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Abstract

Machine learning models are often susceptible to adversarial perturbations of their
inputs. Even small perturbations can cause state-of-the-art classifiers with high
“standard” accuracy to produce an incorrect prediction with high confidence. To
better understand this phenomenon, we study adversarially robust learning from the
viewpoint of generalization. We show that already in a simple natural data model,
the sample complexity of robust learning can be significantly larger than that of
“standard” learning. This gap is information theoretic and holds irrespective of the
training algorithm or the model family. We complement our theoretical results with
experiments on popular image classification datasets and show that a similar gap
exists here as well. We postulate that the difficulty of training robust classifiers
stems, at least partially, from this inherently larger sample complexity.

1 Introduction

Modern machine learning models achieve high accuracy on a broad range of datasets, yet can easily
be misled by small perturbations of their input. While such perturbations are often simple noise to a
human or even imperceptible, they cause state-of-the-art models to misclassify their input with high
confidence. This phenomenon has first been studied in the context of secure machine learning for
spam filters and malware classification [7, 16, 35]. More recently, researchers have demonstrated
the phenomenon under the name of adversarial examples in image classification [21, 51], question
answering [28], voice recognition [12, 13, 49, 62], and other domains (for instance, see [2, 4, 14,
22, 25, 26, 32, 60]). Overall, the existence of such adversarial examples raises concerns about the
robustness of current classifiers. As we increasingly deploy machine learning systems in safety- and
security-critical environments, it is crucial to understand the robustness properties of our models in
more detail.

A growing body of work is exploring this robustness question from the security perspective by
proposing attacks (methods for crafting adversarial examples) and defenses (methods for making
classifiers robust to such perturbations). Often, the focus is on deep neural networks, e.g., see [11, 24,
36, 37, 41, 47, 53, 59]. While there has been success with robust classifiers on simple datasets [31,
36, 44, 48], more complicated datasets still exhibit a large gap between “standard” and robust
accuracy [3, 11]. An implicit assumption underlying most of this work is that the same training
dataset that enables good standard accuracy also suffices to train a robust model. However, it is
unclear if this assumption is valid.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.



So far, the generalization aspects of adversarially robust classification have not been thoroughly
investigated. Since adversarial robustness is a learning problem, the statistical perspective is of
integral importance. A key observation is that adversarial examples are not at odds with the standard
notion of generalization as long as they occupy only a small total measure under the data distribution.
So to achieve adversarial robustness, a classifier must generalize in a stronger sense. We currently do
not have a good understanding of how such a stronger notion of generalization compares to standard
“benign” generalization, i.e., without an adversary.

In this work, we address this gap and explore the statistical foundations of adversarially robust
generalization. We focus on sample complexity as a natural starting point since it underlies the core
question of when it is possible to learn an adversarially robust classifier. Concretely, we pose the
following question:

How does the sample complexity of standard generalization compare to that of
adversarially robust generalization?

Put differently, we ask if a dataset that allows for learning a good classifier also suffices for learning a
robust one. To study this question, we analyze robust generalization in two distributional models. By
focusing on specific distributions, we can establish information-theoretic lower bounds and describe
the exact sample complexity requirements for generalization. We find that even for a simple data
distribution such as a mixture of two class-conditional Gaussians, the sample complexity of robust
generalization is significantly larger than that of standard generalization. Our lower bound holds for
any model and learning algorithm. Hence no amount of algorithmic ingenuity is able to overcome
this limitation.

In spite of this negative result, simple datasets such as MNIST have recently seen significant progress
in terms of adversarial robustness [31, 36, 44, 48]. The most robust models achieve accuracy around
90% against large ℓ∞-perturbations. To better understand this discrepancy with our first theoretical
result, we also study a second distributional model with binary features. This binary data model
has the same standard generalization behavior as the previous Gaussian model. Moreover, it also
suffers from a significantly increased sample complexity whenever one employs linear classifiers
to achieve adversarially robust generalization. Nevertheless, a slightly non-linear classifier that
utilizes thresholding turns out to recover the smaller sample complexity of standard generalization.
Since MNIST is a mostly binary dataset, our result provides evidence that ℓ∞-robustness on MNIST
is significantly easier than on other datasets. Moreover, our results show that distributions with
similar sample complexity for standard generalization can still exhibit considerably different sample
complexity for robust generalization.

