
rspa.royalsocietypublishing.org

Research

Cite this article: Kudrolli A, Chopin J. 2018

Tension-dependent transverse buckles and

wrinkles in twisted elastic sheets. Proc. R.

Soc. A 474: 20180062.

http://dx.doi.org/10.1098/rspa.2018.0062

Received: 31 January 2018

Accepted: 16 May 2018

Subject Areas:

mechanics, biophysics

Keywords:

thin sheet, twist, ribbon, elastic instability,

buckling, wrinkling

Authors for correspondence

A. Kudrolli

e-mail: akudrolli@clarku.edu

J. Chopin

e-mail: julien.chopin@ufba.br

Tension-dependent transverse
buckles and wrinkles in
twisted elastic sheets
A. Kudrolli1 and J. Chopin2

1Department of Physics, Clark University, Worcester, MA 01610, USA
2Instituto de Física, Universidade Federal da Bahia, Salvador-BA

40170-115, Brazil

JC, 0000-0001-5105-4437

We investigate with experiments the twist-induced

transverse buckling instabilities of an elastic sheet of

length L, width W and thickness t, that is clamped

at two opposite ends while held under a tension T.

Above a critical tension Tλ and critical twist angle ηtr,

we find that the sheet buckles with a mode number

n ≥ 1 transverse to the axis of twist. Three distinct

buckling regimes characterized as clamp-dominated,

bendable and stiff are identified, by introducing a

bendability length LB and a clamp length LC(<

LB). In the stiff regime (L > LB), we find that mode

n = 1 develops above ηtr ≡ ηS ∼ (t/W)T−1/2, indepe-

ndent of L. In the bendable regime LC < L < LB, n =
1 as well as n > 1 occur above ηtr ≡ ηB ∼

√
t/LT−1/4.

Here, we find the wavelength λB ∼
√

LtT−1/4, when

n > 1. These scalings agree with those derived from a

covariant form of the Föppl-von Kármán equations,

however, we find that the n = 1 mode also occurs

over a surprisingly large range of L in the bendable

regime. Finally, in the clamp-dominated regime

(L < Lc), we find that ηtr is higher compared to ηB

due to additional stiffening induced by the clamped

boundary conditions.

1. Introduction
Twisting, along with stretching and bending, is a

fundamental loading that can be applied to an elastic

object. As the seminal work of Coulomb and Saint-

Venant on the elastic equilibrium of prismatic bars [1,2],

the response of slender structures under torsion has

played a pivotal role in the development of the theory of

elasticity [3,4]. More recently, a large number of studies

have focused on complex equilibrium shapes arising

2018 The Author(s) Published by the Royal Society. All rights reserved.
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upon twisting rods with circular or rectangular cross sections due to strong geometrical

nonlinearities [5–9]. We focus here on elastic structures such as sheets and ribbons, where the

thickness is much smaller than the width. In this limit, the classical Kirchhoff rod theory is

ill-suited to model such strongly shape anisotropic structures and do not accurately predict

their torsional stiffness and morphological response [10,11]. Because flexural modes are far less

costly energetically than in-plane deformations, thin sheets can undergo buckling instability to

accommodate compressive stress [12].

While constrained buckling instabilities of elastic rods and sheets in planar configurations have

gathered significant attention [13–22], the rich set of buckling and wrinkling patterns observed

in elastic sheets upon twist is only being appreciated more recently [23,24], triggering further

theoretical and experimental studies [25–29]. Below a critical dimensionless tension Tλ applied

along the longitudinal direction, it is well known that a twisted sheet in the form of a ribbon

wrinkles due to the development of compression at the centre of the ribbon for sufficient twist [30,

31]. Twisting above threshold, the wrinkling region is found to widen until reaching the edge

of the ribbon consistent with predictions from a recent far-from-threshold theory for ultra-thin

sheets [19,25]. Furthermore, the wrinkling pattern exhibits a symmetry breaking along with a

continuous localization of the elastic energy leading to the formation of a triangularly faceted

helicoid [26]. The resulting structure called e-helicoid is obtained experimentally under small

finite tension as opposed to the developable faceted helicoid which is obtained theoretically for

inextensible sheets [32]. However, above Tλ, the ribbon is observed to buckle or wrinkle only in

the transverse direction depending on ribbon thickness and length [23,24,33]. While the Föppl-

von Kármán (FvK) equations commonly used for thin sheets do not give rise to development of

destabilizing compression in the transverse direction with twist, an additional term arising from

finite rotation effects was identified and included in the instability mechanism [24]. This addition

enabled us to capture the thickness dependence of the observed critical twist.

Subsequently, Chopin et al. [25] proposed a covariant extension of the Föppl-von Kármán

(cFvK) equations which offers a rigorous theoretical framework to address equilibrium shape

of ribbons which significantly depart from a planar base state. They derived the analytical

expression of the transverse and longitudinal stresses, solving perturbatively the cFvK equations

using a small slope and small tension limit, and suggested the existence of various transverse

instabilities depending on the normalized length L/W and thickness t/W, the normalized tension

T, and the applied boundary conditions. It is noteworthy that other nonlinear plate models have

already been developed to deal with finite displacements, including Koiter’s plate and shell

models [34,35]; however, no analytical prediction nor scalings have been made available so far in

the context of a stretched twisted ribbon. Given the increasing need to assess the range of validity

of existing nonlinear plate models incorporating both stretching and bending contributions to the

elastic energy [35,36], it would be interesting to derive predictions from other plate models which

can be validated with experimental measurements. In this respect, the twisted and stretched

ribbon configuration appears as an ideal benchmark for testing existing models and developing

others to capture detailed features.

