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Abstract

Observations of compact objects, in the form of radiation spectra, gravitational waves by LIGO/Virgo, and direct
imaging with the Event Horizon Telescope, are currently the main information sources on plasma physics in
extreme gravity. Modeling such physical phenomena Requires numerical methods that allow for the simulation of
microscopic plasma dynamics in the presence of both strong gravity and electromagnetic fields. In Bacchini et al.
(2018), we presented a detailed study of numerical techniques for the integration of free geodesic motion. Here, we
extend the study by introducing electromagnetic forces in the simulation of charged particles in curved spacetimes.
We extend the Hamiltonian energy-conserving method presented in Bacchini et al. (2018) to include the Lorentz
force, and we test its performance compared to that of standard explicit Runge—Kutta and implicit midpoint rule
schemes against analytic solutions. Then, we show the application of the numerical schemes to the integration of
test particle trajectories in general relativistic magnetohydrodynamic (GRMHD) simulations by modifying the
algorithms to handle grid-based electromagnetic fields. We test this approach by simulating ensembles of charged
particles in a static GRMHD configuration obtained with the black hole accretion code (BHAC).
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1. Introduction

Over the course of the last few decades, observational
measurements of high-energy astrophysical environments have
shed light on the complex dynamics of plasmas surrounding
neutron stars and black holes. The information retrieved from
observations has deeply contributed to the characterization of
plasma phenomena in the magnetosphere and accretion disk of
objects such as Sgr A", the supermassive black hole at the
Galactic Center (Doeleman et al. 2008; Johnson et al. 2015).
Forthcoming observations will probe the event horizon scales,
allowing for the direct imaging of the accretion flow around the
black hole (Goddi et al. 2017). The theoretical investigation of
the mechanisms at the origin of the observed radiation spectra
is typically carried out with computer codes that solve the
equations of general relativistic ideal magnetohydrodynamics
(GRMHD). Non-ideal effects can be introduced via extensions
of the ideal GRMHD framework, e.g., by including resistivity
(Dumbser & Zanotti 2009; Bucciantini & Del Zanna 2012;
Palenzuela 2013; Dionysopoulou et al. 2015; Qian et al. 2016;
B. Ripperda et al. 2019, in preparation) or radiation feedback
(McKinney et al. 2014; Ryan et al. 2015; Ryan et al. 2017;
Sadowski et al. 2017). The GRMHD approach is adequate for
the large-scale description of thermal plasmas, i.e., where the
particle distribution is implicitly assumed to be Maxwellian
(Moscibrodzka & Falcke 2013).

GRMHD codes have proved extremely useful in the
investigation of relativistic accretion flows and jets from
compact objects from the macroscopic perspective. However,
the dynamics of plasmas on the particle scale remains largely
unexplored. Nonthermal processes associated with the
dynamics of particles play an important role in determining
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specific observational features, e.g., strong X-ray flares with
hard energy spectra, variability, and radio spectral slopes
(Chael et al. 2018). The GRMHD framework, by definition,
cannot reproduce nonthermal phenomena associated with
accelerated particles, since the particle distribution is implicitly
assumed to be Maxwellian. This implies that ad hoc prescrip-
tions for the particle energy are needed, in order to avoid
mismatches between observational measurements and the most
advanced simulation results (see, e.g., Sadowski et al. 2017).
Approaches based on the assumption of specific energy
distributions have been successful in reproducing some of the
nonthermal features (Porth et al. 2011; Ressler et al. 2017; Ball
et al. 2018; Chael et al. 2018; Davelaar et al. 2018), without,
however, providing a first-principle description of the plasma
dynamics at the microscopic level.

Investigating kinetic phenomena on particle scales requires
particle-based numerical methods. Numerical methods that
evolve the particle distribution function directly (“Vlasov
methods”) have been developed, although only for nonrelativistic
calculations (see, e.g., Palmroth et al. 2013). However, these
typically exhibit computational costs that far exceed those of
algorithms that model the evolution of the distribution function
by integrating the equations of motion of computational particles.
General relativistic particle-based methods are gaining attention
as the basis for the next generation of simulation codes for
astrophysical plasma applications (Levinson & Cerutti 2018).
Simulating plasmas with kinetic approaches allows for the self-
consistent description of nonthermal phenomena from first
principles. The results of particle simulations can be used to
study phenomena such as magnetic reconnection in the
collisionless regime (see, e.g., Guo et al. 2014; Sironi &
Spitkovsky 2014; Wermner & Uzdensky 2017; Werner et al
2018), or as a physically accurate input for GRMHD simulations
(via heating prescriptions for electrons or for radiative transport
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calculations), eliminating the need for assumptions on the particle
energy spectra (Chael et al. 2018). Advanced numerical methods
are needed for particle simulations, ranging from test particle
approaches, where the energy content of the particle population is
considered to be negligible with respect to that of an underlying
GRMHD background (Ripperda et al. 2017a, 2017b), to fully
consistent Particle-in-Cell (PiC) simulations, where the feedback
of the particles on the electromagnetic fields is taken into account.
In all cases, it is necessary to find the most accurate algorithm to
evolve populations of particles under the effect of both strong
gravitational and electromagnetic fields. Applications to astro-
physical environments range from pulsar magnetospheres and
winds (Sironi & Spitkovsky 2011; Philippov et al. 2015) to
accretion flows around supermassive black holes (Rowan et al.
2017; Ball et al. 2018; Wemer et al. 2018), with the aim of
gaining insight into plasma phenomena on microscopic scales.

In Bacchini et al. (2018, Part I from here on), we presented a
detailed study of the numerical integrators for massive and
massless particles under the effect of spacetime curvature.
Here, we extend our study by including the effect of
electromagnetic fields on the motion of charged particles. In
our analysis, we consider standard explicit integration methods,
implicit symplectic methods, and a new, implicit energy-
conserving integrator that is a direct extension of that used in
Part I, modified to include the Lorentz force. Here, we also
present a modification of the energy-conserving scheme that is
suitable for implementation in GRMHD codes. We test each
numerical integrator against analytic solutions in a variety of
spacetimes and electromagnetic field configurations. Finally,
we apply the numerical schemes to a representative example
simulation of test particles in GRMHD, using a snapshot of a
two-dimensional simulation of plasma accreting around a
spinning black hole, produced with the black hole accretion
code (BHAC; Porth et al. 2017).

This paper is organized as follows: in Section 2, we discuss
the set of equations governing the motion of charged particles
in curved spacetimes. In Section 3, we briefly review the
characteristics of the aforementioned numerical schemes. In
Section 4, we test all integrators against analytic solutions in
idealized setups. Finally, in Section 5, we show an example
simulation of test particles in GRMHD. Our main results and
conclusions are discussed in Section 6.

2. Charged Particles in Electromagnetic and Gravitational
Fields

The motion of charged, massive particles under the
combined effect of strong spacetime curvature and external
electromagnetic fields is governed by the equation of motion

@ KadLAﬁ - igy F/Wﬁ’ 1

dr? dr dr m-" dr
where the four-position x* (u = 0, 1, 2, 3) evolves in proper
time 7 under the influence of two mechanisms, namely
geodesic motion (left-hand side) and electromagnetic force
(right-hand side). The Christoffel symbol 'y expresses the
connection of a general Riemannian manifold associated with
the metric tensor g,,, and describes the motion of particles
along geodesics. Deviations from geodesic motion are
accounted for by the external force term (g/m)g, pF“de/’ /dr,
thus manifesting more strongly for particles with larger charge-
to-mass ratio g/m. For static electromagnetic fields, the
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covariant antisymmetric Maxwell tensor is
Fp,V = gp,agyﬂFaﬂ = auAV - 6V14/J47 (2)

obtained from the electromagnetic four-potential A,. The
derivative of the four-position with respect to 7 is the four-
velocity

dr’
where ¢ = x” is the coordinate time, and therefore u° = dt/dr.

In this work, we adopt the 3 + 1 ADM formalism (e.g.,
Rezzolla & Zanotti 2013) to define the lapse function «, the
shift three-vector ', and the spatial part of the metric ~; (with
~¥ its algebraic inverse). We choose a (—, +, +, +) signature
for the metric and rewrite the second-order Equation (1) into a

set of first-order differential equations in the variables x’ and
i = g, ut,

ut

3)

dx? U .
— == A “)
du; 0 i . q . u*
— = —au’fa + u o; k——al' ]k—i-—E —_—, 5
dt k1 2u° 7 m P ©)
where
u’ = (e + vuju)'? /e, (6)

and € = 1 for massive particles. Note that from Equation (4),
the relation between u; and u’ = dx'/dr reads

w =yl + u'B; @)

The system of Equations (4) and (5) can be more
conveniently handled than the initial Equation (1). First, it
reduces the problem to a system of six first-order equations,
where there is no need to integrate temporal components.
Second, it can be shown that the conservation of the norm of
the four-velocity, u,u* = — ¢, is automatically satisfied. Third,
expressing the evolution of the particle position and velocity
with respect to coordinate time allows for matching the motion
of particles with the time evolution of global quantities (e.g.,
electromagnetic fields).

Equation (5) differs from the case of pure geodesic motion
by the force term (q/ m) g, u / u°. In the ADM framework, this
term is often conveniently rearranged so that the electro-
magnetic contribution resembles the form of the Lorentz force
in the special relativistic limit (Equation (18) below). For this
purpose, we define the quantities (Komissarov 2011)

Di = aFY%, 8)
H = %ael-ijjk, ©)
E; = Fo, (10)
B — %e"f"ﬂk, (11)

where the Levi-Civita (pseudo-)tensor e; = € /7 is given
by the determinant of the spatial three-metric, v = det(~y;) and
the antisymmetric tensor e;. Similarly, e = &% /J7- The
four field variables D', H;, E;, and B’ are not independent of
each other, but are related through

E; = oDV + ey 8'BY, (12)
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H; = oryB/ — e 3D, (13)
or, alternatively, by the inverse relations

oD’ = YIE; — yleu B!, (14)

aB' = 5IH; + ey 5D (15)

Through relations (12) and (13), Maxwell’s equations can be
effectively reduced to the time evolution of only two dynamic
fields, D' and B’ (Komissarov 2011), with the former being
only a derived quantity (hence not needing an evolution
equation) in the ideal MHD limit. This strategy is commonly
adopted in GRMHD codes (e.g., Gammie et al. 2003; Porth
et al. 2017) and is suitable for the numerical integration of
time-varying fields.

The definitions above can be employed to express the
Lorentz force term in Equation (5) in terms of the dynamic
fields D’ and B'. By expanding the tensor product, we have

ut u/
szw =Fo+ E’jm
ul
= E; + e —B*
u
. oy ‘
=ay D’ + 3jik73 , (16)

where we have used Equations (7) and (12). The equation of
motion (5) for a charged particle now reads

duy
dr

J”k

= —auoal-a + uk&ﬂk 8 k

: u
+ i(a'yl-jDJ + eijk’y_olBk)’ a7
n u

and combined with Equation (4) for the position, it forms a set
of six coupled, nonlinear equations explicitly involving only x’,
u;, and the dynamic fields D’ B . The special relativistic limit is
retrieved by setting o = 1, ﬂ =0, and v/ = 57 (where 17 is
the Minkowski three-metric for flat spacetime) as

du q u

dt m(D T B)' s
where T' = u° is the special relativistic Lorentz factor.

For numerical calculations, one can freely choose the
formulation of the equations to be integrated depending on
the preferred computational scheme. In this work, we will
mainly consider two expressions of the equations of motion.
When simulating charged particles in analytically defined
electromagnetic fields (i.e., known at every position in space),
for accuracy it is desirable to employ a formulation involving
the four-potential. In this case, one can employ Equation (5),
with the Maxwell tensor calculated from Equation (2). If the
four-potential is not available, e.g., when the electromagnetic
field data is defined on a numerical grid (as is the case for
GRMHD simulations), one can make use of Equation (17).

In this work, we consider only stationary metrics and static
fields with no dependence on the coordinate time ¢, i.e., the metric
functions a, B', ~¥, and the four-potential A,, are funct10ns of the
position x’ only. This choice allows us to test the robustness of
numerical integrators with respect to energy conservation, but it
does not represent a limitation of their applicability, which extends
to time-varying electromagnetic and gravitational fields. The time
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invariance of the metric and four-potential implies, in all cases, the
existence of at least one Killing vector field, K* = (1, 0, 0, 0),
representing symmetry with respect to time translations. As a
consequence, for any particle, there exists a conserved quantity
—K*m, = —my = E, which we label as the total energy. Here,
o 1s the zeroth component of the (normalized) conjugate
momentum, m = g + gA,/m, with uy = —a?u’ + Bu; (see
Section 3.3). A shown in Part I, conservation of energy plays an
important role in numerical simulations of geodesic motion. Here
we consider the additional effect of electromagnetic fields, and we
therefore expect that the choice of computational method and the
associated numerical errors similarly impact the simulation results,
as will be demonstrated in the next sections. This is also motivated
by the well-known properties of numerical integrators for special
relativistic charged particles, which can be heavily affected by
spurious non-conservation of energy due to numerical errors
(Ripperda et al. 2018a).