To complement our theoretical results, we conduct a range of experiments on MNIST, CIFAR10,
and SVHN. By subsampling the datasets at various rates, we study the impact of sample size
on adversarial robustness. When plotted as a function of training set size, our results show that
the standard accuracy on SVHN indeed plateaus well before the adversarial accuracy reaches its
maximum. On MNIST, explicitly adding thresholding to the model during training significantly
reduces the sample complexity, similar to our upper bound in the binary data model. On CIFAR10,
the situation is more nuanced because there are no known approaches that achieve more than 50%
accuracy even against a mild adversary. But as we show below, there is clear evidence for overfitting
in the current state-of-the-art methods.

Overall, our results suggest that current approaches may be unable to attain higher adversarial
accuracy on datasets such as CIFAR10 for a fundamental reason: the dataset may not be large
enough to train a standard convolutional network robustly. Moreover, our lower bounds illustrate
that the existence of adversarial examples should not necessarily be seen as a shortcoming of specific
classification methods. Already in a simple data model, adversarial examples provably occur for
any learning approach, even when the classifier already achieves high standard accuracy. So while
vulnerability to adversarial ℓ∞-perturbations might seem counter-intuitive at first, in some regimes it
is an unavoidable consequence of working in a statistical setting.

1.1 A motivating example: Overfitting on CIFAR10

Before we describe our main results, we briefly highlight the importance of generalization for
adversarial robustness via two experiments on MNIST and CIFAR10. In both cases, our goal is to
learn a classifier that achieves good test accuracy even under ℓ∞-bounded perturbations. We follow
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networks should not come as a surprise. The same phenomenon (i.e., classifiers with just enough
samples for high standard accuracy necessarily being vulnerable to ℓ∞- attacks) already occurs in
much simpler settings such as a mixture of two Gaussians. Note that more complicated distributional
setups that can “simulate” the Gaussian model directly inherit our lower bounds.

In addition, conclusions from our simple models also transfer to real datasets. As we describe
in the subsection on the Bernoulli model, the benefits of the thresholding layer predicted by our
theoretical analysis do indeed appear in experiments on MNIST as well. Since multiple defenses
against adversarial examples have been primarily evaluated on MNIST [31, 44, 48], it is important to
note that ℓ∞-robustness on MNIST is a particularly easy case: adding a simple thresholding layer
directly yields nearly state-of-the-art robustness against moderately strong adversaries (ε = 0.1),
without any further changes to the model architecture or training algorithm.

2.1 The Gaussian model

Our first data model is a mixture of two spherical Gaussians with one component per class.

Definition 1 (Gaussian model). Let θ⋆ ∈ R
d be the per-class mean vector and let σ > 0 be the

variance parameter. Then the (θ⋆, σ)-Gaussian model is defined by the following distribution over

(x, y) ∈ R
d ×{±1}: First, draw a label y ∈ {±1} uniformly at random. Then sample the data point

x ∈ R
d from N (y · θ⋆, σ2I).

While not explicitly specified in the definition, we will use the Gaussian model in the regime where

the norm of the vector θ⋆ is approximately
√
d. Hence the main free parameter for controlling the

difficulty of the classification task is the variance σ2, which controls the amount of overlap between
the two classes.

To contrast the notions of “standard” and “robust” generalization, we briefly recap a standard definition
of classification error.

Definition 2 (Classification error). Let P : Rd×{±1} → R be a distribution. Then the classification

error β of a classifier f : Rd → {±1} is defined as β = P(x,y)∼P [f(x) 6= y].

Next, we define our main quantity of interest, which is an adversarially robust counterpart of the
above classification error. Instead of counting misclassifications under the data distribution, we allow
a bounded worst-case perturbation before passing the perturbed sample to the classifier.

Definition 3 (Robust classification error). Let P : R
d × {±1} → R be a distribution and let

B : Rd → P(Rd) be a perturbation set.2 Then the B-robust classification error β of a classifier

f : Rd → {±1} is defined as β = P(x,y)∼P [ ∃x′ ∈ B(x) : f(x′) 6= y].