For a fixed tension Tλ ≪ T ≪ 1, Chopin, Demery and Davidovitch’s model predicts two distinct

instabilities of helicoid base state, which was analysed in depth. They further conjectured a third

instability for short ribbons where the base state is dominated by the clamp boundary condition.

Previously in [24], we showed that the shape of a twisted and stretched ribbon is a helicoid with

zero mean curvature and constant negative Gaussian curvature except near the edges. In this

region, the clamp boundary condition (a) is not compatible with the helicoid geometry, and (b)

inhibits lateral displacement. Thus, significant shear and transverse stresses are induced on the

sheet. Based on energy comparisons between clamped sheet and helicoid ribbon, Chopin et al. [25]

also argued that the extent of the deviations from helicoid is given by a clamp length LC which

scales as:

LC = ν(W2/t)T3/2. (1.1)
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Thus, for L > LC, a twisted sheet is expected to exhibit a helicoid base state. However, the precise

distribution of stress inside the clamp-dominated zone is as yet not known.

At the other extreme, in the ribbon limit (L/W ≫ 1), much more is known about the distribution

of stress in the helicoid base state [24,25]. With respect to stability against buckling, two factors

come into play. One is related to a tension-induced stiffness penalizing unstable modes with

large amplitudes, and the other to a bending resistance which penalizes modes with large

curvature. The tension-induced stiffness is analogous to that found in self-supported stretched

sheets, and in thin films supported on elastic substrates [14]. It is noteworthy that in the case

of self-supported sheets, the tension-induced stiffness is not a mechanical constant but rather

originates from nonlinear geometrical effects that dominate for large deflections [14,15,19,25]. In

particular, the tension-induced stiffness increases with the applied tension and decreases with

sheet dimensions. Furthermore, tension-induced stiffness in twisted sheets is negligible compared

to bending resistance when the tension is below a characteristic tension TC = (L2t2)/W4 [25].

Instead of tension, we find it more convenient here to introduce a new characteristic length

scale, called the bendability length scale:

LB =

(

W2

t

)

√
T. (1.2)

Thus, when L ≫ LB, tension-induced stiffness can be neglected. The bendability length is closely

related to the more general concept of bendability number which has proven to be useful

to address wrinkling instability in uniaxially stretched sheets [19]. There, a high bendability

number corresponds to a very thin sheet with negligible bending resistance compared to tension-

induced stiffness.

Thus, the various possible regimes originally organized by Chopin et al. [25] in terms of tension

T can be recast in terms of L, LB and LC as follows.

(a) For very long lengths (L ≫ LB) or infinite length limit, the sheet buckles in the fundamental

mode with a wavelength λ ∼ W when twisted above a critical twist angle which is L-independent.

The transverse compression is balanced by the bending resistance alone, and that tension-induced

stiffness can be considered to be negligible.

(b) For intermediate lengths (LC ≪ L ≪ LB) or long but finite lengths, they calculated that the

sheet buckles into higher modes (or wrinkles) with a wavelength which is smaller than W at

a critical twist angle which decreases with tension and the length to thickness aspect ratio. For

these lengths, the transverse compression has to overcome not only bending resistance but also a

tension-induced stiffness as well.

(c) For short lengths (L ≪ LC) where length and width of the sheets are comparable, the clamps

can be important because the clamped boundary condition induces stretching which causes

considerable deviations of the stress from that for a helicoidal base state. However, no predictions

were available of this effect on the critical angle and wavelength.

Thus, while now significant theoretical progress has been made in [25] on the instabilities

observed with twist, experiments have been lagging meanwhile. Experimental measurements

that provide a thorough test of the scaling approach and the regimes of their applicability, as

opposed to direct numerical simulations of the thin plate equations, are sorely needed beyond

what was reported in our previous experimental work [24]. While the numerical results may be

accurate, they also typically make use of assumptions such as constant thickness for expediency.

Experiments along with the scaling approach can also yield simple forms for the dependence on

material parameters which can be readily applied to other systems. Thus, our goal in this study

is to provide the prefactors in addition to testing the derived scaling laws against materials with

a wide range of Young’s modulus.

In this paper, we discuss the transverse buckling instability in thin elastic sheets by measuring

the critical instability angle and characterizing the wavelength of the buckling mode with twist

over a wide range of sheet length, width and thickness. We find that the observed instabilities

are consistent with the overall behaviour proposed, with the critical twist angle dependent on the
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aspect ratios and the tension. However, some differences were also found. From our experiments,

we identify three distinct transverse instabilities corresponding to three regimes with increasing

sheet length while holding width constant. Namely, a clamp-dominated regime, a bendable

regime and a stiff regime.

