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1. Introduction

Twisting, along with stretching and bending, is a
fundamental loading that can be applied to an elastic
object. As the seminal work of Coulomb and Saint-
Venant on the elastic equilibrium of prismatic bars [1,2],
the response of slender structures under torsion has
played a pivotal role in the development of the theory of
elasticity [3,4]. More recently, a large number of studies
have focused on complex equilibrium shapes arising
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upon twisting rods with circular or rectangular cross sections due to strong geometrical
nonlinearities [5-9]. We focus here on elastic structures such as sheets and ribbons, where the
thickness is much smaller than the width. In this limit, the classical Kirchhoff rod theory is
ill-suited to model such strongly shape anisotropic structures and do not accurately predict
their torsional stiffness and morphological response [10,11]. Because flexural modes are far less
costly energetically than in-plane deformations, thin sheets can undergo buckling instability to
accommodate compressive stress [12].

While constrained buckling instabilities of elastic rods and sheets in planar configurations have
gathered significant attention [13-22], the rich set of buckling and wrinkling patterns observed
in elastic sheets upon twist is only being appreciated more recently [23,24], triggering further
theoretical and experimental studies [25-29]. Below a critical dimensionless tension T applied
along the longitudinal direction, it is well known that a twisted sheet in the form of a ribbon
wrinkles due to the development of compression at the centre of the ribbon for sufficient twist [30,
31]. Twisting above threshold, the wrinkling region is found to widen until reaching the edge
of the ribbon consistent with predictions from a recent far-from-threshold theory for ultra-thin
sheets [19,25]. Furthermore, the wrinkling pattern exhibits a symmetry breaking along with a
continuous localization of the elastic energy leading to the formation of a triangularly faceted
helicoid [26]. The resulting structure called e-helicoid is obtained experimentally under small
finite tension as opposed to the developable faceted helicoid which is obtained theoretically for
inextensible sheets [32]. However, above T}, the ribbon is observed to buckle or wrinkle only in
the transverse direction depending on ribbon thickness and length [23,24,33]. While the Foppl-
von Karman (FvK) equations commonly used for thin sheets do not give rise to development of
destabilizing compression in the transverse direction with twist, an additional term arising from
finite rotation effects was identified and included in the instability mechanism [24]. This addition
enabled us to capture the thickness dependence of the observed critical twist.

Subsequently, Chopin et al. [25] proposed a covariant extension of the Foppl-von Kdrman
(cFvK) equations which offers a rigorous theoretical framework to address equilibrium shape
of ribbons which significantly depart from a planar base state. They derived the analytical
expression of the transverse and longitudinal stresses, solving perturbatively the cFvK equations
using a small slope and small tension limit, and suggested the existence of various transverse
instabilities depending on the normalized length L/W and thickness {/W, the normalized tension
T, and the applied boundary conditions. It is noteworthy that other nonlinear plate models have
already been developed to deal with finite displacements, including Koiter’s plate and shell
models [34,35]; however, no analytical prediction nor scalings have been made available so far in
the context of a stretched twisted ribbon. Given the increasing need to assess the range of validity
of existing nonlinear plate models incorporating both stretching and bending contributions to the
elastic energy [35,36], it would be interesting to derive predictions from other plate models which
can be validated with experimental measurements. In this respect, the twisted and stretched
ribbon configuration appears as an ideal benchmark for testing existing models and developing
others to capture detailed features.

For a fixed tension T, « T « 1, Chopin, Demery and Davidovitch’s model predicts two distinct
instabilities of helicoid base state, which was analysed in depth. They further conjectured a third
instability for short ribbons where the base state is dominated by the clamp boundary condition.
Previously in [24], we showed that the shape of a twisted and stretched ribbon is a helicoid with
zero mean curvature and constant negative Gaussian curvature except near the edges. In this
region, the clamp boundary condition (a) is not compatible with the helicoid geometry, and (b)
inhibits lateral displacement. Thus, significant shear and transverse stresses are induced on the
sheet. Based on energy comparisons between clamped sheet and helicoid ribbon, Chopin et al. [25]
also argued that the extent of the deviations from helicoid is given by a clamp length Lc which
scales as:

Le = v(W?/HT3/2. (1.1)
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Thus, for L > Lc, a twisted sheet is expected to exhibit a helicoid base state. However, the precise
distribution of stress inside the clamp-dominated zone is as yet not known.