Since ℓ∞-perturbations have recently received a significant amount of attention, we focus on ro-
bustness to ℓ∞-bounded adversaries in our work. For this purpose, we define the perturbation set
Bε
∞(x) = {x′ ∈ R

d | ‖x′ − x‖
∞

≤ ε}. To simplify notation, we refer to robustness with respect to
this set also as ℓε∞-robustness. As we remark in the discussion section, understanding generalization
for other measures of robustness (ℓ2, rotations, etc.) is an important direction for future work.

Standard generalization. The Gaussian model has one parameter for controlling the difficulty of
learning a good classifier. In order to simplify the following bounds, we study a regime where it is
possible to achieve good standard classification error from a single sample.3 As we will see later,
this also allows us to calibrate our two data models to have comparable standard sample complexity.

Concretely, we prove the following theorem, which is a direct consequence of Gaussian concentration.
Note that in this theorem we use a linear classifier: for a vector w, the linear classifier fw : Rd →
{±1} is defined as fw(x) = sgn(〈w, x〉).
Theorem 4. Let (x, y) be drawn from a (θ⋆, σ)-Gaussian model with ‖θ⋆‖2 =

√
d and σ ≤ c · d1/4

where c is a universal constant. Let ŵ ∈ R
d be the vector ŵ = y · x. Then with high probability, the

linear classifier fŵ has classification error at most 1%.

2We write P(Rd) to denote the power set of Rd, i.e., the set of subsets of Rd.
3We remark that it is also possible to study a more general setting where standard generalization requires a

larger number of samples.
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To minimize the number of parameters in our bounds, we have set the error probability to 1%.
By tuning the model parameters appropriately, it is possible to achieve a vanishingly small error
probability from a single sample (see Corollary 19 in Appendix D.1).

Robust generalization. As we just demonstrated, we can easily achieve standard generalization
from only a single sample in our Gaussian model. We now show that achieving a low ℓ∞-robust
classification error requires significantly more samples. To this end, we begin with a natural strength-
ening of Theorem 4 and prove that the (class-weighted) sample mean can also be a robust classifier
(given sufficient data).

Theorem 5. Let (x1, y1), . . . , (xn, yn) be drawn i.i.d. from a (θ⋆, σ)-Gaussian model with ‖θ⋆‖2 =√
d and σ ≤ c1d

1/4. Let ŵ ∈ R
d be the weighted mean vector ŵ = 1

n

∑n
i=1 yixi. Then with high

probability, the linear classifier fŵ has ℓε∞-robust classification error at most 1% if

n ≥
{
1 for ε ≤ 1

4d
−1/4

c2 ε
2
√
d for 1

4d
−1/4 ≤ ε ≤ 1

4

.

We refer the reader to Corollary 22 in Appendix D.1 for the details. As before, c1 and c2 are two
universal constants. Overall, the theorem shows that it is possible to learn an ℓε∞-robust classifier
in the Gaussian model as long as ε is bounded by a small constant and we have a large number of
samples.

Next, we show that this significantly increased sample complexity is necessary. Our main theorem
establishes a lower bound for all learning algorithms, which we formalize as functions from data
samples to binary classifiers. In particular, the lower bound applies not only to learning linear
classifiers.

Theorem 6. Let gn be any learning algorithm, i.e., a function from n samples to a binary classifier
fn. Moreover, let σ = c1 · d1/4, let ε ≥ 0, and let θ ∈ R

d be drawn from N (0, I). We also draw n
samples from the (θ, σ)-Gaussian model. Then the expected ℓε∞-robust classification error of fn is at
least (1− 1/d) 12 if

n ≤ c2
ε2

√
d

log d
.

The proof of the theorem can be found in Corollary 23 (Appendix D.2). It is worth noting that the
classification error 1/2 in the lower bound is tight. A classifier that always outputs a fixed prediction
trivially achieves perfect robustness on one of the two classes and hence robust accuracy 1/2.

Comparing Theorems 5 and 6, we see that the sample complexity n required for robust generalization
is bounded as

cε2
√
d

log d
≤ n ≤ c′ε2

√
d .

Hence the lower bound is nearly tight in our regime of interest. When the perturbation has constant
ℓ∞-norm, the sample complexity of robust generalization is larger than that of standard generalization

by
√
d, i.e., polynomial in the problem dimension. This shows that for high-dimensional problems,

adversarial robustness can provably require a significantly larger number of samples.

