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Abstract

The numerical integration of particle trajectories in curved spacetimes is fundamental for obtaining realistic models
of the particle dynamics around massive compact objects such as black holes and neutron stars. Generalized
algorithms capable of handling generic metrics are required for studies of both standard (Schwarzschild and Kerr
metrics) and nonstandard (e.g., Schwarzschild metric plus nonclassical perturbations or multiple black hole
metrics) spacetimes. The most commonly employed explicit numerical schemes (e.g., Runge—Kutta) are incapable
of producing highly accurate results at critical points, e.g., in the regions close to the event horizon where gravity
causes extreme curvature of the spacetime, at an acceptable computational cost. Here we describe a generalized
algorithm for the numerical integration of time-like (massive particles) and null (photons) geodesics in any given
3 + 1 split spacetime. We introduce a new, exactly energy-conserving implicit integration scheme based on the
preservation of the underlying Hamiltonian, and we compare its properties with a standard fourth-order Runge—
Kutta explicit scheme and an implicit midpoint scheme. We test the numerical performance of the three schemes
against analytic solutions of particle and photon orbits in Schwarzschild and Kerr spacetimes. We also prove the
versatility of our framework in handling more exotic metrics, such as Morris—Thorne wormholes and quantum-
perturbed Schwarzschild black holes. The generalized approach is also discussed in the perspective of future
extensions to more complex particle dynamics, e.g., the addition of the Lorentz force acting on charged particles,

which allows for test particle diagnostics in GRMHD simulations.

Key words: gravitation — methods: numerical — relativistic processes — stars: black holes — stars: imaging

1. Introduction

To model the physics of accreting black holes and neutron
stars, an accurate description of particle motion in general
relativity (GR) is essential. In the absence of electromagnetic
(EM) forces, particles follow geodesic paths in curved
spacetimes. Geodesic integrators are gaining much attention
in the context of ray-tracing simulations (Kuchelmeister
et al. 2012; Pu et al. 2016; Vincent et al. 2016; Chan
et al. 2017) to describe radiation effects in general relativistic
magnetohydrodynamic (GRMHD) simulations (e.g., McKinney
et al. 2014; White et al. 2016; Narayan et al. 2017; Porth
et al. 2017), as well as to compare to observational results
(Doeleman et al. 2012; Boehle et al. 2016; Pu et al. 2017). To
this end, several approaches and tools are available to the
community. Elaborate graphical interfaces even allow for
interactive 3D representations of geodesic bundles in curved
spacetimes (Miiller & Grave 2010), while optimized parallel
algorithms result in extremely fast simulations on modern
architectures (Chan et al. 2017). However, modern observational
developments in the study of the very nature of compact objects,
such as black holes, call for further exploration, and possibly
refinement, of the available numerical methods. In this paper, we
present an optimized formulation of a generalized algorithm
addressing (i) the need to consider generic spacetimes, including
exoftic spacetimes differing from the classical Schwarzschild and
Kerr metrics; (ii) the possibility of extending the same algorithm
to include external (conservative) forces, e.g., the Lorentz force
on charged particles, to trace particles in EM fields (e.g., from
GRMHD simulations); and (iii) the need to retain the highest

possible accuracy in the results with a reasonable computa-
tional cost.

The geodesic equations of motion are a set of four (in four-
dimensional spacetime) second-order, nonlinear differential
equations. Due to their nature, the form of the equations depends
on the underlying spacetime metric. Many codes carry out
calculations specialized for one single metric or utilize analytic
solutions where these are available (e.g., for Schwarzschild and
Kerr spacetimes). Although this approach certainly improves the
resulting performance, it also limits the freedom to apply a given
algorithm to different physical regimes (e.g., adding spin to a
Schwarzschild metric), handle perturbations of standard space-
times, or deal with numerically defined metrics or, in general,
nonintegrable spacetimes. Recent works on ray-tracing and
GRMHD calculations indeed considered nonstandard spacetimes
(Younsi et al. 2016; Mizuno et al. 2018), in view of comparing
upcoming observations with simulation results. In this case, a
general approach to the solution of the geodesic equation is
required, since it allows for simulations in different spacetimes
without altering the code structure, and it deals with those metrics
where analytic solutions are not available. When computational
schemes are used to solve the geodesic equations of motion, a
common choice is the application of explicit numerical methods,
such as high-order Runge—Kutta integrators (Miiller & Grave
2010; Vincent et al. 2011; Baubock et al. 2012; Psaltis &
Johannsen 2012; Chan et al. 2017). These methods are generally
very accurate for evolving neutral massive particles and photons.
They are, however, characterized by intrinsic nonconservation of
the invariants of motion, which results in a secular, unphysical
energy drift that typically compromises the long-term stability of
the overall scheme. Moreover, in the plasma surrounding compact
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objects, extermnal forces acting on charged particles, e.g., due to
EM fields, have to be taken into consideration. Nonsymplectic/
geometric methods, e.g., explicit Runge—Kutta, are then generally
discarded due to their intrinsic unbounded accumulation of energy
errors, as well as the incapability of accurately grasping periodic
motion in such fields over long times (Qin et al. 2013).

In this work, we present a proof-of-concept implementation
of a new geodesics integrator. In our formulation, we have the
freedom of resolving the motion of free particles (i.e., particles
traveling on geodesics) in any given spacetime, provided that
the 3 4+ 1 split metric is available as input. We include the
option of using a Runge—Kutta method of desired order, as well
as a second-order implicit midpoint scheme. Additionally, we
introduce a new second-order implicit scheme, which is an
extension of the energy-conserving special relativistic implicit
integrator described in Lapenta & Markidis (2011) and
Ripperda et al. (2018). The new scheme is based on the
discretization of the underlying Hamiltonian that describes the
particle motion in curved spacetime. This Hamiltonian method
is energy-conserving (to round-off precision) by design. We
show that this property allows for treating spacetime regions
that are pathological to the standard Runge—Kutta and implicit
midpoint methods without extreme reduction of the integration
step. Longtime stability of the simulated trajectories 1is
achieved, allowing for the calculation of photon and particle
orbits over arbitrarily long periods. The resulting numerical
scheme retains a highly general character, such that future
inclusions of external forces (e.g., the Lorentz force for charged
particles) remain straightforward, and will be treated in follow-
up works.

All methods are implemented such that they can handle any
metric spacetime in four dimensions. We test the three
integrators in standard spacetimes describing black holes, like
the Schwarzschild metric for static black holes and the Kerr
metric for spinning black holes. As an example of the
versatility of the framework presented here, we also integrate
geodesics in a Morris—Thorne wormhole, a Reissner—
Nordstrom dihole, and a Schwarzschild metric that is perturbed
by microscopic effects. This provides the opportunity to
compare trajectories in such exotic spacetimes and potentially
obtain observables for upcoming results from the Event
Horizon Telescope (EHT). Our results are comparable to
previous works that presented frameworks for the integration of
geodesics (Chan et al. 2017; Takahashi & Umemura 2017;
Bronzwaer et al. 2018; MoScibrodzka & Gammi 2018).
However, here we introduce the flexibility of extending our
code to include external (conservative) forces, and we focus on
advanced numerical methods that attain energy conservation.

In Section 2, we briefly review the set of equations and the
3 + 1 split formulation adopted in this work. In Section 3, we
describe all numerical methods and their characteristics. In
Section 4, we test the accuracy of all methods in the two most
commonly used spacetimes: the Schwarzschild metric, describ-
ing static black holes, and the Kerr metric, describing spinning
black holes. We evolve photons and massive particles on
analytically known geodesic orbits and compare errors on the
position and energy of the particle. As a proof-of-principle for
future developments, we also show applications in more exotic
spacetimes that are candidates to describe quantum effects
around black holes in Section 5. In Section 6, we summarize
our results and conclusions and give an outlook on future work.
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2. General Relativistic Test Particles

The motion of test particles in GR is described by the
geodesic equation (see, e.g., Carrol 2004),

2414 A o
d=x Kgdidi -0, (1)
dr? dr dr
where . = 0, 1, 2, 3, and F/;U is the Christoffel connection for a
Riemannian metric. The derivative of the four-position x* with

respect to an affine parameter 7 is the contravariant four-
velocity,

dx#

dr

where we choose, for the remainder of this work, ¢ := x” and

hence u® = dt/dr in units where ¢ = 1. The spatial

components of the four-position are indicated as x’, with i =
1,2, 3.

In the context of numerical integration, it is common practice

to rewrite the equations above in the framework of the

Amowitt-Deser—Misner (ADM) formalism (e.g., Rezzolla &

Zanotti 2013). In this formulation, any metric can be written in
the form

= u/l’ (2)
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where « is the lapse function, ﬂi is the shift three-vector, and
7;j is the spatial part of g,,. The procedure through which the
so-called 3 + 1 split metric in Equation (3) is obtained results
in a foliation of spacetime into space-like hypersurfaces of
constant coordinate time ¢. The corresponding inverse metric
reads

B —1/042 ,6”'/042

\Bi/a? A - gigifa?f
where vY is the algebraic inverse of Vs> and 3 = ”yijﬂj. In
this work, we choose a (—, 4, +, +) signature for the metric

in Equation (3). Finally, the corresponding line element is
written

ds? = —a2d? + v;(dxi + Bidr)(av + Bldr), (5)

g )

hence it is generally straightforward to obtain the expressions
of a, 3, and 7y;; from the standard formulation of any common
metric, e.g., the Schwarzschild or Kerr metrics.