3. Numerical Methods

The motion of charged particles in electromagnetic fields is a
particularly difficult challenge from a numerical point of view.
The main difficulty is generally represented by the separation of
timescales between the motion of the gyrocenter along magnetic
field lines and the gyration around them. This requires particularly
robust numerical methods that can describe both the gyromotion
and the acceleration of the gyrocenter accurately.

At the same time, in curved spacetimes, the motion of
massive particles is influenced by the gravitational field. The
description of the resulting motion is in general complicated, as
are the equations describing it. Typical motion around compact
objects, for instance, is represented by several types of bound
(possibly unstable) orbits. For such a periodic motion,
numerical methods that are capable of keeping a particle on
the correct orbit for long times are ideal, as they produce more
physically accurate results (see Part I).

When the effects of gravitational and electromagnetic fields
are combined, it is necessary to employ a method that is both
robust in handling different timescales and exhibits long-term
accuracy and reliability. In the next sections, we briefly review
standard available numerical methods, and we introduce a new,
exactly energy-conserving method derived from the Hamilto-
nian formalism.

3.1. Explicit Non-symplectic Methods

Explicit methods for ordinary differential equations (ODEs)
advance the numerical solution in a finite number of non-
iterative steps. One of the most successful explicit methods in
scientific computing is the fourth-order Runge—Kutta method
(RK4 hereafter; see, e.g Press et al. 1988). At each time step,
the scheme requires four evaluations of the right-hand side of
the discretized ODE, resulting in an error of order O(At)
Explicit methods such as RK4 are generally incapable of
preserving first integrals of the system, such as the associated
Hamiltonian, if this exists. Another well-known issue of
explicit, non-symplectic schemes is the non-conservation of
phase-space volume (see, e.g., Hairer et al. 2006; Feng &
Qin 2010). The error in these quantities accumulates
unboundedly, and for integration over long times, the resulting
computed solution becomes unacceptably inaccurate. However,
for a widely used method such as the RK4 scheme, the scaling
of errors associated with a reduction in At is satisfactory
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enough to be generally acceptable. In Part I, the RK4 scheme
was tested against simulations of pure geodesic motion. In that
case, long-term simulations required extreme reductions of the
time step in order to preserve accuracy, especially for unstable
orbital motion.

For applications to the motion of special relativistic particles
in electromagnetic fields, explicit non-symplectic schemes are
typically discarded due to the fast degradation of the
description of the gyromotion (Qin et al. 2013; Ripperda
et al. 2018a). In Section 4.1.1, we will show that this problem
manifests in general relativistic simulations as well, hence we
expect that in practical applications, the RK4 scheme cannot be
applied without unacceptable loss of accuracy in the results.

3.2. Implicit Symplectic Methods

Simple explicit schemes such as RK4 lack symplecticity, i.e.,
the capability of an integrator to preserve trajectories in phase
space. A symplectic scheme presents the additional advantage
of preserving first integrals of motion (such as the energy) with
an error that is bounded in time, i.e., no secular growth of
energy errors is observed (Hairer et al. 2006). The remaining
error depends on the order of the method, and it decreases
exponentially with the integration step.

Although explicit symplectic schemes can be constructed,
they are generally not applicable to systems characterized by
inseparable Hamiltonians (see Section 3.3), resulting in energy
errors that are not bounded in time (although the increase in
error is generally very slow; see Tao 2016). Instead, one can
rely on implicit symplectic schemes, such as the implicit
midpoint rule (IMR from now on), which is the simplest
second-order, symplectic, implicit integration scheme (Hairer
et al. 2006).

Implicit schemes such as (or slight variations of) the IMR are
typically applied to the motion of charged particles in special
relativistic simulations. This is motivated by the fact that the
form of the Lorentz force in the special relativistic limit allows,
for specific discretization choices, for the formal inversion of
the equation of motion (Boris 1970; Vay 2008; Higuera &
Cary 2017). As a consequence, even though the discretization
scheme is implicit, the solution procedure is actually explicit
(non-iterative). There also exist discretizations that are non-
invertible and that require an iterative solution procedure
(hence a higher computational cost); these can present desirable
features such as energy conservation in global simulations, e.g.,
for PiC codes (Lapenta & Markidis 2011; see Ripperda et al.
2018a for a review of available special relativistic particle
integrators). Generally speaking, iterative or non-iterative
implicit schemes exhibit stability and bounded energy errors,
hence they are usually preferred to explicit schemes such as
the RK4.

For charged particles in general relativistic contexts, the
nonlinear nature of Equation (5) prevents formal inversion
when the IMR scheme is applied. Therefore, iterative
algorithms are the only possible choice for advancing the
solution to the next time step. In Part I, the IMR scheme was
applied to pure geodesic motion. In such a context, the results
are generally accurate, but exhibit errors typically one order of
magnitude larger than those affecting the results obtained with
the RK4 and the Hamiltonian schemes, at least for integration
over short times or very unstable orbital paths. For integration
over very long times, instead, both the IMR and Hamiltonian
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schemes can keep energy errors bounded, proving superior to
non-symplectic explicit schemes.

3.3. Implicit Energy-conserving Methods

The symplectic nature of implicit schemes such as the IMR
implies the conservation of the first integrals of motion (e.g.,
the total energy) to a degree that scales with the integration
step. Energy errors, although bounded in time, are nonzero, and
can prove detrimental in some situations. For pure geodesic
motion (see Part I), we demonstrated how unstable photon
orbits are strongly affected by such errors, which prevent
schemes like the IMR from producing accurate results unless
decreasing the time step by orders of magnitude. In such cases,
a second-order numerical scheme that can conserve energy
outperforms the second-order IMR and even the higher order
RK4 scheme. In Part I, an energy-conserving scheme has been
derived, for pure geodesic motion, based on a Hamiltonian
formalism.

Here, we extend the same argument to the motion of charged
particles in general relativistic gravitomagnetic fields. The
3 4+ 1 Hamiltonian for a particle of mass m and charge ¢,
subjected to electromagnetic and gravitational forces, is written

Hx, m)y= a\jl + 'y’j(m — iAl')(ﬂ'j — iAJ-)
m m

_ ﬁk(ﬂk —

EAQ-EAm (19)
m m

where 7, = u; + gA,/m is the conjugate momentum counter-
part of u;. As mentioned above, we consider static fields such
that A, is a function of x' only. The Hamiltonian H represents
the total energy of the particle and is therefore conserved in
time. This can be shown by using the definition of the
conjugate momentum,

= o + iAo
m
=—a?u’ + Fu; + La,, 20)
m
and by substituting with the expression of u°, we retrieve
|H| = |m| = E as implied by Killing’s equation. In the absence

of electromagnetic fields, A, = 0, we retrieve the Hamiltonian
for pure geodesic motion,

Fl(x, u) = 041,1 + vijul-uj - ﬁkuk. 21

The special relativistic limit of the Hamiltonian (19) is also
easily retrieved, for flat spacetime, as

2
Hx,©) = |1 + (7r — iA) + 44 22)
m m

for an electrostatic scalar potential ¢ and a vector potential A.
The equations of motion in terms of x’ and 7; are derived in
the usual way,

dxi  OH@,m)  V(m—qA/m)
== = ) -5, @
dt o u
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dn_ _OH® ™) _ _ g + (m — qhy/m)di5*

dt ox'
B (m; — qA; [m)(mc — qA [m1) "
2u° l
K — qA; [m)
+ Loa, + il% - ﬁk]aiAk, 24)
m m u

where the definition of #° is now

ud = é\/l + ij(m' - %Aj)(ﬂ'k - ZAk)- 25)

In Equation (24), the Lorentz force appears via the terms that
include spatial derivatives of the components of A,. The
conservation of the Hamiltonian (19) in time follows
immediately by application of the chain rule,

A

dH(x, ) OH(x, ™) dx'  0H(x, w) dm
e ox dr om  di
dm; dx’ dxt dm
Cdeodr odr dr
=0. (26)

A numerical scheme constructed to conserve the Hamiltonian
(hence the energy) exactly should fulfill a discrete equivalent of
the condition above. For a discrete time increment At between
time levels n and »# + 1, a numerical scheme advances the
position and momentum by the increments x*"*! — x'" = Ax/,
Tint1 — Tin = Am. If energy is preserved during the update,
then H (x"*!, w1y = H(x", ©") to machine precision. There-
fore, a discrete equivalent of the condition for energy conservation
above reads

AHx,m) _ AfH@x, ™) Ax! N ALH (x, m) Am
At AX Ar Am At

=1

@7

The first equality holds assuming that it is possible to define
discrete operators A7, Al such that the discrete time increment
of H on the left-hand side can be expanded in terms of
increments of / with respect to the single variables x', ;. This
requirement essentially corresponds to finding discrete opera-
tors A7, Air that act, in the numerically defined condition (27),
as partial derivatives act in the continuous case, Equation (26).
In other words, such operators must respect a discrete
equivalent of the chain rule when applied to a generic function

fa m,
Af (e, m) = f@mL, 7Y — f(en, )
= A f@x, MAX + AL f(x, m) Am, (28)
which mimics the continuous analog
df (x, ) = Bf (&, Mdxi + D f (x, ). (29)

The definition of discrete operators can be found in full in
Appendix A. With these definitions, it is sufficient to employ
the discrete equations of motion

Axi _ ALH(x, 7)

30
At AT @0)
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At Ax?

Am _AfH(x, ) 31)

to ensure that condition (27) is automatically satisfied. The
resulting numerical scheme is second-order like the IMR and
involves in general the solution of a system of nonlinear,
implicit equations that has to be carried out iteratively. The
additional computational cost, however, is counterbalanced by
the exact conservation of energy in time, regardless of the
simulation parameters such as At.

Energy-conserving schemes of this type have been applied
for simpler Hamiltonian systems in many contexts (Feng &
Qin 2010; Chatziioannou & Van Walstijn 2015). These
schemes generally do not preserve phase-space trajectories, as
is the case for symplectic schemes such as the IMR. Identifying
the most suitable integrator is therefore case-dependent, but
conservation of energy certainly plays an important role in the
accuracy of the results, as shown in Part I. There, an energy-
conserving scheme was successfully applied to pure geodesic
motion, exhibiting higher robustness than the RK4 and the
IMR schemes, especially for motion along unstable orbits.

Note that for charged particle motion the scheme above
requires that the four-potential A,, be available analytically at
all time steps. In the next section, we discuss the application of
such a scheme when only the dynamic fields D', B are known
at discrete grid points, which is generally the case in grid-based
global simulation codes.

3.3.1. Modified Hamiltonian Scheme for Grid-defined
Electromagnetic Fields

BHAC (Porth et al. 2017) is a GRMHD code that solves
Maxwell’s equations coupled to the plasma fluid equations in a
form that does not involve the four-potential (as is the case for
other codes that instead evolve A,; see, e.g., Etienne et al.
2015). In fact, only two of the dynamic fields from the
formulation presented in Section 2 are used, namely the three-
vectors D' and B'. In a way, these can be identified with the
electric and magnetic fields, although the definition of such
fields in general relativity takes a more intricate meaning (see
Section 2). If only D' and B’ are available in place of A,,, we
can solve the momentum equation for charged particles in the
form of Equation (17). The RK4 and IMR schemes can be
directly applied to this equation. However, the Hamiltonian
scheme in the form presented in the previous section
intrinsically requires the four-potential A,,.

In order to render the Hamiltonian scheme applicable to
particle simulations that do not make use of A,,, we present here
a slightly modified algorithm that relies on D’ and B' instead.
Because the conservation properties of the original Hamilto-
nian scheme are based on the availability of A,, the most
immediate consequence of such a modification is that the exact
preservation of the invariants is generally lost. However, we
will show that this “modified Hamiltonian” scheme retains
energy conservation in some form. The new numerical scheme
is constructed by imposing two main properties. First, for
physical consistency, we can demand that the numerically
computed magnetic force acting on the particles exerts no
work. Second, in the limit of vanishing electromagnetic fields,
if the metric is available analytically, the scheme must
converge to that presented in Part I for pure geodesic motion,
hence retaining exact energy conservation. Additionally, we
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can demand that the method remains second-order accurate like
the original Hamiltonian scheme.

The first condition follows from the time component of the
equation of motion (17). This reads

o _ 14 (32)

dt — mu’
where the change in energy of the particle is associated only
with the electric field term E;. The expression above holds by
using the definitions of E; = Fyp and B' = (1/2)e%*Fy, and due
to the antisymmetry of the Levi-Civita tensor, u'eu/B* = 0
(or in standard vector notation, u - (# X B) = 0). In other
words, the three-momentum u’ should always be perpendicular
to the magnetic force el-jkujBk . Since u'/u’ = dx'/dt, this
implies that the displacement in the position is also perpend-
icular to the magnetic force.