At the other extreme, in the ribbon limit (L/W > 1), much more is known about the distribution
of stress in the helicoid base state [24,25]. With respect to stability against buckling, two factors
come into play. One is related to a tension-induced stiffness penalizing unstable modes with
large amplitudes, and the other to a bending resistance which penalizes modes with large
curvature. The tension-induced stiffness is analogous to that found in self-supported stretched
sheets, and in thin films supported on elastic substrates [14]. It is noteworthy that in the case
of self-supported sheets, the tension-induced stiffness is not a mechanical constant but rather
originates from nonlinear geometrical effects that dominate for large deflections [14,15,19,25]. In
particular, the tension-induced stiffness increases with the applied tension and decreases with
sheet dimensions. Furthermore, tension-induced stiffness in twisted sheets is negligible compared
to bending resistance when the tension is below a characteristic tension Tc = (L2£2)/W* [25].

Instead of tension, we find it more convenient here to introduce a new characteristic length
scale, called the bendability length scale:

2
Lg= (Y) JT. (1.2)

Thus, when L > L, tension-induced stiffness can be neglected. The bendability length is closely
related to the more general concept of bendability number which has proven to be useful
to address wrinkling instability in uniaxially stretched sheets [19]. There, a high bendability
number corresponds to a very thin sheet with negligible bending resistance compared to tension-
induced stiffness.

Thus, the various possible regimes originally organized by Chopin et al. [25] in terms of tension
T can be recast in terms of L, Lg and L¢ as follows.

(a) For very long lengths (L >> Lg) or infinite length limit, the sheet buckles in the fundamental
mode with a wavelength A ~ W when twisted above a critical twist angle which is L-independent.
The transverse compression is balanced by the bending resistance alone, and that tension-induced
stiffness can be considered to be negligible.

(b) For intermediate lengths (Lc <« L <« Lp) or long but finite lengths, they calculated that the
sheet buckles into higher modes (or wrinkles) with a wavelength which is smaller than W at
a critical twist angle which decreases with tension and the length to thickness aspect ratio. For
these lengths, the transverse compression has to overcome not only bending resistance but also a
tension-induced stiffness as well.

(c) For short lengths (L « Lc) where length and width of the sheets are comparable, the clamps
can be important because the clamped boundary condition induces stretching which causes
considerable deviations of the stress from that for a helicoidal base state. However, no predictions
were available of this effect on the critical angle and wavelength.

Thus, while now significant theoretical progress has been made in [25] on the instabilities
observed with twist, experiments have been lagging meanwhile. Experimental measurements
that provide a thorough test of the scaling approach and the regimes of their applicability, as
opposed to direct numerical simulations of the thin plate equations, are sorely needed beyond
what was reported in our previous experimental work [24]. While the numerical results may be
accurate, they also typically make use of assumptions such as constant thickness for expediency.
Experiments along with the scaling approach can also yield simple forms for the dependence on
material parameters which can be readily applied to other systems. Thus, our goal in this study
is to provide the prefactors in addition to testing the derived scaling laws against materials with
a wide range of Young’s modulus.

In this paper, we discuss the transverse buckling instability in thin elastic sheets by measuring
the critical instability angle and characterizing the wavelength of the buckling mode with twist
over a wide range of sheet length, width and thickness. We find that the observed instabilities
are consistent with the overall behaviour proposed, with the critical twist angle dependent on the
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aspect ratios and the tension. However, some differences were also found. From our experiments,
we identify three distinct transverse instabilities corresponding to three regimes with increasing
sheet length while holding width constant. Namely, a clamp-dominated regime, a bendable
regime and a stiff regime.