The clamp-dominated regime is typically reached for short sheet L � LC. We demonstrate

that the sheet destabilizes into higher buckling modes at relatively higher twist and shorter

wavelength. We argue that the clamped boundary conditions at the ends inhibits out-of-

plane deflection leading to a delayed buckling instability. In the bendable regime reached for

intermediate length LC � L � LB, fundamental and higher-order buckling modes are observed

above a L-dependent critical twist angle which scales as ηB ∼
√

t/LT−1/4. When higher-order

buckling develops, we find the wavelength λB ∼
√

tLT−1/4. These scalings are consistent with

theoretical predictions derived in the bendable regime [25]. However, quite surprisingly, we find

in the bendable regime that the sheet destabilizes into the fundamental buckling mode over a

significant range of length to width aspect ratio. In this case, the wavelength trivially scales as

λtr ∼ W, a feature that was not predicted by the theory. Finally, the stiff regime is identified by

going to extreme lengths. The sheet is found to destabilize into the fundamental mode above

a critical twist that scales as ηS ∼ t/WT−1/2 in full agreement with predictions in the long length

limit. Thus, we find that the crossover length LB between the bendable regime and the stiff regime

is captured by the transition from length-dependent to length-independent critical twist, but not

by the wavelength transition from higher modes to the fundamental buckling mode. We find that

the crossover length between the L-dependent to the L-independent critical twist is well captured

by LB but the transition from higher modes to fundamental modes as L is increased is significantly

overestimated.

2. Experimental system
An image of the apparatus used to perform the experimental measurements is shown in figure 1a.

As in our previous study [24], the ribbon is held under clamped boundary conditions at two

opposite sides and twisted about its symmetry axis. The clamps were specially designed to ensure

that a wide range of sheets with widths up to 0.1 m and thicknesses up to 5 × 10−3 m could be

accommodated while being tightly held. These precautions ensure that the sheets did not slip

over the wide range of stresses which develop as the sheet is twisted. While the clamp at the top

end could be rotated about the central axis, the bottom clamp was held in place by linear low

friction guides which allowed the distance between the clamps to vary in order to apply constant

longitudinal tensions to the ribbon by hanging appropriate weights. This design also ensured

that the clamps stayed perpendicular to the axis of rotation. The sheet is twisted by an angle

θ about the x-axis while being pulled at the two clamped ends with a constant force F which is

applied along the x-axis with the help of linear guides. The materials used and their properties are

listed in table 1. Then, the non-dimensional tension T = F/(EtW), where E is the Young’s modulus,

and the normalized twist angle η = θ (W/L). In the experiments discussed in the following, we

apply a tension T > Tλ, corresponding to the tension below which compressive stresses develop

in the longitudinal direction that can give rise to longitudinal wrinkles [24,30]. All the reported

measurements were performed with the length of the sheet parallel with gravity to avoid any

catenary-like effects in playing role in the measurements. Limited experiments performed with

horizontal orientation did not uncover any systematic deviations due to gravity on the onset of

instabilities at least for sheet lengths less than 2 m which were so tested.

Laser profilometry is used to obtain the shape of the ribbon. Using this technique which

is described in more detail in a previous report [37], the sheet is illuminated with a 633 nm

Helium–Neon laser and a cylindrical lens system in a plane which is orthogonal to the x-axis. The

illumination pattern is then imaged from an angle using a digital camera after the light passes

through an optical bandpass filter which allows only the light from the laser to pass through to

isolate away spurious light. An example image with the bandpass filter removed is shown in

figure 1b. If the sheet is planar, the illuminated pattern appears as a straight line. The height of the
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Figure 1. (a) An image of the apparatus and a wrinkled sheet which is clamped at its ends and twisted about its axis through

an angle θ = 90◦ (PolyVinyl sheet withW = 50 mm and t = 152µm). (b) Angle view of a latex sheet illuminated by a red

laser sheet (W = 50 mm and t = 230µm). The intersection of a planar laser sheet with the wrinkled sheet is used to obtain

the deflection of the ribbon surface. (c) A three-dimensional reconstruction of a wrinkled sheet obtained by sweeping the laser

sheet (θ = 90◦, T = 0.1, L/W = 3, t/W = 0.0025). The colour bar corresponds to the deflection ξ (x, y) from the x − y

plane. (d) A side view image and a profile view of a twisted PET ribbon in the stairwell of the Math-Physics Building (L= 16 m,

W = 12.7 mm). (Online version in colour.)

Table 1. List of various materials used in the experiments and their properties.

material E (MPa) ν L (m) W (mm) t (µm)

polyvinyl 1.2 0.38 0.05–0.2 30, 50 230, 500
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

latex 3.2 0.50 0.08–2.0 50, 80 152, 500
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PET 5700 0.37 0.10–16.0 3.8, 12.7 10, 18
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sheet from a reference plane is then obtained by measuring the distance of the illuminated line

from the point corresponding to the undeflected case. After sweeping the laser across the sheet

surface, and calibrating for the viewing angle, we obtain the surface profile of the wrinkled sheet

as shown in figure 1c.
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The amplitude of the deflection ξ (x, y) from the x − y plane is also shown superimposed on

the three-dimensional rendering of the sheet in figure 1c. One observes that the largest number of

wrinkles and amplitudes occur at the midsection of the sheet, and decay smoothly to zero towards

the clamped edges. This occurs because of the boundary conditions at x = 0, where ξ = 0 and

∂ξ/∂y = 0 for −W/2 ≤ y ≤ W/2, and at x = L, where ξ = y tan θ and ∂ξ/∂y = 0 for −W/2 ≤ y ≤ W/2.