The energy-conserving properties above (no spurious work
from magnetic fields and from the curvature terms) can be
imposed on the numerical scheme by an appropriate choice of
discretization. First, we take the discrete position equation to be

Ax A H(x, u)
At Au; ’
which is similar to Equation (30), but with the energy-

conserving discretization discussed in Appendix A applied to
the Hamiltonian for pure geodesic motion (21),

Hx, u) = a1 + vy, u; — BFuy. Then, the discrete momen-
tum equation is taken as
Aui _ AHx, u)

At Ax!

+ i(a'Yz]Dj T ez;kﬁjB + ez;kAA_ka) (34

(33)

where the first term corresponds again to the energy-conserving
discretization of the Hamiltonian for geodesic motion. The
second term, expressing the Lorentz force, is such that the
magnetic force e AX'B / At is now always perpendicular to
the three-momentum u / u’, i.e., perpendicular to the displace-
ment Ax’/At, as required.

The scheme above respects both requirements and, in fact,
retains energy conservation in the limit of zero electric fields
and for pure geodesic motion. If the electric field term
E = a'yl-ij + e 8/B* vanishes in Equation (34), contracting
the two discrete equations of motion gives

Av Ay AN W AAE D A
At At At A A At

or alternatively,

AJH i A : 1
A w AV N w A A w) oo

Axi At Au; At At

following the same argument used to write condition (27). In
practice, in the case of vanishing electric fields, with this choice
of discretization, the magnetic field exerts no work and energy
(i.e., the Hamiltonian A is still conserved exactly).

Aside from non-conservation of energy in the most general
case, the angular momentum L, which is a constant of the
motion in specific setups (e.g., along the f-direction in the
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Wald solution with an aligned magnetic field; see Section 4.1.1),
is not conserved exactly by the modified scheme. In those
setups, the original Hamiltonian integrator, which is formulated
in terms of x' and m; automatically respects the condition
dr,/dt = dL/dt = 0. However since the modified scheme is
formulated in terms of x” and w, this property no longer holds.

Finally, note that no condition is specified for the position at
which the Lorentz force term in Equation (34) must be
evaluated. In order to retain second-order accuracy, we choose
this position to be the time average between two consecutive
time levels, (x""T! 4+ x'")/2. We also emphas1ze that the
scheme above is valid even when E' and B’ are obtained via
interpolation at the particle position (e.g., from a computational
grid), and energy conservation is still ensured in the limit of
vanishing electric fields. In Section 5.1, we analyze the effect
of interpolation (which acts as an additional source of
numerical error) on the accuracy of the integrators.

4. Tests in Analytic Electromagnetic Fields

In this section, we test all integrators described above by
simulating bound orbits of charged particles around compact
objects. As physically meaningful examples, we consider the
Schwarzschild and Kerr spacetimes, coupled to several
configurations of test electromagnetic fields. Because of the
non-integrability of the resulting system, analytic solutions do
not exist in general, hence we rely on other types of diagnostics
to assess the performance of the integrators (conservation of
first integrals, preservation of gyration, and other case-
dependent requirements). Then, for quantitative comparison
of the numerical results with theoretical predictions, we
consider analytically derived orbits in the electromagnetic field
of a Kerr—Newman black hole, where the equations of motion
are integrable. In this context, we apply all integrators to the
simulation of several unstable spherical orbits. In all cases, we
use geometrized units ¢ = G =1 (hence time, mass, and
distances are measured with the same units). Additionally,
everywhere we consider a black hole mass M = 1.

4.1. Black Holes in External Electromagnetic Fields

As a first test, we consider the motion of charged particles
around Schwarzschild and Kerr black holes. The spacetime
metric reads, in Boyer—Lindquist coordinates,

ds? = _(1 - 'Zﬁ/gr)dﬂ —4Mrasm b4 edr + i ——dr?
14 p? A
2 i
+ ,02d02 ER (72 + Cl2 + Wrap%@) sinzﬁdgoz, (37)

with p?=r2 4 ad?cos’0 and A =r?— 2Mr + a*>. This
solution presents metric singularities at the inner and outer
event horizons, corresponding to the condition A = 0, and
located at

=M+ M2 — a2, (38)

In the non-rotating limit a = 0, the Schwarzschild solution is
retrieved, and the only event horizon is the spherical surface at
the Schwarzschild radius rg¢ = 2M.

In addition to the geodesic motion governed by the
spacetime curvature, we consider the effect of external
electromagnetic fields on the motion of charged particles. In
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Parameters and Initial Conditionsrlf‘?):) 1;161 Orbits in the Wald Configuration
Orbit Name B, B, a (0] L E (r, 6) (ug, uy)
RSA1 0.2 0 0 0 4.5 0.873 4, ©/2) 0, 2.9)
RSA2 0.2 0 0 0 4.5 0.834 (5, ©/2) 0, 2.0
RSA3 0.2 0 0 0 8 0.9 9.5, 1.6) 0, —1.024)
RSA4 2 0 0 0 7.44 0.5 (2.6, 7/2 4+ 0.1) (0, 0.799)
RSAS -2 0 0 0 68 14.8 8.5, 1.06) (0, 122.983)
RKA1 =2 0 0.998 —3.992 —14.9 0.07 (3.37, ©/2 + 0.07) 0, —2.020)
RKA2 2 0 0.7 0 16.25 1.81 4.2, 7/2 - 0.1) 0, —1.930)
RKA3 2 0 0.9 0 18.1 2.2 4, ©/2 — 0.2) (0,1.565)
RKA4 1 0 0.9 1 6 1.58 (3.68, 1.18) (0.341, —0.322)
RKAS 1 0 0.9 1 6 1.65 (3.68, 1.18) (1.745, —0.322)
RKA6 2 0 0.5 2 5 1.78 (3.11, n/4) (0.648, —0.040)
RKA7 1 0 0.9 1 6 1.6 (3.68, 1.18) (0.962, —0.322)
RKAS 1 0 0.9 0 5 1.24 3, ©/2) (0.497, 0.365)
CKAl 1 0 0.9 1 6 1.75 (3.68, 1.18) (2.779, —0.322)
CKA2 1 0 0.9 1 6 1.8 (3.68, 1.18) (3.205, —0.322)
CKA3 1 0 0.9 1 6 1.75 (3.68, 1.18) (2.779, —0.129)
CKIl 1 0.07 0.9 1 6 1.58 (3.68, 1.18) (0.135, 0.132)
CKI2 1 0.15 0.9 1 6 1.75 (3.68, 1.18) (2.698, 0.429)
CKI3 1 0.05 0.9 0 5 1.24 3, ©/2) (0.497, 0.365)
CKH4 1 0.1 0.9 0 5 1.24 3, ©/2) (0.497, 0.365)

Note. From left to right, we list the inclination of the asymptotic magnetic field B, and B,, the black hole spin a, the inductive charge O, and the particle angular
momentum and energy L and E; we also report the numerical values of the initial position (», #) and momentum (ug, #,,) (wWe set an initial ¢ = 0 and u, = 0
everywhere). The orbit names denote their character (R = regular, C = chaotic), the metric (S = Schwarzschild, K = Kerr), and the magnetic field inclination

(A = aligned, I = inclined).

this case, the source of the electromagnetic fields is not the
black hole itself, but rather a distant magnetized object or
external current loops from accreting plasma. This configura-
tion does not exhibit a sufficient number of invariants
characterizing the motion of test particles. As a consequence,
the equations of motion are nonintegrable, and chaotic behavior
may be observed in the particle trajectories. Chaoticity
characterizes trajectories that do not remain within the limited
equipotential region, but rather fill the phase space uniformly
without evident recursion (see, e.g., Kopacek et al. 2010b).

Non-integrability also implies that these systems lack
analytic solutions that can be directly compared to numerical
results. Hence, in order to analyze the performance of the
numerical integrators here presented, we rely on alternative
measures of the computational error. For the two configurations
presented below, we can monitor the error in the conserved
energy E and angular momentum L (the latter not in all cases);
additionally, we can verify the capability of each scheme to
keep the particles on prescribed bound orbits (without spurious
escape) without unphysically suppressing the gyration around
magnetic field lines.

4.1.1. The Wald Solution

The Wald solution of Maxwell’s equations in curved
spacetime is an electromagnetic configuration consisting of a
Schwarzschild or Kerr black hole immersed in an external
magnetic field (Wald 1974; Aliev & Ozdemir 2002). Such a
field is supposedly originated by a distant object (e.g., a
magnetar). This configuration allows for the appearance of
chaotic scattering orbits, hence it represents a strong test for the
robustness of the integration schemes.

The four-potential corresponding to a uniform magnetic field
with arbitrary inclination with respect to the black hole spin
axis reads (Kopacek & Karas 2014)

-MB
Ag= %(1 + cos?0) — aB,

+ M(f Cosq/) — asin 1/)) — Q’ (39)
b b
A, = —B,(r — M)cos 0 sin 6 sin, (40)

Ag=—aB(rsin® @ + M cos? 0)cos
— B,(r?cos?@ — rM cos20 + a’cos20)siny, (41)
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Figure 1. Simulation of orbit RKA3 from Table 1 with the RK4 method (red line, top left), IMR scheme (blue line, top right), Hamiltonian (green line, bottom left),
and modified Hamiltonian (magenta line, bottom right) schemes. The central Kerr black hole, rotating from west to east, is shown as a colored sphere of radius r. The
plots clearly show that the RK4 method introduces numerical errors resulting in a damping of the particle gyration. The other schemes, instead, preserve this feature

until the end of the run.

2 2 2
A, =B, sino| 9 EM | o)
2 b))
— By sin&cos@[Acosw

arQ sin® 0
n 0 sin
by

’

2 2
+ %(f cosy —a sim/))]

(42)

where B, and B, represent the asymptotic strength of the
magnetic field along the directions parallel and perpendicular to
the magnetic axis, and

a r—ry

log
ry—r-

(43)

v=9p+ .
r—r.
Here, O represents the asymptotic charge of the black hole that is
accumulated via the infall of charged particles through the event
horizon (Wald 1974). The inclination of the magnetic field lines
with respect to the spin axis is quantified by the ratio B,/B..

As mentioned above, the equations of motion in this
configuration are nonintegrable. In fact, the only quantity that is
always conserved (aside from g""u,u, = —1) is the energy,
E = —ug — gAy/m, since both A, and g,,,, are independent of .

The four-potential, A,,, is not independent of the coordinate ¢ in
general, but becomes so in the aligned configuration B,/B. = 0.
Therefore, the angular momentum, L = u, + qA@ /m, is not a
constant of motion for non-aligned cases.

Here, we consider several bound orbits taken from various
reference works (Takahashi & Koyama 2009; Kopacek et al.
2010a, 2010b; Kopacek & Karas 2014, 2018; Kolo$ et al.
2015; Stuchlik & Kolo§ 2016; Tursunov et al. 2016). The
parameters and the numerical values of the initial conditions
characterizing each orbit are listed in Table 1. In all cases, we
set g/m = 1, an initial angle ¢ = 0, and an initial component
u, = 0.

As a first test, we evaluate the ability of each scheme to preserve
the particle gyration around magnetic field lines. Figure 1 shows
the regular orbit RKA3 (see Table 1 for an explanation of the
naming convention used here), where the gyration motion is
clearly visible. The orbit was simulated up to ¢t = 1000 with
At = 1. The four panels show the trajectory obtained with the
RK4 scheme (top left), IMR scheme (top right), Hamiltonian
scheme (bottom left), and modified Hamiltonian scheme (bottom
right). The same orbits are shown projected on the poloidal plane
in Figure 2. Both figures show clearly that, in the results of the
RK4 integrator, the particle gyration is progressively damped
until it disappears completely. The IMR scheme, instead, preserves
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Figure 2. Simulation of orbit RKA3 as in Figure 1, projected onto the ¢ = 0 plane, obtained with the four integration methods. A spurious damping of the particle
gyration is observed in the RK4 run, due to unbounded energy errors and lack of symplecticity.
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Figure 3. Trajectory in the f-coordinate for orbit RKA3 simulated with the four methods and Ar = 1 (left panel), compared to a high-resolution reference run (dashed
line). The error trends in terms of the root mean square difference with respect to the reference simulation are reported for increasing numbers of integration steps
(right panel), confirming the second-order character of the IMR, Hamiltonian, and modified Hamiltonian schemes.

the gyration indefinitely, due to its symplectic character. The
Hamiltonian and modified Hamiltonian schemes do not possess
symplecticity, but nevertheless perform as well as the IMR and
preserve the gyration correctly. This is a feature also observed for
certain non-symplectic special relativistic integrators (Ripperda
et al. 2018a), which can be attributed to the highly geomefric
character of the schemes, intrinsic to their energy-conservation
properties. Analogous results are obtained for each orbit in
Table 1. For our choice of test cases, we find that in order to avoid
the rapid loss of gyromotion when using the RK4 scheme, the

value of At must be reduced by one or two orders of magnitude
with respect to that allowed by the IMR and Hamiltonian schemes.