With the definitions above, the geodesic Equation (1) can be
rewritten in terms of first-order evolution equations in the
variables x* and u; = g, u*, such that

dxt LU ;
— =L _ gl 6
=728 ©)
—:—au@ia—i—u&-k——i/k, 7
- 5 — 00 ™
where
' = (VRupuy + )2 /a, 8)

with € = 0 for null geodesics (i.e., photon paths) and € = 1 for
time-like geodesics (i.e., free-falling particle orbits).

The system of Equations (6) and (7) is suitable for numerical
integration in a number of ways. First, as noted above, this is a
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system of first-order equations hence reducing the complexity
of the required numerical scheme. Second, there is no need to
integrate temporal components, reducing the number of
equations from eight to six, thanks to the definition of u° from
Equation (8). Furthermore, it can be shown that such a
definition of u° enforces the conservation of the norm of the
four-velocity, u* u, = —e. Finally, integrating in coordinate
time 7 rather than in proper time 7 makes it easier to embed the
motion of test particles in the time evolution of global fields,
e.g., as obtained from GRMHD codes such as BHAC (Porth
et al. 2017). Aside from the numerical methods presented in the
next sections, in this work, we aim at also testing the versatility
of this formulation applied to different spacetimes, including
nonstandard ones. In this context, we purposely generalize the
implementation of the numerical schemes such that, given
the spacetime functions «, 3, and v, the basic steps of the
algorithm remain fixed.

In this work, we consider stationary metrics with no
dependence on coordinate time #; hence, o, § ! and ”yij are
functions of x’ only. As a direct consequence, in all cases,
there exists at least one Killing vector K = 9, representing the
symmetry of the metric with respect to translations in time.
This defines a conserved quantity —K* u,, = E, which we label
as the energy of the test particle. By definition, since K =
(1, 0, 0, 0), we have the correspondence £ = —u,. Conserva-
tion of energy characterizes all metrics discussed in the next
sections and is an important physical aspect that has to be
ensured as closely as possible in numerical integration of
particle and photon trajectories. Other conserved quantities
may or may not exist, depending on the metric considered.

3. Numerical Schemes

In this section, we recap the main properties of the numerical
integrators considered in this work. We also introduce an
energy-conserving, second-order implicit scheme derived from
the Hamiltonian of the system of Equations (6) and (7). A brief
discussion of the computational cost of the three schemes can
be found in Appendix B.

In this work, we focus on simulating free particles
traveling on geodesics, thus neglecting external forces.
However, it is important to keep the algorithm as general as
possible, in the perspective of extending to more compli-
cated physics. In particular, in the context of particle-based
simulations of kinetic dynamics (Spitkovsky 2005) or test
particles in relativistic macroscopic flows (Ripperda
et al. 2017), EM forces must be included. Hence, in our
analysis of integration schemes, we must take into account
the behavior of each algorithm in the context of the
aforementioned fields of application, in addition to pure
geodesic motion.

3.1. Explicit Integration Schemes

Explicit methods for ordinary differential equations (ODEs)
come in many different forms and present a number of
advantageous properties, the most remarkable being their
capability of advancing the numerical solution in a finite
number of non-iterative steps. The most widely used explicit
method in scientific computing is the fourth-order Runge—Kutta
method (RK4; see, e.g., Press et al. 1988). For a discretization
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in time ¢ of an ODE problem such as

yn+1 _yn

—y =
T J&y@®), ©)

the RK4 scheme advances the variable y(f) by means of the
steps

k=A@, y"),

ky=Ag "+ At/2, y" + ki /2),
ks=Aif (" + At/2, ¥" 4+ k2 /2),
ka=Af "+ AL Y + k3),

1
yrl=yn 4 g(k1 + 2ky 4+ 2ks + k4). (10)

At each time step, one needs to evaluate the right-hand side of
Equation (9) four times. The resulting error in y(f) in the
computed solution is of order O(At5 ).

All explicit methods introduce, aside from errors of a given
order in the solution variable y(), errors in other properties of
the real dynamical system described by the associated
differential equation. In particular, explicit methods are
generally (but not in all cases) incapable of preserving first
integrals of the system, such as the associated Hamiltonian, if
this exists. Another well-known issue of explicit schemes is the
nonconservation of phase-space volume (see, e.g., Hairer
et al. 2006; Feng & Qin 2010). The error in these quantities
decreases if the time-step size is reduced, but it inevitably
accumulates over time. For some cases, especially over long
times, the resulting computed solution becomes unacceptably
inaccurate. However, for a widely used method as the RK4
scheme introduced above, the scaling of errors with the
reduction of Atr is satisfactory enough to be generally
acceptable. Refinements of standard explicit methods, such as
adaptive step control (e.g., Gear 1971), are also widely
employed, although the overall computational cost is increased.
Furthermore, whenever an explicit method of a given order
proves unsatisfactory, one has the freedom to increase the order
of the method at the cost of complicating the solution
procedure.

3.2. Symplectic Implicit Schemes

Whenever standard explicit schemes are not suitable for a
specific problem, more advanced, often implicit integration
schemes prove necessary. Here we consider addressing the
issue of preserving trajectories in phase space, a feature that
simple explicit schemes such as the RK4 scheme often lack.
The conservation of phase-space properties (trajectories and
volume) characterizes symplectic schemes. A symplectic
integration scheme is such that it conserves a “modified
Hamiltonian” (Springel 2014) that differs from the real
Hamiltonian of the considered differential equation. Because
this holds regardless of the time step, the long-term behavior of
such integrators is generally superior to nonsymplectic explicit
schemes. Advanced explicit symplectic schemes (Liu et al.
2016), as well as implicit schemes with adaptive step size
control (Seyrich & Lukes-Gerakopoulos 2012), have been
successfully applied to Hamiltonian systems describing particle
motion in curved spacetimes. Despite the order of accuracy,
however, symplectic schemes present essentially the same
characteristics, with long-term conservation of the first integrals
of motion to a level of accuracy that scales with the time step
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and the order of the method. Hence, for simplicity, here we
restrict our comparisons to the implicit midpoint rule (IMR)
discretization scheme, which is the simplest second-order
implicit symplectic integrator (Feng 1986). Applied to the
example ODE (Equation (9)), the scheme advances the variable
¥(t) according to

an

yrtl = yn 4 Alf(ﬂl + [n+1’ v+ yn+1)’
2 2

which in general involves the solution of a nonlinear equation.
In some very specific cases, the equation above is invertible,
and one can solve for y"Jr1 explicitly. For complicated systems
of more variables, such as Equations (6) and (7) considered
here, a common approach is to employ a Newton iterative
scheme to address this task (see, e.g., Press et al. 1988).

This approach is clearly more computationally expensive,
but it does bring the benefit of unconditional stability and
symplecticity, provided that the iterative solution converges up
to the prescribed tolerance. First integrals such as the associated
Hamiltonian are not conserved exactly, but the error is bounded
in time and of order 0(At3) (Springel 2014). Moreover, the
implicit nature of the scheme allows for larger Ar without
compromising stability. Hence, in the long term, these two
features make a second-order implicit scheme such as the IMR
superior to a higher-order explicit scheme such as the RK4.

3.3. Energy-conserving Scheme Based on a Hamiltonian
Formulation

Despite the generally good properties of symplectic schemes,
in some very demanding cases, the lack of exact energy
conservation can be detrimental for the accuracy of the results.
In such situations, the only solution is the use of a scheme that
does conserve energy exactly. Such schemes have been widely
studied and applied to systems characterized by a separable
Hamiltonian (Feng & Qin 2010). However, for more general
cases, the construction of an exactly energy-conserving scheme
can be complex. For the motion of charged particles in EM
fields in special relativistic regimes, it has been shown that a
slightly modified version of the IMR scheme is energy-
conserving (Ripperda et al. 2018). However, it is not
straightforward to extend the same argument to our case of
interest, given the difference in the governing equations and the
much higher complexity of particle motion in general
relativistic contexts. Here we employ physical arguments in
order to construct a second-order, Hamiltonian-preserving
scheme suitable for the system of Equations (6) and (7) from
physical arguments.

The Hamiltonian for stationary metrics is defined as (see,
e.g., Gourgoulhon 2012)

Hx, w) = a(Vruue + e)'/? — Guy, (12)

where x = (xl, 2, x3) and u = (u, u», us). It is easy to see
that 1 represents the energy of a free particle traveling along a
geodesic. Consider again the Killing vector, K = 0,, that
characterizes any stationary spacetime. Killing’s equation
implies that the quantity

Kruy, = ug (13)
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is conserved along the particle trajectory. The zeroth comp-
onent of the covariant four-momentum is

4o = —a® + Bl (14)

and via the definition of u° = (/* up g+ et 2/a, we
retrieve |uo| = |H|.

The result above suggests that any discrete integration
scheme capable of conserving the Hamiltonian (Equation (12))
is also an energy-conserving scheme. Constructing such a
scheme, however, is nontrivial. It is straightforward to derive
the equations of motion by differentiating H, such that

dx'  OH(x,u) ayVu;

= — — gl 15
dt ou; (vfku,-uk + e)l/2 g 15

1 autjity

% .
s AN WS, a6)
which are precisely Equations (6) and (7) above. For the
equivalent discrete time integration scheme, one must ensure
that the total variation of H remains zero.