Because we find the maximum deflection and the wrinkles occur along the central transect, we

focus in the following on the profile observed in this cross section to identify the onset of the

instability and the mode number. While the experiments were performed in the laboratory for

lengths less than L = 2 m, about the height of the laboratory as shown in figure 1a, the stairwell

in the physics department was used for longer lengths as shown in figure 1d. The clamps and the

protocol used were otherwise the same.

3. Aspect ratio dependent instabilities
Figure 2 shows the mode number n as a function of sheet length to width aspect ratio L/W for

a thin latex sheet (t/W = 0.003, T = 0.08). Example transects ξ (x, y) at x = L/2 obtained using the

laser profilometry above the onset of transverse instability are also shown for several L/W ratios.

Because no moment is applied at the free edges, the transect appears to be curvature free at the

edges. The mode number is then identified from the number of antinodes observed in the transect

where the curvature passes through a maximum or minimum. Following the plot from right to

left, one observes that n increases from n = 1 (fundamental buckling mode or buckle) to n = 12

(higher-order buckling mode or wrinkle) as L/W is decreased to 1 in this example.

Using equation (1.1) and equation (1.2) and substituting the material parameters

corresponding to the elastic sheet used, we find that LC/W = 4 and LB/W = 100. Now, the

theory [25] predicts that the ribbon wrinkles for L < LB with wavelength much less than the

width W. Hence, it is worthwhile noting that the crossover between fundamental and higher-

order buckling modes occur in the experiments for significantly smaller aspect ratio L/W ≈ 20

according to our data than expected by the theory. However, it is unclear at the moment if the

apparent discrepancy is due to a large numerical prefactor of order 10 in the scaling law, or due to

a deeper issue with the derivation of equation (1.2). In particular, the range of validity of nonlinear

plate models when stretching and bending contributions are of the same order of magnitude are

still a matter of debate [21,35,36]. Hence, it will be interesting to see if other models can give a

better account of the onset of higher-order buckling mode motivated by our observations.

(a) Length-dependent instabilities

We obtain the critical twist ηtr when a buckling mode starts to grow, by applying a prescribed

tension and then slowly increasing the twist while monitoring the sheet deflection along the

mid-transect of the sheet. Figure 3a shows the measured ηtr versus L/W plotted in log–log scale

using the same experimental conditions as in figure 1d. We observe that ηtr decreases rapidly at

first, before decreasing more steadily with L/W. We focus first on ηtr for relatively large length

for which precise predictions are available. In the bendable regime (LC ≪ L ≪ LB), the helicoid

base state becomes unstable against higher-order buckling modes above a critical twist that

scales as [25]

ηB = αB

√

t

L
T−1/4, (3.1)

for ηtr ≪ 1 and λtr ≪ W. Here, αB is a numerical prefactor which is yet to be calculated, but

can be determined from our data. The scaling is obtained from a linear stability analysis

assuming a stretched helicoid base state. (Our previous experimental measurements of the ribbon

morphology showed that this assumption is valid except very near the clamped edges [24].) This

scaling corresponds to a line with slope 1/2 in the case where T and t are held constant, and

is shown along with the data in figure 3a. We find that the observed ηtr is well aligned with

 on June 14, 2018http://rspa.royalsocietypublishing.org/Downloaded from 



7

rspa.royalsocietypublishing.org
Proc.R.Soc.A

474:20180062
...................................................

n

10 20 300

5

10

15

L/W

Figure 2. Observed number of modes decreases to one as the sheet length-to-width ratio is increased. Examples of observed

transects at various L/W are also shown (t/W = 3 × 10−3). Inset: an example image used to extract the transects shown.

(Latex sheet withW = 50 mm and t = 152µm.) (Online version in colour.)

1

1 10 102

10–1

1

10–1

10–110–210–310–4

t/W = 0.001

t/W = 0.003

t/W = 0.006

LC /W

L /W

L > LC

bendable regime

clamp-dominated

regime

htr

hB

(a)

(b)

(t/L)/÷T

Figure 3. (a) Measured ηtr decreases as a function of L/W in log–log plot with slope consistent with 1/2 for 2< L/W <

20. The vertical line separates the clamp-dominated regime and the bendable regime. (b) The measured critical angle in the

bendable regime ηB as a function of (t/L)/
√
T corresponding to L/W > 2 collapses on to a line with slope 1/2. The data for

t/W = 0.001 correspond to polyvinyl sheets, and for t/W = 0.003 and 0.006 correspond to latex sheets, respectively. The

measurement error bars are smaller than the symbol size and thus not drawn for clarity. (Online version in colour.)

this prediction for L/W > 2. Interestingly, no change of scaling is observed at L/W ≈ 20 when the

instability reaches the fundamental mode n = 1.

We measure ηtr to test equation (3.1) in the bendable regime more extensively over a wide

range of applied tension, sheet thickness, and materials listed in table 1. The observed ηtr in the
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L-dependent regime where L < LB, but above the point where edge effects start to dominate (L >

LC), is plotted in figure 3b as a function of (t/L)/
√

T. We observe excellent agreement with the

predicted scaling and find αB = 4.0 ± 0.3.

