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We study the propagation of electromagnetic waves (or incompressible waves with negligible

thermal pressure) along the magnetic field in a partially ionized plasma with multiple species.

Because of differences in mass and density, each species responds to and hence affects the

perturbations of electromagnetic fields differently. Collisions among all the species further

complicate the process. With a linear analysis, the dispersion relation of parallel propagation

covering a large range of frequencies, from magnetohydrodynamics (MHD) waves to light waves,

with an arbitrary combination of multiple positively charged species, negatively charged species,

and neutral species is derived based on a multi-fluid treatment, in combination with Faraday’s law

and Ampere’s law including the displacement current. In a collisional plasma, when the collision

frequency is lower than the gyrofrequencies of charged species, the resonances are at the gyrofre-

quencies of each charged species and the cutoff frequencies are related to the densities of the

charged species. Stopbands in which waves propagate with extremely high phase velocity but are

strongly damped form between some of these characteristic frequencies. In the MHD wave fre-

quency range, the coupling with neutral species slows the propagation speed compared with the

Alfv�en speed. The collisions between plasma and neutrons efficiently contribute to the wave damp-

ing, which is significantly reduced when the neutral species are completely driven with plasma by

collisions. When the collisions become stronger, the resonances and cutoffs become weaker and

may disappear. The species could couple tightly and act as a single fluid if the collisions among

them are strong enough. Published by AIP Publishing. https://doi.org/10.1063/1.5053119

I. INTRODUCTION

Multiple ion species commonly exist in fusion and space

plasmas, and charged dust grains can occur in laboratory and

interstellar space. With multiple resonance and cutoffs of

charged species, the dispersion behavior of the Alfv�en waves

is significantly affected, especially at frequencies close to the

resonant and cutoff frequencies. In addition, the collisions

between two different species may affect the coupling of spe-

cies and the damping of the waves and thus affect the momen-

tum and energy transport. Previous research studies have

demonstrated the importance of the Alfv�en waves in many

fields, e.g., in the coupling between magnetosphere and iono-

sphere,1–7 in solar corona heating,8–10 and in laboratory11 and

fusion devices.12 With multiple species and collisions among

them, there may be some new or more precise effects beyond

previous knowledge, e.g., strong damping of wave propagation

due to collisions between ion species in interstellar clouds13

and interaction between solar wind with cometary plasma

mainly determined by different ion species and grains.14,15

In research of the magnetohydrodynamic (MHD) waves,

a single-fluid treatment in MHD or Hall-MHD is widely

used in many works,16–19 but it neglects inertial terms of rel-

ative velocity between ion and neutral species in the momen-

tum equation, and it is valid when the frequency of dynamics

in the single-fluid treatment is much lower than the ion-

neutral collision frequency. A two-fluid treatment20 where

ion-electron plasma and neutral species were treated as two

separate fluids could have a larger range of applicability, but

it still cannot tell the effects of the charged species even with

electrons and ions. A three-fluid description4 of electrons,

ions, and neutral species, including the inertia term of elec-

trons, was developed to derive the dispersion relation for par-

allel propagating incompressible waves so that it could cover

a larger frequency range, even to the resonant frequency of

electrons. The derivation in the three-fluid treatment

becomes so complicated that it has a barrier to include more

ion species. Without considering the inertia term of elec-

trons, a trial of five-fluid treatment21 could take into account

the effects of three ion species studying parallel propagating

incompressible waves.

On the other hand, the theory of wave propagation in a

cold, fully ionized and collisionless plasma consisting of

multiple species has been well developed by neglecting the

pressure gradient of each species and employing a dielectric

tensor to link the conducting current density and electric

field.22–28 It was shown that there are three principal plasma

modes with left and right handed circularly polarized, and

longitudinal perturbations, respectively. In a cold plasma, for

parallel propagating waves, only Left-handed (L) and Right-

handed (R) modes can propagate; for perpendicular propa-

gating waves, only Extraordinary and Ordinary modes can

propagate; for oblique propagating waves, only Fast and

Slow modes, which are, respectively, described as the com-

pressional Alfv�en wave and the shear Alfv�en wave in

laboratory-oriented community, can propagate.24,29 Witha)Email: yifan_huang@student.uml.edu
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multiple ion species, each ion species affects the propagation

of the waves and may form its corresponding resonance and

cutoff. Some studies presented experiments and simulations

to observe and confirm the theoretical analysis about the

wave propagation in multiple ion species.30–33 The collision

effects can be included in a multi-fluid model by simply

assuming the collisional damping terms that are proportional

to the velocity of the charged species and revising the mass

terms, ms, in momentum equations,24,28 which is not suitable

as the momentum exchange between two collision species is

proportional to the relative velocity of them especially at low

wave frequencies.

The present work is a new effort to present a more gen-

eral fluid-approaching model to combine multiple species

and collisions, and to study wave propagation in a multi-

fluid plasma with an arbitrary number of species, including

neutral species, by self-consistently considering all collisions

among multiple species. Without neglecting the inertial

motion of electrons, the model is thus applicable over very

board frequency/time scale regimes, from low MHD wave

frequencies to very high frequencies such as light waves.

With an analytical dispersion relation of wave propagation,

this model could be easily applied in a large parameter

regime, from weakly ionized plasma in the low altitude iono-

sphere to highly ionized plasma in the magnetosphere, to

study the propagation properties and damping. In Sec. II, we

develop a multiple species treatment for parallel propagating

waves and derive the general dispersion relation. In Sec. III,

first we discuss a collisionless case to confirm the previous

results under the same limits; second, we focus on a medium

that includes electron, Hþ, Oþ, and neutral species and eval-

uate the dispersion relation with a range of density ratios,

collision frequencies relative to the gyrofrequencies, and ion-

ization fraction to discuss the resonances, cutoffs, phase

velocity, and coupling of species. In Sec. IV, with simplify-

ing approximations, we apply the knowledge gained to a

magnetosphere-ionosphere-thermosphere system with an

altitude range from 100 km to 1000 km to study the proper-

ties of the waves, based on empirical ionospheric and ther-

mospheric models of the International Reference Ionosphere

(IRI-2012)34 and MSIS-E-90 Atmosphere,35 respectively.

II. GOVERNING EQUATIONS

We begin with the multiple fluid treatment to derive the

wave dispersion relation. The governing equations can be

obtained by integrating the Boltzmann equations over the

phase space and defining the macroscopic quantities so that

the individual particle motion is averaged out and the system

is represented by macroscopic, or bulk, quantities such as

bulk velocity, density, and pressure. The random collisions

are represented by average collision frequencies. The

momentum equations for each species as well as Faraday’s

Law and Ampere’s Law are written as

@msns~us

@t
þr � Ps

$
þ msns~us~us

� �

¼ nsqs
~E þ~us � ~B
� �

þ~Fs þ
d~Ms

dt
; (1)

r� ~E ¼ � @
~B

@t
; (2)

r� ~B ¼ l0
~j þ 1

c2

@~E

@t
; (3)

~j ¼
X

s

nsqs~us; (4)

where~us, ns, ms, qs, Ps

$
; ~j; ~E; ~B, l0, and c are the bulk veloc-

ity, number density, mass of a single particle, charge of a sin-

gle particle, pressure tensor of species s, current density,

electric field, magnetic field, permeability constant, and

speed of light, respectively, ~Fs is the external force on spe-

cies s, and d~Ms=dt is the collision term36 which is defined as

d~Ms

dt
¼ �

X
t

nsms�stð~us �~utÞ; (5)

where �st is the momentum transfer collision frequency,

defined as

�st ¼
16

3

ntmt

ms þ mt
Uð1;1Þst : (6)