The clamp-dominated regime is typically reached for short sheet L < Lc. We demonstrate
that the sheet destabilizes into higher buckling modes at relatively higher twist and shorter
wavelength. We argue that the clamped boundary conditions at the ends inhibits out-of-
plane deflection leading to a delayed buckling instability. In the bendable regime reached for
intermediate length Lc S L < Lp, fundamental and higher-order buckling modes are observed
above a L-dependent critical twist angle which scales as ng ~ /f/LT~ /4. When higher-order
buckling develops, we find the wavelength Ag ~ VILTY4, These scalings are consistent with
theoretical predictions derived in the bendable regime [25]. However, quite surprisingly, we find
in the bendable regime that the sheet destabilizes into the fundamental buckling mode over a
significant range of length to width aspect ratio. In this case, the wavelength trivially scales as
Atr ~ W, a feature that was not predicted by the theory. Finally, the stiff regime is identified by
going to extreme lengths. The sheet is found to destabilize into the fundamental mode above
a critical twist that scales as ng ~ t/WT~1/2 in full agreement with predictions in the long length
limit. Thus, we find that the crossover length Lg between the bendable regime and the stiff regime
is captured by the transition from length-dependent to length-independent critical twist, but not
by the wavelength transition from higher modes to the fundamental buckling mode. We find that
the crossover length between the L-dependent to the L-independent critical twist is well captured
by L but the transition from higher modes to fundamental modes as L is increased is significantly
overestimated.

2. Experimental system

An image of the apparatus used to perform the experimental measurements is shown in figure 1a.
As in our previous study [24], the ribbon is held under clamped boundary conditions at two
opposite sides and twisted about its symmetry axis. The clamps were specially designed to ensure
that a wide range of sheets with widths up to 0.1 m and thicknesses up to 5 x 107> m could be
accommodated while being tightly held. These precautions ensure that the sheets did not slip
over the wide range of stresses which develop as the sheet is twisted. While the clamp at the top
end could be rotated about the central axis, the bottom clamp was held in place by linear low
friction guides which allowed the distance between the clamps to vary in order to apply constant
longitudinal tensions to the ribbon by hanging appropriate weights. This design also ensured
that the clamps stayed perpendicular to the axis of rotation. The sheet is twisted by an angle
0 about the x-axis while being pulled at the two clamped ends with a constant force F which is
applied along the x-axis with the help of linear guides. The materials used and their properties are
listed in table 1. Then, the non-dimensional tension T = F/(EtW), where E is the Young’s modulus,
and the normalized twist angle n =6(W/L). In the experiments discussed in the following, we
apply a tension T > T}, corresponding to the tension below which compressive stresses develop
in the longitudinal direction that can give rise to longitudinal wrinkles [24,30]. All the reported
measurements were performed with the length of the sheet parallel with gravity to avoid any
catenary-like effects in playing role in the measurements. Limited experiments performed with
horizontal orientation did not uncover any systematic deviations due to gravity on the onset of
instabilities at least for sheet lengths less than 2 m which were so tested.

Laser profilometry is used to obtain the shape of the ribbon. Using this technique which
is described in more detail in a previous report [37], the sheet is illuminated with a 633nm
Helium-Neon laser and a cylindrical lens system in a plane which is orthogonal to the x-axis. The
illumination pattern is then imaged from an angle using a digital camera after the light passes
through an optical bandpass filter which allows only the light from the laser to pass through to
isolate away spurious light. An example image with the bandpass filter removed is shown in
figure 1b. If the sheet is planar, the illuminated pattern appears as a straight line. The height of the
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Figure 1. (a) An image of the apparatus and a wrinkled sheet which is clamped at its ends and twisted about its axis through
an angle & = 90° (PolyVinyl sheet with W = 50 mm and ¢ =152 m). (b) Angle view of a latex sheet illuminated by a red
laser sheet (W = 50 mm and t = 230 um). The intersection of a planar laser sheet with the wrinkled sheet is used to obtain
the deflection of the ribbon surface. (c) A three-dimensional reconstruction of a wrinkled sheet obtained by sweeping the laser
sheet (0 =90°, T =0.1, L/W =3, t/W = 0.0025). The colour bar corresponds to the deflection & (x, y) from the x — y
plane. (d) A side view image and a profile view of a twisted PET ribbon in the stairwell of the Math-Physics Building (L =16 m,
W = 12.7 mm). (Online version in colour.)

