +|𝑃𝑃𝑛𝑛,𝑟𝑟| to +|𝑃𝑃𝑛𝑛,𝑒𝑒2| as shown in the 
Fig. S2. According to Landau equation, the polarization (Pn) and electric field (𝐸𝐸𝑛𝑛𝑎𝑎𝑝𝑝𝑝𝑝) relation can be written as, 
 
𝐸𝐸𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 = 𝛼𝛼�𝑃𝑃𝑛𝑛 + 𝛽̂𝛽𝑃𝑃𝑛𝑛3+ 𝛾𝛾�𝑃𝑃𝑛𝑛5    (S17) 
𝑑𝑑𝐸𝐸𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎

𝑑𝑑𝑃𝑃𝑛𝑛
=𝛼𝛼�+ 3𝛽̂𝛽𝑃𝑃𝑛𝑛2+ 5𝛾𝛾�𝑃𝑃𝑛𝑛4 

From the last equation, the differential change in polarization can be written as, 
 
𝑑𝑑𝑃𝑃𝑛𝑛
𝑑𝑑𝐸𝐸𝑛𝑛

𝑎𝑎𝑎𝑎𝑎𝑎 = 1
𝛼𝛼�+3𝛽𝛽�𝑃𝑃𝑛𝑛2+5𝛾𝛾�𝑃𝑃𝑛𝑛4

     (S18) 

 
Note that, the type-1 and type-2 excitation components (Δ𝑃𝑃𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−1 and Δ𝑃𝑃𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−2) can be represented as the differential change 
in polarization due to an applied electric field and can be written as following equations. 
 
Δ𝑃𝑃𝑛𝑛

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−1(2) = ∫ 𝑑𝑑𝑃𝑃𝑛𝑛
𝑑𝑑𝐸𝐸𝑛𝑛

𝑎𝑎𝑎𝑎𝑎𝑎 𝐸𝐸𝑛𝑛
𝑎𝑎𝑎𝑎𝑎𝑎

0 𝑑𝑑𝐸𝐸𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 (S19) 



Note that, at 𝐸𝐸𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎=0, Pn=±|Pn,r|, the quantity 𝑑𝑑𝑃𝑃𝑛𝑛
𝑑𝑑𝐸𝐸𝑛𝑛

𝑎𝑎𝑎𝑎𝑎𝑎 is the same for Pn=±|Pr|.  

It is important to note that, during type-1 excitation, |𝑃𝑃𝑛𝑛| is decreasing (Pn is becoming less negative) with the increase in 𝐸𝐸𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 
(can be seen from the figure). Therefore, 𝑑𝑑𝑃𝑃𝑛𝑛

𝑑𝑑𝐸𝐸𝑛𝑛
𝑎𝑎𝑎𝑎𝑎𝑎 should increase (according to eqn. (S18)) with the increase in 𝐸𝐸𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎. 

 
On the other hand, during type-2 excitation, |𝑃𝑃𝑛𝑛| is increasing with the increase in 𝐸𝐸𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 (can be seen from the figure). 
Therefore, 𝑑𝑑𝑃𝑃𝑛𝑛

𝑑𝑑𝐸𝐸𝑛𝑛
𝑎𝑎𝑎𝑎𝑎𝑎 should decrease (according to eqn. (S18)) with the increase in 𝐸𝐸𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎. 

The term 𝑑𝑑𝑃𝑃𝑛𝑛
𝑑𝑑𝐸𝐸𝑛𝑛

𝑎𝑎𝑎𝑎𝑎𝑎 is increasing in case of type-1 excitation and is decreasing in case of type-2 excitation with the increase in 

𝐸𝐸𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎. Therefore, from eqn. (S19), we can see that Δ𝑃𝑃𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−1> Δ𝑃𝑃𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−2.     
 
To get a numerical perspective of type-1 and type-2 excitation components, the calculated values of ±|Pn,r|=1.7298 for 𝛼𝛼� =
−1.499, 𝛽̂𝛽 = 0.498 and 𝛾𝛾�= 0.001. At 𝐸𝐸𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎=0.8, |𝑃𝑃𝑛𝑛 ,𝑒𝑒1|=1.3450 and |𝑃𝑃𝑛𝑛 ,𝑒𝑒2|=1.9505. 
Δ𝑃𝑃𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−1 = |𝑃𝑃𝑛𝑛,𝑟𝑟|-|𝑃𝑃𝑛𝑛 ,𝑒𝑒1| = 1.7298 – 1.3450 = 0.3484 
Δ𝑃𝑃𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−2 = |𝑃𝑃𝑛𝑛,𝑒𝑒2|-|𝑃𝑃𝑛𝑛,𝑟𝑟| = 1.9505 – 1.7298 = 0.2207 
 
Therefore, Δ𝑃𝑃𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−1> Δ𝑃𝑃𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−2. 

