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Principles of lossless adjustable one-ports

Tryphon T. Georgiou, Faryar Jabbari and Malcolm C. Smith

Abstract—This paper explores the possibility to construct two-
terminal mechanical devices (one-ports) which are lossless and
adjustable. To be lossless, the device must be passive (i.e. not
requiring a power supply) and non-dissipative. To be adjustable,
a parameter of the device should be freely variable in real time
as a control input. For the simplest lossless one ports, the spring
and inerter, the question is whether the stiffness and inertance
may be varied freely in a lossless manner. We will show that the
typical laws which have been proposed for adjustable springs and
inerters are necessarily active and that it is not straightforward to
modify them to achieve losslessness, or indeed passivity. By means
of a physical construction using a lever with moveable fulcrum we
will derive device laws for adjustable springs and inerters which
satisfy a formal definition of losslessness. We further provide
a construction method which does not require a power supply
for physically realisable translational and rotary springs and
inerters. The analogous questions for lossless adjustable electrical
devices are examined.

Index Terms—Passivity, mechanical network, inerter, lossless,
variable stiffness, semi-active

I. INTRODUCTION

Is it possible to build a spring with a “workless knob” which
freely adjusts its stiffness in real time? Such a contrivance
would behave like a conventional linear spring when the
knob is stationary. Energy imparted through compression or
extension would be available for extraction again. Adjustment
of the knob would not involve any energy transfer between the
environment and the contrivance. Current methods to adjust
the stiffness of springs do not answer this question, since they
require active actuation, dissipation, or restrictive conditions
on the switching of the spring constant. We will provide an
answer to this and related questions in the present paper.

The question is motivated by the ubiquity of the adjustable
damper. Such devices allow their proportionality constant to
be adjusted, typically by a variable orifice controlled by a
solenoid valve, or a magnetorheological fluid whose viscosity
is altered by a magnetic field. Adjustable dampers are much
used for the control of mechanical systems, e.g. automotive
suspensions [1], [2], [3], [4]. The variable damper constant
plays the role of a control input which may be adjusted by
a control law that minimises a performance criterion. Such
devices are sometimes termed ‘“semi-active” since a (small)
power source is employed to effect the adjustment. Neverthe-
less, the instantaneous power absorbed by the device can never
be negative, and so from a terminal point of view it appears
passive. It is reasonable to expect that adjustable springs with
similar properties would also offer performance advantages
in a control system which would make them attractive in
applications.
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An analogous question arises for the inerter [5], which is
a two-terminal mechanical device such that the equal and
opposite force at the terminals is proportional to the relative
acceleration between them. The constant of proportionality is
termed the inertance. The question is whether an adjustable
inerter is physically realisable as a lossless device, i.e. whether
an inerter can be manufactured with a “workless knob” which
freely adjusts its inertance in real time.

In the robotics field “Variable Stiffness Actuators” have
been considered extensively (see [6], [7] for recent surveys
and the references therein). As noted in [6] there are three
principal methods to construct variable stiffness devices: ad-
justable spring preload; variable transmission or gearing ratio,
including adjustments by a moveable pivot [8], [9], [10],
[11]; change of physical properties of the spring. Each of the
methods described requires some form of active force input,
most commonly via electromechanical actuation.

In [12], [13] a passive “resettable” spring is proposed which
requires minimal energy for switching. A piston and cylinder
arrangement acts in parallel with a conventional spring so that
the closing of a valve allows the fluid in the cylinder to play
the role of an additional spring. In its simplest form this allows
switching between two different levels of stiffness. The closing
of the valve (to increase the stiffness) can be effected at any
time with minimal energy requirement. The opening of the
valve (to reduce the stiffness) is constrained to times at which
there is no stored energy in the fluid, otherwise there is energy
dissipation. Control problems are considered which respect to
the constraint on the timing of valve opening.

The possible benefits of adjustable inerters have been con-
sidered recently [14], [15], [16], [17]. A device law of a “semi-
active” inerter is evaluated for a vehicle suspension system in
[14] without considering the issue of realisability. In [15] a
tuned mass damper (TMD) is proposed which incorporates
an adjustable inerter making use of a rack and pinion and
continuously variable transmission (CVT). The CVT allows
precise tuning of the natural frequency of the TMD, but
energy requirements for the adjustment of the CVT are not
considered.

In [17] the stability of control systems incorporating ‘““semi-
active” devices is considered. It is pointed out that the com-
monly assumed device laws for “variable-stiffness springs”
and “variable-inertance inerters” are in fact active, and that in-
terconnections of such devices with passive elements may lead
to instability. A mechanical design for an (active) adjustable
inerter is presented and studied in the context of vibration
suppression of a building structure. The potential benefits as
well as the risk of instability are highlighted.