The phase difference between the oscillating trajectories in
Figure 1 suggests that the various methods introduce different
errors in the particle position. Since no analytic solutions are
available to compare the calculations with exact results, we
measure the convergence properties of each scheme by
evaluating the relative difference between the outcome of each
method and a reference high-resolution run (obtained with a
sufficiently small At such that all integrators converge to the
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(b) Evolution of the relative error in E and L.

Figure 4. Simulation of the regular orbit RSAS with Ar = 1 until + = 100,000. The left panel shows part of the particle trajectory. The right panel shows the evolution
of the relative error in the conserved quantities for the RK4 (red line), IMR (blue line), Hamiltonian (green line), and modified Hamiltonian (magenta line) integrators.
Both Hamiltonian schemes preserve the energy to machine precision at all times. The original Hamiltonian scheme also conserves momentum to machine precision,

with the other three integrators showing worse accuracy (similar, among them).

same solution). By varying the number of integration steps, we
can then monitor the error reduction trend that is characteristic
of each integrator. The results are shown in Figure 3 (left
panel), where we compare part of the trajectory in the
f-coordinate obtained with the four methods by selecting
At = 1. A different phase lag with respect to the reference run
is clearly observable for each method. The error trend of each
scheme (in terms of the root mean square difference in the
#-coordinate) is shown in the right panel for different numbers
of total integration steps. In all cases, the modified Hamiltonian
method exhibits a slightly smaller error than the IMR and
original Hamiltonian methods. The RK4 method performs far
worse than all other schemes at larger time steps, exhibiting
higher accuracy only when increasing the number of integra-
tion steps fourfold. The error trends also confirm the second-
order character of the IMR, Hamiltonian, and modified
Hamiltonian schemes.

The results support the conclusions drawn in Part I,
confirming that explicit integrators such as RK4 are not
suitable for simulating the motion of charged particles and
prove inferior (at least for large time steps) to lower order
implicit methods. Although this issue is well-known for special
relativistic particle simulations (Qin et al. 2013), here we prove
that the same problem arises in general relativistic calculations,
in which explicit integrators are often used for geodesic motion
(see, e.g., Chan et al. 2017). When the effect of spacetime
curvature is combined with the action of the Lorentz force,
features such as the particle gyration around magnetic field
lines can be artificially eliminated by explicit integrators, unless
the simulation is run with small Az, becoming slow and
expensive.

In order to more quantitatively evaluate the numerical error
affecting each integrator, we analyze the accuracy of the
preservation of the invariants of the motion. We consider orbits
RSAS and CKI2, a regular and a chaotic orbit, respectively. For
orbit RSAS, the asymptotic magnetic field is aligned with the
black hole spin axis, hence E and L are both conserved
quantities. For orbit CKI2, instead, B,/B, = 0 and only E is
conserved.

10

Figure 4 shows the numerical results for orbit RSAS
simulated with Az = 1 until ¢ = 10°. The left panel shows
part of the trajectory. In the right panel, the evolution of the
relative error on E and L is reported for all four integrators. The
RK4 results (red lines) are clearly characterized by a secular
growth of the error in both conserved quantities. Eventually,
such drift leads to the particle escaping the bound trajectory,
either ending up captured by the black hole or traveling to
infinity. The error in the IMR results (blue lines), instead, is
bounded for both E and L, and allows the particle to be kept on
the right orbit indefinitely. The results obtained with the
Hamiltonian integrator (green lines) are characterized by exact
conservation (to machine precision) of the energy, as expected;
more interestingly, the angular momentum L is also conserved
up to a precision far exceeding that of the IMR results. This is
due to the formulation of the equation of motion (24) in terms
of the conjugate momentum m;: for i = 3, this naturally reduces
to dmsy/dt = dL/dt = 0, which is reflected in the discrete
equations. This feature clearly makes the Hamiltonian
integrator more reliable in terms of physical accuracy. Finally,
the modified Hamiltonian integrator (magenta lines) shows the
capability to conserve energy exactly at all times for this case,
as expected, since no electric fields are present. However, due
to the different formulation with respect to the original
Hamiltonian scheme, exact conservation of the angular
momentum is lost. The measured error in L is similar to or
slightly above that of the IMR scheme. Such an error appears to
be unbounded for the modified Hamiltonian scheme, although
in our tests we observed a mildly growing trend that causes the
error to double every 100,000 steps. For lower values of At,
the error in E of the RK4 and IMR schemes improves, but it is
necessary to reduce the time step by several orders of
magnitude for these schemes to reach the level of accuracy
of the Hamiltonian integrators.

Finally, Figure 5 shows the simulation results for orbit CKI2
caleulated with At = 0.1 until + = 5000. Part of the orbit is
shown in the left panel. The evolution of the relative error in
the only conserved quantity E is shown in the right panel for all
four integrators. Here, we observe that the chaoticity of the
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Figure 5. Simulation of the chaotic orbit CKI2 with A¢ = 0.1 until # = 5000. The left panel shows part of the particle trajectory. The right panel shows the evolution
of the relative error in the conserved energy for the RK4 (red line), IMR (blue line), Hamiltonian (green line), and modified Hamiltonian (magenta line) integrators.
The RK4 integrator causes the spurious escape of the particle from the orbit. The Hamiltonian scheme, instead, keeps the particle bounded and preserves the energy to
machine precision at all times. The IMR and modified Hamiltonian schemes perform equally well in keeping energy errors bounded.

orbit further worsens the performance of the RK4 integrator,
with its associated accumulation of error rapidly causing the
spurious escape of the particle from the bound trajectory.
The IMR and Hamiltonian integrators, instead, keep the particle
bounded until the end of the run, with the energy error of the
Hamiltonian remaining on the order of machine precision at all
times. The modified Hamiltonian integrator does not preserve
energy to machine accuracy, as expected, due to the non-
vanishing electric field. However, energy errors remain bounded
and of the same order as those observed in the IMR results.

4.1.2. The Dipole Solution

A more realistic electromagnetic configuration is represented
by a black hole surrounded by a dipolar field, e.g., created by
toroidal plasma currents flowing outside of the event horizon.
Such a situation could be common in astrophysical black holes
in the presence of accretion disks, which provide the necessary
current for the dipolar field (no-ingrown-hair theorem). In this
case, the metric (37) describing a Schwarzschild or Kerr black
hole is coupled to the four-potential A, = (4o, 0, 0, A))
(Takahashi & Koyama 2009), where

0

= ZQ_ZE{[r(r — M) + (@* — Mr)cos? 0]

x ilog(r_r)—(r—Mcosza)}, (44)
2¢ r—ry

4 3Msin’0
=i
+ r(r* + Mr + 2a% — [r(r® — 2Ma® + a*r)

+ Ad?cos? ﬁ]ilog r-r ,
2¢ r—ry

{(r — M)a?cos?9

(45)

where ¢ = (M? — ¢%)!/2, and M is the dipole moment.
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Since the source of the electromagnetic field is not the black
hole itself, the field is considered “external” to the black hole,
similarly to the Wald configuration above. In this case, the
dipole field and the black hole spin axis are aligned, and the
energy E = —uo — gAy/m and the angular momentum
L =u,+ qA,/m are conserved quantities of the particle
motion. Overall, the system is still nonintegrable, hence chaotic
motion can be observed in the particle trajectories.

Charged particles traveling in such a configuration are
subjected to drift in the azimuthal direction, gyration around
the magnetic field lines, and cross-equatorial oscillation, being
trapped in the magnetic bottle appearing near the poles. As
meaningful examples of such trajectories, here we simulate two
bound orbits, one regular and one chaotic, taken from
Takahashi & Koyama (2009). In both cases, we assume ¢/
m=1, M =70, and we initialize a particle at (r, 6,
) = (10.5, /2, 0). After specifying the values of the energy
E and angular momentum L, we prescribe an initial four-
velocity characterized by the ratio #’/u” = tanx. Then, the
initial components of u; are completely determined by the
normalization condition, g*"u,u, = —1. We run both tests
with Az = 1 until ¢+ = 100,000.

Figure 6 shows the regular orbit characterized by E = 0.885
and L = —7 around a Kerr black hole of spin a = 0.9. The initial
four-velocity corresponds to a parameter x = —(0.017. In the left
panel, part of the trajectory is shown in three-dimensional space.
In the right panel, a projection of the orbit on the poloidal plane
evidences the regularity of the orbit. Figure 7 analogously shows
the chaotic orbit characterized by E = 0.89 and L = —7. Here,
a = 0.6 and x = —0.37. The poloidal projection shown in the
right panel clearly shows the chaotic nature of the motion, which
uniformly fills the torus-like region associated with the effective
potential determined by E and L.

As for the Wald configuration, we monitor the error in the
conserved quantities of the motion E and L. The results are
shown in Figure 8, where we report the evolution of the error in
both energy and angular momentum for the E = (0.885,
L = —7 orbit (left panels) and the £ = 0.89, L = —7 orbit
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Figure 6. The regular orbit of a charged particle around a Kerr black hole in a dipolar field. The orbit is characterized by E = 0.885 and L = —7. The initial four-
velocity is such that x = —0.017. The left panel shows the trajectory in three dimensions. In the right panel, a projection of the orbit in the poloidal plane shows the

non-chaotic nature of the trajectory.
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Figure 7. The chaotic orbit of a charged particle around a Kerr black hole in a dipolar field. The orbit is characterized by E = 0.89 and L = —7. The initial four-
velocity is such that x = —0.37. The left panel shows the trajectory in three dimensions. In the right panel, a projection of the orbit in the poloidal plane shows the

chaotic nature of the trajectory.

(right panels) for all four integrators. The behavior of the
numerical error is very similar to the previous case, with
the RK4 scheme showing an unbounded secular growth of the
error for both quantities, which eventually leads to the spurious
release of the particle from the orbit. The IMR and modified
Hamiltonian schemes, instead, preserve the bounded trajectory
and keep the errors limited. A mildly growing trend is observed
again in the angular momentum error for the modified
Hamiltonian method. The original Hamiltonian integrator
further improves the conservation of both energy and angular
momentum, with errors on the order of machine accuracy at all
times.

4.2. Unstable Orbits in the Kerr—Newman Spacetime

Although the combination of Schwarzschild or Kerr black
holes in an external electromagnetic field represents a

12

nonintegrable system, this is not the case when the source of
electromagnetic fields is the black hole itself, via a nonzero
electric (or magnetic) charge. In this case, the charge parameter
intrinsically links the electromagnetic potential with the metric
functions. As a result, the system presents a number of
conserved quantities for the motion of test particles equal to the
number of degrees of freedom, and the equations of motion can
be solved analytically.

Charged black holes are considered purely theoretical
objects that can hardly be observed in reality. In general, it is
thought that the charge of any such object would be quickly
counterbalanced by infalling particles of opposite charge,
attracted from the surrounding environment. Hence, the vast
majority of black holes in the universe are expected to be
essentially neutral. Nevertheless, an idealized charged black
hole in vacuum can be used as a suitable testing ground for the
numerical integration of charged particles. Since the solution of
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Figure 8. Evolution of the relative error in the conserved energy (top panels) and angular momentum (bottom panels) for the E = 0.885, L = —7 regular orbit (left

panels) and the E = 0.89, L = —7 chaotic orbit (right panels). The IMR (blue lines) and modified Hamiltonian (magenta lines) schemes keep errors in energy and
momentum bounded at all times. The original Hamiltonian scheme (green lines) preserves both quantities to machine precision, while the RK4 scheme (red lines)
introduces a secular unbounded growth in the error leading to the spurious release of the particle from the orbit.

Parameters for the Unstable Sphg‘r?cballe grbits in Kerr—Newman Spacetime

Orbit Name qQ/m L E 7o

A 0.9 1 1.00885 2.61044
B 1.1 1 1.09032 2.11159
C 1.1 1.5 1.16215 1.84050
D 2 1 1.53422 1.69458
E 10 10 8.12266 1.49386
F 10 —10 3.69550 1.77958

Note. In all cases, we fix a = 0.6, K = 1, and Q2 + P? =04, and we impose
P = (. Then, we choose values for gQ/m and L, and we solve
u" = du"/dr = 0 from Equation (65) for E and rq.

the equations of motion can be found analytically, the
numerical results can be compared directly to theoretical
predictions, in order to obtain quantitative measures of the
numerical error.