The key to achieving energy-conserving discretization is to
consider how the variation of the Hamiltonian vanishes in the
continuous case. Via the chain rule,

dH (X', )  OH(x, w) dx' = OH(x,u) du
dt T o ar ou;  dt
duw; dxt dxt du;
T dr dr o ar dt
=0. (17)

The exact same argument can be extended to the discretized
equations. Hence, one can infer that the discretized system

A_xi _ AH(x,u)

18

At Au; e
By Al 0 (19)
At Ax?

will satisfy the above condition, leading to AH(x, u)/At = 0,
provided that the discretized right-hand sides of Equations (18)
and (19) are defined such that this condition is fulfilled.

Numerical schemes derived from a discrete Hamiltonian have
been applied extensively in many contexts, from molecular
dynamics to the modeling of musical instruments (e.g., Tuckerman
& Martyna 2000; Chatziioannou & van Walstijn 2015). In this
case, the Hamiltonian is in fact a function of six variables (three
position components and three momentum components). It is clear
from the equations above that, while the differentiation with
respect to one variable is straightforward, it is not trivial to
appropriately average each right-hand side of the equations with
respect to the other variables,

; ; — +1 —
xl,n+1 - -xl’n _ H(x7 uin El ulv um) - H(x7 ui”v ulv um)
At uinJrl _ uin

L,m=1i,

’

(20)
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where H indicates some average telative to the variables that
are not affected by the differentiation. One such averaging for
2D systems can be found in Feng & Qin (2010). A
straightforward extension to 3D developed with the same
philosophy can be found in Appendix A. There, we also
discuss some peculiar aspects of the solution procedure.

The discrete equations above represent a new system of six
nonlinear, coupled, first-order differential equations that is
more complex than the IMR scheme (Equation (11)). In
general, an iterative solution must be employed. The additional
complexity comes at the benefit of attaining exact energy
conservation regardless of the system parameters such as Af,
provided that the iteration is carried on up to convergence to
machine precision.

A remarkable feature of this scheme is the absolute freedom
in the definition of the Hamiltonian H. This implies that for
systems characterized by a Hamiltonian different from that of
Equation (12), the algorithm retains its energy (or, in general,
first integrals) conservation properties. Thus, the extension to
more complicated physical situations becomes straightforward,
provided that the corresponding Hamiltonian formulation is
available.

4. Tests

In this section, we test the methods described above with the
aim of assessing both the accuracy of the results in a number of
physically meaningful situations and the versatility of our
implementation to handle generic spacetimes. Everywhere in
the next subsections, we employ geometrized units with
¢ = G = 1, such that time, mass, and distances are measured
with the same units. The RK4, IMR, and Hamiltonian schemes
are tested, and the results are compared for standard spacetimes
(Schwarzschild and Kerr). Note that for both metrics, the
geodesic equation can be solved analytically; see, e.g.,
Chandrasekhar (1984). This provides a powerful theoretical
ground to test the accuracy of our implementation against
known theoretical results. Although analytic solutions are
available for these spacetimes (in terms of elliptic integrals), in
ray-tracing algorithms for GRMHD frameworks, they are
rarely used (e.g., Chan et al. 2017; Porth et al. 2017), due to
both the need of evaluating complicated expressions involving
nonelementary functions (which makes the scheme error-
prone) and the poor versatility of the resulting algorithm. In this
regard, using numerically calculated solutions is often faster
and more flexible, e.g., when introducing perturbations to such
standard spacetimes, for metrics that do not possess analytic
solutions and for nonanalytic metrics defined on spatial grids.

4.1. Tests in Schwarzschild Spacetime

The Schwarzschild solution to Einstein’s equations describes
a metric outside of a spherically symmetric body with a total
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mass M in vacuum,

ds> :—(1 - r—S)dﬂ + (1 - r—S)l
r r

x dr? + r2d0* + r? sin® 0de?, (22)

where rg = 2M is the Schwarzschild radius. The metric
presents a coordinate singularity at the event horizon at
r = rs and a physical singularity at r = 0. For v — o0, the
Schwarzschild metric approaches Minkowski spacetime.

The metric possesses two conserved quantities: the energy E
and a conserved angular momentum L due to the symmetry
with respect to rotations in . The motion of test particles in
Schwarzschild spacetime restricted to the § = /2 plane can be
completely described by an effective potential (see, e.g.,
Carrol 2004),

+= — g (23)

and the conserved energy E. Since in the plane § = 7/2, the
number of degrees of freedom is equal to the number of
conserved quantities, the second-order geodesic Equation (1) is
integrable. This feature is often used in geodesic integrators
that take advantage of the symmetries of the metric to simplify
the equations to be solved (see, e.g., Johannsen & Psaltis 2010
or Johannsen 2013). In our implementation, however, there is
no need to customize the integration for a specific metric, since
the procedure is generally applicable to any 3 + 1 split
spacetime.

The relativistic effective potential in Equation (23) describes
particle trajectories that cannot be represented by the corresp-
onding Newtonian potential. The path followed by particles is
“open” if the central object deviates the motion from a straight
line without keeping the particle on closed (periodic) orbits.
Closed orbits, instead, correspond to the particle being trapped
inside a characteristic potential well, determined by the
conserved angular momentum L = u,,. For massless particles,
the potential well degenerates to a point that identifies an
unstable circular orbit at r = 3rg/2.

The Schwarzschild metric from Equation (22) is the simplest
spherically symmetric solution to Einstein’s equations of GR in
static, vacuum spacetime. Despite its simplicity, it represents a
reliable model for the theoretical study of distant, nonspinning
massive objects that that are not directly observable. Hence, it
is a widely used tool for the study of the properties of black
holes, e.g., their gravitational-lensing effects (Miiller 2008).
Simulations aimed at modeling the deflection of light rays
caused by massive objects require the numerical integration of
null geodesics. For massive particles, the motion is described
by time-like geodesics. For accretion flows around, e.g.,
neutron stars and black holes, modeling the motion of massive
(often charged) particles is essential to gain insight in the
microscopic dynamics of accretion disks and astrophysical
outflows like jets and flares.

4.1.1. Deflection of Light and Ray Tracing

Ray tracing of light coming from very distant objects allows
us to compare future observations with predictions from the
current models. The usual ray-tracing approach consists of
integrating the photon paths backward, from the observer’s
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Figure 1. Deflection of light due to a Schwarzschild black hole. Light rays
originating at the boundary of the box at (20, 0) under different angles are
deflected, orbit, or plunge into the compact object with its Schwarzschild radius
indicated by the red circle. Secondary Finstein rings, circling the object once
before arriving back at the departure point, are indicated in blue. Distances on
both axes are measured in units of M.

position to the distant source. In the case of black holes, a
recent burst of interest is directed toward observing the black
hole shadow (Falcke et al. 2000). The EHT project aims at
providing, for the first time, images of Sgr A¥, the black hole at
the galactic center, and of the supermassive black hole in the
center of M87 (Akiyama et al. 2017; Lobanov 2017).
Simulations of the expected shape of the black hole shadow
will shed light on our understanding of the underlying physics.
In tracing light rays coming from very distant objects, the
accuracy of the computation is crucial in producing results that
can be directly compared to measurements of the black hole
shadow (see, e.g., Straub et al. 2012 or Psaltis et al. 2016).

As underlined in Section 3.1, explicit methods such as the
RK4 scheme introduce errors both in the computed variables
(in this case, position and covariant velocity) and in the global
conserved quantities (such as the energy). The longer the
computation is carried on, the larger the accumulated energy
errors can grow. In this section, we analyze how energy errors
can influence the results and whether an energy-conserving
method that retains errors in x* and u; only provides advantages
versus a standard explicit method.

In our test, we initialize several light rays from the observer’s
position at r = 107 on the right-hand side of a central black
hole of mass M =1 (red circle in Figure 1). For the
initialization setup, we refer to the detailed explanation in
Miiller & Grave (2010). Depending on the initial direction of
propagation, the photons are strongly or weakly deflected from
the straight path corresponding to Minkowski spacetime.
Figure 1 shows a few selected photon orbits. For specific
choices of initial direction, the photon reaches a second
observer located behind the compact object or even returns to
the first observer at the right-hand side after circling the object
a number of times that depends on the initial angle of
propagation. In this way, Einstein rings of light are formed that
provide the observer with an image of himself or herself.
Simulating this phenomenon requires high accuracy both in the
initialization of the orbit and in the integration of the geodesic
equation.

For a quantitative comparison, we refer to the setup in
Miiller (2008): a light ray is initialized from ry = 107, with
initial angle £ = 0.24904964 with respect to a straight line
pointing from the right-hand observer to the compact object
located at » = 0. Under these initial conditions, the light ray
forms a secondary Einstein ring and returns to the right-hand
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Table 1
Absolute Error on the Final Position of a Ray of Light Forming a Secondary
Einstein Ring at the Observer’s Position, Integrated Up to #/rs = 50.396,

Measured as |Al| = \/rf + r02 — 2rprocos{ipg — )

No. of Steps RK4 Implicit Hamiltonian
50 26.97314 11.44041 1.68939
100 1.07701 221514 410968 x 107
150 2.10550 x 107+ 9.50488 x 107 177281 x 107
200 7.16948 x 107% 531338 x 107" 957071 x 1072
500 1.05848 x 1072 9.13739 x 107> 7.72515 x 107°
1000 912120 x 107> 295672 x 107> 4.83819 x 1072

Note. The order of magnitude of the error introduced by the Hamiltonian
scheme is the same as for the error introduced by the RK4 scheme, and in all
cases, except for the case with 200 steps, the error for the Hamiltonian scheme
is smaller.

observer after one circle. The time it takes to form the ring can
be computed analytically and corresponds to At/ry = 50.396
in coordinate time. Thus, we can measure the final position
(75, y) of the light ray at this time and check the deviation from
the exact value, (ro =20, @y =0) (that is, the same position
from which the light rays originated), by the usual formula,
Al = \/rj% + ro2 — 2rp79 CO8(0y — cpf). Secondary Einstein
rings approach the photon radius 3/2rg and circle around it
for one full period before reaching back to the right-hand
observer. Due to the proximity of the photon path to the event
horizon, large energy errors can be expected if the integration is
carried out with an explicit method. In this way, the path
traveled by the light ray can severely deviate from the expected
trajectory. Table 1 summarizes the results obtained by varying
the number of integration steps along the path for the same final
time for each method. Figure 2 shows the error trend for each
method relative to the number of integration steps. The plot
clearly shows the second-order (for the IMR and Hamiltonian)
and fourth-order (for the RK4) character of the integration
schemes adopted for this test.