Table 1. List of various materials used in the experiments and their properties.

material E (MPa) v L (m) W (mm) t (em)
polyvinyl 12 0.38 0.05-0.2 30,50 230,500
T Y e 5080 ............................. 152500
e g 38,127 .......................... 1018 .....

sheet from a reference plane is then obtained by measuring the distance of the illuminated line
from the point corresponding to the undeflected case. After sweeping the laser across the sheet
surface, and calibrating for the viewing angle, we obtain the surface profile of the wrinkled sheet
as shown in figure 1c.
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The amplitude of the deflection &(x,y) from the x — y plane is also shown superimposed on
the three-dimensional rendering of the sheet in figure 1c. One observes that the largest number of
wrinkles and amplitudes occur at the midsection of the sheet, and decay smoothly to zero towards
the clamped edges. This occurs because of the boundary conditions at x =0, where § =0 and
9&/oy=0for —-W/2 <y <W/2,and atx =L, where £ =ytan6 and 9§ /9y =0 for —-W/2 <y < W/2.
Because we find the maximum deflection and the wrinkles occur along the central transect, we
focus in the following on the profile observed in this cross section to identify the onset of the
instability and the mode number. While the experiments were performed in the laboratory for
lengths less than L =2m, about the height of the laboratory as shown in figure 14, the stairwell
in the physics department was used for longer lengths as shown in figure 1d. The clamps and the
protocol used were otherwise the same.

3. Aspect ratio dependent instabilities

Figure 2 shows the mode number 7 as a function of sheet length to width aspect ratio L/W for
a thin latex sheet (t/W =0.003, T = 0.08). Example transects &(x, y) at x = L/2 obtained using the
laser profilometry above the onset of transverse instability are also shown for several L/W ratios.
Because no moment is applied at the free edges, the transect appears to be curvature free at the
edges. The mode number is then identified from the number of antinodes observed in the transect
where the curvature passes through a maximum or minimum. Following the plot from right to
left, one observes that # increases from n =1 (fundamental buckling mode or buckle) to n =12
(higher-order buckling mode or wrinkle) as L/W is decreased to 1 in this example.

Using equation (1.1) and equation (1.2) and substituting the material parameters
corresponding to the elastic sheet used, we find that Lc/W =4 and Lg/W =100. Now, the
theory [25] predicts that the ribbon wrinkles for L < Lp with wavelength much less than the
width W. Hence, it is worthwhile noting that the crossover between fundamental and higher-
order buckling modes occur in the experiments for significantly smaller aspect ratio L/W =~ 20
according to our data than expected by the theory. However, it is unclear at the moment if the
apparent discrepancy is due to a large numerical prefactor of order 10 in the scaling law, or due to
a deeper issue with the derivation of equation (1.2). In particular, the range of validity of nonlinear
plate models when stretching and bending contributions are of the same order of magnitude are
still a matter of debate [21,35,36]. Hence, it will be interesting to see if other models can give a
better account of the onset of higher-order buckling mode motivated by our observations.