Here, we refer to the work by Hackmann & Xu (2013) to test
the four numerical schemes against analytically known orbits in
the Kerr—Newman spacetime of a charged, spinning black hole.
The associated line element reads, in Boyer-Lindquist
coordinates,

sin% @

2
ds? = %dr2 + 20 + ———1(r? + a®)dyp — adiP
p

= %[a sin® 0dy — dtF , (46)
P

where p? = r? + a%c0s?0, A = r2 — 2Mr + a* + Q* + P2,
and a is the black hole spin. The most general formulation for
the Kerr—-Newman spacetime includes O and P, the electric and
magnetic charges of the black hole. In general, it is assumed
that a magnetic charge could never manifest in classical
physics. The black hole spin, mass, and charge are related by
a’® + Q% + P? < M?, due to cosmic censorship.
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The Kerr—Newman charge is the source for the intrinsic four-
potential A, = (Ap, 0, 0, A,), where

Ag = Mcos 0, @7
P
A, = L2[—aQr sin?0 — (r2 + a*)P cos 0], (48)

P

which define the conserved energy and angular momentum,
respectively —E = m = uo + gAy/m and L =m, = u, +
gA,/m. An additional constant of the motion arises from the
separability of the Hamilton—Jacobi equations in the form of
the Carter constant C, given by Hiscock (1981),

P . )
C=u}+ a*cos?6 + (aEsinzﬁ—L—i——cos@)

sin? @ m
— (L — aE)~.

(49)

The motion of particles in the Kerr—-Newman spacetime is
integrable, and the equation of motion (1) can be solved
analytically. Here, we quantify the numerical error introduced
by each integration scheme by simulating analytically derived
unstable orbits. The derivation of the orbit parameters is
explained in detail in Appendix B, where we show the step-by-
step construction of arbitrary spherical orbits in this spacetime.
With this procedure, we identify the orbits summarized in
Table 2. Even though we give here precise numerical values for
the initial simulation parameters, because of their unstable
nature, the orbits are extremely sensitive to the values of
position and momentum. Hence, to reproduce the orbits shown
here, one should rather follow the procedure in Appendix B to
retrieve the values of the initial parameters with sufficient
precision.

The simulation of each orbit is carried out until t = 1000 (for
orbits E and F, which are bound to smaller regions of space and
thus require smaller time steps, until t=500 and =75,
respectively). Each spherical path is calculated with all four
integrators for a range of At. Throughout the computation, we
monitor the deviation of the radial position from the initial
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Figure 9. Representation in three-dimensional space of the unstable spherical orbits B (left panel) and D (right panel) from Table 2. The outer event horizon is shown

as a colored sphere of radius r, = M + M? — a®> — Q% — P?. The equatorial red circle indicates the constant radius 7, characterizing each orbit. The starting point

of the orbits is marked by a red dot.

value ry, as well as the error in the conserved quantities E, L,
and C. Figure 9 shows a part of orbit B (left panel) and D (right
panel). The outer event horizon is represented by a colored
sphere of radius r,. The sense of rotation of the black hole is
from left to right. The red circle of radius ry indicates the
theoretical value of » at which the orbit should remain in the
absence of perturbations. The initial starting point of each orbit
is marked with a red dot.

Figure 10 shows the time evolution, until t+ = 500, of the
relative error in the radius, measuring deviations from the
theoretical value r,, for orbits B (left panel) and D (right panel),
for At=1 (solid lines), At = 0.1 (dashed lines), and
At = 0.01 (dashed—dotted lines). The results are analogous
to those from the unstable spherical photon orbits analyzed in
Part I: an initial exponential growth of the error in ry is
observed, until the particle is released from the bound orbit.
The deviation from the physically unstable path is triggered by
numerical errors, with less accurate schemes causing larger
perturbations and therefore an earlier release from the orbit. In
all cases, the Hamiltonian scheme preserves the motion on the
initial radius r, far longer than all other schemes, which instead
introduce much larger perturbations at earlier times. Even with
the smallest time step At = 0.01, the RK4 scheme performs
worse than the Hamiltonian scheme at the largest time step
At = 1, despite the former being of higher order than the latter.

Finally, in Figure 11 we show the time evolution of the
relative error in L and C for the smallest At = 0.01, for the
same orbits B and D. The results clearly show that the energy-
preserving character of the Hamiltonian integrator is also
associated, in this case, with the exact conservation of all other
invariants of the motion, even after the release of the particle
from the r = ry, unstable orbit. The performance of the
Hamiltonian scheme is therefore superior to that of all other
integrators, which exhibit larger (by several orders of
magnitude) errors in all conserved quantities and the release
of the particle from the bound orbit at much earlier times.

For all orbits in Table 2, we observe that the Hamiltonian
scheme produces better quality results in terms of conservation
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of all invariants (E, L, and C), while showing much less
sensitivity to radial perturbations that drive the particle
trajectory away from the initial radius ry. The RK4 scheme
in general performs better than the IMR scheme, but both
require extreme reductions of the time step in order to achieve
the same performance of the Hamiltonian scheme, greatly
increasing the computational costs. The modified Hamiltonian
scheme exhibits errors in L comparable to those of the IMR
scheme. However, numerically induced perturbations to the
spherical motion seem to arise earlier. This feature can be
attributed to the chosen formulation of the method, which is
obtained as a combination of the original Hamiltonian method
and the IMR scheme. The resulting “mixed” character of the
integrator allows for the properties discussed in Section 3.3.1
(exact energy conservation for vanishing electric fields), but
also introduces stronger deviations in the particle trajectories.
This result confirms the findings presented in Part I, where
unstable geodesic paths were studied. Although the Kerr—
Newman solution does not reflect realistic astrophysical
situations, the results presented here and in the previous
sections clearly confirm the higher physical reliability of
energy-preserving schemes such as the Hamiltonian integrator.
Compared to that of standard, same-order symplectic schemes
such as the IMR, or even higher order explicit schemes such as
the popular RK4, the new Hamiltonian scheme exhibits higher
accuracy at large time steps. This allows for inexpensive but
reliable simulations of charged particles under the combined
action of static electromagnetic fields and stationary curved
spacetimes.

5. Application to Test Particle Simulations in GRMHD

The main target application for general relativistic charged
particle integrators is the modeling of ensembles of particles in
physically realistic electromagnetic field configurations. State-
of-the-art simulations of plasmas commonly model the
dynamics of accretions disks and jet formation processes
within the general relativistic magnetohydrodynamic
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Figure 10. Evolution of the relative error in the initial radius for orbit B (left panel) and D (right panel) simulated with As = 1 (solid lines), Ar = 0.1 (dashed lines),
and Ar = 0.01 (dashed—dotted lines) until # = 500. The Hamiltonian scheme (green lines) performs better than the RK4 (red lines), IMR (blue lines), and modified
Hamiltonian (magenta lines) schemes, triggering the linear growth of error and the release of the particle from the (physically unstable) bound orbits at much later
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Figure 11. Evolution of the relative error in the conserved angular momentum (top panels) and the Carter constant (bottom panels) for orbit B (left panels) and D (right
panels) simulated with Ar = 0.01 until # = 500. The Hamiltonian scheme (green line) conserves both quantities, together with the energy, to machine precision. The
RK4 (red line), IMR (blue line), and modified Hamiltonian (magenta lines) schemes instead introduce errors that are larger by several orders of magnitude.

(GRMHD) framework (Rezzolla & Zanotti 2013). Such a
model implicitly considers quasi-neutral, collision-dominated
plasmas and evolves the fluid equations to simulate the global
dynamics of the fluid and electromagnetic quantities. Data from
such simulations are then used to reconstruct emission spectra
(with, e.g., post-processing tools; see Dexter 2016; Chan et al.
2017; Porth et al. 2017; Bronzwaer et al. 2018) by solving the
radiation transfer equation and calculating very large numbers
of geodesic paths for the emitted photons. The final outcome
consists of synthetic radiation maps that can be compared to
forthcoming observations of accretion flows (e.g., in the
context of the Event Horizon Telescope). The main limitations
of this model include the absence of temperature decoupling
between the various patticle species, which in reality constitute
the plasma (Ressler et al. 2017; Ryan et al. 2017; Chael et al.
2018), as well as the need for the assumption of a nonthermal
particle distribution necessary to match the observed radiation
spectra (Porth et al. 2011).
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A more realistic approach to the problem is to inject charged
particles in the electromagnetic field configuration produced by
GRMHD simulations and to let the particles evolve under the
combined influence of the gravitational and electromagnetic
fields. This strategy is based on the assumption that the energy
content of the plasma is mainly associated with thermal particles.
The injected particles then represent a small, nonthermal
population with a negligible effect on the electromagnetic fields.
Such a “test particle” approach can be used to produce more
realistic particle distributions where no assumption is made on the
nonthermal energy spectrum associated with particle acceleration.
With this data, synthetic radiation maps could be constructed
more accurately for better matching observational data.

A further step on this path consists of calculating the particle
feedback on the electromagnetic fields, as is the case for, e.g.,
special relativistic simulations with PiC codes (e.g., Spitkovsky
2005; Cerutti et al. 2013). Currently, general relativistic PiC
(GRPiC) algorithms (which take into account the spacetime
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Figure 12. Evolution of the relative error in the conserved energy (top panels) and angular momentum (bottom panels) for the regular orbit RSAS from Section 4.1.1
(left panels) and the E = 0.89, L = —7 chaotic orbit from Section 4.1.2 (right panels), using interpolated values of the electromagnetic fields. The simulation was run
on a 64 x 64 x 128 grid with Af = 1 until £ = 100,000. The modified Hamiltonian scheme (magenta lines) preserves the energy to machine precision (~1071% in
our simulation) in case of vanishing electric fields (top left panel), while the original Hamiltonian scheme (green lines) loses its energy-conserving character due to the
interpolation step. In all cases, the RK4 scheme introduces a secular unbounded growth in the energy error, while the IMR scheme keeps energy errors bounded and
with the same accuracy as the Hamiltonian schemes. The original Hamiltonian method retains exact momentum conservation in all cases, while the IMR and modified
Hamiltonian schemes perform equally well in keeping errors in L bounded in time.

curvature) are being developed (Levinson & Cerutti 2018;
Parfrey et al. 2019) and will hopefully self-consistently produce
interesting insight into the microscopic dynamics of plasmas
around compact objects. The charged particle integrators
presented in this work, as well as in Part I, are a necessary
component of the GRPiC approach.

In the next sections, we consider test particle simulations
where information on the fields is taken from GRMHD
calculations. These are obtained with the particle integrators
presented in this work. Here, we show the results of a test run
obtained using data from the GRMHD code BHAC (Porth et al.
2017).

5.1. Effect of Interpolation

GRMHD codes such as BHAC model the fluid dynamics of
plasmas and the evolution of the electromagnetic fields on a
computational grid. In applying the particle integrators
presented in this work, interpolation of the field quantities
from the grid points onto the particle position becomes
necessary. Here, we evaluate the effect of interpolation on
the accuracy of the four integrators. In typical test particle
simulations, we apply trilinear interpolation of D', B, and A
in the three spatial directions, such that, e.g., the electric field at
the particle location is given by

Di(x,) = DyWilx, — x)Wa(x, — x)Ws(x, — ), (50)
8

where the directional interpolation functions W; relate the
values of D' at the grid points (subscript g) with the
interpolated value at the particle position (subscript p).

Aside from an additional interpolation step, the integration
algorithm remains unchanged. The interpolated fields are used
in the equations of motion according to the chosen numerical
scheme, in place of analytically derived values. The interpola-
tion procedure introduces an additional source of error, which
is reduced as the spatial resolution of the grid increases. Note
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that the energy preservation properties of the original
Hamiltonian scheme, based on the assumption that the four-
potential A, is available analytically, in this case are inevitably
lost. The modified Hamiltonian scheme, instead, retains its
properties (exact energy conservation in the limit of vanishing
electric fields) even when grid-defined quantities are employed.

In order to assess the effect of interpolation on the
performance of the four integrators applied to the equations
of motion, we consider again the particle orbits discussed in
Section 4. As representative examples, we choose orbit RSAS
in the Wald solution from Table 1 in Section 4.1.1 and the
chaotic orbit with £ = 0.89, L = —7 in the dipole solution
from Section 4.1.2. We simulate both orbits with Ar = 1 until
t = 100,000, monitoring the conservation of both energy E and
angular momentum L. The physical domain extends over
r € [ry, 15], 0 € [0, 7], ¢ € [0, 27], and it is discretized with
an increasing number of grid points, from 16 x 16 x 32 up to
64 x 64 x 128.