UðL;JÞst is the Chapman-Cowling collision integrals, and �st is

defined when L¼ 1, J¼ 1. Physically, for any species s, a

collision on average takes place every s ¼ 1=
P

t �st. A parti-

cle of species s collides with a particle of species t every

sst ¼ 1=�st. Collisions are assumed to be elastic, e.g., no

radiation is produced as a result of the collision. After each

collision, the motions of the pair of colliding particles are

assumed to be totally random. The reset of the particle

motion is constrained by the momentum and energy conser-

vation before and after the collision in the frame of reference

of the center of mass of the two particles. Afterward the local

electromagnetic and mechanical forces control the motion of

each particle until the next collision for each of them. It is

noted that the momentum transfer collision frequencies are

not equal with respect to the two species but satisfy the fol-

lowing relation due to the conservation of momentum:

nsms�st ¼ ntmt�ts: (7)

III. PARALLEL PROPAGATING ELECTROMAGNETIC
WAVES

To derive the wave dispersion relation, we assume a

monochromatic perturbation which propagates as a plane

wave along the magnetic field that is assumed in the z-direc-

tion, and all species are initially at rest to a common frame

of reference before the arrival of a wave perturbation. Then,

the perturbation is proportional to exp½iðkz� xtÞ� and we

neglect any terms that are of the second order or higher with

respect to the perturbation quantities. In a cold plasma, the

thermal pressure term of the momentum equations has no

effects. Continuity and energy equations are not necessary

for such a system. Then, the momentum equations for spe-

cies s in this frame of reference can be reduced as

msns
@~us

@t
¼ nsqs

~E þ~us � ~B0

� �
�
X

t

msns�st ~us �~utð Þ; (8)
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which can also represent the neutral momentum equation

when qs¼ 0. To derive the dispersion relation from Eqs.

(2)–(4) and (8), we use a matrix expression in which the

species are indexed with numbers instead of names of the

species for simplicity. Here, we just use four species to

illustrate the derivation without losing the generality of an

arbitrary number of species. Rewrite Eq. (8) in a matrix

form

@t

~u1

~u2

~u3

~u4

0
BBB@

1
CCCA¼

q1=m1

q2=m2

q3=m3

q4=m4

0
BBB@

1
CCCA~Eþ

q1~u1=m1

q2~u2=m2

q3~u3=m3

q4~u4=m4

0
BBB@

1
CCCA�~B0þ �4�4½ �

~u1

~u2

~u3

~u4

0
BBB@

1
CCCA;

(9)

where

�4�4½ � ¼

�ð�12 þ �13 þ �14Þ �12 �13 �14

�21 �ð�21 þ �23 þ �24Þ �23 �24

�31 �32 �ð�31 þ �32 þ �34Þ �34

�41 �42 �43 �ð�12 þ �13 þ �14Þ

0
BBBB@

1
CCCCA: (10)

By plugging Eq. (3) into the curl of Eq. (2), we obtain a rela-

tionship that connects the current density and the electric field

@t
~j ¼ � 1

l0

~r � ~r � ~E þ 1

c2
@2

t
~E

� �
¼ 1

l0

~r2 � 1

c2
@2

t

� �
~E;

(11)

in which ~r � ~E ¼ 0 has been used because the electric field

perturbation is in the x–y plane when the electromagnetic

wave propagates along the magnetic field (z-axis). Even with

collisions, the perturbations of velocities of each species are

all in the plane perpendicular to the z axis. For electrostatic

waves, although ~r � ~E 6¼ 0, the wave does not propagate

along the magnetic field and, hence, we do not consider the

electrostatic waves in our current work. With

~j ¼ q1n1 q2n2 q3n3 q4n4

� � ~u1

~u2

~u3

~u4

0
BB@

1
CCA; (12)

we can eliminate ~E by taking operator ~r2 � 1
c2 @

2
t

� �
=l0 on

both sides in Eq. (9) and rewrite it as

C1½ �
~u1

~u2

~u3

~u4

0
BB@

1
CCAþ C2½ �

~u1

~u2

~u3

~u4

0
BB@

1
CCA� ~B0 ¼ 0; (13)

where

C1½ � ¼
1

l0

~r2 � 1

c2
@2

t

� �
ð�@t þ �4�4½ �Þ

þ

q1=m1

q2=m2

q3=m3

q4=m4

0
BB@

1
CCA q1n1 q2n2 q3n3 q4n4

� �
@t;

(14)

C2½ � ¼
1

l0

~r2� 1

c2
@2

t

� � q1=m1 0 0 0

0 q2=m2 0 0

0 0 q3=m3 0

0 0 0 q4=m4

0
BB@

1
CCA:

(15)

For a parallel propagating incompressible wave, since the

perturbations of species as well as the electric field are in the

x–y plane, ~us � B̂0 ¼ 0 where B̂0 is the unit vector of the

background field. With the fact ð~us � B̂0Þ � B̂0 ¼ �~us, we

can make a mathematical replacement �B̂0 ! H, in which

H2 ¼ �1. Obviously H ¼ 6i physically corresponding to

the R and the L modes, respectively, because the Lorenz

force, which is related to �B̂0, is the cause of the rotation of

the motions and the circular polarization of the electric field.

Therefore, Eq. (13) changes to (after making replacements of
~r ! i~k; @t ! �ix)

x

if1 þ X1 �
x2

p1

K2
�if12 �

X1x2
p2

X2K2
�if13 �

X1x2
p3

X3K2
�if14 �

X1x2
p4

X4K2

�if21 �
X2x2

p1

X1K2
if2 þ X2 �

x2
p2

K2
�if23 �

X2x2
p3

X3K2
�if24 �

X2x2
p4

X4K2

�if31 �
X3x2

p1

X1K2
�if32 �

X3x2
p2

X2K2
if3 þ X3 �

x2
p3

K2
�if34 �

X3x2
p4

X4K2

�if41 �
X4x2

p1

X1K2
�if42 �

X4x2
p2

X2K2
�if43 �

X4x2
p3

X3K2
if4 þ X4 �

x2
p4

K2

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

~u1

~u2

~u3

~u4

0
BBBB@

1
CCCCA ¼ 0; (16)
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where Xs ¼ qsB0=ms and xps ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nsq2

s=ðe0msÞ
p

are the cyclo-

tron frequency and plasma frequency, respectively, of spe-

cies s, �s ¼
P

t6¼s �st; K2 ¼ �c2k2 þ x2; Xs ¼ 1� iHXs=x,

fst ¼ �st=x. For convenience, the gyrofrequency of an ion is

positive and the gyrofrequency of an anion is negative.

Notice that Eq. (16) is in its general form including the neu-

tral species of which the gyrofrequency and plasma fre-

quency are both zero. The ifst terms depend on collisions and
Xsx2

pt

XtK2 is a factor due to the transformation from ~E to the veloc-

ities, ~us. To have a nontrivial solution, the determinant of the

coefficient matrix must be zero, leading to an algebraic equa-

tion of the 8th order (2s order if there are s species) of fre-

quency in the determinant. We are interested in the solutions

of non-zero frequency. The general dispersion relation of

wave propagation along the magnetic field in a medium with

multiple species (see the Appendix) is

1

c2
� k2

x2
¼ l0

B2
0

X1=x

..

.

Xp=x

..

.

Xs=x

0
BBBBBBB@

1
CCCCCCCA

T

ð S½ � � i �½ �TÞ�1 q½ �

X1=x

..