The results show clearly that, for integrations performed
with a relatively high time step, a second-order energy-
conserving method is capable of retrieving the correct orbit
better than a fourth-order explicit method. Decreasing At
decreases the error of the RK4 scheme at a faster rate than for
the Hamiltonian scheme. When integrating with 1000 steps,
the error starts to become comparable, since the order of the
scaling of the RK4 error with the decreasing At is higher than
that of the Hamiltonian scheme (fourth-order and second-
order, respectively). For this run, the energy error introduced
by the RK4 scheme evidently dominates over the fourth-
order accuracy of the method. In our simulations, we observe
that the influence of the energy deviation on the resulting
path is greater for a secondary ring than for a primary ring,
where the photon turns back to the origin position right after
passing around the object, without completing a full circle.
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Figure 2. Representation of the error trends from the results listed in Table 1.
The second- or fourth-order character of the integration schemes is highlighted
by the decrease in the absolute error in the final position of the light ray. The
Hamiltonian scheme (green line) performs better than the RK4 scheme (red
line) for higher Az. The IMR scheme (blue line) follows the same second-order
trend as the Hamiltonian method, but it is characterized by larger errors. Above
200 integration steps, the error of the RK4 method starts to deviate from the
reference fourth-order trend due to higher accumulation of error as the number
of integration steps increases.

The proximity of the trajectory to the event horizon at the
Schwarzschild radius plays a role in the energy error
introduced during the integration. A path that keeps the
photon closer to the object for a longer time allows for larger
energy errors to accumulate, worsening the results. Higher-
order Einstein rings, with photons circling the object more
than once before returning to the initial position, represent a
challenging problem for an explicit method. The Hamiltonian
scheme used here, in contrast, conserves energy up to
machine precision and shows significantly smaller errors in
the resulting photon path, performing better than the RK4
scheme, especially for larger time steps. The implicit
midpoint scheme performs worse than the other schemes in
general, proving that symplecticity is a nonessential feature
in this case for attaining higher accuracy in the results.

4.1.2. Massive Particle Orbits

The accretion flow around compact objects consists of a gas
of massive charged particles called a plasma. While global
MHD simulations are necessary in order to characterize the
macroscopic physics of accretion disks, tracing single massive
particles allows for the investigation of acceleration phenomena
at the microscopic level. For charged massive particles, the
inclusion of the Lorentz force is necessary in order to study the
related dynamics; here we restrict our study to neutral particles.
The simulation of time-like geodesics around compact objects
can be modeled in a similar fashion as the photon trajectories
considered in the previous section. In Schwarzschild spacetime,
particle orbits can be completely described in terms of
conserved quantities, namely the particle energy E and the
angular momentum L. Additionally, the spherical symmetry in
the metric allows for the restriction of any orbit on a plane of
constant angle #. Bound orbits in Schwarzschild spacetime
correspond to the particle moving inside a potential energy
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well, confined between the radii

I? I?
Tout,in = — L |— -3 (24)
s s

of the inner unstable circular orbit (subscript in, corresponding
to the negative sign) and the outer stable circular orbit
(subscript out, corresponding to the positive sign) allowed by
the effective potential function (Equation (23)). In fact, the
relativistic precession of orbits is an effect of the particle
climbing up and down the potential well while conserving its
energy and angular momentum.

In our tests, we refer to the “periodic table” of closed orbits
in Schwarzschild spacetime, presented in Levin & Perez-Giz
(2008). There, a full description of the character of nontrivial
orbits is given. Our aim is to verify how accurately the
considered numerical methods describe the particle motion. In
particular, we assess the ability of a scheme to keep the particle
on a closed orbit for multiple cycles. Considering stable orbits
ensures that deviation from the geodesic path is an effect solely
linked to numerical errors. Accumulation of energy errors can
lead the particle to climb up the potential well until it escapes to
infinity or falls into the black hole. Such an effect is inevitable
in explicit methods, meaning that no matter the order of the
method, at some (ideally, very late) point in time, the particle is
expected to escape the bound orbit. Hence, methods that keep
the energy error bounded are capable of keeping a particle on
orbit for a longer time than explicit methods (or, in general,
methods with unbounded energy errors).

As an example, we consider a central black hole of mass
M = 1 and the orbit from the bottom right panel of Figure 9 in
Levin & Perez-Giz (2008). The conserved quantities for this
case are E = 0987649 and L =3.9. The orbit roughly
resembles a four-leaf clover that precesses slowly, closing up
on itself after approximately 1000 cycles. In order to initialize
the orbit, it is sufficient to note that, in our implementation,
u, = L. Then we are free to set u, = uy— 0 and 6 = /2,
@ = 0 such that the particle starts its motion with a velocity
purely in the (-direction from an unknown radius » to be
determined. As outlined in Levin & Perez-Giz (2008), the
variation of r in this case can be described by

r* Y = Exrt — (2 — rgr)(r? + L2, (25)

and, setting u” = 0, one can solve for the initial » determined
by the chosen E and L.

Figure 3 shows part of the orbit in the » — ¢ plane (left
panel), as well as the evolution of the energy error in time up to
t =5 x 10* with Az = 10 (right panel). Despite the large time
step, the IMR scheme is capable of maintaining the energy
error bounded, as expected from a symplectic method. The
RK4 run, instead, fails after ¢t ~ 4 X 104, when accumulation
of energy errors causes the particle to leave the orbit and fly
away to infinity. The Hamiltonian scheme introduces even
smaller energy errors, of order machine precision, as imposed
by construction. Because of the absence of secular accumula-
tion of energy errors, such a simulation could in principle
continue indefinitely, without the particle ever escaping the
bound orbit, regardless of the time-step size.

The results are expected and, in fact, confirm that the implicit
second-order IMR and Hamiltonian are superior to an explicit,
although higher-order, scheme like the RK4 in the long run. In
this case, the distinction between the two implicit schemes
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Figure 3. Simulation of the four-leaf orbit with E = 0.987649, L = 3.9 from Levin & Perez-Giz (2008). Left panel: a few precessions of a massive particle orbit
(black line) around a compact object of Schwarzschild radius rg = 2 (red circle). The axes indicate scales in units of M. Right panel: evolution of the energy error up to
t=5 x 10" when Ar = 10. Around 7 & 4 x 10*, accumulation of errors makes the RK4 solution (red line) blow up and lets the particle fly off from the orbit. This is
clearly indicated by a sudden increase in the energy error. The error for the implicit scheme (blue line), although nonzero, is bounded and does not grow enough to let
the particle escape. The same applies for the Hamiltonian scheme (green line), with errors of order machine precision, as expected.

essentially reduces to the allowed time-step size. The IMR
scheme, being symplectic, conserves energy only to a certain
degree that scales with Az In case the integration step is too
large, the achieved energy preservation may not be sufficient to
constrain the particle motion to the theoretical bound orbit. The
Hamiltonian method, instead, conserves energy regardless of
the time-step size, hence implying higher stability of the
scheme at larger Az. It should be noted that this test is highly
idealized in excluding any external perturbation to the particle
orbit, which eventually would lead to deviations from the
nicely periodic closed path here represented. For cases in which
integrating over a very large number of orbits is of interest, an
explicit method is inferior to the two implicit methods
considered here.

4.2. Tests in Kerr Spacetime

The Kerr solution to Einstein’s equations describes a metric
outside of a spherically symmetric body with a total mass M
and spin parameter a in vacuum (Kerr 1963). In Boyer—
Lindquist coordinates, the metric is

) 2
dst = —|1 - Mfr a2 — M — O ddr + Lar
p p A
Do,
+ p%d6? + (r2 +a’ + M) sin? 0d?,
P
(26)

with p* =7 +a> cos’0 and A =7 — 2Mr + 4. This
solution has coordinate singularities at the event horizons
(A =0) and the poles of the rotation axis. The singularities at
the poles can be overcome by rewriting the metric in Cartesian
Kerr—Schild coordinates.