Now, the corresponding wavelength of the wrinkles in this bendable regime is given

by Chopin et al. [25]

λB = αλ

√
LtT−1/4, (3.2)

where αλ is a numerical prefactor. Here, the scaling with tension can be noted to be the same as

for longitudinal wrinkles [24]. The difference is the dependence here on sheet length L rather than

the width W in the case of the longitudinal wrinkles [24].

The wavelength λtr obtained as 2W/n is plotted in figure 4a as a function of length and

observed to increase like a staircase function till the maximum wavelength corresponding to

twice the width of the sheet is reached. The data are observed to be well aligned with scaling

given in equation (3.2) for λtr/W ≪ 1, with systematic deviations growing as λtr/W approaches 1.

This measured trend is consistent with the estimate calculated in [25] with systematically higher

wavelengths for the thicker ribbon. Now, plotting λtr versus (Lt)/
√

T for the latex as well as the

PET sheets, we again observe good collapse of the data onto a line of slope 1/2 expected from the

theory, provided λtr < W. We find that αλ ≈ 2.2 ± 0.1. It is noteworthy that the material parameters

have been varied over three orders of magnitude in obtaining this data and gives a sense of the

robustness of the scaling and the determined αλ.

Thus, we find consistency with the prediction that wrinkling occurs in twisted sheets which

depends on the applied tension in the limit of thin ribbons. This transverse instability occurs

at lower twist angle with increasing tension. This is opposite even qualitatively to the trend at

low tension where longitudinal wrinkling occurs [24,30]. In that case, the instability occurs at

increasing twist angle as the tension is increased until the crossover tension Tλ is reached.

Furthermore, the points corresponding to the thicker latex ribbon (t/W = 0.006 and LB = 30)

can be noted to be especially interesting and may point to a larger range of validity for the scaling

shown in equation (3.1) than implied by the calculation assuming λtr < W. In particular, it can

be noted that for this thicker ribbon, ηtr is observed to scale consistent with equation (3.1) even

though the fundamental mode is observed over a considerable part of this range. Thus, the scaling

appears tied more strongly to the length dependence of ηtr rather than the condition that λtr ≪ W.

Further theoretical developments are still necessary to better understand this regime.

Focusing on the small L/W limit in figure 3a, where L ∼ LC, the trend in the data shows

that elastic sheets become unstable and develop higher-order buckling modes above a critical

threshold ηtr which is found to be significantly larger than the predictions given by equation (3.1).

Further, the measured λtr is found to be slightly smaller than predicted by equation (3.2) in the

same range of L/W. Here, we argue that edge effects are responsible for the significant deviations

of the measured threshold and wavelength from predictions. We note that the prediction LC/W =
4 is consistent with a change in scaling for ηtr (see dashed in figure 3a). This result suggests that

the clamped edges are responsible for delaying the appearance of wrinkles for L/W � 1, but do

not suppress the instability.

The observed wrinkles in the clamp-dominated regime bear some similarity to tensional

wrinkles observed at the centre of uniaxially stretched sheets [13,14,20,21,38]. However, it can be

noted that transverse wrinkles under twist occur here for far greater ratios of t/W than observed

under axial stretching alone [20,39]. Thus, the magnitude of compression which develops under

twist is far greater than under uniaxial stretching alone due to the application of the tension.

In that configuration, the uniaxial state of stress of a stretched membrane is frustrated by the

clamped boundaries which induce shear and transverse stresses [40]. Therefore, development

of transverse compressive stresses can give rise to an instability driven by the clamped edge

stresses [14]. Later numerical studies indicate that the wrinkling instability, in fact, occupies only

a bounded region of the L/W-T phase diagram [38]. However, in spite of these developments,

the fundamental reason for the development of a compressive zone away from the boundary

remains unclear.
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Figure 4. (a) The measured wavelength λtr as a function of L/W in log–log plot is observed to increase till the fundamental

mode is reached where λtr = 2W. (b) The measured wavelength λtr as a function of (tL)/
√
T collapses on to a line with

slope 1/2 in the wrinkling regime whenλ < W consistent with predictions in the bendable regime. The data for t/W = 0.001

correspond to polyvinyl sheets, and for t/W = 0.003 and 0.006 correspond to latex sheets, respectively. Themeasurement error

bars are smaller than the symbol size and thus not drawn for clarity. (Online version in colour.)

Now considering our twisted sheet configuration, we also argue that the frustration of the

helicoid base state by the clamped edges is an essential ingredient to explain the delayed

wrinkling instability. However, instead of giving rise to the wrinkling mechanism in axially

stretched sheets, the clamped edges of a twisted sheet appear to act as a stabilizing effect in

determining ηtr. We reach this conclusion because of the relatively higher rise in ηtr in the clamp-

dominated regime compared to the bendable regime seen in figure 3a, and relatively lower

wavelengths as well in figure 4a. A theoretical approach of the wrinkling mechanism in this

regime which includes both twist and stretch loading at small L/W is not available, and is outside

the scope of this study.