The work presented herein explores the existence of phys-
ically realizable device laws that are both lossless and ad-
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justable, without essential restrictions on the values and timing
of their control input parameter. Physical implementations of
such device laws are envisioned as control components in
applications areas that include the aforementioned areas of
robotics, vibration suppression in buildings, and automotive
suspension. The control problems that result are expected to
offer interesting technical challenges due to their non-linear
character (e.g. as in [3] where the control input multiplies a
state). It is beyond the scope of this paper to explore these
challenges and the potential performance benefits for specific
applications.

The present paper is structured as follows. In Section II
the basic definitions of mechanical one-ports, adjustability,
passivity and losslessness are provided. Section III shows
in a series of six examples that none of the commonly
assumed device laws for adjustable springs or inerters or
variants are lossless, and indeed all are non-passive, i.e.
active. Section IV uses an idealised mechanical arrangement
of a lever with moveable fulcrum to derive device laws for
lossless adjustable springs and inerters. Section V presents
a physical implementation of the moveable fulcrum concept
without internal power source and introduces the names of
varspring and varinerter for the canonical lossless adjustable
spring and inerter. Section VI presents a method for physical
implementation of rotary varsprings and varinerters. The paper
concludes with a discussion of the analogous device laws in
the electrical domain in Section VIIL.

II. MECHANICAL ONE-PORTS
A. Definitions

We will consider (idealised) mechanical elements or net-
works which take the form of a mechanical one-port as shown
in Fig. 1. The one-port has two ferminals for connection to
other elements or networks. The terminals are subject to an
equal and opposite force F' and have absolute displacements
x1 and xp. Fig. 1 illustrates the sign convention whereby a
positive F corresponds to a compressive force and a positive
X =Xy —x] corresponds to the terminals moving towards each
other. The force F is an example of a through-variable and
the relative displacement x (and relative velocity x and relative
acceleration X) is an across-variable [18]. Either or neither of
the variables may be considered an “input”. A device law for a
mechanical one-port is a relation between through- and across-
variables.

F Mechanical F
L_» one-port >4

B

X2 X1

Fig. 1: A free-body diagram of a one-port (two-terminal)
mechanical element or network with force-velocity pair (F,v)
where v =X, x = xp — XxJ.
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The three elementary linear, passive, time-invariant me-
chanical one-port elements with two independently moveable
terminals are the spring, damper and inerter [5] with ideal
modelling equations: F(t) = kx(t), F(¢t) = cx(¢) and F(t) =
bx(t) where k >0, ¢ >0 and b > 0. In the force-current
mechanical-electrical analogy these elements are analogous
to the inductor, resistor and capacitor respectively. The mass
element may also be considered to be a one-port as in Fig. 1
with the mass being rigidly attached to terminal two, and
terminal one being a fixed point in the inertial frame of
reference (see [18]), and as such is analogous to a grounded
capacitor. It is implicit in the definition of the spring, damper
and inerter that they have negligible mass compared to any
masses to which they are connected.

Mechanical one-ports in rotary form have two terminals
which are independently rotatable about a common axis. The
rotary spring, damper and inerter [19] are characterised by
the equal and opposite torque applied to the terminals being
proportional to the relative angular displacement, velocity and
acceleration between the terminals respectively. A pure inertia
on a rotating shaft has only one terminal that can be rotated
independently and, like the mass, is analogous to a grounded
capacitor.

B. Adjustable one-ports

We define a one-port to be adjustable if it has a parameter
which may be freely varied as a function of time. Such a
parameter is considered to be a manipulable input to the
device. It allows the device to become part of a control system
in which the parameter is adjusted by scheduling or feedback.
A ubiquitous example of an adjustable one-port is the variable
damper defined by:

F(1) = c(t)x(2),

where ¢(t) is the adjustable damper rate, and cpin, Cmax are
minimum and maximum allowed values.

0 <cmin < C(t) < Cmax (D

C. PFassivity and losslessness

The device laws we shall consider in this paper may be
written in differential form:

h(F(t),F(1),...,x(t),%(),...,u(t),a(r),...) =0 (2)

for some function h, where F(t) and x(¢) are defined in
Section II-A and u(¢) is a manipulable input. We consider
the set of (locally integrable, weak) solutions to (2) as the
behaviour of the device in the sense of Willems [20], [21]:

B = {(F(t),x(t),u(t)) € L°R,RY) st. (2) holds} . )

where Z/°¢(R,R?) denotes the functions from R into R? that
are Lebesgue integrable on any finite interval. We adopt a
definition of passivity from [22], [23].

Definition 1: The device law (2) is passive if, for any
(F(1),x(t),u(t)) € 2 and 1y € R, there exists K € R such that,

" Py > —K

fo
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for all # > t), and where K is
{(F(1),x(),u(t))| > to}.