.

Xp=x

..

.

Xs=x

0
BBBBBBB@

1
CCCCCCCA
;

(17)

where [S] is related to the gyrofrequencies of species and the

polarization of waves, defined as

S½ � ¼

16X1=x

. .
.

16Xp=x

. .
.

16Xs=x

0
BBBBBBB@

1
CCCCCCCA
; (18)

[�] is the collision matrix

�½ � ¼

�
X
t 6¼1

�1t=x � � � �1p=x … �1s=x

..

. . .
. ..

. ..
.

�p1=x � � � �
X
t 6¼p

�pt=x � � � �ps=x

..

. ..
. . .

. ..
.

�s1=x � � � �sp=x � � � �
X
t 6¼s

�st=x

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

;

(19)

and [q] is the mass densities matrix

q½ � ¼

m1n1

. .
.

mpnp

. .
.

msns

0
BBBBBB@

1
CCCCCCA
: (20)

A. Parallel propagating waves in a collisionless
plasma

In the absence of collisions ([�]¼ 0), the general disper-

sion relation of parallel wave propagation reduces to

1

c2
� k2

x2
¼ l0

B2
0

X
s

qs

x2=X2
s 6x=Xs

: (21)

“þ” is for the R mode and “–” is for the L mode with respect

to B̂0 . The dispersion relation of parallel propagation of elec-

tromagnetic waves in collisionless plasma shown by Eq. (21)

is consistent with those in previous works without consider-

ing the pressure of plasma.24,25,27,28,37

We now study the properties of resonant and cutoff fre-

quencies. For convenience of discussion, we treat wave fre-

quency of the R mode as negative and frequency of the L

mode as positive in a unified dispersion relation, by simply

replacing “6” with “�” in Eq. (21). Then, we can rewrite

Eq. (21) as

1

c2
� k2

x2
¼ l0

B2
0

X
s

qs

1

x=Xs � 1
� 1

x=Xs

� �
: (22)

After applying the charge quasi-neutrality condition for

the parallel propagating electromagnetic waves,
P

s qsXs

¼
P

s nsqsB0 � 0, we have

1

c2
� k2

x2
¼ l0

B2
0

X
s

qs

x=Xs � 1
: (23)

With the unified treatment of Eq. (23), the resonant frequen-

cies are derived by setting k2 ¼ 1. They occur at the gyro-

frequencies of the charged species, xr ¼ Xs, which is a well-

known result. The cutoff frequencies, xc, can be derived, by

setting k¼ 0, from

X
s

qs

xc=Xs � 1
¼ B2

0

c2l0

: (24)

The left-hand-side of Eq. (24) is shown as the black solid

curves, F1ðxÞ, and the right-hand-side of Eq. (24) is shown

as the green solid line, F2ðxÞ. The cutoff frequencies, xc,

occur where a black line intersects the green line. Figure 1

shows an example with two negatively charged species and

three positively charged species when Eq. (24) is satisfied.

The bottom panel of Fig. 1 illustrates the characteristic fre-

quencies matched with those in the top panel, and the disper-

sion relation. For a particular wave mode, the L or R mode,

there is a cutoff frequency that is higher (lower) than the cor-

responding gyrofrequency of ion (anion) species, and

between two adjacent gyrofrequencies of ion species or

anion species. In a relatively simple medium containing elec-

trons and two ion species, the cutoff frequency between two

gyrofrequencies of ions has been provided with simplifying

approximations by37

xcl ¼
c2jXe� jXaþXbþ

V2
Aðx2

pe� þ x2
paþ þ x2

pbþÞ
; (25)
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where VA is the Alfv�en speed, VA ¼ B0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0qtotal
p

, and a and

b denote the two ion species. For multiple species, Eq. (24)

may not be solved for the cutoff frequencies in a general ana-

lytical form.

For a plasma containing electrons, when the absolute

value of the upper cutoff frequency, jxcuj, is about jXe� j and

is much greater than the highest gyrofrequency of other

charged species, rewriting Eq. (24) yields

qe�

xcu=Xs � 1
þ
X
s6¼e�

qs

Xs

xcu

�
1� Xs

xcu

��1

¼ B2
0

c2l0

; (26)

and then with Taylor expansion on ð1� Xs=xÞ�1
and

neglecting the high order terms of Xs=x, we have

qe�

xcu=Xs � 1
þ
X
s 6¼e�

qs

Xs

xcu
1þ Xs

xcu

� �
¼ B2

0

c2l0

: (27)

Applying the charge quasi-neutrality condition, qe�Xe�

þ
P

s6¼e� qsXs ¼
P

s nsqsB0 � 0, we have

x2
pe�

xcuðxcu � Xe�Þ
þ 1

x2
cu

X
s 6¼e�

x2
ps ¼ 1: (28)

As the mass of an electron is much less than that of an ion,

the ion plasma frequencies are much smaller than that of

electrons. Therefore, we may neglect the second term in Eq.

(28) and obtain the solution of the upper cutoff frequency as

xcu ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

pe� þ X2
e�=4

q
� Xe�=2; (29)

where “–” is for the R mode and “þ” is for the L mode.

Notice that we treat the wave frequency of the R mode as

negative. The solution of jxcuj is consistent with the

discussion of Ref. 38, of which the motions of ions are

neglected for their large inertia. Then, the highest cutoff fre-

quencies for both the L mode and the R mode are related to

electron plasma frequency and therefore to the electron den-

sity. The properties of cutoffs will be discussed further with

examples Secs. III B and IV.

B. Parallel propagating waves in a partially ionized
collisional plasma

When magnetic perturbation propagates along the mag-

netic field line of force, neutral species will be driven by col-

lisions between neutral species and charged species which

oscillate with the magnetic field. Besides, the collisions

between different charged species could make their

responses to magnetic perturbations different from those in

the collisionless case. In this section, we will discuss the pro-

cesses of wave propagation in a collisional plasma with mul-

tiple species.

1. Simplifying approximations

In the general dispersion relation, in Eq. (17), wavenum-

ber k is related to the magnitude of background magnetic

field, collision frequencies, and densities of species. Stronger

magnetic field indicates that the gyrofrequencies of charged

species are higher and that the field lines are more rigid so

that the perturbation propagates more quickly. Normalizing

the wave frequency and collision frequencies with the gyro-

frequency of a typical species, i.e., XOþ , the effects of the

magnitude of magnetic field on propagation are scaled to a

reference field strength of XOþ . To learn the effects of the

magnetic field, we shall take it as constant and focus on the

effects of collisions and densities.

In the dispersion relation in our 1-D (parallel propaga-

tion) model, temperature makes no effects on the wave prop-

agation, even though it could affect the ionization fraction of

medium and the collision frequencies. The ionization frac-

tion, which may change with the temperature, can also be

controlled by photoionization,39 as ionization can be pro-

duced by ionizing photons, the energies of which are not

necessarily related to the local temperature. In our following

discussion, we neglect the effects of temperature difference.

Then, the collision frequencies are proportional to the densi-

ties directly.

To numerically study the effects of densities on wave

propagation, we shall use a set of reference values, typical of

the terrestrial ionosphere, and allow the densities of each

species varying in large ranges around the reference values.

Considering that the atmosphere of a planet, with greater

(smaller) gravity compared to the Earth, can be denser (less

dense) than that on the Earth, the concentration of each spe-

cies can be very different. The densities of different species,

because of different particle masses, may vary exponentially

with the altitude relative to their corresponding scale heights.