Polarization switching considering 1D domain dynamics: 
 
In general, P-switching can take place if |𝐸𝐸𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖+𝐸𝐸𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎| > 1. Here, 𝐸𝐸𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 is the interaction E-field (= 𝐾𝐾𝑃𝑃𝑛𝑛∇2𝑃𝑃𝑛𝑛) and 𝐸𝐸𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 is the 
applied E-field. In the main text, we discussed that the 1D domain-wall (DW) is stable due to the spatial symmetric nature of 
𝐸𝐸𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 and therefore, 𝐸𝐸𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 1.  In other words, the DW is static when no electric field is applied (𝐸𝐸𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 = 0). However, P-
switching can be induced by applying an E-field, 𝐸𝐸𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 > 0. Such 𝐸𝐸𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 > 0 causes 𝐸𝐸𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖+𝐸𝐸𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 > 1 and that initiates local 
nucleation near the DW, where |𝐸𝐸𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖| >0 . 
 
Considering a sequence of E-field pulses (Fig. S3(a)), simulated transient 𝑃𝑃�𝑛𝑛  is shown in Fig. S3(b) (solid red line).  The initial 
P-map at t=0 has been shown in Fig. S3(e)-i. After the application of first E-field pulse, the DW will propagate along the +x-
axis nucleating new lattices sequentially at the right edge of the DW. That implies an increase in R1 area (red region in Fig. 
S3(e)) and decrease in R2 area (blue region in Fig. S3(e))  by an amount of Δ𝐴𝐴𝑗𝑗+ =𝑤𝑤 ×Δ𝑙𝑙𝑗𝑗, where Δ𝑙𝑙𝑗𝑗 is the increase in length 
of R1 at j-th pulse and 𝑤𝑤 is the width of the sample. The P-map at the end of the E-field pulse (at t = Ton) is shown in Fig. S3(e)-
ii. The corresponding transient excitation in 𝑃𝑃�𝑛𝑛  can be seen in Fig. S3(b) (from point i to ii). This P-excitation can be attributed 
to three different contributions of change in polarization, i.e. type-1, type-2 and type-3 (discussed in the main text for 2D). After 
the end of first E-field pulse, the DW propagation stops and type-1 and 2 relaxations occur. Corresponding transient relaxation 
in 𝑃𝑃�𝑛𝑛  can be seen in Fig. S3(b) (from point ii to iii) and P-map at the end of relaxation (at t = Ton + Toff ) has been shown in Fig. 
S3(e)-iii. Now, in the subsequent E-field pulses, the DW moves further along the +x-axis by following sequential P-excitation 
and relaxation sequences and finally switches all the lattices to +P. After that, transient 𝑃𝑃�𝑛𝑛  exhibits only type-2 P-excitation and 
relaxation, which can be seen in Fig. S3(b) for j >8.  
 
Note that, the 1D DW is stable in absence of an applied E-field (as we discussed earlier). To verify this argument, we simulate 
the transient polarization characteristics by considering long relaxation time after different excitation sequences (the 
corresponding E-field pulses are shown in Fig. S3(c)). Resultant transient 𝑃𝑃�𝑛𝑛  is shown in Fig. S3(b) as dashed line showing no 
spontaneous P-relaxation in case 1D DW motion based P-switching. However, when the DW reaches very close to the grain 
boundary, the DW becomes unstable and can spontaneously collapse (similar to the 2D case discussed in the main text) along 
the grain edges leading to spontaneous P-excitation (Fig. S3(b) at sixth relaxation sequence). Increase in 𝑃𝑃�𝑛𝑛  (called Δ+𝑃𝑃𝑛𝑛), 
decrease in 𝑃𝑃�𝑛𝑛  (called Δ−𝑃𝑃𝑛𝑛) and 𝑃𝑃�𝑛𝑛  at the end of each excitation-relaxation sequence (called accumulated polarization, 𝑃𝑃𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎) 
have been shown in Fig. S3(f). 𝑃𝑃𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 shows a linear increase w.r.t. the number of E-field pulses (j), which is due to the 1D degrees 
of freedom of DW motion that gives rise to equal Δ𝐴𝐴𝑗𝑗+(Δ𝑙𝑙𝑗𝑗 is constant irrespective of the pulse number) in each pulse. That 
implies, in case of 1D DW motion based P-switching, increase in polarization is linear with respect to time. To verify this 
argument, we simulate the transient polarization characteristics by considering long excitation time at different sequences (the 
corresponding E-field pulses are shown in Fig. S3(d)). Resultant transient 𝑃𝑃�𝑛𝑛 is shown in Fig. S3(b) as dash-dotted line showing 
linear increase in 𝑃𝑃�𝑛𝑛 till the saturation.  
 



 
Fig. S3: Polarization switching dynamics considering 1D DW motion: (a) Applied E-field pulse sequences (𝐸𝐸𝑛𝑛 ,𝑚𝑚𝑚𝑚𝑚𝑚

𝑎𝑎𝑎𝑎𝑎𝑎 = 0.8, 𝑇𝑇𝑜𝑜𝑜𝑜 = 50𝑛𝑛𝑛𝑛  and 
𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 = 50𝑛𝑛𝑛𝑛 ) and (b) resultant transient 𝑃𝑃�𝑛𝑛 (solid red). Applied E-field pulse sequences for prolonged (c) relaxation and (d) excitation 
characteristics and corresponding transient 𝑃𝑃�𝑛𝑛 are shown in (b) as dash-dotted line (for excitation) and dashed line (for relaxation). (e) P-map 
at point (i), (ii) and (iii) as marked in (b). Increase and decrease in 𝑃𝑃�𝑛𝑛 (respectively |Δ+𝑃𝑃𝑛𝑛| and |Δ−𝑃𝑃𝑛𝑛|) and accumulated 𝑃𝑃�𝑛𝑛 (𝑃𝑃𝑛𝑛

𝑎𝑎𝑎𝑎𝑎𝑎) in each 
excitation/relaxation sequence with respect to pulse number (j). 
 