(a) Length-dependent instabilities

We obtain the critical twist ny when a buckling mode starts to grow, by applying a prescribed
tension and then slowly increasing the twist while monitoring the sheet deflection along the
mid-transect of the sheet. Figure 32 shows the measured 7 versus L/W plotted in log-log scale
using the same experimental conditions as in figure 1d. We observe that 7 decreases rapidly at
first, before decreasing more steadily with L/W. We focus first on ny for relatively large length
for which precise predictions are available. In the bendable regime (Lc <« L < Lp), the helicoid
base state becomes unstable against higher-order buckling modes above a critical twist that

scales as [25]
t
1B = OB/ ZT_1/4’ (3.1)

for ny <1 and Ay < W. Here, ap is a numerical prefactor which is yet to be calculated, but
can be determined from our data. The scaling is obtained from a linear stability analysis
assuming a stretched helicoid base state. (Our previous experimental measurements of the ribbon
morphology showed that this assumption is valid except very near the clamped edges [24].) This
scaling corresponds to a line with slope 1/2 in the case where T and ¢ are held constant, and
is shown along with the data in figure 3a. We find that the observed 7y is well aligned with
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Figure 2. Observed number of modes decreases to one as the sheet length-to-width ratio is increased. Examples of observed
transects at various L /W are also shown (/W =3 x 1073). Inset: an example image used to extract the transects shown.
(Latex sheet with W = 50 mm and t = 152 ptm.) (Online version in colour.)
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Figure 3. (a) Measured 7, decreases as a function of L/W in log—log plot with slope consistent with 1/2 for2 < L/W <
20. The vertical line separates the clamp-dominated regime and the bendable regime. (b) The measured critical angle in the
bendable regime 5 as a function of (¢ /L) /+/T corresponding to L/ W > 2 collapses on to a line with slope 1/2. The data for
t/W = 0.001 correspond to polyvinyl sheets, and for t /W = 0.003 and 0.006 correspond to latex sheets, respectively. The
measurement error bars are smaller than the symbol size and thus not drawn for clarity. (Online version in colour.)

this prediction for L/W > 2. Interestingly, no change of scaling is observed at L/W ~ 20 when the
instability reaches the fundamental mode n=1.

We measure 7y to test equation (3.1) in the bendable regime more extensively over a wide
range of applied tension, sheet thickness, and materials listed in table 1. The observed 7y in the
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L-dependent regime where L < Lg, but above the point where edge effects start to dominate (L >
Lc), is plotted in figure 3b as a function of (t/L)/ VT. We observe excellent agreement with the
predicted scaling and find ap =4.0 £ 0.3.

Now, the corresponding wavelength of the wrinkles in this bendable regime is given
by Chopin et al. [25]

A = a)VLIT /4, (3.2)

where oy is a numerical prefactor. Here, the scaling with tension can be noted to be the same as
for longitudinal wrinkles [24]. The difference is the dependence here on sheet length L rather than
the width W in the case of the longitudinal wrinkles [24].

The wavelength Ay obtained as 2W/n is plotted in figure 4a as a function of length and
observed to increase like a staircase function till the maximum wavelength corresponding to
twice the width of the sheet is reached. The data are observed to be well aligned with scaling
given in equation (3.2) for Ay/W < 1, with systematic deviations growing as A./W approaches 1.
This measured trend is consistent with the estimate calculated in [25] with systematically higher
wavelengths for the thicker ribbon. Now, plotting Ay versus (Lt)/ VT for the latex as well as the
PET sheets, we again observe good collapse of the data onto a line of slope 1/2 expected from the
theory, provided Ay < W. We find that «) ~ 2.2 + 0.1. It is noteworthy that the material parameters
have been varied over three orders of magnitude in obtaining this data and gives a sense of the
robustness of the scaling and the determined «;.

Thus, we find consistency with the prediction that wrinkling occurs in twisted sheets which
depends on the applied tension in the limit of thin ribbons. This transverse instability occurs
at lower twist angle with increasing tension. This is opposite even qualitatively to the trend at
low tension where longitudinal wrinkling occurs [24,30]. In that case, the instability occurs at
increasing twist angle as the tension is increased until the crossover tension T is reached.