As noted in [22] the definition expresses the fact that, for
any trajectory, and starting at any particular time, the net
amount of energy that may be extracted subsequently from
the device cannot be arbitrarily large, namely

independent of

il
— | F(t)x(t)dt <K.

fo
The provision that K may depend on 79 and on the trajectory
prior to fy, but must be independent of possible future tra-
jectories, is included following [23], where its importance is
illustrated by [23, Example 6] in time-varying and non-linear
cases.

In [24] single-input single-output systems are considered
whose behaviour is defined by the solutions to the equation

PCEVF () = a5 (1)
where p and ¢ are real polynomials (where v(r) = x(¢)). It
is shown that the behaviour is passive if and only if g(s) =
p(s)/q(s) is a positive-real function and p(s) and g(s) have
no common roots in the closed right half plane, unless g(s)+
g(—s) =0 in which case p(s) and g(s) are coprime. (See [23]
for the generalisation to the multi-port case.)

It may be observed that the device law (1) satisfies
1 1
F(t)e(r)dr = / c(t)5(t)>di > 0
fo fp
for any #y <1, and hence such devices are passive in a formal
sense. Sometimes the terminology “semi-active” is used in the
literature since a small amount of power may be required in
practice to make the adjustments. Our approach in this paper
is to classify devices as passive in terms of their terminal
behaviour according to Definition 1, or if not, to refer to them
as active. We now follow [24] in defining losslessness.

Definition 2: The device law (2) is lossless if it is passive
and if, for any (F(¢),x(¢),u(t)) € # and 1p,t; € R

" F (%) dt = 0

fo

whenever F(t), x(¢), u(t) and all derivatives are equal at fy
and #;.

The above definition states simply that, in addition to
being passive, there must be zero net energy transfer to or
from the device over a time interval whenever the initial
and final conditions are identical. Springs and inerters are
lossless according to this definition. Our goal in this paper
is to determine if springs and inerters may be adjustable as
well as lossless. In the first instance this question may be
addressed purely in terms of candidate device laws. There is
then a further question as to physical realisability. Ordinary
springs and inerters are realisable physically without a power
supply, and it is clearly important to know if the same is true
for any passive or lossless, adjustable device laws.
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III. DEVICE LAWS

In this section we discuss some candidate device laws
for adjustable springs and inerters in general terms, without
considering the question of physical realisability.

A. Device laws for adjustable springs

Example 1: (directly adjustable spring constant). Let
F(t) = k(t)x(t). “)

This is the mostly commonly assumed device law for a “semi-
active” (i.e. passive) spring. It is in fact active (this fact is also
pointed out in [17]). Assuming that k(f;) = k(fp) and x(¢;) =
x(tp) we have:
1

F(2)x(t)dt

fo

/t:k(t)% ;xz(t)> dt
f% k(R (0) d.

A trajectory can be constructed for which & is negative. For
example, with 10 =0, 1) =4, x(t) =t for 0 <t <2, x(t) =4 —1
for 2<t<4, k(0)=2, k(t)=—1for 0<t <1, k(t) =1 for
2 <t <3, and k(t) = 0 otherwise, we find that & = —1. Hence,
if such a cycle is continually repeated, an arbitrary amount of
energy can be extracted, namely there is no K € R for which
the conditions of Definition 1 hold.

&

Example 2: (adjustable spring constant with smoothing). Let

F(t) = k(n)x(t) — /’ k(o)x(t)dx. )

The above is an idealised device law inspired by the behaviour
of the mechanism of Fig. 1 in [13] for a step increase in k(r)
(but not a decrease). Differentiating (5) gives F(¢) = k(¢)x(t).
Hence, assuming that k(¢;) = k(t9), x(¢) = x(to) and F(#;) =
F(ty) we have:

|

g = F(t)x(r)dt

I

S /'” F(e)x(r) d

v

= [k (370 @

1 ra. 5
= = [ k(t)x*(¢)dr.
2 Ji
A trajectory can be constructed for which & is negative. For
example, with 10 =0, 1, =6, x(t) =t for 0 <r <3, x(t) =6—1
for3§t§6,k(0):2,k(1);—1/2f0r0§t§ land2 <1 <3,
k(t) =1 for 4 <t <5, and k(¢) = 0 otherwise, we find that

/ " k(0)i(t) = 0

fo
which implies F(t;) = F(fo). Furthermore & = —1. Hence, if
such a cycle is continually repeated, an arbitrary amount of
energy can be extracted. Hence the conditions of Definition 1
cannot be satisfied, and the device law is active.
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Example 3: (adjustable spring constant with up-smoothing).
Let

F() = ko)t~ [ (@) x(2)d. ©

where
when u(t) >0
otherwise

(u(t))+ = { ug)

with (u(t))_ defined similarly, so that u(r) = (u(t)), + (u(r))_.
The above idealised device law is a continuous version of
the mechanism of Fig. 1 in [13] for increasing k() and
corresponds to Example 1 otherwise. Differentiating (6) gives

F(t) = k(t)x(t) 4 (k(t)) _x(¢).