Now, to analyze the effects of 𝐸𝐸𝑛𝑛,𝑚𝑚𝑚𝑚𝑚𝑚

𝑎𝑎𝑎𝑎𝑎𝑎 , Ton and Toff in P-excitation/relaxation and accumulation characteristics, we plot the 
transient 𝑃𝑃�𝑛𝑛  in Fig. S4(a-c) and 𝑃𝑃𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 with respect to the number of pulses (j) in Fig. S4(d-f) for different 𝐸𝐸𝑛𝑛,𝑚𝑚𝑚𝑚𝑚𝑚

𝑎𝑎𝑎𝑎𝑝𝑝 , 𝑇𝑇𝑜𝑜𝑜𝑜 and 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜. 
𝑃𝑃�𝑛𝑛  shows higher P-excitation (in Fig. S4(a)) with higher 𝐸𝐸𝑛𝑛,𝑚𝑚𝑚𝑚𝑚𝑚

𝑎𝑎𝑎𝑎𝑎𝑎  which can be understood as the increase in type-1 and type-2 
excitation components and higher growth rate in R1 domain (increase in dlj/dt) with the increase in 𝐸𝐸𝑛𝑛,𝑚𝑚𝑚𝑚𝑚𝑚

𝑎𝑎𝑎𝑎𝑎𝑎  . Higher P-excitation 
with the increase in 𝐸𝐸𝑛𝑛,𝑚𝑚𝑚𝑚𝑚𝑚

𝑎𝑎𝑎𝑎𝑎𝑎  leads to faster P-accumulation w.r.t the pulse number (Fig. S4(d)). Similarly, an increase in 𝑇𝑇𝑜𝑜𝑜𝑜 
provides increased amount of forward nucleation (increase in Δ𝑙𝑙𝑗𝑗 , while dlj/dt remains constant) and hence, increased 𝑃𝑃�𝑛𝑛  during 
each E-field pulses (Fig. S4(b)). Therefore, 𝑃𝑃𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 requires relatively a smaller number of E-field pulses to reach the saturation 
point (Fig. S4(e)) for higher 𝑇𝑇𝑜𝑜𝑜𝑜. However, increase in 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 does not provide any change in 𝑃𝑃�𝑛𝑛  and 𝑃𝑃𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 characteristics (Fig. 
S4(c) and in Fig. S4(f)) due to the absence of spontaneous P-relaxation process in case of 1D domain dynamics.  

 



 
Fig. S4: Polarization switching dynamics considering 1D DW motion: transient 𝑃𝑃�𝑛𝑛 for different (a) 𝐸𝐸𝑛𝑛 ,𝑚𝑚𝑚𝑚𝑚𝑚

𝑎𝑎𝑎𝑎𝑎𝑎  (magnitude of the applied E-field 
pulse), (b) 𝑇𝑇𝑜𝑜𝑜𝑜 (excitation time) and (c) 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 (relaxation time); Accumulate polarization (𝑃𝑃𝑛𝑛

𝑎𝑎𝑎𝑎𝑎𝑎) with respect to the pulse number (j) for different 
(d) 𝐸𝐸𝑛𝑛 ,𝑚𝑚𝑚𝑚𝑚𝑚

𝑎𝑎𝑎𝑎𝑎𝑎 , (e) 𝑇𝑇𝑜𝑜𝑜𝑜 and (f) 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜.  Here, we consider 1D domain-wall (DW) motion.  

 

 

Differences between 1D and 2D DW motion based P-switching dynamics: 

If the spatial distribution in polarization (P) is 1D, then the corresponding DW and their associated motion is also effectively 
1D. In our main text, we discuss that the 1D DW is static and stable due to the spatially symmetric distribution of local effective 
interaction E-field (𝐸𝐸𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐾𝐾𝑃𝑃𝑛𝑛∇2𝑃𝑃𝑛𝑛). Therefore, there will be no spontaneous DW motion (or P-switching) in absence of an 
applied E-field (unless the DW is sufficiently close to the grain boundary). At the same time, considering the E-field induced 
DW motion, the increase in polarization is linear with respect to time (due to linear increase in domain area). Consequently, the 
P-accumulation characteristics exhibits linear increase as a response of sequential E-field pulsing. However, in case of 2-
dimentional polarization distribution, the corresponding 2D DW may not be stable due to spatially asymmetric nature of 𝐸𝐸𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 
and can exhibit spontaneous motion leading to spontaneous P-switching (relaxation or excitation, depending on the position of 
DW). In addition, as a response of sequential E-field pulsing, the increase in polarization is incremental with respect to time due 
to non-linear growth of domain area. For example, domain growth is quadratic for case-1 (main text), where we assume circular 
pinned domain at the center of the grain. Moreover, such incremental domain growth in case of 2D DW motion leads to relatively 
more accumulative and abrupt P-switching characteristics compared to 1D DW motion.  