The results are shown in Figure 12 for the highest spatial
resolution. The left panels shows the evolution of the relative
error in £ and L for the regular Wald orbit RSAS5. This
configuration is characterized by zero electric fields in the
whole domain. Hence, as expected, the modified Hamiltonian
method retains energy conservation to machine precision, thus
much better than the RK4 and IMR schemes by orders of
magnitude. The original Hamiltonian scheme, now employing
grid-defined values of A,, inevitably loses the energy-
conserving character and exhibits bounded energy errors
slightly above those affecting the IMR scheme. The right
panels show the results for the chaotic dipole orbit with
E =089, L=—7, where an electric field is present. As
predicted, energy conservation is lost in the results of the
Hamiltonian integrator, as well as in those of the modified
Hamiltonian scheme. Both now present an error in E of the
same order as that shown by the IMR scheme, without
observed secular trends. For both simulations, the RK4 scheme
retains an unbounded growth in the energy error, which
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Figure 13. Spatial distribution of the dimensionless 8 = 2p/B? and o = B2/ p (left panel) from the GRMHD simulation with BHAC, at the late stage of the
development of the MRI. The Lorentz factor of the fluid from the GRMHD simulation is also shown (right panel, left half) and compared to that of 10° particles (right

half) with g/m = 10*, integrated with the modified Hamiltonian method until 7 = 5.

eventually leads to the spurious escape of the particle from the
bound orbit. In the simulation of both orbits, exact conservation
of momentum is retained by the original Hamiltonian scheme,
due to the formulation of the equations of motion in terms of
the conjugate momentum. This property is not retained in the
the modified Hamiltonian scheme, which exhibits a relative
error in L of the same order as the other methods, and is
bounded in time. We repeat the simulations, varying the spatial
resolution as explained above, and for all schemes, we detect
an improvement in both energy and angular momentum
conservation by approximately one order of magnitude each
time the grid resolution is doubled.

These results, based on the use of grid-defined electro-
magnetic fields, confirm that explicit schemes such as RK4 are
prone to unbounded energy errors, which both suppress
physical features such as the particle gyration around magnetic
field lines and ultimately cause an unphysical drift in the
particle trajectory. The symplectic nature of the IMR scheme,
instead, preserves gyration and keeps errors in the conserved
quantities bounded over very long times. The modified
Hamiltonian scheme performs as well as the IMR scheme,
with the additional advantage of conserving energy exactly
when the electric field vanishes. The original Hamiltonian
scheme inevitably loses exact energy conservation, due to the
interpolation step. Finally, both the IMR and modified
Hamiltonian schemes, which are second-order accurate, can
preserve additional invariants of the motion such as the angular
momentum as accurately as the fourth-order accurate RK4
method. The original Hamiltonian method retains the exact
conservation of L, due to the formulation of the equations of
motion in terms of the conjugate momentum.

The fact that no spurious work due to magnetic fields and
curvature terms is introduced by the modified Hamiltonian
scheme also implies that all work done on the patticles in the
simulation is only attributed to the electric field. This is a
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desirable property for numerical integrators of charged
particles, which is nontrivial to achieve even in special
relativistic calculations (see Ripperda et al. 2018a). In PiC
codes, this is an essential requirement for attaining the exact
conservation of the total energy, in terms of the sum of kinetic
and electromagnetic contributions: the total variation in the
kinetic energy of the particles corresponds exactly (in absolute
value) to the total variation in electromagnetic energy. Globally
energy-conserving PiC codes exhibit high stability and the
elimination of numerical instabilities that affect state-of-the-art
traditional PiC codes (Lapenta & Markidis 2011; Lapenta 2017;
Lapenta et al. 2017). The possibility of achieving such a result
in general relativistic calculations is an attractive one, which
deserves more in-depth investigations in the future. Note that
conservation of the global energy does not require conservation
of the Hamiltonian at the single-particle level, pursued in this
work through the original Hamiltonian integrator. Rather, the
conservation of the Hamiltonian in a particle simulation, if
achievable, imposes that each single particle exchanges the
physically correct amount of energy with the electromagnetic
field. Compared to the conservation of the global energy, this
involves a higher degree of accuracy: not only is global energy
conserved, but the variation of energy of each particle also
becomes more accurate.

In the next section, we apply the integrators to an example
simulation of test particles in BHAC, which employs a
formulation of the electromagnetic fields in terms of the
quantities D’, B'. Because the four-potential A ., 18 not available
in this code, numerical schemes relying on a vector potential
formulation, such as the Hamiltonian integrator presented here,
cannot be employed. Hence, for the test case considered, we
only employ the RK4, IMR, and modified Hamiltonian
integrators (with the latter being specifically constructed for
implementation in GRMHD codes).
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5.2. Test Particles in a Fixed GRMHD Background

As an example of application of the particle integrators
tested in the previous sections, we consider the motion of
charged particles in a two-dimensional ideal GRMHD snapshot
obtained with BHAC (Porth et al. 2017). The GRMHD
simulation was initialized with a stable Fishbone—Moncrief
(FM) plasma torus in equilibrium around a Kerr black hole of
spin ¢ = 0.9375M (Fishbone & Moncrief 1976). The domain
extends over the r—@ plane, with axisymmetry along the
-direction. The equilibrium is perturbed such that the magnetor-
otational instability (MRI) develops in the accretion disk. The
instability causes the progressive accumulation of magnetic field
flux in the vicinity of the event horizon, and a jet of plasma is
launched from the polar region (Figure 13 in Porth et al. 2017).
In this regime, several interesting features manifest in the plasma
flow surrounding the black hole. Regions of high turbulence,
shock fronts, and magnetic flux tubes (“plasmoids™) are clearly
visible in Figure 13 (left panel), where we show the late-stage
spatial distribution of typical GRMHD dimensionless quantities:
the plasma 3 = 2p/B? (with p the thermal pressure and B> the
magnitude of the magnetic field; top half) and the magnetization
c=FB /p (with p the rest-mass density; bottom half).

In this setup, typically describing an accretion disk
surrounding a supermassive black hole as in the Galactic
Center, we consider the motion of ensembles of test particles.
For simplicity, we assume that the evolution of the fields is
much slower compared to the particle dynamics. Hence, we
keep the electromagnetic fields fixed in time, and we evolve
ensembles of 104, 10° , and 10° particles until + = 10 (in units
of GM/ ). The particles are initially distributed uniformly in
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Figure 14. Close-up view of the central region near the event horizon of the compact object. The blow-up panels show individual particle trajectories (calculated with

the modified Hamiltonian scheme) in the highly turbulent region of the accretion flow and in the jet. Gyration around magnetic field lines can be seen more clearly for
the faster particles traveling in the jet emerging from the black hole.

C @

the domain, with a random velocity drawn from a uniform
distribution. The normalization of all quantities is such that the
units of length, time, and mass reflect the typical parameters of
Sgr A*, the supermassive black hole at the Galactic Center.
This directly impacts the value of the particle charge-to-mass
ratio ¢ /m used in our simulation: for our choice of parameters,
protons are characterized by ¢/m ~ 10%, while for electrons
g/m ~ 10", in code units.

Such large values for the g/m ratio pose a challenge for
numerical integrators, since the typical timescales of the
gyromotion around field lines scale as the gyrofrequency
Q. ~ g/m (assuming a typical Lorentz factor I" ~ 1). Hence,
resolving the gyromotion typically requires a time step
At ~ m/q. Employing such small time steps can become
prohibitive for realistic charge-to-mass ratios; however, under-
resolving the gyration can introduce large errors in the
calculations. One should note that these values of ¢/m only
apply to our specific choice of parameterization for the time,
length, and mass units; different parameterizations could lead
to less prohibitive values. Additionally, the scaling At ~ m/q
only holds as long as the particle Lorentz factor remains of
order ~1; when I' increases due to particle acceleration, the
gyromotion takes place over slower timescales, and the
gyroradius becomes larger (i.e., up to the scale of an MHD
cell size), allowing for less restrictive values of Atr. For
simplicity, in our examgle we assume a range of values
q/m = 10%, 10%, and 10° and employ decreasing time steps
At = 10*3, 1074, and 107 , which ensure convergence of the
iterative solution procedure for the IMR and modified
Hamiltonian integrators. Note that, with this choice of
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parameters, the largest value of g/m is two orders of magnitude
smaller than the realistic charge-to-mass ratio for protons.

Figure 13 shows the spatial distribution of the Lorentz factor
computed from the GRMHD quantities (right panel, left half).
This is compared to the Lorentz factor of 10° particles with
q/m = 10* at time # = 5 during the integration (right panel,
right half), obtained with the modified Hamiltonian method. It
can be seen that the distribution of the particle Lorentz factor
matches that of the fluid, with the fastest particles found close
to the central black hole. This can be attributed both to the
presence of stronger electromagnetic fields closer to the black
hole and to the gravitational pull that attracts material more
strongly in this region, ultimately causing the infall through the
event horizon. Fast particles (y ~ 3) are also found in the jets
propagating along the central axis, where the Poynting flux
extracted from the black hole magnetosphere is converted into
fluid kinetic energy by the action of the MHD Lorentz force.
The overall match between particle and fluid Lorentz factor can
be attributed to the electric field E = —v X B calculated from
the fluid velocity. Because the particle velocity does not
initially equal the thermal velocity associated with the fluid
bulk energy, this electric field acts on the particle motion until
the particles adjust to the fluid velocity. The results obtained
with the three integrators do not show significant differences, at
least for this proof-of-principle application, proving that
convergence is reached correctly in the description of the
thermal motion of the particles. More evident differences are
expected in long production runs, due to the secular growth of
errors characterizing explicit methods.

Finally, we monitor the motion of individual particles
throughout the simulation. Figure 14 presents a close-up view
of the region closer to the central object, with several blow-up
panels showing particle trajectories inside the turbulent accretion
disk and in the jet emerging from the black hole. It can be seen
how particles traveling through the highly turbulent region gyrate
around the closed field lines of magnetic flux tubes. For these
particles, the gyromotion is almost imperceptible, due to the large
difference in scales between the size of the gyroradius and that of
the spatial region considered. For particles traveling in the jet,
howeyver, the gyration can be seen more clearly. This is confirmed
by quantitative analysis of the simulation data. From the GRMHD
data, we measure typical values of the magnetic field strength in
the disk and in the jet of B{™* ~ 10~' and BJ* ~ 1073,
respectively. The test particle data show typical Lorentz factors in
the disk and in the jet of T'4*¢ ~ 5 and I’ ~ 1.5, respectively.
As a result, the ratio of the typical gyrofrequency values
Q¢ = qB,/(mI) between particles in the disk and in the jet is
QgiSk / Q' ~ 30, or equivalently, the characteristic gyroradius of
patticles in the disk region is ~30 times smaller than that of
particles in the jet region.

The runs for q /m = 10" are repeated with each integrator for
104, 105, and 10” particles, in order to monitor the computational
cost of the calculation. All runs are performed on 360 CPUs,
measuring the time taken by the simulation to advance all particles
for 1000 time steps. The results are presented in Table 3, where
we list the runtime for 1000 integration steps, corresponding to 0.1
MHD times. For this choice of parameters, the measured runtime
of the IMR scheme is very close to that of the RK4 scheme, being
~1.5 times larger only in the 10° particle case, and equal for the
other runs. The modified Hamiltonian scheme, instead, exhibits a
cost approximately 10 times larger than the IMR method. When
increasing the number of particles, we observe a slightly
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Table 3
Runtime (in Seconds) for 1000 Integration Time Steps with the Three Methods
and Increasing Number of Particles

Number of Particles Method

RK4 IMR mHam
d 12 12 120
10° 80 105 1080
10° 780 780 10320

Note. All runs were performed with g/m = 10* and Az = 10™* on 360 CPUs.

superlinear scaling in the runtime. The runtime measured for the
RK4 and IMR schemes in the 10° particle run is comparable to
the runtime of the MHD evolution, which we measure to
correspond to approximately 1 minute per 0.1 MHD times (in
units of light-crossing time).

The modified Hamiltonian method shows a slightly inferior
scaling than the IMR and RK4 methods. As we discussed in
Part I, however, in production runs, we foresee an implementation
based on a combination of methods presented here. Although the
RK4 method is expected to be generally discarded due to rapid
degradation of accuracy, our results indicate that the IMR and
(modified) Hamiltonian methods have similar accuracy, with the
latter exhibiting desirable energy-conservation properties (e.g.,
zero energy errors in the absence of electric fields), at the price of
a higher computational cost. Hence, a dynamic switch between
the IMR and Hamiltonian schemes, which only selects the latter
method when energy errors exceeding a chosen tolerance are
detected, could be envisioned. It is not straightforward to predict
how such a combined approach would scale in massively parallel
runs. However, under the assumption that the majority of particles
can be treated with the IMR scheme, we can infer that the
additional cost of the particles treated with the modified
Hamiltonian scheme would not influence scaling and overall
efficiency dramatically.