Furthermore, the points corresponding to the thicker latex ribbon (t/W =0.006 and Lg = 30)
can be noted to be especially interesting and may point to a larger range of validity for the scaling
shown in equation (3.1) than implied by the calculation assuming Ay < W. In particular, it can
be noted that for this thicker ribbon, - is observed to scale consistent with equation (3.1) even
though the fundamental mode is observed over a considerable part of this range. Thus, the scaling
appears tied more strongly to the length dependence of #; rather than the condition that Ay << W.
Further theoretical developments are still necessary to better understand this regime.

Focusing on the small L/W limit in figure 3a, where L~ Lc, the trend in the data shows
that elastic sheets become unstable and develop higher-order buckling modes above a critical
threshold ¢ which is found to be significantly larger than the predictions given by equation (3.1).
Further, the measured A is found to be slightly smaller than predicted by equation (3.2) in the
same range of L/W. Here, we argue that edge effects are responsible for the significant deviations
of the measured threshold and wavelength from predictions. We note that the prediction Lc/W =
4 is consistent with a change in scaling for n (see dashed in figure 3a). This result suggests that
the clamped edges are responsible for delaying the appearance of wrinkles for L/W 2 1, but do
not suppress the instability.

The observed wrinkles in the clamp-dominated regime bear some similarity to tensional
wrinkles observed at the centre of uniaxially stretched sheets [13,14,20,21,38]. However, it can be
noted that transverse wrinkles under twist occur here for far greater ratios of /W than observed
under axial stretching alone [20,39]. Thus, the magnitude of compression which develops under
twist is far greater than under uniaxial stretching alone due to the application of the tension.
In that configuration, the uniaxial state of stress of a stretched membrane is frustrated by the
clamped boundaries which induce shear and transverse stresses [40]. Therefore, development
of transverse compressive stresses can give rise to an instability driven by the clamped edge
stresses [14]. Later numerical studies indicate that the wrinkling instability, in fact, occupies only
a bounded region of the L/W-T phase diagram [38]. However, in spite of these developments,
the fundamental reason for the development of a compressive zone away from the boundary
remains unclear.
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Figure 4. (a) The measured wavelength A as a function of L /W in log—log plot is observed to increase till the fundamental
mode is reached where Ay, = 2I/. (b) The measured wavelength A, as a function of (tL)/ JT collapses on to a line with
slope 1/2 in the wrinkling regime when A. < I consistent with predictions in the bendable regime. The data for t /W = 0.001
correspond to polyvinyl sheets, and fort /W = 0.003 and 0.006 correspond to latex sheets, respectively. The measurement error
bars are smaller than the symbol size and thus not drawn for clarity. (Online version in colour.)

Now considering our twisted sheet configuration, we also argue that the frustration of the
helicoid base state by the clamped edges is an essential ingredient to explain the delayed
wrinkling instability. However, instead of giving rise to the wrinkling mechanism in axially
stretched sheets, the clamped edges of a twisted sheet appear to act as a stabilizing effect in
determining 7. We reach this conclusion because of the relatively higher rise in 7 in the clamp-
dominated regime compared to the bendable regime seen in figure 34, and relatively lower
wavelengths as well in figure 4a. A theoretical approach of the wrinkling mechanism in this
regime which includes both twist and stretch loading at small L/W is not available, and is outside
the scope of this study.

(b) Length-independent instability

In the limit where 7y becomes independent of L, Chopin et al. [25] calculated that a novel buckling
regime would be reached where the sheet destabilizes in the fundamental # = 1 mode at a critical
twist angle in the stiff regime

t
ns = as (W) T2, (3.3)
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Figure 5. (a) 1y, crosses over from decreasing inversely as the length to becoming L-independent as the length is increased for
the PETribbon held at constant tension 7 = 0.003. The data are plotted in log—log scale. The crossover occurs as the contribution
of the L-dependent tensional stiffening to the stability decreases to zero relative to the L-independent bending contribution. (b)
The critical twist angle in the stiff regime s plotted as a function of (t /W) /~/T along with linear fit given by equation (3.3).
The measurement error bars are smaller than the symbol size and thus not drawn for clarity. (Online version in colour.)

where ag =4.4 was obtained numerically at large T. For small T(< T) and in the limit n2)T>>
1, the development of the longitudinal wrinkling instability far-from-threshold allows one to
approximate the ribbon base state as being essentially a helicoid stretched in the vicinity of the
free edges with a vanishing compression everywhere else. Using a linear stability analysis with
reference to this post-buckling base state, ag =7/ /3 was calculated analytically.