 

 

 



 

 

 

 

P-switching dynamics (homogeneous EC) depending on the location of the pinned domain: 

In the main text, we discuss the P-switching dynamics in an FE grain by considering a homogeneous EC distribution and a pinned 
type domain at the center of the grain (case-1 of the main text). To analyze the dependence of P-switching dynamics on the 
location of pinned domain, here we consider different initial location for the pinned domain and compare the results. Transient 
𝑃𝑃�𝑛𝑛  as a consequence of sequential E-field pulsing (Fig. S5(a)) is shown in Fig. S5(b) by assuming the initial location of the 
pinned domain at four different positions (as shown in Fig. S5(c)) within the square FE grain, i.e., case-i: at the center, case-ii: 
at the vertex, case-(iii): midway between the center and side, and case-(iv): midway between the center and vertex. 
Corresponding P-maps are shown in Fig. S5(d) at the end of each excitation and relaxation sequences. For all the cases (i, ii, iii 
and iv), P-accumulation takes place by following sequentially stimulated P-excitation and P-relaxation process, as discussed in 
the main text. For case-i and case-ii, in absence of E-field, we initially observe spontaneous P-relaxation (due to radial 
asymmetry in interaction E-field) up to a certain number of pulses and after that we observe spontaneous P-excitation (due to 
DW collapse at the grain edges) till the saturation. Now, in case-iii the pinned domain is near the grain edge. Therefore, the DW 
collapses near the grain edge at very early stage (during first relaxation sequence in this case) and leads to spontaneous growth 
of R1 domain along the grain edge. At the same time, the opposite face of the R1 domain (towards the inner side of the grain) 
spontaneously shrinks (due to radial asymmetry in interaction E-field). Due to these simultaneous domain growth and shrinking 
(at different regions of the R1 domain), initially, shrinking dominates over the growth. Therefore, the R1 domain area decreases 
spontaneously and as a consequence, we observe overall P-relaxation (Fig. S5(b)-blue curve) in absence of applied E-field till 
the third relaxation sequences. However, at the fourth relaxation sequence, spontaneous domain growth dominates over 
shrinking and hence, we observe an overall spontaneous P-excitation. At the same time, note that the curvature of the R1 domain 
(facing inwards) decreases and that leads to a decrease in interaction E-field asymmetry. In other words, the nature of the DW 
approaches that of 1D-DW motion. Therefore, no (or very low) spontaneous change in polarization takes place from fifth to 
seventh relaxation sequences. At the eighth relaxation sequence, DW collapse at the grain edge and reaches saturation 
polarization. Similar to case-iii, in case-iv the pinned domain is near the grain edge. However, in this case, within the 
simultaneous domain growth and shrinking (at different regions of the R1 domain), initially, growth dominates over the 
shrinking. As a consequence, we observe an overall spontaneous P-excitation (Fig. S5(b)-red curve) at the second relaxation 
sequence. After that, spontaneous P-relaxation dominates till the sixth relaxation sequences.            



 
Fig. S5: (a) Applied E-field pulse sequences (𝐸𝐸𝑛𝑛 ,𝑚𝑚𝑚𝑚𝑚𝑚

𝑎𝑎𝑎𝑎𝑎𝑎 = 0.9, 𝑇𝑇𝑜𝑜𝑜𝑜 = 100𝑛𝑛𝑛𝑛  and 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 = 400𝑛𝑛𝑛𝑛 ). (b) Transient  𝑃𝑃�𝑛𝑛 and accumulated polarization 
(𝑃𝑃𝑛𝑛

𝑎𝑎𝑎𝑎𝑎𝑎, at  the inset) for different positions of pinned domain. (c) Initial P-map showing the position of pinned domain. (d) P-map at the end of 
each excitation and relaxation sequences (plotted sequentially) for all the considered cases.  

 

 



Spontaneous Relaxation:  

To start with, let us consider an FE grain, exhibiting a circularly nucleated domain (R1), as shown in Fig. S6. Note, that 
the domain holds a polar symmetry.  

 

Fig. S6: 2D circular domain-wall (DW) separating two domain (R1 and R2) 

Therefore, in polar coordinate, the term ∇2𝑃𝑃𝑛𝑛  can be written as, 

∇2𝑃𝑃𝑛𝑛 =
𝜕𝜕2𝑃𝑃𝑛𝑛
𝜕𝜕𝑟𝑟2

+
1
𝑟𝑟
𝜕𝜕𝑃𝑃𝑛𝑛
𝜕𝜕𝜕𝜕

+
1
𝑟𝑟2
𝜕𝜕2𝑃𝑃𝑛𝑛
𝜕𝜕𝜃𝜃2

 

Now, we can assume the center of the R1 domain as the center of the polar coordinate (r = 0). Also, due to polar 
symmetry, at a particular r, 𝑃𝑃𝑛𝑛(𝜃𝜃) =constatnt and  𝜕𝜕

2𝑃𝑃𝑛𝑛
𝜕𝜕𝜃𝜃2

 = 0. Therefore, we can write the equation as following.   