6. Discussion and Summary

We presented a generalized framework for the numerical
integration of charged particle trajectories in general relativity.
The algorithm includes the full effect of the Lorentz force
combined with the action of the spacetime curvature. We
compared the performance of four numerical integrators,
namely the standard explicit fourth-order Runge—Kutta (RK4)
method, the second-order IMR method, a new second-order
implicit Hamiltonian method, and a “modified” Hamiltonian
integrator that is suitable for simulations of test particles in
GRMHD. The Hamiltonian integrator (and its modified
version) is a direct extension of that presented in Part I, which
was constructed for the integration of pure geodesic motion.
For testing purposes, we applied all schemes to several
electromagnetic configurations in the Schwarzschild, Kerr,
and Kerr—Newman spacetimes. As an example of a practical
application of the particle integrators, we simulated ensembles
of test particles in the electromagnetic fields of a GRMHD
simulation with BHAC (Porth et al. 2017).

For charged particles in the Schwarzschild and Kerr
spacetimes (Section 4.1), we observed large numerical errors
associated with the RK4 scheme. With this method, the
trajectories of particles traveling in the Wald solution



THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 240:40 (25pp), 2019 February

(Section 4.1.1) and in a dipole solution (Section 4.1.2) rapidly
experience a spurious damping of the gyration around magnetic
field lines. Energy errors accumulating unboundedly through-
out the simulations ultimately cause a spurious escape from
bound orbits. Chaotic orbits appear to be more severely
affected than regular paths, causing energy errors to grow
faster. The IMR, Hamiltonian, and modified Hamiltonian
schemes, instead, proved reliable in preserving the gyration
motion, as well as keeping the particle orbit bounded until the
end of the runs. The Hamiltonian scheme, formulated assuming
the availability of an analytic four-potential, showed excep-
tional performance with the exact conservation (to machine
precision) of both energy and angular momentum, which are
invariants of the motion. The modified Hamiltonian scheme, by
construction, preserves energy exactly in the limit of vanishing
electric fields and for pure geodesic motion, and generally
performs as well as the IMR scheme.

For a more quantitative comparison with known analytic
solutions, we tested the integrators against unstable spherical
orbits in the Kerr—Newman spacetime (Section 4.2). We
derived a set of such orbits by relying on the integrability of
orbits in this spacetime and monitored the deviation of the
simulated orbits from the initial radius r,. Such a deviation is
triggered by numerical errors that destabilize the naturally
unstable orbits until the particles escape to infinity. Less
accurate methods cause an eatrlier development of the
deviation, and hence an earlier release of the particles from
the bound motion. Additionally, we checked for the conserva-
tion of angular momentum and the Carter constant, which
together with the energy represent the invariants of the motion
(aside from the norm of the four-velocity, which is auto-
matically preserved in the chosen 341 split framework). We
found that, in all cases, the energy-conserving Hamiltonian
scheme performs much better than the RK4, IMR, and
modified Hamiltonian schemes, triggering the release of the
particle from the orbit much later through the simulation. For
the smallest time step used, we observed a factor of ~10
difference between the release times of the Hamiltonian and the
RK4 schemes, indicating a much higher stability of the former
with respect to the accumulation of numerical errors. The error
in the conserved quantities reflects this property, with the
Hamiltonian scheme conserving energy, angular momentum,
and the Carter constant to machine precision at all times.
Similar results were found for pure geodesic motion in Part 1.

In order to exemplify the application of the integrators in a
more practical context, we assessed the performance of all
schemes in simulating the motion of particles in grid-defined
electromagnetic fields, generally employed in GRMHD codes.
We repeated the simulation of test orbits from the previous
sections and monitored the effect of interpolation of D and B’
or A,, (depending on the scheme) on the accuracy of the results.
We found that the use of grid-defined fields only mildly affects
the performance of the RK4 and IMR schemes, while it
substantially changes the behavior of the Hamiltonian scheme.
In the most general case, the latter inevitably loses its energy-
conserving character by exhibiting an error in the energy of the
same order as that introduced by the IMR scheme. Angular
momentum, instead, is still conserved to machine accuracy due
to the formulation of the equations of motion. On the contrary,
the modified Hamiltonian scheme retains exact energy
conservation in the case of vanishing electric fields, even when
grid-defined quantities are employed. However, it does not
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preserve angular momentum to machine precision, with errors
of the same order as those observed for the IMR scheme. The
IMR, Hamiltonian, and modified Hamiltonian schemes perform
better than the RK4 scheme, which displays a secular growth of
energy errors and spurious release of the particle from bound
orbits. The interpolation step is an additional (and inevitable)
source of inaccuracy for all schemes, with the error in the
conserved quantities decreasing approximately by one order of
magnitude when doubling the spatial resolution of the grid.

As an astrophysically relevant example application, we
carried out a set of test particle runs with the GRMHD code
BHAC (Porth et al. 2017), where we implemented all particle
integrators discussed here. BHAC employs the dynamic fields
D' and B’ as electromagnetic variables, in place of the full four-
potential A,. As a consequence, the original Hamiltonian
method cannot be employed, and we rely instead on the
modified Hamiltonian scheme, which was constructed for this
purpose. The GRMHD simulation was initialized with an FM
equilibrium (Fishbone & Moncrief 1976) for a magnetized
plasma torus around a Kerr black hole. During the GRMHD
evolution, the MRI causes the launching of a highly
magnetized jet from the polar region and generates turbulence,
shocks, and flux tubes in the accretion flow (Figure 13; see
Porth et al. 2017). This evolved state was employed as a fixed
background for the simulation of up to 10° particles with initial
uniform distribution and random velocity. We applied normal-
ization parameters such that the largest charge-to-mass ratio of
the particles is ¢/m = 10° in code units (the physical value for
protons is g/m ~ 10% in code units). During the simulation, we
observed that the particle Lorentz factor, initially randomly
distributed at ¢ = 0, matches that of the fluid at ¢t = 5, with
faster particles found close to the infall region around the event
horizon and in the accelerating jet. Due to the ideal nature of
the GRMHD description of the plasma, where no parallel
electric fields can exist, we did not observe (correctly) the
acceleration of particles to nonthermal energies. The analysis of
individual trajectories showed particles following the magnetic
field lines and remaining trapped inside the closed field lines of
flux tubes in the turbulent accretion region. Due to the higher
strength of the magnetic field, in this region the gyromotion of
the particles becomes relegated to length scales that are much
smaller than the system size. In the accelerating jet, where the
Lorentz factor is higher, the gyroradius increases and the
particles can be observed traveling along helical paths.

The runtime analysis shows that the IMR method has a
computational cost only slightly larger (by a factor of ~1.5) than
the RK4 method. The Hamiltonian scheme, instead, is consider-
ably more expensive (by a factor of ~10) than the IMR scheme.
The scaling with the increase in the number of particles shows
superlinearity, indicating that the ideal workload per processor can
be further increased. The results are encouraging in the
perspective of running massively parallel simulations with large
ensembles of particles on superclusters (up to 10%), e.g., for
statistics of particle acceleration and for PiC simulations.

The results from the test runs and from the proof-of-principle
simulations of test particles in GRMHD indicate that relatively
simple implicit methods like the IMR scheme are reliable and
adequate for the numerical simulation of charged particles in
curved spacetimes combined with electromagnetic fields.
Explicit methods such as the RK4 scheme prove unreliable
due to unbounded accumulation of errors in the conserved
quantities and the incapability to describe gyrating motion
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(Qin et al. 2013). The new Hamiltonian method and its
modified version presented here provide more physically
accurate results than the IMR scheme, conserving integrals of
the motion to very high accuracy. For simulations of particles
in test electromagnetic fields, where the four-potential is
analytically available, the second-order Hamiltonian scheme
exhibits high stability and accuracy surpassing those of higher
order methods such as the RK4. When only the dynamic fields
D' and B' are available, as is the case in typical GRMHD
simulations, such conservation properties are only partially
retained in the modified Hamiltonian scheme, with the
preservation of energy ensured only in the limit of vanishing
electric fields. Therefore, in such simulations, the application of
the IMR scheme may prove equally satisfactory, and the
modified Hamiltonian scheme could serve as a robust backup
strategy. In future extensions to full GRPiC algorithms, the
modified Hamiltonian scheme could also be employed to
construct globally energy-conserving methods such as those
developed for special relativistic PiC simulations (Lapenta &
Markidis 2011; Markidis & Lapenta 2011).

The analysis presented here has direct applications to the
study of particle acceleration in astrophysical scenarios such as
the magnetosphere of compact objects. Supermassive black
holes, such as Sgr A* at the Galactic Center or the active
nucleus of the M&7 galaxy, are characterized by a strongly
nonthermal radiation spectrum. Particle methods are the ideal
tool for exploring the nonthermal features associated with
particle acceleration mechanisms, which cannot be accurately
captured by GRMHD methods. A combination of resistive
GRMHD simulations, which are necessary to allow for
acceleration mechanisms such as magnetic reconnection (B.
Ripperda et al. 2019, in preparation), and particle methods that
can accurately model the particle motion in these environments
is the key strategy for future multiscale simulations of black
holes and neutron stars. In this way, it is possible to self-
consistently explore previously unreachable time, length, and
energy scales, with a direct impact on our understanding of the
microscopic dynamics of accretion flows around compact
objects.

Despite the promising results shown by proof-of-principle
test particle simulations such as those presented here, care is
needed in interpreting results from test particles. In a GRMHD
calculation, no information is available on scales smaller than
the grid spacing. If the particle gyromotion is such that the
Larmor radius is smaller than the typical cell size, errors will
arise in the acceleration and trajectory of test particles, due to
unresolved physics. A possible approach (aside from increasing
the spatial resolution) could be then to retain information only
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from test particles whose gyration is resolved by the grid
spacing, e.g., by checking the local gyrofrequency computed
from the GRMHD fields.

A second limitation is the lack of feedback of the particles
onto the electromagnetic fields, which is retained in a fully
kinetic code. The test particles can, however, be employed as a
diagnostic tool, both for identifying acceleration sites (which
indicate dissipative processes, such as reconnection) and for
investigating the acceleration mechanisms. In this context, test
particles have been successfully applied in special relativistic
resistive MHD runs, showing that aspects of the underlying
acceleration mechanisms can be reproduced in good agreement
with PiC runs (see Ripperda et al. 2018b). PiC simulations
relevant for accretion flow plasmas in locally flat spacetime
regions (e.g., Rowan et al. 2017) and in the presence of strong
spacetime curvature (Levinson & Cerutti 2018; Parfrey et al.
2019) could provide a way to quantify the differences between
test particle runs and their fully kinetic counterparts. Ulti-
mately, the true nature of microscopic plasma processes in
accretion disk environments will have to be studied with kinetic
codes, or with a combination of MHD and kinetic methods.
Coupled PiC-MHD runs have recently been performed in
Newtonian setups (Daldorff et al. 2014; Markidis et al. 2014;
Té6th et al. 2016; Chen et al. 2017; Makwana et al. 2018;
Markidis et al. 2018), where a PiC simulation box is embedded
in an MHD calculation, in regions where collisionless physics
is supposed to be important. The implementation of test
particles in curved spacetimes in a framework such as BHAC is
a necessary first step in this direction.
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Appendix A
Discrete Energy-conserving Hamiltonian Scheme

Starting from the Hamiltonian

Hx, ) = O‘\j 1+ vff'(m — iAl-)(w,- — iA,-) - ﬁk(wk — iAk) — Ly, (51)
m m m m

where A, is a function of (x', x*, x°) fora system of three equations for x' and three equations for 7;, we define discrete operators A7
and Al such that

AHx, 7 AfH@x, ™) Axi N ALH(x, ™) Am
At AxX Ar Am At

=1, (52)

Here, A indicates finite differencing over a full time step Ar, ie., Ax' = x""l — x Am=7""1— 77 and

AH(x, ) = H@", w"ty — H(x", ©"). In order for the operators A} and Air to respect condition (52), their action on a
generic function f(x, 7) must be such that a discrete chain rule applies:

Af G, ) = fnTL wntl) — f@n, wm) = ALf (e, m)AX + Alf(x, ) AT, (53)
In order to construct suitable discrete operators, we refer to the work by Feng & Qin (2010) and to the expressions given in Part I,
and we write, for each component of x’ and 7, the discretized Hamiltonian equations:

Ax! 1
— [H(xl,nJrl’ xZ,n’ x3,n’ ﬂ.nJrl’ ﬂ_n’ ﬂ_n) _ H(xl,nJrl’ xZ,n’ x3,n’ ﬂ_n’ ﬂ_n’ ﬂ_n)
Al GAT 1 2 3 1 2 3
1

+ H(_lelJrl’ _szlJrl’ x3,n+1’ ﬂ_IHrl’ 7T§'+1, ﬂ_gwrl) _ H(xl’”“, xZ,nJrl’ )C3’"+1, 71_{!’ 7T§’+1, ﬂ_gwrl)