Finally, we remark that our lower bound applies also to a more restricted adversary. Our proof uses
only a single adversarial perturbation per class. As a result, the lower bound provides transferable ad-
versarial examples and applies to worst-case distribution shifts without a classifier-adaptive adversary.
We refer the reader to Section 5 for a more detailed discussion.

2.2 The Bernoulli model

As mentioned in the introduction, simpler datasets such as MNIST have recently seen significant
progress in terms of ℓ∞-robustness. We now investigate a possible mechanism underlying these
advances. To this end, we study a second distributional model that highlights how the data distribution
can significantly affect the achievable robustness. The second data model is defined on the hypercube
{±1}d, and the two classes are represented by opposite vertices of that hypercube. When sampling a
datapoint for a given class, we flip each bit of the corresponding class vertex with a certain probability.
This data model is inspired by the MNIST dataset because MNIST images are close to binary (many
pixels are almost fully black or white).
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Definition 7 (Bernoulli model). Let θ⋆ ∈ {±1}d be the per-class mean vector and let τ > 0 be the
class bias parameter. Then the (θ⋆, τ)-Bernoulli model is defined by the following distribution over

(x, y) ∈ {±1}d × {±1}: First, draw a label y ∈ {±1} uniformly at random from its domain. Then

sample the data point x ∈ {±1}d by sampling each coordinate xi from the distribution

xi =

{
y · θ⋆i with probability 1/2 + τ

−y · θ⋆i with probability 1/2 − τ
.

As in the previous subsection, the model has one parameter for controlling the difficulty of learning.
A small value of τ makes the samples less correlated with their respective class vectors and hence
leads to a harder classification problem. Note that both the Gaussian and the Bernoulli model are
defined by simple sub-Gaussian distributions. Nevertheless, we will see that they differ significantly
in terms of robust sample complexity.

Standard generalization. As in the Gaussian model, we first calibrate the distribution so that we
can learn a classifier with good standard accuracy from a single sample.4 The following theorem is a
direct consequence of the fact that bounded random variables exhibit sub-Gaussian concentration.

Theorem 8. Let (x, y) be drawn from a (θ⋆, τ)-Bernoulli model with τ ≥ c · d−1/4 where c is a

universal constant. Let ŵ ∈ R
d be the vector ŵ = y · x. Then with high probability, the linear

classifier fŵ has classification error at most 1%.

To simplify the bound, we have set the error probability to be 1% as in the Gaussian model. We refer
the reader to Corollary 28 in Appendix F.1 for the proof.

Robust generalization. Next, we investigate the sample complexity of robust generalization in
our Bernoulli model. For linear classifiers, a small robust classification error again requires a large
number of samples:

Theorem 9. Let gn be a linear classifier learning algorithm, i.e., a function from n samples to a
linear classifier fn. Suppose that we choose θ⋆ uniformly at random from {±1}d and draw n samples

from the (θ⋆, τ)-Bernoulli model with τ = c1 · d−1/4. Moreover, let ε < 3τ and 0 < γ < 1/2. Then
the expected ℓε∞-robust classification error of fn is at least 1

2 − γ if

n ≤ c2
ε2γ2d

log d/γ
.

We defer the proof to Appendix F.2. At first, the lower bound for linear classifiers might suggest that
ℓ∞-robustness requires an inherently larger sample complexity here as well. However, in contrast
to the Gaussian model, non-linear classifiers can achieve a significantly improved robustness. In
particular, consider the following thresholding operation T : Rd → R

d which is defined element-wise
as

T (x)i =

{
+1 if xi ≥ 0

−1 otherwise
.

It is easy to see that for ε < 1, the thresholding operator undoes the action of any ℓ∞-bounded adver-
sary, i.e., we have T (Bε

∞(x)) = {x} for any x ∈ {±1}d. Hence we can combine the thresholding
operator with the classifier learned from a single sample to get the following upper bound.

Theorem 10. Let (x, y) be drawn from a (θ⋆, τ)-Bernoulli model with τ ≥ c · d−1/4 where c is a

universal constant. Let ŵ ∈ R
d be the vector ŵ = yx. Then with high probability, the classifier

fŵ ◦ T has ℓε∞-robust classification error at most 1% for any ε < 1.