(b) Length-independent instability

In the limit where ηtr becomes independent of L, Chopin et al. [25] calculated that a novel buckling

regime would be reached where the sheet destabilizes in the fundamental n = 1 mode at a critical

twist angle in the stiff regime

ηS = αS

(

t

W

)

T−1/2, (3.3)
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Figure 5. (a)ηtr crosses over from decreasing inversely as the length to becoming L-independent as the length is increased for

thePET ribbonheld at constant tension T = 0.003. Thedata are plotted in log–log scale. The crossover occurs as the contribution

of the L-dependent tensional stiffening to the stability decreases to zero relative to the L-independent bending contribution. (b)

The critical twist angle in the stiff regime ηS plotted as a function of (t/W)/
√
T along with linear fit given by equation (3.3).

The measurement error bars are smaller than the symbol size and thus not drawn for clarity. (Online version in colour.)

where αS = 4.4 was obtained numerically at large T. For small T(< Tλ) and in the limit η2/T ≫
1, the development of the longitudinal wrinkling instability far-from-threshold allows one to

approximate the ribbon base state as being essentially a helicoid stretched in the vicinity of the

free edges with a vanishing compression everywhere else. Using a linear stability analysis with

reference to this post-buckling base state, αS = π/
√

3 was calculated analytically.

To reach this regime, we now consider extremely long ribbon experiments performed in the

stairwell (figure 1c), in addition to those performed in the laboratory. The measured ηtr as a

function of L/W for L > 2 m is shown in figure 5a. For L < LB, we observe scaling consistent with

equation (3.1), but then as L is increased above LB, clear deviations are observed as ηtr occurs at a

constant value within the error of measurements which is approximately ±5% in this case.

To understand the effect of this length independence on the scalings, ηtr ≡ ηS is plotted in

a linear–linear scale as a function of (t/W)/
√

T in figure 5b for the data corresponding to the

L-independent regime. A linear fit according to equation (3.3) with αT = 3.2 ± 0.2 is also shown

which is consistent with previous calculations. However, significant deviations can be also noted

from this form, which are somewhat higher than the error in the identification of ηtr. In the case

of the PET ribbons used here, lowering the T resulted in approaching Tλ, the transition to the

longitudinal limit, while increasing T beyond the reported range resulted in plastic deformation.

Further experiments are needed to fully test this scaling over a wider range of T. However, this

is beyond the scope of the materials available to us. Nonetheless, it is clear from figure 5a that the

instability occurs at a much higher twist than predicted by equation (3.1), clearly demonstrating

that the nature of the instabilities in the bendable and stiff regime is different.
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To understand the two different mechanisms operating in the L-dependent bendable regime,

and the L-independent stiff regime, we start by identifying the forces acting normal to the sheet

and examining their relative contributions. Besides the transverse compressive force which is

driving the instability, two stabilizing forces act on the sheet: a bending resistance penalizing

large curvature, (or equivalently, small wavelength), and a tension-induced restoring force which

prevents the development of large amplitudes. For large L/W, the tension-induced force is not

sufficiently high to penalize the fundamental mode in favour of higher-order modes of smaller

amplitude but larger curvature, thus the fundamental buckling mode is observed. As L/W is

decreased, the tension-induced force is of the same order as the bending resistance, which

indicates that wrinkling modes start to be energetically favourable. This crossover length between

a L-dependent to a L-independent critical twist is observed to coincide well with the predicted LB.

By contrast, the transition from mode number n = 1 to n > 1 is observed to occur at a significantly

smaller length than LB.

4. Conclusion
We have experimentally studied the transverse wrinkling of a thin elastic sheet held under

tension and twisted about its long axis. The critical twist is found to be not only dependent on

the aspect ratio of the sheet but also on the applied tension along the axis around which the

sheet is twisted. Three distinct regimes are identified, consistent with recent theoretical model of

transverse buckling developed starting from a covariant form of the FvK equations.

To rationalize the different instability regimes, we introduced two characteristic lengthscales:

a clamp length LC and a bendability length LB. When L > LB, the instability is L-independent.

We find that the sheet destabilizes in the fundamental buckling mode and that the critical

twist decreases proportional to the thickness, and as inverse of the width and the square root

of the applied tension. This instability occurs in the stiff regime as the cross section is only

slightly curved. When the length is decreased below LB, the instability becomes L-dependent.

For intermediate length L > LC, the sheet destabilizes into fundamental or higher-order buckling

modes. We identify these instabilities with the bendable regime. When higher-order buckling

modes develop, the critical twist and the wavelength of the wrinkles slowly but systematically

decrease as the fourth-root of tension. However, it was unanticipated that the fundamental mode

can develop in the bendable regime characterized by a L-dependent threshold. At even smaller

length L < LC in the clamped regime, the clamped boundary conditions delays the development

of the instability with greater twist required to wrinkle the sheet because the sheet is under tension

near the boundaries along the transverse direction.

Thus, our experiments provide a thorough test of the scaling approach and the regimes of their

applicability, as opposed to direct numerical simulations of the thin plate equations which, while

accurate, give rise to less insight on the development of the instabilities, and the various operative

mechanisms. This approach also yields simple forms for the dependence on material parameters.

Our study provides the prefactors in addition to testing the derived scaling laws against materials

with Young’s modulus distributed over three orders of magnitude.

Finally, in closing, we note that the twisted ribbon configuration is an ideal experimental

benchmark to test nonlinear plate models. Such work may further lead to a deeper understanding

and modelling of more complex materials including fabrics [41,42], cellular solids [43], besides

mechanical metamaterials [44].

Data accessibility. This article has no additional data.