Since the ionization by photons can also vary in a large range

depending on the radiative characteristic of the star it sur-

rounds, the propagation can be studied not only in highly or

weakly ionized medium but also in dense or tenuous plasma.

In all, by adjusting densities of each species in the medium,

FIG. 1. Top panel: the solutions of cutoffs in Eq. (24) with the intersections

between the black lines, F1ðxÞ ¼
P

s
qs

x=Xs�1
, and the green line,

F2ðxÞ ¼ B2
0

c2l0
, in a medium consisting of three positively charged species and

two negatively charged species; bottom panel: corresponding Re(k), blue

lines, and Im(k), red lines, as functions of frequency x. Waves propagate

only in the blue line regions. Xs represents the gyrofrequencies of charged

species, xr represents the resonant frequencies, and xc represents the cutoff

frequencies.
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we can study the effects of concentrations of charged spe-

cies, ion-ion collisions, ion-neutral collisions, and ionization

on wave propagation, and characteristic frequencies such as

resonant and cutoff frequencies.

Without losing the generality but with manageable com-

plexity, we study wave propagation in a collisional plasma

including four species, electrons, Hþ, Oþ, and neutrals, and

focus on the L mode as there are two ion species. The neu-

trals may have different components but they are treated as a

single species here. For a particular ion species, the ion-

neutral collision frequency is calculated by summing the

collision frequencies between ions and each component of

neutral species, and the neutral-ion collision frequency is

calculated by the momentum conservation conditions. The

magnetic field is assumed to be a constant and B0¼ 0.6 G

corresponding to the Earth’s polar ionospheric field and

XOþ � 358 s�1. We use temperature T¼ 800 K to calculate

the cross sections of collisions according to Ref. 36. The

plasma densities are NEe� ¼ NEHþ þ NEOþ ¼ 104cm�3, and

the concentrations of Hþ and Oþ may be variable. The neu-

tral density qn ¼ 2:66� 10�15g=cm3 and the ionization frac-

tion a � 10�4. The corresponding Alfv�en speed is calculated

by VA ¼ B0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0

P
s6¼n qs

q
.

Figure 2 shows Re(k), column 1, Im(k), column 2, and

phase velocity Vph, column 3, as function of x for the L

mode in rows A, B, C, and D in which the percentage of Hþ

species, the total density, the charged species density, and

the neutral species density vary, respectively. In row A, the

Hþ concentration varies from 0% to 100%; in rows B, C,

and D, for NHþ ¼ NOþ , the total density, the charged species

density, and the neutral species density vary by orders of

10�1 � 105 from those in row A which are set as reference

values.

2. Results overview

In Fig. 2, when the densities of species are low, which

indicates weaker collisions when the collision frequencies

are less than the gyrofrequencies of ions, such as in row A

and in the low density regions of q=qE � 103; qi=qEi � 103,

and qn=qEn � 103 in rows B, C, and D, respectively, four

characteristic frequencies are shown in these panels. For

example, in column 1, two resonant frequencies for Oþ and

Hþ are shown, respectively, by the peaks with sharp color

change at x=XOþ ¼ 1 and x=XHþ ¼ 16, and two cutoff fre-

quencies are shown by the edges with sharp color change, of

which the lower one, xcl, is between XOþ and XHþ and the

upper one, xcu, is well above XHþ .

There are two stopbands, from XOþ to xcl and from XHþ

to xcu, in which the propagation is highly damped from col-

umn 2, while the phase velocities are faster than the speed of

light from column 3 in which the panels are shown in 2-D

plots. In the lower passband in which the wave frequency is

FIG. 2. Re(k) normalized by XOþ=VA, column 1, Im(k) normalized by XOþ=VA, column 2, and phase velocity Vph normalized by VA, column 3, as a function of

x for the Left-handed mode, assuming the plasma medium contains e�, Hþ, Oþ, and neutral species. Row A is for the Hþ concentration varying from 0% to

100%. Rows B, C, and D are, respectively, for the total species q, charged species qi, and neutral densities qn, respectively, varying from that in row A with

constant ion composition (50% Hþ and 50% Oþ).
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lower than XOþ , the phase velocities are equal to the Alfv�en

speed in frequencies between the ion-neutral collision fre-

quency and XOþ . For a plasma with low ionization fraction,

the ion-neutral collision frequency mentioned here is the

maximum of the collision frequencies between each ion spe-

cies with the neutral species, and the neutral-ion collision

frequency mentioned here is the minimum of the collision

frequencies between the neutral species with each ion spe-

cies. Between the neutral-ion collision frequency and the

ion-neutral collision frequency, the phase velocity decreases

when the wave frequency decreases because of the neutral

inertial loading.40 Below the neutral-ion collision frequency,

the phase velocity is constant and is lower than the Alfv�en

speed, indicating that the neutral species are completely

driven by collisions. In the middle pass-band between xcl

and XHþ , the phase velocities are about the Alfv�en speed,

and in the upper pass-band in which the wave frequency is

greater than xcu, the perturbations propagate as light waves

and are not affected by collisions.

With a larger density, shown in high density regions of

q=qE � 103; qi=qEi � 103, and qn=qEn � 103 in rows B, C,

and D, respectively, stronger collisions make it difficult for

charged particles to complete gyromotions. Therefore, the

resonances at XOþ and XHþ and lower cutoffs become

weaker, shown by less precipitous edges with more gradual

color changes. On the other hand, the change at the upper

cutoffs is not as strong because xcu is so large compared

with the collision frequencies that the waves do not feel any

collisions in one wave period.

In rows B and C, xcu increases when the electron

plasma frequency increases according to Eq. (29), forming a

striking feature at the lower right corner. As the wave fre-

quency is very large, much greater than the upper cutoff fre-

quency as shown in Eq. (29) and collision frequencies, the

charged particles do not feel any collisions or perturbations

of fields in one wave period. Therefore, under such a situa-

tion, waves propagate similar to that in free space. In rows A

and D, xcu remains the same when the electron density does

not change.

3. Influence of the variable collision frequencies

In addition to these general features, here are also some

detailed specific features and processes that are worth for in-

depth examinations. We now discuss the influence of the var-

iables in each row. In row A, when Hþ concentration varies

from 0% to 100% in the number density of ions, xcl

decreases from XHþ to XOþ but xcu does not change. With a

very small ionization fraction in this case, ion collision fre-

quencies are much lower than the gyrofrequencies of Oþ and

Hþ, shown in panel A3. Comparing to the collisionless case,

the wave propagation is highly damped in the stopbands,

shown in panel A2, with an extremely small but nonzero real

part of wavenumber, shown in panel A1, and the phase

velocity is faster than the speed of light which is shown at

wave frequency greater than xcu in panel A3. When the

wave frequency is between �Hþn and XOþ , the phase velocity

is equal to the Alfv�en speed, which means that the wave

propagation does not feel the existence of the neutral species

because the neutral collision frequencies are lower than the

wave frequency. Note that in panel A3, the phase velocity in

frequencies between 0:1XOþ and XOþ is slightly lower than

that at frequencies between �Hþn and 0:1XOþ . In the fre-

quency range below XOþ , the phase velocity decreases

slightly from the Alfv�en speed when the wave frequency

increases and decreases severely to a lowest value at XOþ .

But the velocity change is negligible and we can still treat

the phase velocity at frequencies between �Hþn and XOþ as

the Alfv�en speed. In frequencies lower than �Hþn, the phase

velocity decreases due to the neutral inertia loading, which

indicates that the neutral species start gaining some apprecia-

ble portion of energy by collisions mainly with ions and

being driven by magnetic perturbation.