4 H()Cl’n, xZ,nJrl’ x3,n+1’ ﬂ—IHrl’ 7T£l+1, ﬂ_gHrl) _ H()Cl’n, xZ,nJrl’ x3,n+1’ ﬂ_It’ 7T£’+1, ﬂ_gﬂrl)

+ H(xl,nJrl’ xZ,n’ X3’"+1, ﬂ—IHrl’ ﬂ_g’ ﬂ_gﬂrl) _ H()Cl’n+1, xZ,n’ x3,n+1’ 71_{!’ ﬂ_g’ ﬂ_gﬂrl)

1
+ H@b, x2n, 30, ot wlh, wh) — H@E", x20, x50, 77, wh, wh)

+1 +1 +1
+ H b, x2n, x3ntl gt oty — Heln, x20, x30 L wl wl, wf ], (54)

Ax? 1
- 1+l 2n4+1 4.3, n+l _n+l _n 1a+1 2,n+1 4.3, n+l _n __»n
___[H(xn+7-xn+7-xn7ﬂ—l > T 77T3)_H(xn+7xn+7-xn7ﬂ—l 77T277T3)
At 6A™
+ H @b, x2n 30 7l 7T£’+1, 74y — H Y, x2n 1 x37 pt wh )
1
+ H(-xl’nv xz’nv x3’n7 71—{[7 ﬂ—ng » 71—3[) - H(-xl’nv xz’nv x3’n7 71—{[7 71—5[7 71—3[)
4 H(xl,nJrl’ xZ,nJrl’ x3,n+1’ ﬂ_IHrl’ 7T§’+1, ﬂ_gﬂrl) _ H()Cl’n+1, xZ,nJrl’ x3,n+1’ ﬂ_IHrl’ ﬂ_g’ ﬂ_gﬂrl)
1 1 1
4 H()Cl’n+1, xZ,n’ x3,n’ 7TI’+ , 7T£’+ , ng) _ H()Cl’n+1, xZ,n’ x3,n’ ﬂ_{Hr , 7T§l, 7T§')
1 1 a2 3 1 ,n+l _n+l __n+l 1 1 2 3 1 n+l _n _n+tl
+H(-x ’n+7-x’n7-x’n+7ﬂ—l 77T2 77T3 )_H(-x J’lJr’xJ’l’x ’n+7ﬂ—1 77T27 7T3 )]7 (55)

AA_X: — 6%[H(x1,n+1’ xz,nJrl’ )C3’"+1, ﬂ_i’H'l’ 7T31+1’ ﬂ_gtJrl) _ H(xl’”“, xz,n+1’ X3’"+1, ﬂ_{H'l’ ﬂ_gﬂrl’ ﬂ_gt)
73

+ H(xl’", xZJ’H’l’ )C3’"+1, ﬂ_{t’ ﬂ_gﬂrl’ ﬂ_gHrl) _ H(xl’", xZ,nJrl’ X3’"+1, ﬂ_{t’ ﬂ_ngl’ ﬂ_gt)

+ H()Cl’n, xZ,nJrl’ x3,n’ 71'{’, ﬂ_ngl’ 7T§l+1) _ H(Xl’n, xZ,nJrl’ x3,n’ 71'{’, ﬂ_ngl’ ng)

4 H(xL”, xz,n’ x3,n+1’ ﬂ_?’ ﬂ_g’ ﬂ_gwrl) _ H(x“’, xz,n’ x3’”+1, ﬂ_?’ ﬂ_g’ ﬂ_gt)

4 H(xl,nJrl’ xZ,nJrl’ x3,n’ ﬂ_IHrl’ ﬂ_ngl’ ﬂ_gﬂrl) _ H()Cl’n+1, xZ,nJrl’ x3,n’ ﬂ_IHrl’ ﬂ_ngl’ ﬂ_gt)

+ Hbm, x2n, x3n ol ol w ity — B, x2n x30, 1wl whl, (56)

% = 6A1x1 [H (xPm L x28, 330, o, w8, wdy — HGb, x27, x50, o, w8, 7h)

+ H(xl””rl, xZJ’lJrl’ x3,n+1’ ﬂ_?’ ﬂ_gH'l’ ﬂ_gﬂrl) _ H(xl’”, xz,n+1’ x3,n+1’ ﬂ_?’ ,n_gH'l’ ﬂ_gwrl)
+ H(xl,nJrl’ xZ,nJrl’ x3,n+1’ 7TI’+1, 7T§l+1, ﬂ_gHrl) _ H()Cl’n, xZ,nJrl’ x3,n+1’ 7TI’+1, ﬂ_gHrl’ ﬂ_gHrl)
+ H(xl,nJrl’ xZ,n’ x3,n+1’ 71'{” 71—37 ﬂ_gHrl) _ H()Cl’n, xZ,n’ x3,n+1’ ﬂ.Il’ 71—3, 7T§l+1)
+H()C1’n+1, xZ,n’ x3,n’ 7TI’+1, ﬂ_g’ ﬂ_gt) _ H()Cl’n, xZ,n’ x3,n’ ﬂ_IHrl’ ﬂ_g’ Wg)

+1 +1 +1 +1
+ H b+l x2m g3+l o ¥ nl ot — HGdn, 127, 30FL 7, of, 25, (57)
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Aﬂ'z o 1
Al 6AX?
+ H()Cl’n, xZ,nJrl’ x3,n’ 71_{!’ 716’7 ﬂ_gl) _ H()Cl’n, xZ,n’ x3,n’ 71_{!’ ﬂ_gl’ ﬂ_gl)
+ H@ln, x2ntl x3n gt gttt opty - g, x2n x3 pt witl o pty
+ H(xl,nJrl’ xZ,nJrl’ x3,n+1’ ﬂ_IHrl’ ﬂ_g’ ﬂ_gHrl) _ H()Cl’r”rl, xZ,n’ x3,n+1’ ﬂ_IHrl’ ﬂ_g’ ﬂ_gﬂrl)

+1 +1 +1 +1
o H(xl,nJrl’ xZ,nJrl’ x3,n’ ﬂ_Il , ﬂ_g , ﬂ_gl) _ H(xl’"+1, xZ,n’ x3,n’ ﬂ_Il , ﬂ_g , 7T§l)

1 1 42 1 43 n+l _n n 1 1 42 3 nt+l _n n
[H(-x s , X L , X J’l’ 43 > s 7T3) - H(-x et , X J’l’ X J’l’ 3 > T2y 7T3)

1 1 42 1 43 1 .n+l _nt+l _n+tl 1 1 42 3 1 n+l _nt+l __n+l
+ H(-x Lo ? X T El X a ’ ﬂ—l ’ 7T2 ’ 7T3 ) - H(-x Y ’ X J’l’ X T ’ ﬂ—l ’ 7T2 ’ 7T3 )]7 (58)
B! — g 1
3 3 _ 1a+1 2n+1 3n+1 n+l _n+l _n 1a+1 27a+1 43, n+l _at+l _»n
A[ —E[H(_x ”*,x ”*,x n+,7T1 ’7T2 ,7T3)—H(_x ”*,x ”*,x n,ﬂ'l 77T2 ,7T3)

+ H()Cl’n, xZ,nJrl’ x3,n+1’ ﬂ_{t’ ﬂ_ngl’ ﬂ_gt) _ H()Cl’n, xZ,nJrl’ x3,n’ 71_{!’ 7T§’+1, ﬂ_gt)

4 H()Cl’n, xZJ’l“rl’ x3,n+1’ 71'{’, ﬂ_ngl’ 7T§’+1) _ H()Cl’n, xZ,nJrl’ x3,n’ 71'{” 7T§l+1, ﬂ_gHrl)

+ HM, 320 30 7wl 7 — Hxr, x20, k30, 1), wh, 7 h)

_,’_H(xl,nJrl’ xZ,nJrl’ x3,n+1’ ﬂ—IHrl’ 7T§l+1’ ﬂ_gHrl) _ H()Cl’r”rl, xZ,nJrl’ x3,n’ ﬂ—IHrl’ 7T£l+1, ﬂ_gHrl)

+ Hbn, x2n, x3nFL gt ol gttty Hb, k2 x30, 5l nl, oY), (59)

One can verify that with such definitions of A;" and Al condition (52) is respected. The equations above are nonlinear and must be

solved with an iterative method. It is clear that difficulties in the solution can arise whenever the increments, Ax! = x*+1 — x" and
Am = 77"l — 77, tend to zero. This issue must be handled carefully throughout the computation, as the results can get severely
affected by the behavior of the solution around these critical points.

In order to avoid numerical singularities in the system of Equations (54)-(59), we can rewrite the difference equations in a more
convenient form. In a procedure similar to that adopted in Part I, a series of manipulations leads to the alternative expression of the

discrete position equation,

A 1 & AT+ = 2gA/m) + 299 — gAy/m) + 29 (m = gA/m)

= = o g, k=1, (60)
- JUH I T4 e

Al 6
where
I = ok (m; — qA; [m)(mc — gA, [m), (61)

and the notation ;11" indicates that in evaluating I1, the component «; should be taken at time level 7 = n, n + 1. Each term of the
summation in Equation (60) evaluates the other components 7;..;, as well as all components x/, at the time levels specified by each
difference term in Equations (54)—(59). This form of the difference equations avoids singularities associated with Aw; = 0 and is

therefore more convenient to use in an iterative solution procedure.
A similar simplification procedure, applied to the momentum Equations (57)—(59), yields

Ar 13 1 Fantlpn
o ] _ = 1 +-;Hﬂ+l + 1 +2VHﬂ l—
At 62{ 2(\/ J ) Ax?
2ot dan m  (a/mPAT I @/ mART) o [+ (a/mIPAT I+ g/ mIFAR) gyt = ik
2 \/1+2\Hn+1 +\/1+2‘H" Axt
xan+1 XA xain Xain
+|m — 9 iAf+ + A i = sk
T m 2 Ax?
, o 2m — gAML + AR , | rArtt — ey
+ L Lot 4 gamyyinst 4 gy 20 ZAGAE X ROM_ (e ginen 4 g |25
YA nt+1 XA N
L2 — 0 } (62)
m Ax?

where the same notation of Equation (60) applies here to o, 3°, v/, and A;. Here, the factor 1/Ax’ does not vanish, thus problems
related to singularities may still arise. However, for Ax' = x*"*! — x" — 0, the incremental ratios in the equations above reduce to
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analytic derivatives, as

Ar 18 1
— kL - 1+mn+1+ 1_,’_lenlxal 73
Al 62{ 2(‘/ v )i(Ge)
~farth 4 an [+ g/ myFAT N me + (q/mi AP + [my + (@/myFAT Ime + (q/m)f A7 @y
2 J1+mn+l +J1+mn : !
FAPHL 4 o .
+|m - L x50y
m 2

x pn+1 XA P
g B l()-Co/’+1 + fam)(FyRntl 4 Fyimy 2m — qGAET + A /m

— GBI+ B0 | H0Ay)”
2m| 2 1+ 4 T+ ]

+ if(aiAo)"}, o)

1

hence the solution procedure must be handled by substituting Equation (62) with Equation (63) when the difference
xbntl — xi7 < &, where § is a prescribed tolerance. A typical choice for such a threshold is § ~ /Z, where ¢ is the chosen
round-off precision (Press et al. 1988).

Appendix B
Unstable Spherical Orbits in the Kerr—-Newman Spacetime

We consider the equations of motion for each coordinate of the Kerr—Newman spacetime (Hackmann & Xu 2013),

3 2
o =1 AR T (64)
A
(P =R — (P + K)A, (65)
2
(P2l = K — a*cos?0 — — 75 (66)
sin

R T
Zu@ — a_ — 5 67
# A sin? 0 bu

where R = (r?> + a>)E — al. — qQr/m, T = aE sin>0 — L + qP cos8/m, and K = C + (aE — L)?. For pure geodesic motion in
Kerr spacetime, a set of unstable spherical photon orbits was derived by Teo (2003). Similarly, in the case of charged particles around
Kerr—Newman black holes, spherical orbits can be found by imposing u#” = du’ /dr = 0. If this condition is fulfilled, the particle is
confined on a sphere of radius r, along an orbit that can be stable or unstable against radial perturbations.

One can verify that the equations above completely characterize the particle motion in terms of the quantities E, L, a, Q, P, K, and ¢/m.
With reference to Figures 5-8 in Hackmann & Xu (2013), we can fix the quantities K, a, Q2 + P , and gQ/m and derive a set of values
for E, L, and r, that correspond to an unstable spherical orbit. To do so, we choose an appropriate value of L, and we solve the condition
u" = du”/dr = 0 from Equation (65) for E and ry. In general, this produces multiple solutions, so we choose those corresponding to
unstable spherical orbits at vy > r,. With the complete set of parameters, we can initialize the particle motion at position (rg, 6y, 0). The
initial 6, can be calculated as a turning point of the motion from Equation (66) by imposing u’ = 0. With this particular choice of r, and
6y, we have the initial components i, = 1y = 0. Then, using Equations (64) and (67), we obtain an initial value for u,,.
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