∇2𝑃𝑃𝑛𝑛 =
𝜕𝜕2𝑃𝑃𝑛𝑛
𝜕𝜕𝑟𝑟2

+
1
𝑟𝑟
𝜕𝜕𝑃𝑃𝑛𝑛
𝜕𝜕𝜕𝜕

 

Now, let us assume  𝑃𝑃𝑛𝑛(𝑟𝑟) is an odd symmetric function with a center of symmetry at r = r’ (r = r’ is the DW center). 
Therefore, we can immediately state that 𝜕𝜕𝑃𝑃𝑛𝑛

𝜕𝜕𝜕𝜕
 will be even symmetric and 𝜕𝜕

2𝑃𝑃𝑛𝑛
𝜕𝜕𝑟𝑟2

 will be odd symmetric with a center of 

symmetry at r = r’. However, the term 1
𝑟𝑟
 is only symmetric with respect to ‘0’ (r=r’ is not a symmetry point). Therefore, 

the second term in the above equation is asymmetric for any 𝑟𝑟′ ≠ 0 and that leads to an asymmetric ∇2𝑃𝑃𝑛𝑛. To visualize 
different components of ∇2𝑃𝑃𝑛𝑛, we plot 𝜕𝜕

2𝑃𝑃𝑛𝑛
𝜕𝜕𝑟𝑟2

, 𝜕𝜕𝑃𝑃𝑛𝑛
𝜕𝜕𝜕𝜕

, 1
𝑟𝑟
𝜕𝜕𝑃𝑃𝑛𝑛
𝜕𝜕𝜕𝜕

 and 𝜕𝜕
2𝑃𝑃𝑛𝑛
𝜕𝜕𝑟𝑟2

+ 1
𝑟𝑟
𝜕𝜕𝑃𝑃𝑛𝑛
𝜕𝜕𝜕𝜕

 with respect to r in the figure below (Fig. S7).  

 

Fig. S7: Different components of ∇2𝑃𝑃𝑛𝑛 with respect to 𝑃𝑃𝑛𝑛  

Note: **Even if the second term is symmetric (not possible though), it is important to note that the summation of an 
odd symmetric and even symmetric function is always asymmetric. 

 

r=0 
r=r0 



 

 

As Enint becomes spatially asymmetric, where |Enint|>1 at the inner interface and |Enint|<1 at the outer interface of DW. Such 
asymmetry in the Enint causes the DW to undergo an effective inward force (∝ P × Enint). (Whereas, in case of 1D DW, such 
force was oppositely balanced due to symmetric nature of Enintdistribution). Due to such inward force, the DW becomes unstable 
and R1 region shrinks spontaneously with time. Recall that the R1 domain corresponds to +P and R2 domain corresponds to –
P. Therefore, Due to the spontaneous shrinking (decreasing in area) of R1 domain area, the average polarization of the grain (P�n) 
decreases spontaneously and that leads to DW-instability driven polarization relaxation. 

Spontaneous Excitations: 
 
Each DW contains a spatial variation in polarization (-P to +P). Due to such polarization variation, each DW exhibits a local 
interaction field (𝐸𝐸𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐾𝐾∇2𝑃𝑃𝑛𝑛). A typical plot of polarization distribution (𝑃𝑃𝑛𝑛(𝑥𝑥)) and the corresponding 𝐸𝐸𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥) is shown 
below (Fig. S8(a)). Note that, 𝐸𝐸𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥) = 0 at |𝑥𝑥 − 𝑥𝑥0|→∞, where, 𝑥𝑥0 is the center of the domain wall. However, when two DW 
come sufficiently close (~less than a DW width) to each other, their interaction field overlaps with each other within the 
intermediate domain and hence, the total interaction field increases over the equilibrium value (shown in Fig. S8(b) and Fig 
S8(c)). Such increase in 𝐸𝐸𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 from its equilibrium value induces spontaneous P-switching (-P to +P) in R2 domain and that leads 
to spontaneous P-excitation component.  

 

  

Fig. S8: (a) 𝐸𝐸𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 for a standalone DW, (b) 𝐸𝐸𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 for two DWs with a distance less than the DW width, (c) 𝐸𝐸𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 for two DWs 
with a distance much less than the DW width. 

 

 

 

 



Differences in P-switching dynamics between case-1 (homogeneous EC) and case-2 (non-homogeneous EC) 

In the main text, we discuss the P-switching dynamics in an FE grain by considering two cases. In case-1, we considering 
homogeneous EC, where the creation of the DW is pre-conditioned with the assumption of a pinned domain. On the other hand, 
in case-2, we consider a local distribution of EC in an FE grain, where the creation of the DW depends on the initial nucleation 
of low EC regions (near the grain edges). In both the cases, we observe spontaneous relaxation in the absence of an applied E-
field that originates from DW instability. In case-1, the DW instability occurs due to the asymmetry in 𝐸𝐸𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖, which is the outcome 
of 2D nature of the DW. However, in case-2, such asymmetry in 𝐸𝐸𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 gets enhanced due to non-homogeneity in EC (EC of the 
switched domains are lower compared to the EC of the domains those are not switched yet). Therefore, the spontaneous P-
relaxation is higher in case-2 compared to case-1. 