Hence, assuming that k(f;) = k(19), x(t1) = x(fo) and F(t;) =

F(ty) we have:

& = / " F(e)i(r) de

= - tlF(t)x(t)dt
= % t: l'c(t)xz(t)dt—/t1 (k(t))_x*(r) dt

fo
1

- 3/ ((k(t)), — (k(r))_) (1) dt

13
= I Mkopew o
2 Jy
Here & is always positive, so energy cannot be extracted over
a repeating cycle. This doesn’t yet show that the device law
is passive, though clearly it cannot be lossless. In fact, it fails
also to be passive. Let 7y = 0, #; = 2n for some positive integer
n and suppose k=2 for t <0,

k=2+sin(2mr), x(r) =1, (0 <t <n),
k=2, x(t)=t+1—n, (n<r<2n).

From (6) we find that F(n) = 2 — 2n, which means F(t) =
2x(t) —2n for n <t <2n. Hence

/OZHF(t)x(t) dt =2n—n?

which cannot be bounded below independent of n. Hence
Definition 1 cannot be satisfied.

Example 4: (adjustable spring constant with semi-
smoothing). Let
| L
Flt) = -3 / i(t)x(z) dr. 7
From Examples 1 and 2, over any cycle in which k(1) = k(1),

x(tl) :x(to) and F(ll)

/t1 F(1)xi(t)dr =0.

0

= F(t)) we have

Evidently this law has the potential to be lossless, however we
now show that it fails to be so since it is not passive. We first
note that
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It now follows that

/ttlF(t)x(t)dt = () — Flio)x(o) — [ F(o)x(e)de

fo

= Fl)s(n) ~ Flopx(o) - 5 |

JIp

/ ( ()) di
F(t)x (tl)**k(tl) (1)?
—F (10)x(to) + Ek(to)x(to)z.

Let 10 =0, 11 = n—f—% for some positive integer n, suppose
k=73 for t <0 and

k =2+4cos(2nt), x(t) = sin(2mz), (r > 0).
Then x(11) = —1, k(t1) =2, and from (7) F(r;) = 437 o,
Hence " An+3
/ F(t)e(r)di = —W
1

vIo
which cannot be bounded below independent of n. Hence
Definition 1 cannot be satisfied.

'

k(2)x?(¢) dt

+1

B. Device laws for adjustable inerters
Example 5: (directly adjustable inertance). Let
F(t) = b(t)x(z). (8)
This is the mostly commonly assumed device law for a “semi-
active” inerter. It is again active. Assuming that b(z;) = b(to)

and x(¢;) = %(fp) we have:
1

F(t)x(t)dt

fo

/lotl b(t)% (;xz(t)> dt

1 /4. 2
= —= [ b®)x°(¢)dt.
2 Ji

A trajectory can be constructed for which & is negative, e.g.
with b(r) and %(¢) chosen as k(¢) and x(7) in Example 1. Such a
device could be operated in a repeating cycle which extracts a
net amount of energy in each cycle. Hence Definition 1 cannot
be satisfied.

g =

Example 6: (inerter with actively controlled fly-weights).
Let

F(1) = & (b(0)3(0). ©

Such a device is described in [17]—a rack and pinion is used
to convert linear motion into the rotary motion of two arms
with weights which are moved in or out by actuators. It is
shown that (9) holds for the device. Hence, assuming that

b(t1) = b(to) and %(¢) = %(tp) we have:
¢ = ["Foiar
- /m ! b(t)% (;xz(t)) dr

0#2(t)dt.
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Again & can be negative, e.g. with b(r) and %(¢) chosen as k(r)
and x() in Example 2. Hence Definition 1 cannot be satisfied,
so the device law is active, as pointed out in [17].

IV. PLANAR MECHANISM FOR LOSSLESS ADJUSTABLE
DEVICES

A. Lossless adjustable spring

We consider a theoretical mechanism as depicted in Fig. 2
in which the x- and y-axes are fixed in the device housing.
The device terminals are located at (0,0) and (x,0) according

Yy 4
ko
(0,y0) +—N—\ (x0,y0)
(xr,y7r)
F F
— \\\r.<__x>
(x2,0) = (0,0) (x1,0)

Fig. 2: Spring and lever with moveable fulcrum at (x,,y,).

to the convention of Fig. 1 and accordingly we define x = —x;
and v = —X;. An internal spring with stiffness k is constrained
to move parallel to the x-axis with fixed y-coordinate yy and
generates a force equal to —kgxg. An ideal massless lever has
a moveable fulcrum at (x,,y;,).