Authors’ contributions. A.K. and J.C. designed research; A.K. conducted experimental research; A.K. and J.C.

analyzed data; A.K. and J.C. wrote the paper.

Competing interests. We declare we have no competing interests.

Funding. This work was supported by the National Science Foundation under grant number DMR 1508186.

Acknowledgements. We thank A. Panaitescu and M. Hannout for help with experiments, C. Trimble for

preliminary work, and B. Davidovitch for stimulating discussions.

 on June 14, 2018http://rspa.royalsocietypublishing.org/Downloaded from 



12

rspa.royalsocietypublishing.org
Proc.R.Soc.A

474:20180062
...................................................

References
1. Coulomb CA. 1784 Recherches théoriques et expérimentales sur la force de torsion. Mémoire

de l’Académie des Sciences Paris 66, 229–272.
2. de Saint-Venant A. 1855 De la torsion des prismes. Paris, France: Imprimerie Impériale.
3. Love AEH. 2013 A treatise on the mathematical theory of elasticity. Cambridge, UK: Cambridge

University Press.
4. Timoshenko S. 1953 History of strength of materials: with a brief account of the history of theory of

elasticity and theory of structures. New York, NY: Dover Publications.
5. Antman SS, Kenney CS. 1981 Large buckled states of nonlinearly elastic rods under torsion,

thrust, and gravity. Arch. Ration. Mech. Anal. 76, 289–338. (doi:10.1007/BF00249969)
6. Thompson J, Champneys A. 1996 From helix to localized writhing in the torsional post-

buckling of elastic rods. Proc. R. Soc. Lond. A 452, 117–138. (doi:10.1098/rspa.1996.0007)
7. Goriely A, Nizette M, Tabor M. 2001 On the dynamics of elastic strips. J. Nonlinear Sci. 11,

3–45. (doi:10.1007/s003320010009)
8. van der Heijden G, Thompson J. 1998 Lock-on to tape-like behaviour in the torsional buckling

of anisotropic rods. Phys. D 112, 201–224. (doi:10.1016/S0167-2789(97)00211-X)
9. van der Heijden G, Neukirch S, Goss V, Thompson J. 2003 Instability and self-contact

phenomena in the writhing of clamped rods. Int. J. Mech. Sci. 45, 161–196. (doi:10.1016/S0020-
7403(02)00183-2)

10. Dias MA, Audoly B. 2015 ‘Wunderlich, Meet Kirchhoff’: a general and unified description of
elastic ribbons and thin rods. J. Elast. 119, 49–66. (doi:10.1007/s10659-014-9487-0)

11. Chopin J, Romildo Filho T. 2016 Ordered crumpled states in twisted ribbons. (http://arxiv.
org/abs/1603.02081)

12. Audoly B, Pomeau Y. 2010 Elasticity and geometry. Oxford, UK: Oxford University Press.
13. Friedl N, Rammerstorfer FG, Fischer FD. 2000 Buckling of stretched strips. Comput. Struct. 78,

185–190. (doi:10.1016/S0045-7949(00)00072-9)
14. Cerda E, Mahadevan L. 2003 Geometry and physics of wrinkling. Phys. Rev. Lett. 90, 074302.

(doi:10.1103/PhysRevLett.90.074302)
15. Chopin J, Vella D, Boudaoud A. 2008 The liquid blister test. Proc. R. Soc. A 464,

2887–2906. (doi:10.1098/rspa.2008.0095)
16. Vella D, Bico J, Boudaoud A, Roman B, Reis PM. 2009 The macroscopic delamination of

thin films from elastic substrates. Proc. Natl Acad. Sci. USA 106, 10 901–10 906. (doi:10.1073/
pnas.0902160106)

17. Vandeparre H et al. 2011 Wrinkling hierarchy in constrained thin sheets from suspended
graphene to curtains. Phys. Rev. Lett. 106, 224301. (doi:10.1103/PhysRevLett.106.224301)

18. Brau F, Vandeparre H, Sabbah A, Poulard C, Boudaoud A, Damman P. 2011 Multiple-length-
scale elastic instability mimics parametric resonance of nonlinear oscillators. Nat. Phys.
7, 56–60. (doi:10.1038/nphys1806)

19. Davidovitch B, Schroll RD, Vella D, Adda-Bedia M, Cerda EA. 2011 Prototypical model for
tensional wrinkling in thin sheets. Proc. Natl Acad. Sci. USA 108, 18 227–18 232. (doi:10.1073/
pnas.1108553108)

20. Taylor M, Bertoldi K, Steigmann DJ. 2014 Spatial resolution of wrinkle patterns in thin elastic
sheets at finite strain. J. Mech. Phys. Solids 62, 163–180. (doi:10.1016/j.jmps.2013.09.024)

21. Taylor M, Davidovitch B, Qiu Z, Bertoldi K. 2015 A comparative analysis of numerical
approaches to the mechanics of elastic sheets. J. Mech. Phys. Solids 79, 92–107. (doi:10.1016/j.
jmps.2015.04.009)

22. Chopin J, Dasgupta M, Kudrolli A. 2017 Dynamic wrinkling and strengthening of an elastic
filament in a viscous fluid. Phys. Rev. Lett. 119, 088001. (doi:10.1103/PhysRevLett.119.088001)