Also, we discuss the spontaneous excitation of polarization for both the cases. In case-1, spontaneous P-excitation takes place 
due to the DW instability near the grain edge. In contrast, in case-2, spontaneous P-excitation occurs due to the interaction 
between two DWs that makes the intermediate region (between the DWs) unstable, thus, spontaneously switching to +P. It is 
important to note that the area of the domain that undergoes spontaneous P-excitation is less in case-1 (regions near the grain 
edges, Fig. 3(b)) compared to case-2 (regions in between the DWs, Fig. 4(d)). Therefore, the spontaneous P-excitation is more 
prominent in case-2 compared to case-1.  

Extraction of EC distribution from experiment: 

An FE sample exhibits an ensemble of grains (due to polycrystallinity) with different geometries and areas. As the mean coercive 
field (EC) of a grain depends on its size [5], therefore, the FE film manifest a spatial distribution of EC. Due to such EC distribution 
among the grains, for a given maximum applied E-field (Emax), a certain number of grains (with EC<Emax) undergo polarization 
switching , giving rise to a remnant polarization (PR). With the increase in Emax, increased number of grains undergo polarization 
switching leading to an increase in PR. Let us assume, PR=PR1 for Emax=Emax1 and PR=PR2 for Emax=Emax2= Emax1+ΔE, where ΔE 
is small positive increase in Emax (i.e. Emax2>Emax1). Therefore, the increase in PR (Δ𝑃𝑃𝑅𝑅=PR2 - PR1) is proportional to the area of 
newly switched grains. Also, the mean coercive field of those newly switched grains must be ~ Emax2. Note that, for a sufficiently 
high Emax, it is possible to switch all the grains and that provides the highest PR≈PR,max (in principle, further increase in Emax 
should not provide a significant increase in PR). Putting this all together, Δ𝑃𝑃𝑅𝑅/𝑃𝑃𝑅𝑅 ,𝑚𝑚𝑚𝑚𝑚𝑚 represents the % area of the sample (or 
area fraction) for which 𝐸𝐸𝐶𝐶 ≈ 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚2.    

To experimentally extract such EC distribution, we measure the P-E loop of HZO for different sweep ranges of the applied field 
(i.e. for different Emax) (Fig. S9(a)). Corresponding remnant polarization (𝑃𝑃𝑅𝑅 ) versus Emax is shown in Fig. S9(b). Then we 
calculate the increase in PR (Δ𝑃𝑃𝑅𝑅) for the each Emax. Finally, we calculate the area fraction corresponding to an EC by normalizing 
Δ𝑃𝑃𝑅𝑅  (at Emax=EC) with respect to the maximum  𝑃𝑃𝑅𝑅  (𝑃𝑃𝑅𝑅 ,𝑚𝑚𝑚𝑚𝑚𝑚– Fig. S5(b))The resultant EC distribution is shown in Fig. S9(c). 

%𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 @𝐸𝐸𝑐𝑐 =
Δ𝑃𝑃𝑅𝑅  
𝑃𝑃𝑅𝑅 ,𝑚𝑚𝑚𝑚𝑚𝑚

 

 

Fig. S9: (a) Measured P-E characteristics of HZO for different maximum value of applied E-field. (b) Remnant polarization (PR) for 
different maximum value of applied E-field. (c) Extracted global EC distribution in HZO (red) and corresponding Gaussian fit  (dashed black) 
with mean = 1.1, standard deviation = 0.175.  
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 Inclusion of the coupling terms between the strain/stress and the polarization: 

 
Under TDGL formalism, the polarization state equation for 𝑃𝑃𝑧𝑧  can be written as [7], 

−𝜌𝜌
𝜕𝜕𝑃𝑃𝑧𝑧
𝜕𝜕𝜕𝜕 = [2𝛼𝛼1− (2𝑄𝑄11𝜎𝜎3+ 2𝑄𝑄12(𝜎𝜎1 + 𝜎𝜎2))]𝑃𝑃𝑧𝑧 + 4𝛼𝛼11𝑃𝑃𝑧𝑧3 + 6𝛼𝛼111𝑃𝑃𝑧𝑧5 + 2𝛼𝛼12𝑃𝑃𝑧𝑧(𝑃𝑃𝑥𝑥2 +𝑃𝑃𝑦𝑦2)

+ 𝛼𝛼112�4𝑃𝑃𝑧𝑧3(𝑃𝑃𝑦𝑦2 + 𝑃𝑃𝑥𝑥2)+ 2𝑃𝑃𝑧𝑧(𝑃𝑃𝑥𝑥4+ 𝑃𝑃𝑦𝑦4)�−𝑄𝑄44(𝜎𝜎12𝑃𝑃𝑥𝑥 + 𝜎𝜎13𝑃𝑃𝑦𝑦)− 𝑔𝑔44 �
𝜕𝜕2𝑃𝑃𝑧𝑧
𝜕𝜕𝑥𝑥2 +

𝜕𝜕2𝑃𝑃𝑧𝑧
𝜕𝜕𝑦𝑦2

�  − 𝐸𝐸𝑧𝑧
𝑎𝑎𝑎𝑎𝑎𝑎 

 
Here, we use Voigt’s notation for the coefficients. So, 1 ≡ 𝑥𝑥, 2 ≡ 𝑦𝑦, 3 ≡ 𝑧𝑧. Q = electrostriction coefficient, 𝑔𝑔 = gradient energy 
coefficient and 𝜎𝜎 = stress.  
 