Taking moments about the fulcrum gives:

Fy, = koxo(yo —yr)-

The geometrical position of the lever imposes the following

constraint:
X0 — X1 Xr — X1

Yo Vr

which, after replacing x; by —x, can be written as:

xo=rx+ (r+1)x, (10)
where
r= (o —yr)/yr. (11)
We therefore obtain
F = kor’x+kor(r+ 1)x,. (12)

We now consider the fulcrum to be moveable with an
imposed condition that the instantaneous power supplied at the
external terminals of the device equals the rate of change of the
internal energy of the spring. This is equivalent to Fx = koxoXo,
which on noting that F' = koxor is in turn equivalent to rx = Xy.
The latter, using (10), is equivalent to:

(r+ )% +#(x+x,) =0. (13)
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Absorbing kg into r (or equivalently setting ko = 1) and making
the substitution w = (r+ 1)x, we can reduce (12) and (13) to
the form:

(14)
5)

F Px+ ™w,

w = —rx.

Equations (14), (15) can be written in an integral form as a
single equation with the substitution k(¢) = r(¢)*:

P = ke)x(0)~ k)2 [ k@ Pkox(mar. o

It is interesting to note the close similarity with the device law
(7) of Example 4.

Further from (14), (15) we define
1 , ILF
I = E(xr—i—w) =57

and note that
(xr+w) (Gr + xi +w)
= (xr+w)ir=Fx.

Hence .# can be considered to be the internal stored energy
of the device law (14)—(15) and it follows that the device law
is lossless according to Definition 2. Note that we may take
K = #(y) to show passivity according to Definition 1.

B. Lossless adjustable inerter

We consider the mechanism as depicted in Fig. 3 which is
similar to the device in Fig. 2 except that the spring is replaced
by an inerter which generates a force equal to —biy.

(OvyO) S

F
—

(x2,0) = (0,0)

(X],O)

Fig. 3: Inerter and lever with moveable fulcrum at (x,,y,).

Taking moments about the fulcrum gives F = bipr with
r defined as in (11) and x¢ as in (10). Applying again the
condition that the instantaneous power supplied at the external
terminals of the device equals the rate of change of the internal
energy of the inerter gives again (13) or equivalently Xy = rx.
Absorbing b into r (or equivalently setting b = 1) we obtain
the following form for the device law:

d .
F:;’E (rx). (17
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It is immediate to see that Fx = % (.#) where we may define

the internal stored energy by:

1
j = Erzxz.

Hence the device law (17) is lossless according to Definition 2.

C. Dual canonical form for the lossless adjustable spring

The simplicity of the device law (17) in the inerter case is
in striking contrast to (14-15) for the spring. We will now
show that (14-15) can be rewritten in a dual form to (17).
Differentiating (14) and making use of (15) we have:

F = 2rix+r2i+rm+iw

= i+ fF .
r
Writing p = r~! we deduce that
d
\ = p— (pF). 18
x=p_ (pF) (18)
Again it is immediate to see that Fx = % (#) where we may
define the internal stored energy by:

1
S = ~p*F>.
5P

Hence the device law (18) is lossless according to Definition 2.

V. CANONICAL DEVICE LAWS

The device laws (17) and (18) have been shown to be
lossless according to Definition 2. This does not as yet show
that they may be realised physically without the need for an
internal power source. We consider this next.

A. Physical implementation

For Fig. 2 or Fig. 3 the condition that the instantaneous
power supplied at the external terminals of the device equals
the rate of change of the internal energy of the spring or inerter
reduces to the same equation (13). This determines the manner
in which the fulcrum should be moved when the ratio r is
changed. The condition ensures that the reaction forces at the
fulcrum are constrained to do no work. We now examine this
condition further. Eliminating » using (11) then (13) reduces
to

0= _)’rxr _yr(xr _xl)

which means geometrically that the vectors

()= (55)
r Yr
are parallel. The fulcrum must always move parallel to the bar.

A conceptual scheme to realise such adjustability is shown
in Fig. 4. A wheel is attached to the bar at the fulcrum and is
free to rotate about a vertical axis through the fulcrum and
the contact point of the wheel on a supporting table. The
wheel is allowed to rotate about a horizontal axis which is
perpendicular to the bar to produce a rolling motion on the
table which is always instantaneously parallel to the bar. The
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. D

7 —
/ ______ ? :%/F

‘F ....... ‘7

Fig. 4: Schematic of a lever mechanism with moveable fulcrum
to allow a physical realisation of lossless adjustable springs
and inerters.

rolling of the wheel is the means of mechanism adjustment by
altering the ratio » or p = r~! with r defined as in (11).

We remark that recent examples of moveable pivot [8], [9],
[10], [16] for the purpose of adjusting variable stiffness involve
a predetermined motion path for the pivot, typically a straight
line, which will not satisfy the above geometrical relations in
all dynamic situations. Hence, such devices will not be able
to implement a lossless adjustable spring or inerter.