In row B, when the total density increases (the concen-

trations of each species increase and the concentration ratios

remain the same), the low cutoff frequency does not change

according to Eq. (25), but the upper cutoff frequency

increases according to Eq. (29). From panel B3, when the

total density increases, the ion-neutral collision frequency

increases and the frequency range in which the phase veloc-

ity equals the Alfv�en speed becomes narrower. With very

high total density q/qE � 105, the collisions between ions

and neutral species are very strong, and the resonance at XOþ

and XHþ completely disappears, but there is a tendency for a

new resonant frequency, Xnew, to emerge, for example, the

peak at about 10�4 of XOþ in panel B1. Below Xnew, the

phase velocity is constant and about 100 times smaller than

the Alfv�en speed which indicates that the neutral species

could be completely driven by magnetic field. This phase

velocity equals the Alfv�en speed when using the total mass

density due to inertia loading, Vph ¼ B0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0qtotal
p

, as found

by Ref. 40. When the collisions increase, the stopbands also

change along with the disappearance of the resonances at

XOþ and XHþ and emergence of the new resonant frequency.

Basically, when the total density increases, the damping

increases in �in 	 x	 XOþ , increases relatively slightly in

�ni 	 x	 �in, and decreases in x	 �ni, shown in panel

B2 with a curved corner when q=qE � 105. But if

�ni � XOþ , shown in the region where q=qE � 105, the

damping decreases in wave frequencies below XOþ instead

of �ni when the total density increases.

In row C, when the density of the charged species

increases, the resonances at XOþ and XHþ become weaker,

which is similar to that in row B. When the charged species

density is large enough, i.e., qi=qEi � 105, the collisions

between Oþ and Hþ species are very strong, and a peak

emerges at x=XOþ � 100:1 in panel C1. In the region of

qi=qEi � 105 in panel C3, at the wave frequency below Xnew

instead of XOþ , the phase velocity equals the Alfv�en speed.

In wave frequencies between �ni and XOþ , the damping, dif-

ferent from that in row B, does not change much when the

charged species density increases. Since the neutral-ion colli-

sion frequencies are lower than the new emerged resonant

frequency in this situation, the damping increases in wave

frequencies between �ni and XOþ and decreases in wave fre-

quencies below �ni, shown at the top left corner in panel C2.

In row D, when the neutral density increases, the ion-

neutral collision frequency which is proportional to Nn
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increases but the neutral-ion collision frequency which is

proportional to Ni keeps the same. The resonances at XHþ

and XOþ disappear but there is no new resonant peak in panel

D1. When qn=qEn � 104, the phase velocity increases line-

arly when the wave frequency increases in the frequency

range below xcu. The damping increases linearly in the fre-

quency region below xcu, which is similar to that in row B

except when qn=qEn � 104.

4. Multi-species locked oscillation

In rows B and C of Fig. 2, the new resonant frequencies

emerge when the collisions between charged species and

neutral species, and between Oþ species and Hþ species, are

strong enough, respectively. The strong collisions between

two species or among more species could lock the oscillation

of them and make them move together. Therefore, when the

species are completely coupled, the new resonant frequency

is related to the combined mass and charge of the species,

written as

Xnew ¼
X

s

nsqs

� �
B
. X

s

msns

� �
: (30)

The coupling between plasma and neutral species by

collisions plays an important role in affecting motion of

plasma and could lower ion cyclotron frequency,19,40,41

which is similar to the new resonant frequency discussed in

Sec. III B 3. For a weakly ionized medium, the neutral-ion

collision frequency is much lower than the ion-neutral colli-

sion frequency. We have shown that when the wave fre-

quency is lower than the ion-neutral collision frequency,

which is lower than the gyrofrequencies of ion species, the

waves start to feel the existence of the neutrals so that the

phase velocity is lower than the Alfv�en speed due to the neu-

tral inertia loading. When the wave frequency is lower than

the neutral-ion collision frequency, the neutral species are

completely driven by the collisions so that the propagation

speeds of the perturbations of the neutral species and the

plasma are the same and the corresponding Alfv�en speed is

calculated with the total density of medium. When the

neutral-ion collision frequency is greater than Xnew, there is

a tendency to have a peak in the Re(k) � x plot at the new

resonant frequency. But this emerging peak is not as precipi-

tous as that at XOþ and XHþ because the neutral species and

the ion species are not at the same phase so that the rotating

electric field cannot accelerate the combined species per-

fectly. Only when the new resonant frequency is much lower

than the neutral-ion collision frequency, phase leading of the

plasma is about zero so that the neutral species and the

plasma can be treated as a single fluid and the peak could be

more precipitous. This characteristic frequency can be seen

in the dotted line, upper panel of Fig. 4 in Ref. 40. That is

the case with heaviest collisions. From that figure, we see

that the propagation velocity decreases significantly at aXi,

in which a denotes the ionization fraction and Xi denotes the

gyrofrequency of ions. In collisional MHD, because of the

collisions, which can cause a non-zero slippage between the

motions of the plasmas and neutrals, one will not be able to

obtain a solution with k ! infinity. Therefore, the propaga-

tion speed cannot go to zero, or in collisional MHD, the reso-

nance condition does not coincide with the non-propagation

condition. Mathematically, one may examine the dispersion

relation (9) in Ref. 40. Letting k! infinity and x finite, one

would not be able to find frequencies that satisfy both the

real and imaginary parts of the equation. More details of this

process will be reported elsewhere.

IV. A SIMPLE CASE: WAVE PROPAGATION
IN THE IONOSPHERE

We now apply our model to wave propagation in the ter-

restrial ionosphere. Based on the data from International

Reference Ionosphere (IRI) and MISI-E-90 Atmosphere

model at 0130 UT of January 1st, 2000, at 90
 latitude, 45


longitude, we study wave propagation along the magnetic

field from 100 km to 1000 km in the ionosphere with the gen-

eral dispersion relation.

Ohms law, which provides the relationship between the

current and electric field, has been derived under steady state

assumption. In our case, this is the limit when the frequency

goes to zero. The three-fluid case with one ion, one neutral,

and one electron species has been discussed extensively by

Refs. 40 and 42. In particular, the analysis of Ref. 42 shows

that the Pedersen and Hall conductivities are dependent of

frame of reference because the electric field depends on the

frame of reference, but the current does not. In the example

of the ionosphere, there are three possible frames of refer-

ence, the Earth frame, the neutral wind frame, and plasma

frame. Therefore, a simple introduction of conductivities to

correlate the current and electric field is problematic.

Figure 3 shows the altitude profiles of densities and tem-

peratures of species (top panel), and of Alfv�en speed and col-

lision frequencies among the species (bottom panel). The

magnitude of magnetic field is assumed as constant, B¼ 0.6

G. The plasma beta, the ratio of thermal and magnetic pres-

sures, is estimated to about or less than 10�4, which is much

less than 1. Therefore, the medium can be approximated as

cold plasma.

When electromagnetic perturbations propagate from the

magnetopause or magnetotail to the ionosphere, the parallel

incompressible Alfv�enic (intermediate) mode wave is the

most important for long-range coupling between two mag-

netically connected different media compared with the low

frequency compressible fast mode, which is most effective

in transferring energy in the latitudinal plane.5 In addition,

when the perturbations propagate in a narrow direction, fol-

lowing the bending of the field lines,43 the power of the per-

turbations is more easily preserved even after a long

distance, as for isotropic propagation the wave intensity may

decrease with 1/r2. Therefore, with mutual coupling of vari-

ous ion and neutral species via collisions, the incompressible

waves may need to have a better description on the propaga-

tion and damping.