Now, based on the assumption of 𝑃𝑃𝑥𝑥 = 𝑃𝑃𝑦𝑦 = 0, we can re-write the equation as, 
 

−
𝜕𝜕𝑃𝑃𝑧𝑧
𝜕𝜕𝜕𝜕 = [2𝛼𝛼1 − (2𝑄𝑄11𝜎𝜎3 + 2𝑄𝑄12(𝜎𝜎1 + 𝜎𝜎2))]𝑃𝑃𝑧𝑧 + 4𝛼𝛼11𝑃𝑃𝑧𝑧3 + 6𝛼𝛼111𝑃𝑃𝑧𝑧5 − 𝑔𝑔44 �

𝜕𝜕2𝑃𝑃𝑧𝑧
𝜕𝜕𝑥𝑥2 +

𝜕𝜕2𝑃𝑃𝑧𝑧
𝜕𝜕𝑦𝑦2

� −𝐸𝐸𝑧𝑧
𝑎𝑎𝑎𝑎𝑎𝑎 

 
Now, 𝜎𝜎1, 𝜎𝜎2 and 𝜎𝜎3 can be written as  

  
𝜎𝜎1 = 𝜎𝜎2 = (𝑠𝑠11𝑈𝑈2 − 𝑠𝑠12𝑈𝑈3)/(𝑠𝑠112 − 𝑠𝑠122 ) 

 
𝜎𝜎3 = (𝑠𝑠11𝑈𝑈3− 𝑠𝑠12𝑈𝑈2)/(𝑠𝑠112 − 𝑠𝑠122 ) 

 Here, 
𝑈𝑈3 = 𝑄𝑄11�(𝑃𝑃𝑍𝑍𝑆𝑆�

2
− (𝑃𝑃𝑍𝑍 )2] 

𝑈𝑈2 = 𝑄𝑄12�(𝑃𝑃𝑍𝑍𝑆𝑆�
2
− (𝑃𝑃𝑍𝑍 )2] 

 
 Where, 𝑃𝑃𝑍𝑍𝑆𝑆 is spontaneous polarization along z-axis. 
 
 Now, we can write, 

𝜎𝜎2 =
𝑠𝑠11𝑈𝑈3− 𝑠𝑠12𝑈𝑈2
𝑠𝑠112 − 𝑠𝑠122

=
𝑠𝑠11𝑄𝑄11�(𝑃𝑃𝑍𝑍𝑆𝑆�

2
− (𝑃𝑃𝑍𝑍)2]− 𝑠𝑠12𝑄𝑄12�(𝑃𝑃𝑍𝑍𝑆𝑆�

2
− (𝑃𝑃𝑍𝑍 )2]

𝑠𝑠112 − 𝑠𝑠122
 

 

𝜎𝜎3 =
𝑠𝑠11𝑈𝑈2− 𝑠𝑠12𝑈𝑈3
𝑠𝑠112 − 𝑠𝑠122

=
𝑠𝑠11𝑄𝑄12�(𝑃𝑃𝑍𝑍𝑆𝑆�

2
− (𝑃𝑃𝑍𝑍)2]− 𝑠𝑠12𝑄𝑄11�(𝑃𝑃𝑍𝑍𝑆𝑆�

2
− (𝑃𝑃𝑍𝑍 )2]

𝑠𝑠112 − 𝑠𝑠122
 

 
  
Thus one can obtain, 
 

−
𝜕𝜕𝑃𝑃𝑧𝑧
𝜕𝜕𝜕𝜕 = �2𝛼𝛼1 −�2𝑄𝑄11

𝑠𝑠11𝑄𝑄12�(𝑃𝑃𝑍𝑍𝑆𝑆�
2
− (𝑃𝑃𝑍𝑍)2]− 𝑠𝑠12𝑄𝑄11�(𝑃𝑃𝑍𝑍𝑆𝑆�

2
− (𝑃𝑃𝑍𝑍 )2]

𝑠𝑠112 − 𝑠𝑠122

+ 4𝑄𝑄12
𝑠𝑠11𝑄𝑄11�(𝑃𝑃𝑍𝑍𝑆𝑆�

2
− (𝑃𝑃𝑍𝑍 )2]− 𝑠𝑠12𝑄𝑄12�(𝑃𝑃𝑍𝑍𝑆𝑆�

2
− (𝑃𝑃𝑍𝑍 )2]