B. The varspring and varinerter

Based on the construction of Fig. 4, it appears justified to
introduce a pair of ideal, lossless adjustable mechanical one-
ports which we will name the varspring and varinerter. The
ideal devices are defined by the laws:

d .
vo= Py (pF) (varspring) (19)
= r% (rv) (varinerter) (20)

where (F,v) is the force-velocity pair of the mechanical one-
port and p(t), r(t) are positive and freely adjustable param-
eters. The internal energy of the devices is given by % p*F?
and %rzv2 respectively. It is important that physical devices
may be constructed which approximate the ideal behaviour, for
example, having sufficiently small dissipation through friction,
and as in the case of the ideal inerter [5], sufficiently small
mass, sufficient travel, have no physical attachment to a fixed
point in space, and have two terminals which are freely
and independently moveable (see Section II.C in [5]). The
construction of Fig. 4 suggests that devices satisfying these
conditions are physically realisable in principle. The varinerter
is realised as in Fig. 4 with an inerter replacing the spring. We
note that the above construction of the varspring and varinerter
in Fig. 4 can be conceptualized as a lossless adjustable two-
port transformer with one of the ports terminated with either
a spring or an inerter.

It is interesting to note that the device laws (19) and (20)
may be written in integral form as follows:

7(t) /Z P(t)v(r)dr (varspring) (21)
(varinerter) (22)

where 7 = p’1 and p= r~—!. Note also that (21) reduces to (16)
with the substitution k(¢) = #(¢)?> and integration by parts.
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VI. ROTARY MECHANICAL ONE-PORTS

In this section we explore the rotary equivalents of the var-
spring and varinerter. Motivated by the method of constructing
the translational varspring and varinerter in Sections IV-A and
IV-B we first consider the possibility of an adjustable rotary
transformer.

A. A lossless adjustable transformer

We consider the construction depicted in Fig. 5 consisting
of two right circular cones of equal aperture on parallel
rotating shafts, with opposite orientation, and hence a constant
perpendicular distance between the surfaces. Between the
cones is an assembly consisting of two balls within a housing
which is moveable parallel to the surface of the cones to
maintain contact of the balls with the cones at the feet of the
perpendicular beween the cones. It is assumed that pure rolling
is maintained between the balls and the cones, and between
themselves, and that there is frictionless sliding between the
balls and the housing. With the assumption of negligible
mass of the whole system the torques on the two shafts are
proportional, with the proportionality being the instantaneous
ratio of cone radii. The assumption of pure rolling means that
the angular velocities are similarly proportional. Thus we may
presume laws of the form:

T =
W =

(23)
(24)

pT,

— p71 w
where T, T are the torques on the shafts, @, w; are their
angular velocities, and p = p(¢) > 0 is the instantaneous ratio
of cone radii. We note that 71w; + 7w = 0 so that no energy
is absorbed or dissipated in the ideal device. Hence we may
consider the schematic of Fig. 5 as a physical realisation of a
lossless adjustable rotary transformer.

It is important to emphasize that, besides being lossless, an
essential feature of the mechanism in Fig. 5 is that the ratio
between angular velocities can be freely adjusted, including
the case where the angular velocities are zero, as occurs when
there is a reversal of sign. This feature contrasts with typical
concepts of a continuously variable transmission (CVT), e.g.,
[25], [26].

B. The rotary varspring and varinerter

We first consider attaching a rotary spring of rotational
stiffness k > 0 (constant) to the second shaft in Fig. 5
defined by 7} = —k0; where 6, = w. A passive (lossless)
rotary mechanical one-port is formed with the following
relationship between the equal and opposite torque applied
to the external (rotary) terminals 7 and the relative angular
velocity @ between the terminals: ® = —pw; = pk~! % (pT).
Similarly, if a rotary inerter (see [19]) with rotational inertance
b > 0, defined by T} = —by, is connected across the second
shaft in Fig. 5 a passive (lossless) rotary one-port is formed
satisfying T = —brd; = br% (rw). The constants k and b can
be absorbed into p and r respectively (or equivalently setting
k=1and b=1).
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Fig. 5: Schematic of an adjustable rotary transformer with
counter-rotating cones and continuously moveable connecting
assembly consisting of a pair of rotating balls within a housing.

This motivates the following definitions of the rotary var-
spring and varinerter:

Q)

d
p (pT) (rotary varspring) (25)

r% (ro) (rotary varinerter) (26)
where (T, ) is the torque-angular-velocity pair of the mechan-
ical one-port and p(r), r(¢) are positive and freely adjustable
parameters. The internal energy of the devices is given by
1p*T? and 1r’@? respectively.

It is interesting to compare the embodiments presented
for the translational and rotary varsprings and varinerters. A
practical issue that arises with continuous operation of the
translational devices, implemented in the manner of Fig. 4,
is that the movement of the fulcrum in the x-direction may
exceed the allowable travel. No such issue arises with the
rotary devices.