We make some simplifying assumptions to reduce the

complexity of parameter-varying medium in our mathemati-

cal treatment but avoid losing much applicability. As we

focus on the parallel propagation of incompressible waves,
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we assume that the magnetic field is vertically down to the

ground, and the medium is stratified and locally uniform, of

which the approximation is valid when the wavelength is much

less than the gradient scale but may not be well suitable when

the wave length is comparable to or longer than the scale length

of the non-uniformity in the ionosphere. We ignore possible

nonlinear coupling between shear Alfv�en waves and slow

MHD waves in a cold plasma.44 We only consider that the

wave propagates in the region where the net external forces

and photochemical processes, and wave-particles interactions

are negligible as they are beyond the scope of the present study.

With these assumptions, the problem is reduced to a parallel

propagation of electromagnetic waves in a locally uniform col-

lisional cold plasma with multiple species. Even if some of the

assumptions may be restrictive for some potential applications,

the results of this study can still be used as a baseline to guide

the understanding of the controlling processes for coupling of

the magnetosphere with the ionosphere.

According to the data for each altitude in Fig. 3, we can

calculate the real part and the imaginary part of the wave-

number k for the R mode and L mode through the general

dispersion relation, Eq. (17), including all the multiple

species. Then, we calculate the phase velocity and the attenua-

tion depth as functions of the wave frequency, from about 0.5

mHz to about 5 MHz, for the two wave modes and show them

in Fig. 4. For Earth’s field of 0.6 G, XOþ is about 360 Hz, and

we use this frequency to scale the wave frequencies. Note that

because we do not solve a single wave propagation with height,

the properties do not represent the time history of a wave prop-

agating from either lower or higher altitude but represent the

properties of propagation at each altitude. Furthermore, because

there is a density gradient and the Alfv�en speed changes with

altitude, we employ the local uniform assumption according to

which the wave propagation velocity equals the phase velocity

evaluated using the local parameters.

In this section, we treat all the frequencies as positive.

For the R mode in panel a1, there is a narrow stopband

between Xe� and the upper cutoff frequency of the R mode

xR
cu. At frequencies greater than xR

cu, which is according to

the electron density at each altitude, the phase velocity equals

the speed of light, greenish in the color coding. If the wave is

from the magnetosphere, propagating downward, the wave in

the whole stopband range cannot reach the ground. Similarly,

the waves from ground transmitters cannot reach space in this

stopband along the magnetic field. In the frequency range

between XOþ and Xe� , when the wave frequency increases,

the phase velocity increases. This is the so called electron

whistler mode.38 In the frequency range below XOþ , the phase

velocity equals the Alfv�en speed between the ion-neutral col-

lision frequency and XOþ . Similar to Sec. III B 2, the ion-

neutral collision frequency particularly represents the maxi-

mum collision frequencies between an ion species and a neu-

tral species. Below the ion-neutral collision frequency, the

phase velocity decreases when the wave frequency decreases

because of the inertial loading of the neutral species. The R

mode waves below Xe� should be able to reach the ground.

This is consistent with the fact that inter-hemispheric propa-

gating whistler waves can be observed on the ground.

For the L mode in panel a2, the wide stopband at each alti-

tude, from XOþ to the upper cutoff frequency of the Left-handed

wave, xL
cu, which is lower than xR

cu from Eq. (29), contains two

very narrow passbands around XHeþ and XHþ , clearly shown in

panels a3 and a4, because of the existence of Heþ species above

about 280 km and Hþ species above about 250 km. These two

narrow passbands become wider at higher altitude because the

concentration of Hþ and Heþ species becomes larger. However,

the waves cannot propagate through the whole stopband from

one side of the ionosphere to the other, from XOþ to the peak

of the xL
cu around the ionospheric peak height frequency.

Reflection will occur on each side of the peak height. The L

mode waves of magnetospheric origin should not be observed

on the ground above XOþ . If the waves are generated within the

magnetosphere, e.g., at the plasmapause (L� 4), where the

gyrofrequency of Oþ in Hz is fOþ � 360=ð2p� 43Þ � 1 Hz. It

is possible that the Pc waves, magnetospheric waves can interact

with the electrons and ions of the magnetosphere, having an

upper frequency limit of 1 Hz are due to this effect.45,46

At about 100 km, the density of neutral species is so

large that the ion-neutral collision frequencies are much

larger than the gyrofrequencies of all individual ion species.

Therefore, there are no resonances at the gyrofrequency of

FIG. 3. Altitude profiles of species densities and temperatures (top panel), and of

collision frequencies (not all are shown) and Alv�en speed (bottom panel).
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each ion species because collisions completely disrupt the

gyromotion of charged particles. With very low ionization

fraction, the neutral-ion collision frequency is much lower

than the gyrofrequencies of all individual ion species.

Between the neutral-ion collision frequency and the ion-

neutral collision frequency, the phase velocity decreases

when the wave frequency decreases because of the inertia

loading by neutral species. In the frequency range shown in

the figures, the ion species and the neutral species do not act

as single fluid because of the very weak ionization. At alti-

tudes from 100 km to about 150 km, the neutral density

decreases by 3 or 4 orders of that at 100 km, when the ion-

neutral collision frequencies approach the resonant frequen-

cies of Oþ and NOþ which are the dominant species at this

altitude so that the resonances by these two ions species start

appearing. At altitudes from about 150 km to 300 km, the

neutral density decreases to one percent or one thousandth of

that at 150 km so that the ion-neutral collision frequency

FIG. 4. Phase velocity, the left column, and attenuation depth, the right column, as functions of the wave frequency over 100 km–1000 km for the right-handed

wave and the left-handed wave.
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decreases rapidly and the ion-neutral collision frequencies

become much lower than gyrofrequencies of ion species.

The nearby resonant peaks of NOþ and Oþ2 are so close that

they could merge because of collisions. The resonant peak of

Oþ appears above about 180 km, but the resonance of Nþ is

not visible in the figure because XNþ is so close to XOþ . At

altitudes above 320 km, NOþ and Oþ2 are essentially absent

and Oþ is the dominant ion species with small fractions

(0%–10%) of Hþ and Heþ. With much lower collision fre-

quencies at high altitudes, there are resonant frequencies at

the gyrofrequencies of Hþ and Heþ, shown as the thin ridges

in Fig. 4; even concentrations of Hþ and Heþ are low.

The attenuation depth, shown in the right column of Fig.

4, represents the absolute distance over which the wave

amplitude decreases by a factor 1/e, regardless of wavelength.

For the right-handed wave shown in panel b1, the attenuation

depth is extremely small in the stopband. In the frequency

range of the electron whistler mode, the attenuation depth

becomes larger at higher frequency in general. For a particular

wave frequency of the electron whistler mode, the attenuation

depth becomes smaller with denser electron density. At about

400 km, because the electron density is largest, the width of

green is largest. At about 100 km, the collisions are so strong

that the attenuation depth is shorter than that at different alti-

tudes in general. In the frequency range lower than XOþ , there

is a thin layer at about 100 km in which the ion-neutral colli-

sion frequency is greater than the XNOþ that is the dominant

ion species at this altitude. Because of the strong collisions,

effects of the motions of charged species are relatively weak

and then the attenuation depth more likely linearly increases

when the wave frequency increases. The attenuation depth,

above this thin layer, is generally greater at higher altitude. At

the same altitude, the attenuation depth is about the same at

wave frequencies greater than the ion-neutral collision fre-

quency. According to the discussion in Sec. III B 3, the attenu-

ation depth, at the same altitude, is greater when x � �in than

that when x � �in. Therefore, in Fig. 4, the color curves occur

on the line of the ion-neutral collision frequency. Compared

with that at altitude about 150 km, the attenuation depth in the

thin layer at 100 km is greater in the frequency range below

gyrofrequencies of ions, and is smaller in the frequency range

between XOþ and Xe� . Therefore, in panel b1, there is a small

blue region around 150 km at x=XOþ ¼ 10�2–100, in which

the attenuation depth is smallest.