23. Mockensturm EM. 2001 The elastic stability of twisted plates. J. Appl. Mech. 68, 561–567.
(doi:10.1115/1.1357517)

24. Chopin J, Kudrolli A. 2013 Helicoids, wrinkles, and loops in twisted ribbons. Phys. Rev. Lett.
111, 174302. (doi:10.1103/PhysRevLett.111.174302)

25. Chopin J, Demery V, Davidovitch B. 2015 Roadmap to the morphological instabilities of a
stretched twisted ribbon. J. Elast. 119, 137–189. (doi:10.1007/s10659-014-9498-x)

26. Chopin J, Kudrolli A. 2016 Disclinations, e-cones, and their interactions in extensible sheets.
Soft Matter 12, 4457–4462. (doi:10.1039/C6SM00187D)

27. Dinh HP, Démery V, Davidovitch B, Brau F, Damman P. 2016 From cylindrical to
stretching ridges and wrinkles in twisted ribbons. Phys. Rev. Lett. 117, 104301. (doi:10.1103/
PhysRevLett.117.104301)

 on June 14, 2018http://rspa.royalsocietypublishing.org/Downloaded from 



13

rspa.royalsocietypublishing.org
Proc.R.Soc.A

474:20180062
...................................................

28. Maurin F. 2017 Solitary waves in longitudinally wrinkled and creased helicoids. Int. J. Non
Linear Mech. 89, 133–141. (doi:10.1016/j.ijnonlinmec.2016.12.010)

29. Kohn RV, O’Brien E. In press. The wrinkling of a twisted ribbon. J. Nonlinear Sci. (doi:10.1007/
s00332-018-9447-0)

30. Green AE. 1937 The elastic stability of a thin twisted strip—II. Proc. R. Soc. A 161, 197–220.
(doi:10.1098/rspa.1937.0141)

31. Coman CD, Bassom AP. 2008 An asymptotic description of the elastic instability of twisted
thin elastic plates. Acta Mech. 200, 59–68. (doi:10.1007/s00707-007-0572-3)

32. Korte AP, Starostin EL, van der Heijden GHM. 2011 Triangular buckling patterns of twisted
inextensible strips. Proc. R. Soc. A 467, 285–303. (doi:10.1098/rspa.2010.0200)

33. Kit OO, Tallinen T, Mahadevan L, Timonen J, Koskinen P. 2012 Twisting graphene
nanoribbons into carbon nanotubes. Phys. Rev. B 85, 085428. (doi:10.1103/PhysRevB.85.
085428)

34. Koiter WT. 1966 On the nonlinear theory of thin elastic shells. Koninklijke Nederlandse Akademie
van Wetenschappen, Proceedings, Series B 69, 1–54.

35. Ciarlet PG. 2000 Mathematical elasticity, Vol III. Theory of shells. Amsterdam, The Netherlands:
North-Holland.

36. Friesecke G, James RD, Müller S. 2006 A hierarchy of plate models derived from
nonlinear elasticity by gamma-convergence. Arch. Ration. Mech. Anal. 180, 183–236.
(doi:10.1007/s00205-005-0400-7)

37. Blair DL, Kudrolli A. 2005 Geometry of crumpled paper. Phys. Rev. Lett. 94, 166107.
(doi:10.1103/PhysRevLett.94.166107)

38. Healey TJ, Li Q, Cheng RB. 2013 Wrinkling behavior of highly stretched rectangular elastic
films via parametric global bifurcation. J. Nonlinear Sci. 23, 777–805. (doi:10.1007/s00332-
013-9168-3)

39. Nayyar V, Ravi-Chandar K, Huang R. 2011a Stretch-induced stress patterns and wrinkles in
hyperelastic thin sheets. Int. J. Solids Struct. 48, 3471–3483. (doi:10.1016/j.ijsolstr.2011.09.004)

40. Nayyar V, Ravi-Chandar K, Huang R. 2011b Stretch-induced stress patterns and wrinkles in
hyperelastic thin sheets. Int. J. Solids Struct. 48, 3471–3483. (doi:10.1016/j.ijsolstr.2011.09.004)

41. Steigmann DJ, Dell’Isola DJ. 2015 Mechanical response of fabric sheets to three-dimensional
bending, twisting, and stretching. Acta Mech. Sinica 31, 373–382. (doi:10.1007/s10409-
015-0413-x)

42. Scerrato D, Giorgio I, Rizzi NL. 2016 Three-dimensional instabilities of pantographic sheets
with parabolic lattices: numerical investigations. Z. Angew. Math. Phys. 67, 53. (doi:10.1007/
s00033-016-0650-2)

43. Oftadeh R, Haghpanah B, Vella D, Boudaoud A, Vaziri A. 2014 Optimal fractal-like
hierarchical honeycombs. Phys. Rev. Lett. 113, 104301. (doi:10.1103/PhysRevLett.113.104301)

44. Bertoldi K, Reis PM, Willshaw S, Mullin T. 2010 Negative Poisson’s ratio behavior induced by
an elastic instability. Adv. Mater. 22, 361–366. (doi:10.1002/adma.200901956)

 on June 14, 2018http://rspa.royalsocietypublishing.org/Downloaded from 


	Introduction
	Experimental system
	Aspect ratio dependent instabilities
	Length-dependent instabilities
	Length-independent instability

	Conclusion
	References