The motion of test particles in the Kerr metric is not
generally bound to a single plane of constant 6. Hence, it
cannot be effectively determined by only one one-dimensional
potential function of the radius analogous to that characterizing
the Schwarzschild solution. A description via such an effective

potential is available, but only for orbits in the § = O plane;
see, e.g., Levin & Perez-Giz (2008). Nevertheless, the metric
retains enough symmetries to allow for the complete descrip-
tion of particle motion by the constants E, the conserved
energy, L, the angular momentum, and C, Carter’s constant.
This also makes the geodesic equations integrable. However, as
mentioned earlier, in our implementation, there is no need to
use symmetries in the metric to reduce the equations, since the
algorithm applies to a generic 3 4+ 1 split metric. The
parameter a, the black hole spin, causes objects at rest to
move in the direction of rotation of the black hole, due to the
so-called frame dragging, which is absent in the Schwarzschild
case. Another feature of this metric is the presence of two event

horizons, located at
rs £ 18 — 4d>

=,
2

@7
where r¢ = 2M. The two event horizons coincide in the case of
a = M, which describes a so-called extremal Kerr black hole,
an unstable spinning compact object (Carrol 2004).
Simulating Kerr-type objects is of extreme importance, since
most of the black holes that populate galaxies are expected to
possess some spin, inherited from the originating stars. Future
direct observations of such bodies, as well as global MHD
simulation of accretion flows around them, must take the spin
factor a into account to provide correct results. In this context,
both photon and massive particle trajectories are heavily
influenced by the frame-dragging effect, consistently differing
from the zero-spin Schwarzschild approximation. In the next
section, we apply the presented numerical methods to the
integration of both null and time-like trajectories. Note that,
despite our choice of Boyer-Lindquist coordinates for
simplicity, no extra difficulty arises in case one wants to adopt
“Cartesian” Kerr—Schild coordinates. Chan et al. (2017)
showed that the use of such a system of reference eliminates
the singularities at the poles, and therefore it produces results
more attractive for simulations of regions of spacetime around
those points. The versatility of the 3 + 1 formulation of our
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Table 2
Parameters for the Unstable Spherical Photon Orbits Considered in
Section 4.2.1

Orbit Name (0] o Q

A -1 1+4/3 12 + 83
B -6 1+242 —13 + 1642
C 1 2 16

D 136 1.8 12.8304

framework allows for such change just by selecting the
appropriate 3 + 1 metric functions.

4.2.1. Unstable Spherical Photon Orbits

To test the strength of the numerical schemes, we simulate a
set of unstable spherical photon orbits. For simplicity, we
choose a = M such that the inner and outer event horizons
degenerate to one surface of constant radius ry = rg/2. Teo
(2003) provided a full description of admitted spherical orbits
restricted between the radii,

Trp = ZM{l + cos [% cosl(i%)]}, (28)

of retrograde (subscript r) and prograde (subscript p) circular
equatorial orbits, respectively. Such orbits are fully character-
ized by the constants of motion, namely the orbit radius ry (in
units of M), a measure of the angular momentum ® = L/E
(in units of M), and a measure of Carter’s constant Q = C/E?>
(in units of Mz). All such orbits are unstable, meaning that
perturbations introduced in the parameters are amplified in time
until the photon deviates from the orbital motion and flies
away. Chan et al. (2017) studied a number of unstable photon
orbits both in Boyer-Lindquist and in Cartesian Kerr—Schild
coordinates by means of the RK4 integration scheme. An
explicit scheme naturally introduces energy errors at each time
step, as well as errors in the position and velocity. The
Hamiltonian energy-conserving scheme eliminates energy
errors, resulting in a more stable orbital motion. Here we aim
at evaluating how this feature impacts the results in terms of the
capability of keeping the photon on the correct orbit.

We consider several orbits taken from both Teo (2003) and
Chan et al. (2017) and summarized in Table 2 around a central
black hole of mass M = 1. The initialization of each orbit is
done according to the description provided in Miiller & Grave
(2010). Each orbit starts at the equator, 6 = 7/2, at ¢ = 0,
with an initial velocity pointing southward. The deviation in the
radial position r from the constant value characterizing each
orbit grows exponentially in the beginning (Chan et al. 2017)
and can be monitored in order to measure the performance of
each scheme. For each orbit, we integrate until ¢+ = 100 with
several values of Az.

Figure 4 is a representation of the simulated orbits A (left
panel) and C (right panel) in three-dimensional space. Here the
event horizon is represented as a sphere of radius ry. The sense
of rotation of the central object is from left to right. The red
circle of radius ry marks the value of » on which, in the absence
of perturbations, the spherical orbit should remain. Orbit A (left
panel) is a retrograde orbit, where the angular momentum L is
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high enough to overcome frame dragging and the photon
precesses in the direction opposite to the rotation of the central
object. Orbit C (right panel), on the other hand, is a prograde
orbit. Both orbits start from the equator (¢ =7 /2) and head
southward.

Figure 5 shows the evolution in time of the relative error on
the radius |r — ro|/ry for orbits A (left panel) and C (right
panel) and several values of At for each method. Due to
numerical errors, the growth of the error undergoes an
exponential phase, in which the photon is still bounded to the
orbit but progressively deviates from it. At the end of the
exponential phase, the photon is eventually released and flies
off. In general, the growth of the error is reduced by reducing
the time step from Az = 1 (solid lines) to At = 0.1 (dashed
lines), and further to At = 0.01 (dash-dotted lines), for all
methods. The magnitude of the error for the RK4 scheme (red
lines) reduces greatly when reducing the time step, as expected
for a fourth-order method. The error from the implicit method
(blue lines) shows similar behavior, though the error reduction
is weaker, due to the method being second-order. Remarkably,
the error from the Hamiltonian method (green lines) is orders of
magnitude smaller than the error from the other methods for all
values of Ar. The energy-conserving properties of the
algorithm maintain the photon on the orbit for much longer,
delaying the beginning of the linear growth to much later with
respect to the moment it starts in the case of the other two
methods. The photon is still eventually escaping, due to
accumulation of second-order errors, though the absence of
energy errors greatly improves the stability of the orbit. For
orbit C (right panel), the linear growth of the error is not even
observed within the simulated time, and the relative error on
the position remains at machine precision.

Table 3 summarizes the results for selected orbits by listing
the relative error on the radius at the last time step. The error for
the Hamiltonian method is always orders of magnitude smaller
than that from the RK4 runs. The error for the implicit method
is always greater than that of the RK4. Errors of magnitude ~1
or larger should be regarded as a signature of the photon having
left the orbit at the moment of evaluating the error. In all cases,
the Hamiltonian scheme keeps the photon on the correct orbit
within the simulated time, even for large time steps. The RK4
scheme needs much smaller time steps to prevent the photon
from flying off, and the resulting error is still larger than that
obtained with the Hamiltonian scheme. Orbit B shows the
remarkable feature that the error obtained with the Hamiltonian
scheme and Az = 0.1 is smaller than that for the Az = 0.01
run. This is a signature of the trade-off threshold between gain
in accuracy and accumulation of error that characterizes the
time-step reduction. The larger number of time steps of the
At = 0.01 run accumulates larger total second-order errors,
overcoming the gain in accuracy due to the reduction from
At = 0.1. This is an expected effect that can be overcome
solely by an increase of the order of the method.

As a final test, we check the conservation of the Carter
constant C, expressed as

2
C=up+ coszﬁ(az(e —EH + .LZ ), (29)
sin“ 6

where L and E are the angular momentum and energy, and
€ =0 for massless particles. Note that checking for the
conservation of L is not meaningful in this case, since the
geodesic equation in Boyer—Lindquist coordinates naturally
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Figure 4. Representation in three-dimensional space of the unstable spherical photon orbits A (left panel) and C (right panel). The event horizon at A = 0 is indicated
by a sphere of radius , =r_. The equatorial red circle indicates the constant radius r, characterizing each orbit. The starting point of the orbits is marked by a red dot.

reduces to duy/dt = dL/dt = 0, and therefore the angular
momentum is automatically conserved due to our choice of
coordinates. Figure 6 shows the time history of the relative
error with respect to the initial value C, of the Carter constant
for orbits A (left panel) and C (right panel) analyzed above,
with the same decreasing values of At for all three numerical
methods. The plots show clearly that the conservation of Cj is
achieved to machine precision for all Ar by the Hamiltonian
method, while the RK4 and IMR schemes retain a nonzero
error in all cases. Therefore, for this case, the energy-
conserving character of the Hamiltonian scheme results in the
conservation of the other invariants of the motion as well.

4.2.2. Massive Particle Orbits

For completeness, we include an example of massive particle
orbits around a Kerr black hole. We refer again to Levin &
Perez-Giz (2008; Figure 15, third panel from the left in the
second row) for initializing a periodic orbit around a spinning
object with @ = 0.995M and M = 1. Similar to the corresp-
onding case in Schwarzschild spacetime (see Section 4.1.2), we
set u, = L, and thus we are free to choose u, = uy = 0 and
6 = w/2, ¢ = 0, such that the particle is set in motion in the
r — @ plane with a purely azimuthal velocity. The unknown
initial radius is given by the equation

pu’ = JIEG? 4+ a® — aLP — Alr> + (L — aEY], (30)

describing the variation of r, with E = 0.920250 and L = 2 for
the chosen orbit. Setting again u” = 0 and solving for r gives
the necessary initial condition.

A few precessions of the simulated orbit are shown in
Figure 7. The analysis of the energy errors is completely
analogous to the Schwarzschild case (see Figure 3), with the
error in the RK4 scheme accumulating unboundedly until the
particle escapes to infinity. The IMR and Hamiltonian schemes,
on the other hand, are capable of keeping the particle on the
expected trajectory indefinitely.