VII. ADJUSTABLE ELECTRICAL DEVICES

We turn now to the possibility of adjustable electrical
devices. The variable resistor with device law v(z) = R(¢)i(¢),
where v(¢) is the voltage across the device, i(f) the current
through, and R(z) > 0 the variable resistance, is of course a
ubiquitous device that is formally passive in the same way as
the adjustable damper. For the capacitor and inductor there
are analogous issues to the mechanical case in constructing
devices which are passive, lossless, as well as adjustable.
We begin with some examples that highlight how varying
capacitance or inductance, directly, leads to active elements.

Example 7: (adjustable parallel-plate capacitor). Following
[27, Ch. 10] we consider a parallel-plate capacitor with a
dielectric slab which can be inserted by varying amounts
between the plates as shown in Fig. 6. The defining equation
for the capacitance is C(r) := g(t)/v(t), where g is the charge
on the plates and v is the voltage between them, from which
it follows that:

27)
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It is shown in [27, Ch. 10] that

b
C= %(Kx—i—a—x)

where & is the permittivity of empty space and k is the
dielectric constant of the dielectric; it is assumed that the plates
are rectangular of length a and width b, are at a distance d
apart, and the dielectric is inserted by a distance x = x(¢).

Now consider a time interval [fp,#;] in which C(zy) = C(t;)
and v(tp) = v(t1). Then the energy supplied to the device

&= t:i(t)v(t)dt . /to”v(t)d(c(;)t”(’))dt
S /m” Cle(e)v(e)dr
1 o .
= 3. C()V2(t)dt.

As before & can be negative, e.g. with C(¢) and v(¢) chosen
as k(¢) and x(¢) in Example 2. Hence Definition 1 cannot be
satisfied, so the device law is active, as may also be expected
since a force is required to move the dielectric slab. A similar
conclusion holds if the distance d between the plates is varied.

[ Plate 1 |

i <«----»

Dielectric slab

Plate 2 | 4

| |
| X |

Fig. 6: A parallel-plate capacitor with a moveable dielectric
slab.

Example 8: (adjustable inductor with moveable core). Like-
wise, the device law
d

v(r) = o (L(0i(r)

is the ideal law of a device whose inductance L(z) := ®(¢)/i(t)
varies with time; here @ is the magnetic flux through the coils,
i the current through, and v the voltage across the terminals.
Such a variable inductor can be constructed with a moveable
ferrite magnetic core as depicted in Fig. 7, which is slid in or
out of the coil in order to adjust the permeability and hence
the magnetic flux.

(28)

Again consider a time interval [fo,#;] in which L(#) = L(t;)
and i(t9) = i(r1). Then the energy supplied to the device

Miomoa = [ H

- /: L) 5 (o))
1 m. .
3, L(t)i%(t)dt.

é":

Again & can be negative, e.g. with L(¢) and i(¢) chosen as k(r)
and x(¢) in Example 2. Hence Definition 1 cannot be satisfied,
so the device law is active.
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Fig. 7: Variable inductor with moveable magnetic core.

A. Electrical adjustable transformer

In analogy with the mechanical case, lossless adjustable
capacitors and inductors would be realisable if it was possible
to build a lossless adjustable ideal transformer. The following
governing equations can be envisaged:

(29a)
(29b)

va(t) = m(t)vy ()
i (r) = = (0 (1)

where (vg,i;) are the voltage-current pairs for the two ports
and m(r) is an adjustable ratio. We note that vy (¢)i;(¢) +
va(t)iz(t) = 0, so the device would be “instantaneously loss-
less”, and indeed such a device law satisfies the generalisation
of Definition 2 (losslessness) to multi-ports.

We observe that a lossless adjustable capacitor (inductor)
would result by terminating one of the ports of the transformer
(292)—(29b) with an ordinary capacitor (inductor). For exam-
ple, if we terminate the second port with a unit capacitor,
which means that i, = —v,, then we find that:

i (1) = m(0) & (m(6)va 1)

which is analogous to the varinerter in the force-current
analogy between mechanical and electrical devices.

(30)

Accordingly we now discuss the possibility of realising such
an ideal adjustable transformer (29a)—(29b). We note that the
(ordinary) ideal electrical transformer is derived as a limit of
a pair of coupled coils with perfect coupling as the inductance
becomes very large. This is a logical place to begin. The law
specifying the electrical response of a pair of coupled coils is

(n) =&l 2)(%))

where L; are the self-inductances and M is the mutual in-
ductance. In the case of perfect coupling (i.e., coils where all
magnetic field lines engage both coils) we have Lj Ly —M? =0
and, therefore, the inductance matrix is singular. We will
consider this ideal case where we set
m(t)L )
K

(3 Z>:<m@me%

namely the self inductance of the first coil L; = L is assumed
to be constant, the mutual inductance is M(t) = m(¢)L, where
m(t) represents a time varying adjustable coupling parameter,

€1y

(32)
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and the self inductance of the second coil is Ly(t) = m(t)>L.
The coupling parameter m(¢) may in principle be adjusted by
changing the number of turns of one of the coils, or the number
of turns corresponding to the contact point on one side of an
autotransformer, as shown in Figure 8; in an autotransformer
the same (portion of a) coil is shared by two circuits.

i1

—
A 2
—
Vi
V2
i1 ir
- —

Fig. 8: Electrical autotransformer.