This theorem shows a stark contrast to the Gaussian case. Although both models have similar sample

complexity for standard generalization, there is a
√
d gap between the ℓ∞-robust sample complexity

for the Bernoulli and Gaussian models. This discrepancy provides evidence that robust generalization
requires a more nuanced understanding of the data distribution than standard generalization.

4To be precise, the two distributions have comparable sample complexity for standard generalization in the
regime where σ ≈ τ

−1.
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condition for generalization in an asymptotic sense. Bellet and Habrard [5] gives similar results
for metric learning. However, these results do no imply sample complexity bounds since they are
asymptotic. Our results stand in stark contrast: we show that generalization can, in simple models, be
significantly easier than robustness when sample complexity enters the picture.

Fawzi et al. [18] relate the robustness of linear and non-linear classifiers to adversarial and
(semi-) random perturbations. Their work studies the setting where the classifier is fixed and does not
encompass the learning task. Fawzi et al. [19] give provable lower bounds for adversarial robustness
in models where robust classifiers do not exist. In contrast, we are interested in a setting where robust
classifiers exist, but need many samples to learn. Papernot et al. [43] discuss adversarial robustness at
the population level. We defer a more detailed discussion of these works to Appendix A.

There is also a long line of work in machine learning on exploring the connection between various no-
tions of margin and generalization, e.g., see [46] and references therein. In this setting, the ℓp margin,
i.e., how robustly classifiable the data is for ℓ∗p-bounded classifiers, enables dimension-independent
control of the sample complexity. However, the sample complexity in concrete distributional models
can often be significantly smaller than what the margin implies.

5 Discussion and Conclusions

The vulnerability of neural networks to adversarial perturbations has recently been a source of much
discussion and is still poorly understood. Different works have argued that this vulnerability stems
from their discontinuous nature [51], their linear nature [21], or is a result of high-dimensional
geometry and independent of the model class [20]. Our work gives a more nuanced picture. We show
that for a natural data distribution (the Gaussian model), the model class we train does not matter and
a standard linear classifier achieves optimal robustness. However, robustness also strongly depends on
properties of the underlying data distribution. For other data models (such as MNIST or the Bernoulli
model), our results demonstrate that non-linearities are indispensable to learn from few samples. This
dichotomy provides evidence that defenses against adversarial examples need to be tailored to the
specific dataset (even for the same type of perturbations) and hence may be more complicated than a
single, broad approach. Understanding the interactions between robustness, classifier model, and
data distribution from the perspective of generalization is an important direction for future work. We
refer the reader to Section B in the appendix for concrete questions in this direction.

The focus of our paper is on adversarial perturbations in a setting where the test distribution (before
the adversary’s action) is the same as the training distribution. While this is a natural scenario from a
security point of view, other setups can be more relevant in different robustness contexts. For instance,
we may want a classifier that is robust to small changes between the training and test distribution.
This can be formalized as the classification accuracy on unperturbed examples coming from an
adversarially modified distribution. Here, the power of the adversary is limited by how much the
test distribution can be modified, and the adversary is not allowed to perturb individual samples
coming from the modified test distribution. Interestingly, our lower bound for the Gaussian model
also applies to such worst-case distributional shifts. In particular, if the adversary is allowed to shift
the mean θ⋆ by a vector in Bε

∞, our proof sketched in Section C transfers to the distribution shift
setting. Since the lower bound relies only on a single universal perturbation, this perturbation can
also be applied directly to the mean vector.

What do our results mean for robust classification of real images? Our Gaussian lower bound implies
that if an algorithm works for all (or most) settings of the unknown parameter θ⋆, then achieving
strong ℓ∞-robustness requires a sample complexity increase that is polynomial in the dimension.
There are a few different ways this lower bound could be bypassed. It is conceivable that the noise
scale σ is significantly smaller for real image datasets, making robust classification easier. Even if that
was not the case, a good algorithm could work for the parameters θ⋆ that correspond to real datasets
while not working for most other parameters. To accomplish this, the algorithm would implicitly
or explicitly have prior information about the correct θ⋆. While some prior information is already
incorporated in the model architectures (e.g., convolutional and pooling layers), the conventional
wisdom usually is not to bias the neural network with our priors. Our work suggests that there are
trade-offs with robustness here and that adding more prior information could help to learn more
robust classifiers.
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