10

5. Applications in Other Spacetimes

In this section, we present applications of our geodesics
integrator that are relevant for future global simulations in more
exotic spacetimes. Regardless of the metric characterizing each
application, it is important that the solution procedure remains
the same, in order to preserve the flexibility of the framework.
Although we run each test with all the presented integrators, in
order to check the convergence of the results, we are mainly
interested in testing the versatility of the adopted generalized
formulation rather than the accuracy of the solution.

5.1. Morris—Thorne Wormhole

The Morris—Thome solution to Einstein’s equations
describes a simple type of wormhole, representing the quantum
foam that connects two distinct regions of spacetime (Morris &
Thorne 1988). The metric in spherical coordinates is written

ds® = —dt* + dI* + (b3 + 12)(d0* + sin® 0dp?), 3D

where by is the size of the wormholes throat and / is the proper
radial coordinate. A Morris—Thorne wormhole is traversable, in
the sense that it is possible to travel from one side of the
wormbhole to the other and back. The observer’s view through
the wormbhole is visualized by null geodesics. Due to spherical
symmetry of the static metric, we can restrict to the two-
dimensional hyperplane defined by ¢ = w/2. This can be
embedded in three-dimensional FEuclidean space by the
embedding function

2
r r

Z(ry = £bo1n b + (bo) 1],

where * = b3 + I Miiller & Grave 2010).
To exemplify the capability of our implementation to handle

generic spacetimes, we initialize several light rays from an

observer’s position in the vicinity of a Morris—Thorme worm-

hole of throat size by = 1. The initialization is done according

to Miiller & Grave (2010). Depending on the initial direction of
propagation, the photons can be deflected by an effect similar

(32)
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Figure 5. Time evolution of the relative error on the radius for orbits A (left panel) and C (right panel). Each simulation is run until # = 100 with Az = 1 (solid lines),
At = 0.1 (dashed lines), and At = 0.01 (dash-dotted lines) with the RK4 (red lines), implicit (blue lines), and Hamiltonian (green lines) schemes.

to that observed in a Schwarzschild metric or travel through the
wormhole to reach a different region of spacetime. Several
photon paths are shown in Figure 8. When running the test with
the three numerical integrators introduced in the previous
sections, we find no significant differences in the resulting
photon paths.

5.2. Extremal Reissner—Nordstrom Dihole

We now consider black holes with electric and magnetic
charge that are of particular interest for plasma physics. They
are found by solving the Einstein equations with an EM
radiation source. The Reissner—Nordstrom metric describes a
spherically symmetric mass distribution with total mass M and
charge O,

ds> = A(rdr + _At dr® a0 4 SR 0GR, ()
r

with

2GM

A(r)zl———i—GQz.
7

—_— 34
> (34)
Like in the Schwarzschild solution, » = O describes a physical
singularity where the curvature blows up. When g, = A(r) =

0, there are additional coordinate singularities at

re = GM £ |GM? — GQ?,

with r = r,. corresponding to the event horizons. In the case of
GM? = QZ, those two horizons coincide exactly. Therefore, the
metric is called extremal in this case. This solution is unlikely
to occur in nature, as it requires an enormous amount of charge.
However, it is an ideal test case for numerical integrators, since
exact solutions are known. Miiller & Frauendiener (2011)
provide a number of interesting orbits for a specific multi-black
hole solution in the extremal Reissner—Nordstrom metric,
discussed in Chandrasekhar (1989). A spacetime describing
multiple Reissner—Nordstrém black holes admits static solu-
tions where the electric repulsion between the objects
compensates exactly for the gravitational attraction such that

(33)
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the resulting metric does not change in time. A dihole metric of
this type reads, in Cartesian coordinates,

ds? — —%dt2 + U(dx* + dy* + dz), (36)

where U= 1+ M /1 + M>/r>. Here M, and M, are the
masses of the two black holes, r; = \/)c2 +y2 4+ (z — 1)? and

ry = \/)c2 + ¥? 4+ (z + 1)2. The extremal dihole metric does
not possess as many conserved quantities as degrees of
freedom, hence it is nonintegrable (Contopoulos 1990). Never-
theless, particle orbits in this spacetime can be classified and
studied numerically.

For this test, we set M; = M, = 1 and simulate closed
particle orbits in this spacetime. Note that the metric in
Equation (36) is such that the two black holes are located at
x =y =0, z = £ 1. Additionally, it presents singularities only
at the black hole locations, r; = 0 and r, = 0. We adopt the
setups detailed in Miiller & Frauendiener (2011) to initialize
two periodic time-like geodesics. In both cases, the orbit starts
from an initial position Xy = (xo, Yo, 2o) With three-velocity
uy = vI'(cosé, sing,0)/U(x;), where I' = 1/+4/1 — v?. The two
orbits are shown in Figure 9. The left panel shows an orbit in
the x — z plane, starting from xo =y, =0, zo =3 with
v = 0.591943, £ = 0. The right panel is a three-leaf orbit in
the x — y plane, starting from x, =3, yp =20 = 0 with
v=02, £=1.2088. The position of the black holes is
indicated with red dots. The simulation of these orbits is quite
challenging, since the presence of multiple black holes creates
more than one pole of attraction for the path of the particles. In
our runs, we find that the RK4 scheme performs better than the
other schemes in reproducing the correct orbits. This can be
explained by considering the order of the methods.

The absence of event horizons allows an explicit method to
introduce far smaller energy errors than in the case of, e.g., the
Schwarzschild metric, where large energy errors for the RK4
scheme arise for a particle orbiting close to the event horizon.
Therefore, in this case, errors linked to the order of the method,
resulting in inaccurate orbits, are predominant over energy
errors. Considering that the presence of multiple black holes
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Table 3
Relative Error on the Radius for Several Unstable Spherical Photon Orbits at the Final Time r = 100

Method At Orbit A Orbit B Orbit C Orbit D

RK4 1 0.620 1.613 x 1072 21.350 13.290
RK4 0.1 0.324 2.090 x 10~ 1.263 x 107" 7.084 x 107
RK4 0.01 2767 x 107° 0 7722 x 1077 5414 x 1078

IMR 1 0.621 0.728 23.450 23.080

IMR 0.1 0.608 0.718 7978 4.280
IMR 0.01 0.513 0.626 1.057 x 107" 1.794 x 107*
Hamiltonian 1 2.817 x 107'° 7.995 x 107" L1l x 107" 1494 x 107"
Hamiltonian 0.1 5972 x 107" 2.900 x 107" 0 9.659 x 10~
Hamiltonian 0.01 2.445 x 1078 7.956 x 107 0 6.131 x 107
increases the precision necessary to keep a particle on the right quantum effects manifesting on a global scale around the event
path even further, we conclude that a higher-order method, horizon by introducing specific forms of the functions F(r),
though explicit, can perform better with respect to second-order K(r). In both cases, the macroscopic effect is a change in the
implicit methods. In this case, the RK4 scheme is a good choice shape of the shadow of the central object that can be observed,
for simulating such closed orbits, although the same does not e.g., by instruments such as the EHT. In Johannsen & Psaltis
necessarily hold for different paths passing close to the (2011), a similar approach is considered for axisymmetric and
singularities. time-independent perturbations to the Kerr metric in order to
explore a quasi-Kerr black hole showing violations of the no-
5.3. Perturbations to General Relativistic Spacetimes hair theorem (Psaltis & Johannsen 2012; Psaltis et al. 2016;
i : ; Vincent et al. 2016) or to describe geodesics around neutron

The versatility of our implementation allows for further stars (Baubock et al. 2012).

exploration of nonstandard spacetimes. Motivated by the work
by Giddings & Psaltis (2016), we simulate photon trajectories
in a perturbed Schwarzschild metric to assess the effects of
deviations from standard metrics in GR. Here we choose to
follow the description of general perturbations provided by

In general, one can expect that perturbations of this kind
affect the metric significantly only around the Schwarzschild
radius and then quickly decay away from it. Thus, light rays
passing close to r = rg are likely to be deflected in a different

Regge & Wheeler (1957). In their work, a perturbed metric manner than what is observed in the unperturbed case.
2, = &, + N, is determined by, e.g., the simplified “even” Figure 10 exemplifies the resulting effect on simulated photon
p*g”rmrb;t”ion trajectories in the r — ¢ plane. Here a number of light rays

(1 - ’—S)F(r)YLM 0 0 0

r

B = 0 (1 - :—S)F(r)YLM 0 0 ! (37)

0 0 rK YY 0

0 0 0 r2K ()Y sin? 0

where Y is the scalar spherical harmonic function and F(r), coming from infinity enter the simulatiqn box from the right
K(r) are functions determined by the modes L, M of the boundary. In the unperturbed Schwarzschild metric (left panel),
perturbation, e.g., plane waves. For simplicity, in our tests, we some trajectories (indicated as blue lines) lead to photons
choose L =M = (0. The nature of such perturbations is falling into the event horizon at r = rg (marked by a red circle),
unspecified: Regge & Wheeler (1957) attributed these effects while others are deflected and escape to infinity (black lines). In
to distant massive objects exerting gravitational attraction; the perturbed metric (right panel), some of the black trajectories
Giddings & Psaltis (2016) explored perturbations induced by that would lead to escape in the previous case end up falling

12
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Figure 6. Time evolution of the relative error on the Carter constant Cy for orbits A (left panel) and C (right panel). The same color schemes as in Figure 5 are used
here, with Ar = 1 (solid lines), At = 0.1 (dashed lines), and Ar = 0.01 (dash-dotted lines) for the RK4 (red lines), implicit (blue lines), and Hamiltonian (green lines)

schemes.