Our first observation is that the adjustable transformer
defined by (31) and (32) is an active device. To see this we
consider the case of i; = 0, namely the first port is open and
the only power transfer is through the second port. Consider
a time interval [fo, 1] in which m(fy) =m(t;) and i(to) = i(t1).
Then the energy supplied to the device

1 1

m2(1)i
t (v ()dt = Lt iz(t)w
| : m2(t)i2(t)% (ia(2))dt
0 d (m?
2] o

& = dt

= -L

Again & can be negative, e.g. with m?(¢) and i>(t) chosen
as k(¢) and x(¢) in Example 2. Hence Definition 1 (passivity)
cannot be satisfied.

We now explore the limiting situation in which we let € =
1/L tend to zero. From (31), (32),

1/ v d i1 +mij
- = — . . 33
L( v ) dt ( m(iy +miz) (33)
from which we deduce that
vy —mvy = Lmy, (34a)
y=w/L (34b)

where Yy :=i; +mip. It is evidently not straightforward to
deduce that y =0 (i.e. that (29b) holds) from (34b). Even
if y(tp) =0, since (t) = o(€), there could be slow drift in
Y. This could mean that the right hand side of (34a) is non-
negligible which would prevent (29a) from holding when
is non-zero.

The above considerations show that the physical imple-
mentation of a lossless adjustable electrical transformer to
realise the laws (29a)—(29b) is not a simple matter. Industrial
implementations of variable transformers, such as the variac,
where the contact point A slides vertically, effectively shorts
loops as the contact point is being repositioned to correspond
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to different coupling ratios. An alternative option to move the
contact point A displayed in Figure 8 so as to slide along
the coil (as in a balustrade) does not work either. In such a
scheme, a wire with the contact point A as its tip would extend
inside the coil as it slides through the opposite side of turns.
Nonzero magnetic field lines will then exert forces that need
to be overcome requiring work to be done.

In the next section we will indicate an alternative approach
to construct a lossless adjustable transformer as envisaged
in (292)—-(29b), though we will begin first by considering
the possibility to construct lossless adjustable inductors and
capacitors without resort to such a transformer.

B. Canonical device laws: electrical elements

Before considering the matter of physical realisability we
formally define device laws as follows:

v =040

i = c%(cv)

(varinductor) 35

(varcapacitor) 36)

where (v,i) are the terminal voltage and current of an electrical
one-port and £(t), ¢(¢) are adjustable parameters. An internal
energy may be defined by %éziz and %czv2 respectively,
which shows that the device laws are lossless according to
Definition 2.

One approach to the construction of varinductors and var-
capacitors is to make use of a mechanical-electrical transducer
to convert the mechanical rotary varspring or varinerter into
electrical devices. Consider an ideal DC permanent magnet
motor-generator with

Vv =
T =

kg,
kri,

where kg and k7 are the voltage and torque constants satisfying
kg = k7 in SI units. If this is connected across the terminals
of a rotary varsping or varinerter then a varinductor or varca-
pacitor respectively is obtained. We take this as a justification
that it is possible to physically realise the varinductor and
varcapacitor without resort to an internal power source. We
leave it as an open question whether more direct methods are
possible.

Finally in this section we return to the question of the
physical realisability of the adjustable electrical transformer.
We simply point out that if we connect an ideal DC permanent
magnet motor-generator to both shafts of the mechanical
adjustable transformer (23)—(24) (see Fig. 5) then we obtain a
realisation of the adjustable electrical transformer (29a)—(29b)
without an internal power source. Again we leave it as an open
question whether there is a more direct physical realisation.

VIII. CONCLUSION

We have shown that none of the commonly assumed device
laws for adjustable springs or inerters or variants are lossless,
and indeed all are non-passive, i.e. active. Using an idealised
mechanical arrangement of a lever with moveable fulcrum

0018-9286 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2917853, IEEE

Transactions on Automatic Control

LOSSLESS ADJUSTABLE ONE-PORTS

device laws were derived for lossless adjustable springs and
inerters. A physical implementation of the moveable fulcrum
concept without internal power source was presented for the
canonical lossless adjustable spring and inerter which were
named the varspring and varinerter. A method for physical im-
plementation of rotary varsprings and varineters was presented.
The paper included a discussion of the analogous device laws
in the electrical domain.
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