For the left-handed wave shown in panel b2, in the stop-

band the attenuation depth is very small, and in the two pass-

bands related to the Heþ and Hþ species, shown in panel b3

and b4, the attenuation depth is relatively large. In frequencies

below XOþ , the attenuation depth above 200 km is similar to

that of the right-handed wave. Below about 150 km, the ion-

neutral collision frequency is very strong and the neutral-ion

collision frequency is very small so that in the frequency

range between these two collision frequencies, the attenuation

depth decreases linearly when the wave frequency decreases.

V. SUMMARY AND DISCUSSION

Based on the multi-fluid treatment and the collision the-

ory, we have derived a general dispersion relation for

electromagnetic waves (or incompressible waves neglecting

thermal pressure) propagating along the background mag-

netic field in a uniform partially ionized plasma with multi-

ple species. This general dispersion relation can cover a

board frequency range from MHD waves to light waves, and

can include arbitrary number of positively charged or nega-

tively charged species as well as neutral species.

In collisionless cases, by neglecting the collision terms in

our dispersion relation, we get the same conclusions with pre-

vious works. There are the same number of resonant frequen-

cies, cutoff frequencies, and stopbands with that of charged

species. The resonant frequencies are at the gyrofrequencies

of charged species. The lower cutoff frequencies between the

gyrofrequencies of ions do not change when the concentration

ratios of species do not change even though the concentra-

tions vary. The upper cutoff frequencies for a medium con-

taining electrons are related to the density of electrons.

The collisions between two species contribute to the cou-

pling process of them. Under the weak collision condition, in

which collision frequencies are smaller than the absolute value

of gyrofrequencies of charged species, the resonance at the

gyrofrequencies of charged species is weaker than that in the

collisionless situation. In the stopbands, wave propagates with

an extremely fast phase velocity and with strong damping that

can be calculated quantitatively from the general dispersion

relation. In general, the collisions between the charged species

with the neutral species contribute to the damping more than the

collisions among the charged species. When the ion-neutral col-

lision frequency increases, the damping increases in frequencies

between the ion-neutral collision frequency and the minimum

gyrofrequency of ions, increases relatively slightly in frequen-

cies between the neutral-ion collision frequency and the ion-

neutral collision frequency, and decreases in frequency under

the neutral-ion collision frequency. Under the stronger collision

conditions, species will couple more tightly so that a new reso-

nant frequency, depending on the total charges and total mass of

coupled species, may merge when the collision frequencies are

greater than the new emerge resonant frequency.

We have also applied the general dispersion relation to

study the propagation of incompressible waves from 100 km to

1000 km altitude of the ionosphere. Although we made several

simplifying assumptions, the dispersion relation illustrated

some properties related to the multiple species and collisions

reasonably, especially when the wavelength is shorter than the

gradient scale of ionosphere parameters. The features of phase

velocity and attenuation depth at each altitude are clearly

shown. In general, the phase velocity is slower than the Alfv�en

speed because of the inertia loading of neutral species in the

frequency range between neutral-ion collision frequency and

ion-neutral collision frequency, which occurs at wave fre-

quency lower than the gyrofrequency of Oþ. The attenuation

depth is lower at lower altitude with stronger collisions in the

passbands of both L mode and R mode waves.
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APPENDIX: DERIVATION OF THE GENERALIZED DISPERSION RELATION WITH FOUR SPECIES

The coefficient matrix in Eq. (16)

A½ � ¼

if1 þ X1 �
x2

p1

K2
�if12 �

X1x2
p2

X2K2
�if13 �

X1x2
p3

X3K2
�if14 �

X1x2
p4

X4K2

�if21 �
X2x2

p1

X1K2
if2 þ X2 �

x2
p2

K2
�if23 �

X2x2
p3

X3K2
�if24 �

X2x2
p4

X4K2

�if31 �
X3x2

p1

X1K2
�if32 �

X3x2
p2

X2K2
if3 þ X3 �

x2
p3

K2
�if34 �

X3x2
p4

X4K2

�if41 �
X4x2

p1

X1K2
�if42 �

X4x2
p2

X2K2
�if43 �

X4x2
p3

X3K2
if4 þ X4 �

x2
p4

K2

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

; (A1)

where Xs ¼ qsB0=ms and xps ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nsq2

s=ðe0msÞ
p

are the cyclotron frequency and plasma frequency, respectively, of species s,

�s ¼
P

t 6¼s �st; K2 ¼ �c2k2 þ x2; Xs ¼ 1� iHXs= x; fst ¼ �st=x. The determinant of matrix [A] in Eq. (A1) must be zero to

obtain nontrivial solutions. Here, we use 4 species to illustrate the derivation which can be extended to an arbitrary number of

species. Construct a matrix whose determinant is 1 ½P� ¼
1 �Q2

Q1

�Q3

Q1

�Q4

Q1
0 1 0 0

0 0 1 0

0 0 0 1

0
BBBB@

1
CCCCA. Here Qi ¼ qini. From the product the-

orem of matrix [Arfken, Weber 2006], we have jAjjPj ¼ jAPj. Then

if1 þ X1 �
x2

p1

K2
�if12 �

Q2

Q1

ðf1 þ X1Þ �if13 �
Q3

Q1

ðf1 þ X1Þ �if14 �
Q4

Q1

ðf1 þ X1Þ

�if21 �
X2x2

p1

X1K2
if2 þ X2 �

Q2

Q1

ð�if21Þ �if23 �
Q3

Q1

ð�if21Þ �if24 �
Q4

Q1

ð�if21Þ

�if31 �
X3x2

p1

X1K2
�if32 �

Q2

Q1

ð�if31Þ if3 þ X3 �
Q3

Q1

ð�if31Þ �if34 �
Q4

Q1

ð�if31Þ

�if41 �
X4x2

p1

X1K2
�if42 �

Q2

Q1

ð�if41Þ �if43 �
Q3

Q1

ð�if41Þ if4 þ X4 �
Q4

Q1

ð�if41Þ

																	

																	

¼ 0: (A2)

Decompose the determinant related to the first column into two terms

if1 þ X1 �if12 �
Q2

Q1

ðf1 þ X1Þ �if13 �
Q3

Q1

ðf1 þ X1Þ �if14 �
Q4

Q1

ðf1 þ X1Þ

�if21 if2 þ X2 �
Q2

Q1

ð�if21Þ �if23 �
Q3

Q1

ð�if21Þ �if24 �
Q4

Q1

ð�if21Þ

�if31 �if32 �
Q2

Q1

ð�if31Þ if3 þ X3 �
Q3

Q1

ð�if31Þ �if34 �
Q4

Q1

ð�if31Þ

�if41 �if42 �
Q2

Q1

ð�if41Þ �if43 �
Q3

Q1

ð�if41Þ if4 þ X4 �
Q4

Q1

ð�if41Þ

																	

																	