Figure 7. Simulation of a few precessions of the three-leaf orbit in Kerr
spacetime, with £ = 0.920250 and L = 2 from Levin & Perez-Giz (2008). The
precessing orbit (black line) winds up around the central object with an external
event horizon of radius r, (red circle). The axes indicate scales in units of M.

/

©\

Figure 8. Light rays (red line) originating from the observer’s position at
[ = 10 are deflected by a Morris—Thorne wormhole with throat size by = 1.
The light rays can remain in the same region of spacetime or travel through the
wormhole to reach the other end, e.g., a causally separated region of the same
universe.
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into the black hole instead. As expected, the difference between
the two cases is confined to a small region around rs.

In these tests, our choice of implementation proves particu-
larly useful, since perturbations in the form of Equation (37) can
be included right away without changing the code structure.
Note that we can also retain the usual Schwarzschild spherical
coordinates without the need to convert to Eddington—
Finkelstein variables or monitor signature changes in the metric
like in Giddings & Psaltis (2016). Another advantage of our
implementation is that there is no restriction on the form of the
perturbations: both axisymmetric and nonaxisymmetric pertur-
bations can be added to any metric.

6. Discussion and Summary

We presented a versatile algorithm for the numerical
integration of geodesics in GR based on the 3 + 1 ADM
formalism. In this framework, we compared the performance of
three different numerical integrators, namely a standard fourth-
order explicit RK4 scheme, a second-order IMR scheme, and a
new, second-order implicit Hamiltonian scheme. The new
scheme is exactly energy-conserving, since it is based on the
preservation of the underlying Hamiltonian to numerical round-
off accuracy. We applied all schemes to a number of standard
and nonstandard spacetimes, simulating both photon and
massive particle trajectories.

For geodesics in Schwarzschild and Kerr spacetimes, we
observed improvements in energy and position errors when
simulating photon trajectories near the event horizon with the
new energy-conserving scheme. Regions around the coordi-
nate singularities proved pathological for explicit integrators,
since energy errors grow uncontrollably, deviating the
simulated light rays from the correct path. Einstein rings
around a Schwarzschild black hole and unstable spherical
photon orbits around a spinning (Kerr) black hole can be
modeled more accurately with the Hamiltonian scheme
without reduction of the time step to values that make the
computational cost prohibitive. The resulting error is orders
of magnitude smaller than that observed for the RK4 and
IMR schemes. In the context of ray tracing and black hole
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Figure 9. Simulation of closed massive particle orbits in the Reissner—Nordstrtom dihole metric (Equation (36)). The position of the black holes is marked with red
dots. Left panel: closed orbit in the x—z plane. Right panel: three-leaf closed orbit in the x—y plane.
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Figure 10. Trajectories of photons in the » — ¢ plane in unperturbed Schwarzschild spacetime (left panel) and the perturbed metric from Equation (37) (right panel).
The light rays are initialized on parallel trajectories at the right boundary and approach the central object, either falling in below the Schwarzschild radius (red circle) or
being deflected from the straight path. The blue trajectories mark the photons that end up crossing the event horizon in the unperturbed case; the escaping photon
trajectories are shown in black. The chosen perturbation of the metric causes some of the photons that escape in the unperturbed case to being captured instead.

imaging, the new scheme can be applied dynamically while
monitoring energy errors for each geodesic calculated with
one of the standard schemes (e.g., RK4). In this way, the
computational cost of the overall scheme does not increase
dramatically, while energy errors are corrected to prevent
unphysical outcomes.

As an example, we applied the dynamical scheme outlined
above to a ray-tracing calculation in Kerr spacetime.
Following the work by Alonso et al. (2008), we initialized
Npn = 512* photons in the § = 7/2 plane of an extremal
Kerr black hole of mass M = 1 at random positions in the
range r = [r, 10rs] at randomized directions (we keep track
of the seed used in the random number generator for
reproducibility). We integrate each photon geodesic, and
we monitor the escape of the photons from the » = 10rg
boundary of the simulated domain. We then calculate the
fraction of escaping photons, Nesc/Nph, obtained with the
RK4 method using a fixed time step, Az = 5. Then, we run
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the same simulation, this time allowing for dynamically
switching to the Hamiltonian method in case an energy error
larger than a prescribed tolerance is detected. We compare
the two outcomes with a reference run that uses the RK4
method with an extremely small time step, At = 0.01.

The results show that the escape fraction obtained with the
RK4 method and At = 5 differs from the reference result by
~1%. The simulation including the dynamical switch to the
Hamiltonian scheme instead reproduces the reference result
exactly, even though the time step is more than two orders of
magnitude larger. To confirm the generality of the results, we
run the same analysis by varying the outer boundary of the
simulation box from r = 2r, to r = 10rs. For the simula-
tions run with RK4 and Afr =5, we find errors in the
computed escape fraction that range from ~0.5% to ~2%.
The results obtained with the Hamiltonian scheme and the
same At instead correspond exactly to the reference run in all
cases.
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(a) Observer’s view in flat spacetime.

equatorial plane.

(b) Black hole shadow observed from the
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~

(c) Shadow of a black hole surrounded by a
white accretion disk, observed at an angle
/18 above the equatorial plane.

Figure 11. An observer’s view of a distant four-color background (left panel) is distorted by the presence of an extremal Kerr black hole (middle and right panels),
rotating from left to right. The middle panel shows the black hole shadow as observed from the § = 7/2 equatorial plane. The black hole spin distorts the shadow such
that the observed shape of the event horizon is not symmetric with respect to the axis of rotation. Einstein rings of higher and higher order are visible on one side of the
shadow due to frame dragging. In the right panel, the black hole is surrounded by an infinitely thin accretion disk (in white) and observed from an angle 7/18 above
the equatorial plane. The region of the accretion disk that would be hidden behind the event horizon is instead visible due to gravitational bending of light rays. This
picture was obtained by ray tracing photon geodesics from the observer’s eye (a camera with resolution of 5122 pixels) back to the point in space where such photons

were emitted.

Because the switch to the Hamiltonian scheme is treated
dynamically within the algorithm, the additional cost is only
due to the recalculation of the geodesics that present high-
energy errors, thus optimizing the global scheme. It must be
noted that, even though the results obtained with the RK4
method present only small errors, a fraction of 1%, over a total
of millions of billions of photon paths, results in a significantly
higher number, of the order of tens of thousands or tens of
millions, respectively. In particular, the regions of spacetime
that are most affected by energy errors are those surrounding
the event horizon, as shown in Section 4, which are also the
most interesting zones due to the presence of high-order
Einstein rings created by frame dragging. While those regions
of spacetime far away from the metric singularities are
efficiently treated by standard methods (such as less expensive
RK4 schemes), the possibility of studying more complicated
features with an acceptable computational effort (e.g., with the
Hamiltonian method, as shown) is certainly an advantage.

High-precision numerical integrators are also intrinsically
necessary for the study of those spacetimes that are nonintegr-
able (e.g., the dihole solution from Section 5) and therefore do
not present analytic solutions, while being characterized by
interesting features such as fractal-like Einstein rings around
the black hole shadow (see, e.g., Wang et al. 2018). The
astrophysical relevance of such calculations is clear in
the context of comparisons with upcoming observations of
the black hole shadow, which will shed light on the correctness
of the present theories of gravity. An example of such a
calculation (obtained with the RK4 scheme with Ar=0.01) is
shown in Figure 11, where an extremal Kerr black hole is
placed between an observer and a four-color background.
The left panel shows the observer’s view in flat spacetime in
the absence of black holes. In the middle panel, the observed
image is highly distorted due to the gravitational bending of the
light rays. In the right panel, the black hole is surrounded by an
infinitely thin accretion disk. The observer is allowed to
see parts of the accretion disk that would normally be out of
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sight, being covered by the event horizon. The process of
numerically imaging such objects accurately is of high
relevance for comparing to observational data and providing
support to theoretical findings (see, e.g., Mizuno et al. 2018).

The choice of 3 + 1 splitting the equations of motion proves
particularly useful in designing a generic algorithm for any
spacetime. In fact, only the 3 + 1 metric functions «, 3, and
~" have to be provided as input. This allows for the simulation
of free particle motion in both standard (Schwarzschild and
Kerr) and nonstandard spacetimes without the need to
restructure the code or customize the algorithm for specific
metrics. In order to exemplify the potential of this choice of
implementation, we simulated the motion of massless and
massive particles around a Morris—Thorne wormhole, a
Reissner—Nordstrom dihole system, and a perturbed Schwarzs-
child black hole. In all cases, the only required effort was to
provide the metric functions initially.