𝑠𝑠112 − 𝑠𝑠122
��𝑃𝑃𝑧𝑧 + 4𝛼𝛼11𝑃𝑃𝑧𝑧3 + 6𝛼𝛼111𝑃𝑃𝑧𝑧5

− 𝑔𝑔44 �
𝜕𝜕2𝑃𝑃𝑧𝑧
𝜕𝜕𝑥𝑥2 +

𝜕𝜕2𝑃𝑃𝑧𝑧
𝜕𝜕𝑦𝑦2

� −𝐸𝐸𝑧𝑧
𝑎𝑎𝑎𝑎𝑎𝑎 

 
 



−
𝜕𝜕𝑃𝑃𝑧𝑧
𝜕𝜕𝜕𝜕 = �2𝛼𝛼1 − �2𝑄𝑄11

𝑠𝑠11𝑄𝑄12 − 𝑠𝑠12𝑄𝑄11
𝑠𝑠112 − 𝑠𝑠122

+ 4𝑄𝑄12
𝑠𝑠11𝑄𝑄11− 𝑠𝑠12𝑄𝑄12

𝑠𝑠112 − 𝑠𝑠122
��(𝑃𝑃𝑍𝑍𝑆𝑆�

2
− (𝑃𝑃𝑍𝑍 )2]�𝑃𝑃𝑧𝑧 + 4𝛼𝛼11𝑃𝑃𝑧𝑧3 + 6𝛼𝛼111𝑃𝑃𝑧𝑧5

− 𝑔𝑔44 �
𝜕𝜕2𝑃𝑃𝑧𝑧
𝜕𝜕𝑥𝑥2 +

𝜕𝜕2𝑃𝑃𝑧𝑧
𝜕𝜕𝑦𝑦2

� −𝐸𝐸𝑧𝑧
𝑎𝑎𝑎𝑎𝑎𝑎 

 
 

Let us define 𝜂𝜂 = 2𝑄𝑄11
𝑠𝑠11𝑄𝑄12−𝑠𝑠12𝑄𝑄11

𝑠𝑠11
2 −𝑠𝑠12

2 + 4𝑄𝑄12
𝑠𝑠11𝑄𝑄11−𝑠𝑠12𝑄𝑄12

𝑠𝑠11
2 −𝑠𝑠12

2  
 

Note that the polarization-strain coupling provides a liner and a quadratic terms of polarization. Therefore, we can 
write, 
 

−
𝜕𝜕𝑃𝑃𝑧𝑧
𝜕𝜕𝜕𝜕 = �2𝛼𝛼1 − (𝑃𝑃𝑍𝑍𝑆𝑆)2𝜂𝜂�𝑃𝑃𝑧𝑧 + [4𝛼𝛼11 + 𝜂𝜂]𝑃𝑃𝑧𝑧3 + 6𝛼𝛼111𝑃𝑃𝑧𝑧5 − 𝑔𝑔44 �

𝜕𝜕2𝑃𝑃𝑧𝑧
𝜕𝜕𝑥𝑥2 +

𝜕𝜕2𝑃𝑃𝑧𝑧
𝜕𝜕𝑦𝑦2

� −𝐸𝐸𝑧𝑧
𝑎𝑎𝑎𝑎𝑎𝑎 

 
 
 We can re-write the equation as, 
 

−
𝜕𝜕𝑃𝑃𝑧𝑧
𝜕𝜕𝜕𝜕 = 𝛼𝛼𝑃𝑃𝑧𝑧 + 𝛽𝛽𝑃𝑃𝑧𝑧3 + 𝛾𝛾𝑃𝑃𝑧𝑧5− 𝐾𝐾 �

𝜕𝜕2𝑃𝑃𝑧𝑧
𝜕𝜕𝑥𝑥2 +

𝜕𝜕2𝑃𝑃𝑧𝑧
𝜕𝜕𝑦𝑦2

�  − 𝐸𝐸𝑧𝑧
𝑎𝑎𝑎𝑎𝑎𝑎         (𝑆𝑆20) 

Where, 

𝛼𝛼 = 2𝛼𝛼1 − (𝑃𝑃𝑍𝑍
𝑆𝑆)

2
𝜂𝜂 

𝛽𝛽 = 4𝛼𝛼11 + 𝜂𝜂 

𝛾𝛾 = 6𝛼𝛼111 

𝐾𝐾 = 𝑔𝑔44 

Note that the similar approach has also been presented in [8, 9]. It is important to note that, such effective representation of state 
equation by merging the contribution of strain-polarization coupling with the free energy coefficient is possible because of the 
assumption of 𝑃𝑃𝑥𝑥 = 𝑃𝑃𝑦𝑦 = 0. However, in presence of this in-plane polarization component (provided that o-phase c-axis is 
parallel to in-plane), a self-consistent simulation between the state equations of polarization and strain/stress is required. 
    
It is important to mention that the values of 𝛼𝛼1, 𝛼𝛼11, 𝛼𝛼111, 𝑄𝑄33 is not well-defined in literature. However, we use equation (S20) 
to calibrate the experimentally measured polarization versus electric field characteristics to calculate the 𝛼𝛼, 𝛽𝛽 and 𝛾𝛾 values in 
normalized unit. We have discussed the calibration of 𝛼𝛼, 𝛽𝛽 and 𝛾𝛾 values (in normalized space) at the beginning of this 
supplementary document.  
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