þ

�
x2

p1

K2
�if12 �

Q2

Q1

ðf1 þ X1Þ �if13 �
Q3

Q1

ðf1 þ X1Þ �if14 �
Q4

Q1

ðf1 þ X1Þ

�
X2x2

p1

X1K2
if2 þ X2 �

Q2

Q1

ð�if21Þ �if23 �
Q3

Q1

ð�if21Þ �if24 �
Q4

Q1

ð�if21Þ

�
X3x2

p1

X1K2
�if32 �

Q2

Q1

ð�if31Þ if3 þ X3 �
Q3

Q1

ð�if31Þ �if34 �
Q4

Q1

ð�if31Þ

�
X4x2

p1

X1K2
�if42 �

Q2

Q1

ð�if41Þ �if43 �
Q3

Q1

ð�if41Þ if4 þ X4 �
Q4

Q1

ð�if41Þ

																			

																			

¼ 0: (A3)

For the first term in (A3), we perform a reverse operation of [P], multiplying [P]�1 on the right side, to obtain

if1 þ X1 �if12 �if13 �if14

�if21 if2 þ X2 �if23 �if24

�if31 �if32 if3 þ X3 �if34

�if41 �if42 �if43 if4 þ X4

								

								
: (A4)
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For the second term, collect the factor � c2l0

K2B0
Q1 in the first column to get

� c2l0

K2B0

Q1 �

X1 �if12 �
Q2

Q1

ðf1 þ X1Þ �if13 �
Q3

Q1

ðf1 þ X1Þ �if14 �
Q4

Q1

ðf1 þ X1Þ

X2 if2 þ X2 �
Q2

Q1

ð�if21Þ �if23 �
Q3

Q1

ð�if21Þ �if24 �
Q4

Q1

ð�if21Þ

X3 �if32 �
Q2

Q1

ð�if31Þ if3 þ X3 �
Q3

Q1

ð�if31Þ �if34 �
Q4

Q1

ð�if31Þ

X4 �if42 �
Q2

Q1

ð�if41Þ �if43 �
Q3

Q1

ð�if41Þ if4 þ X4 �
Q4

Q1

ð�if41Þ

															

															

: (A5)

Then, decomposing it related to the first column, we have

� c2l0

K2B0

Q1 � X1 �

if2 þ X2 �
Q2

Q1

ð�if21Þ �if23 �
Q3

Q1

ð�if21Þ �if24 �
Q4

Q1

ð�if21Þ

�if32 �
Q2

Q1

ð�if31Þ if3 þ X3 �
Q3

Q1

ð�if31Þ �if34 �
Q4

Q1

ð�if31Þ

�if42 �
Q2

Q1

ð�if41Þ �if43 �
Q3

Q1

ð�if41Þ if4 þ X4 �
Q4

Q1

ð�if41Þ

												

												

8>>>>>>><
>>>>>>>:

�X2 �

�if12 �
Q2

Q1

ðf1 þ X1Þ �if13 �
Q3

Q1

ðf1 þ X1Þ �if14 �
Q4

Q1

ðf1 þ X1Þ

�if32 �
Q2

Q1

ð�if31Þ if3 þ X3 �
Q3

Q1

ð�if31Þ �if34 �
Q4

Q1

ð�if31Þ

�if42 �
Q2

Q1

ð�if41Þ �if43 �
Q3

Q1

ð�if41Þ if4 þ X4 �
Q4

Q1

ð�if41Þ

												

												
þ ð…Þ

9>>>>>>>=
>>>>>>>;
: (A6)

For simplicity, Eq. (A6) is not completely shown. A trick is rewriting (A6) as

� c2l0

K2B0

� X1 �

Q1 Q2 �
Q2

Q1

Q1 Q3 �
Q3

Q1

Q1 Q4 �
Q4

Q1

Q1

�if21 if2 þ X2 �
Q2

Q1

ð�if21Þ �if23 �
Q3

Q1

ð�if21Þ �if24 �
Q4

Q1

ð�if21Þ

�if31 �if32 �
Q2

Q1

ð�if31Þ if3 þ X3 �
Q3

Q1

ð�if31Þ �if34 �
Q4

Q1

ð�if31Þ

�if41 �if42 �
Q2

Q1

ð�if41Þ �if43 �
Q3

Q1

ð�if41Þ if4 þ X4 �
Q4

Q1

ð�if41Þ

																	

																	

8>>>>>>>>>>>><
>>>>>>>>>>>>:

þX2 �

f1 þ X1 �if12 �
Q2

Q1

ðf1 þ X1Þ �if13 �
Q3

Q1

ðf1 þ X1Þ �if14 �
Q4

Q1

ðf1 þ X1Þ

Q1 Q2 �
Q2

Q1

Q1 Q3 �
Q3

Q1

Q1 Q4 �
Q4

Q1

Q1

�if31 �if32 �
Q2

Q1

ð�if31Þ if3 þ X3 �
Q3

Q1

ð�if31Þ �if34 �
Q4

Q1

ð�if31Þ

�if41 �if42 �
Q2

Q1

ð�if41Þ �if43 �
Q3

Q1

ð�if41Þ if4 þ X4 �
Q4

Q1

ð�if41Þ

																	

																	

þ ð…Þ

9>>>>>>>>>>>=
>>>>>>>>>>>;

: (A7)

Again, (A7) is not shown completely. Notice that the sign in front of X2 is now positive. Perform reverse operation [P]�1 on

the right side to each term in (A7), similar to (A4). Then, combine (A5) and (A7)

if1 þ X1 �if12 �if13 �if14

�if21 if2 þ X2 �if23 �if24

�if31 �if32 if3 þ X3 �if34

�if41 �if42 �if43 if4 þ X4

								

								
¼ c2l0

K2B0

� X1 �

Q1 Q2 Q3 Q4

�if21 if2 þ X2 �if23 �if24

�if31 �if32 if3 þ X3 �if34

�if41 �if42 �if43 if4 þ X4

								

								

8>>><
>>>:

þX2 �

f1 þ X1 �if12 �if13 �if14

Q1 Q2 Q3 Q4

�if31 �if32 if3 þ X3 �if34

�if41 �if42 �if43 if4 þ X4

								

								
þ ð…Þ

9>>=
>>;
:

(A8)

According to Cramer’s Rule,47 (A8) changes to
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ð�c2k2 þ x2ÞB0

c2l0

¼ X1 X2 X3 X4

� � D1

D2

D3

D4

0
BB@

1
CCA; (A9)

where ðD1 D2 D3 D4 ÞT satisfy

if1 þ X1 �if12 �if13 �if14

�if21 if2 þ X2 �if23 �if24

�if31 �if32 if3 þ X3 �if34

�if41 �if42 �if43 if4 þ X4

0
BBBB@

1
CCCCA

T

�

D1

D2

D3

D4

0
BBBB@

1
CCCCA ¼

Q1

Q2

Q3

Q4

0
BBBB@

1
CCCCA: (A10)

Then, we can rewrite Eq. (A9) to obtain the final dispersion

relation

ð�c2k2 þ x2ÞB0

c2l0

¼ X1 X2 X3 X4

� �

�

if1 þ X1 �if12 �if13 �if14

�if21 if2 þ X2 �if23 �if24

�if31 �if32 if3 þ X3 �if34

�if41 �if42 �if43 if4 þ X4

0
BBBBB@

1
CCCCCA

T
0
BBBBBB@

1
CCCCCCA

�1

�

Q1

Q2

Q3

Q4

0
BBBBB@

1
CCCCCA
: (A11)

Equation (A11) is in its general form, which can be rewritten

in the same form as shown in Eq. (17).
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