From the perspective of extending our studies to the
simulation of general relativistic charged particles in EM
fields, we need to consider the properties of each integration
scheme when applied to a more complex physical situation.
Numerical integrators for the motion of relativistic charged
particles in EM fields in curved spacetime are required for
particle tracing in plasma simulations (e.g., GRMHD codes or
future GR particle-in-cell kinetic codes) in order to fully
capture the general relativistic effects induced on the plasma
flows around compact objects. It is well known that the RK4
scheme is nonideal for specific applications, e.g., gyrating
motion in a magnetic field, due to the unbounded accumulation
of truncation errors (Qin et al. 2013). It is reasonable to suspect
that in the corresponding GR case, the same scheme performs
poorly, considering the nonideal performance we detected, in
some cases, for geodesic motion alone. Alternative, explicit
schemes exist and have been widely studied and applied to
special relativistic charged particles (see Ripperda et al. 2018
for an extensive review of the subject). However, the extension
of such schemes to GR seems to be nonstraightforward and
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requires further investigation. Despite the lack of exact energy
conservation, implicit, symplectic integrators such as the IMR
scheme have been successfully applied to special relativistic
regimes (Higuera & Cary 2017). This motivates the possibility
of choosing such a scheme for future applications to charged
particle motion in curved spacetimes. Energy conservation can
be achieved with a new Hamiltonian scheme, a feature that
makes it especially attractive for the purpose of simulating
particles in such complicated physical systems. In fact, the
energy-conserving character of the scheme can be retained
regardless of the underlying physics, provided that the system
can be described with a Hamiltonian. Hence, the inclusion of
Lorentz force in addition to the geodesic motion is straightfor-
ward, opening the path for obtaining highly accurate simula-
tions of relativistic charged particle dynamics around compact
objects.
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Appendix A
Discrete Energy-conserving Hamiltonian Scheme

Given the Hamiltonian
H(x, u) = a(yfujme + €)'/ — Bu; (38)

for a system of three equations for x’ and three equations for u;,
a suitable discretization-averaging of the Hamiltonian
equations reads

n+l1
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manipulations, the general incremental ratio (Equation (45)) can

N H()Cl’n, xZ,n’ x3,n+1’ uln’ uzn’ u3n+1) _ H()Cl’n, xZ,n’ x3,n’ uln’ uzn’ u3n+1)
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One peculiarity of the equations above is the presence of
the position and momentum increments, x“""'—x"" and be written as
ul™' — u/", respectively, in the denominator of the right-hand

side. It is clear that difficulties in the solution can arise
whenever such increments tend to zero. Care must be taken in
handling this issue throughout the computation, as the results
can get severely affected by the behavior of the solution around
these critical points. In the worst case, the iterative solution
may fail to converge, ruining the computation.

In order to avoid this kind of numerical singularity in the
system of Equations (39)—(44), we can rewrite the difference
equations in a more convenient form. Without loss of generality,
let us consider the discrete Equation (39). The right-hand side is
composed of six difference terms, each one being the finite
increment of the Hamiltonian between u{’“ and uf, with the
other variables (xl, 2, X, uy, us) evaluated at specific
combinations of the two time levels. Such a combination is
fixed between the two elements of each difference term. Hence,
each difference term actually evaluates the ratio

)

’

H@u!"™, ..) — Huf, ..

uf*l

: @5)

where indicates a combination of the other variables,
representing a suitable averaging for the Hamiltonian-preserving
scheme. Note that for each difference term, the computation
effectively reduces to the evaluation of an incremental ratio of
the form

S+ h) —fx)

P (46)

for a generic function f(x) and an arbitrary increment 4. Each of
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+ Y2 w2)? + P ws)? + vPusus, 48)
U =1y + 29" uy + 295 us
+ Y2 2)? + 7P ) + vPurus. (49)

Note that the increment in #; vanishes, in the process, from the
denominator of Equation (39); hence, the singularity disappears
with this form of the equation. The process can be repeated for
each difference term and for Equations (40) and (41). The
generalization of the above procedure yields

xi,n+1 _ xi,n
At
S0 @ 2T ) 2% 2

’l]inJrl_i_E_i_ l]in+6

This form of the difference Equations (39)-(41) avoids
singularities in Ltl-”+1 — 4" and is therefore more convenient

to use in an iterative solution procedure.

- B (50)

the six difference terms can be expanded by substituting the A similar  simplification  procedure  applied to
definition of the Hamiltonian (Equation (38)). After a series of Equations (42)—(44) yields
n+1 n 6 in+1 in
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2 \/,ylm(xz,nJrl’ )iy + € + \/,ylm(xz,n’ L) gty + € xintl _ xi
! xi,nJrl’ )y = i xi,n’
B ) = Bl ) 51)

xi,n+1 _ xi,n

18



THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 237:6 (20pp), 2018 July

Here the factor 1/(x""*! — x'") does not vanish; thus,
problems related to singularities may still arise. However, by
looking carefully at the quotients in the equation above, it is
clear that, for a sufficiently small difference x*"*! — xi”, this
expression reduces to

n+1

Bacchini et al.

on the right-hand side of each nonlinear equation. As outlined
in Appendix A, each such term is roughly twice as complex as
a single right-hand side of Equations (6) and (7) (it contains
approximately twice as many terms). As a consequence, the
Jacobian of such a system requires six times as many

u; — I/ll'n
At

1 Oé(xi,nJrl’ ) o Oé(xi,n’ )

6
=3 - %(\/vlm(xi’”“, ity € A YO it + €) Biaxi T, ..

Uptm Oyry™ (X7, ...

2 AL Yyt + € + YO, gt + €

+ w88l (x, ...

Hence, the solution procedure must be handled by substituting
Equation (51) with Equation (52) when the difference
x""_x™" < 5, where § is a prescribed tolerance. A typical
choice for such a threshold is § ~ /¢, where ¢ is the chosen
round-off precision (Press et al. 1988).

Appendix B
Computational Cost of the Numerical Integration Schemes

Here we briefly discuss the computational cost of the
schemes presented in Section 3. Particularly, we are interested
in assessing the additional complexity of implicit schemes
(IMR and Hamiltonian) as compared to the usual cost of a
standard RK4 implementation. We do not focus on optimized
performance; hence, we make no reference to specialized
architectures and/or parallel implementations for simulations
of particle ensembles. As a reliable measure of comparison, we
can think of counting the number of times the right-hand side
of our system of Equations (6) and (7) is evaluated numerically.
This is an operation that needs to be done in all methods;
hence, it provides a good reference cost to evaluate the
performance of each scheme.

As outlined in Section 3.1, a standard RK4 algorithm
requires the evaluation of the right-hand side of the model ODE
(Equation (9)) four times per time step. In our case, we have
three equations for the three-position x’ and three equations for
the three-momentum u;. The total cost is thus 24 evaluations
per time step.

The standard IMR scheme requires the iterative solution of
the nonlinear Equation (11). In our case, this corresponds to a
system of six equations to be evaluated at each time step, a
number of times corresponding to the iterations required to
reach the chosen tolerance. Additionally, the solution proce-
dure involves a matrix-vector multiplication between the
inverse Jacobian of the nonlinear system and the vector of
residual functions. Assuming that the Jacobian can be
precomputed and that each of its elements has the same
complexity of evaluation of the right-hand side of each
nonlinear equation, the total cost is (6> +6) X ny, where ny
is the number of Newton iterations. In our tests, we observe
that three to four iterations are usually sufficient to reach a
prescribed absolute tolerance of 10 '. If we take the
conservative value ny = 5, we obtain a total cost of 210
evaluations per time step, roughly 10 times more than the RK4
scheme.

The Hamiltonian method presented above evaluates, at each
time step and for each nonlinear iteration, six difference terms
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(52)

evaluations for each of its elements, hence bringing the
complexity of the solution procedure to (2 x 6% + 2 x
6%) X AN. Considering again ny = 5, we obtain a total cost
of 2520 evaluations per time step, roughly 100 times more than
the RK4 scheme. However, as explained below, in our
experiments, we find that the actual cost is much smaller.
Given these estimates, we can compare with the actual
runtime from a few reference cases. We refer to the setup for
orbit B from Section 4.2.1 and run the test case with all three
methods up to ¢ = 100, with At = 1. Note that the chosen
setup is quite demanding in terms of the necessary calculations
of the nonlinear functions and Jacobian to be handled during
the Newton iteration, since it involves nondiagonal matrices. In
our sample implementation in MATLAB 2017, the measured
execution time is 0.086705 s for the RK4 scheme, 0.756144 s
for the IMR scheme, and 2.894333 s for the Hamiltonian
scheme. While the prediction for the IMR case is fairly accurate
(approximately 10 times more expensive than the RK4
method), the Hamiltonian scheme performs much better than
foreseen, with an execution time roughly 40 times larger than
that measured for the RK4 scheme. The cost estimated above,
which is 2.5 times larger than what is actually measured, can be
taken as a worst-case scenario. Still, our simulations suggest
that the actual complexity of calculation is fairly moderate and
comparable, as an order of magnitude, to that of the IMR
scheme. Finally, we note that the above performance
corresponds to the solution of the nonlinear equation with a
full Newton scheme for both the IMR and Hamiltonian
schemes, which involves the costly evaluation of the associated
Jacobian at each time step. If we apply a Picard fixed-point
iteration instead, we measure 0.161458 and 0.879801 s for the
IMR and Hamiltonian schemes, respectively. This corresponds
to approximately 2 and 10 times the cost of the RK4 scheme.
For the Hamiltonian scheme, this is a very acceptable
computational effort given the higher accuracy of the results.
More efficient implementations in optimized languages can
obviously further reduce the overall cost; additionally, refine-
ments of the RK4 methods (e.g., adaptive time-stepping)
involve higher costs, therefore lowering the cost ratio for the
Hamiltonian scheme even further. Finally, it should be
considered that in typical production runs, a combined
approach with dynamic switching between integrators should
be adopted, as outlined in Section 6. In this context,
nonpathological regions of the spacetime can be treated with
less expensive methods, such as the RK4 scheme, while upon
detecting large energy errors, one could impose the
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recalculation of the orbit with the Hamiltonian scheme. This
approach optimizes the computational cost and the use of the
different integration schemes.
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