To reach this regime, we now consider extremely long ribbon experiments performed in the
stairwell (figure 1c), in addition to those performed in the laboratory. The measured niy as a
function of L/W for L > 2m is shown in figure 5a. For L < Lg, we observe scaling consistent with
equation (3.1), but then as L is increased above Lg, clear deviations are observed as 7 occurs at a
constant value within the error of measurements which is approximately +5% in this case.

To understand the effect of this length independence on the scalings, ni = ns is plotted in
a linear-linear scale as a function of (t/W)/+/T in figure 5b for the data corresponding to the
L-independent regime. A linear fit according to equation (3.3) with a7 =3.2 £ 0.2 is also shown
which is consistent with previous calculations. However, significant deviations can be also noted
from this form, which are somewhat higher than the error in the identification of 5. In the case
of the PET ribbons used here, lowering the T resulted in approaching T;, the transition to the
longitudinal limit, while increasing T beyond the reported range resulted in plastic deformation.
Further experiments are needed to fully test this scaling over a wider range of T. However, this
is beyond the scope of the materials available to us. Nonetheless, it is clear from figure 5a that the
instability occurs at a much higher twist than predicted by equation (3.1), clearly demonstrating
that the nature of the instabilities in the bendable and stiff regime is different.
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To understand the two different mechanisms operating in the L-dependent bendable regime,
and the L-independent stiff regime, we start by identifying the forces acting normal to the sheet
and examining their relative contributions. Besides the transverse compressive force which is
driving the instability, two stabilizing forces act on the sheet: a bending resistance penalizing
large curvature, (or equivalently, small wavelength), and a tension-induced restoring force which
prevents the development of large amplitudes. For large L/W, the tension-induced force is not
sufficiently high to penalize the fundamental mode in favour of higher-order modes of smaller
amplitude but larger curvature, thus the fundamental buckling mode is observed. As L/W is
decreased, the tension-induced force is of the same order as the bending resistance, which
indicates that wrinkling modes start to be energetically favourable. This crossover length between
a L-dependent to a L-independent critical twist is observed to coincide well with the predicted Lg.
By contrast, the transition from mode number n =1 to n > 1 is observed to occur at a significantly
smaller length than Lg.

4. Conclusion

We have experimentally studied the transverse wrinkling of a thin elastic sheet held under
tension and twisted about its long axis. The critical twist is found to be not only dependent on
the aspect ratio of the sheet but also on the applied tension along the axis around which the
sheet is twisted. Three distinct regimes are identified, consistent with recent theoretical model of
transverse buckling developed starting from a covariant form of the FvK equations.

To rationalize the different instability regimes, we introduced two characteristic lengthscales:
a clamp length Lc and a bendability length Lg. When L > Lg, the instability is L-independent.
We find that the sheet destabilizes in the fundamental buckling mode and that the critical
twist decreases proportional to the thickness, and as inverse of the width and the square root
of the applied tension. This instability occurs in the stiff regime as the cross section is only
slightly curved. When the length is decreased below Lg, the instability becomes L-dependent.
For intermediate length L > Lc, the sheet destabilizes into fundamental or higher-order buckling
modes. We identify these instabilities with the bendable regime. When higher-order buckling
modes develop, the critical twist and the wavelength of the wrinkles slowly but systematically
decrease as the fourth-root of tension. However, it was unanticipated that the fundamental mode
can develop in the bendable regime characterized by a L-dependent threshold. At even smaller
length L < L¢ in the clamped regime, the clamped boundary conditions delays the development
of the instability with greater twist required to wrinkle the sheet because the sheet is under tension
near the boundaries along the transverse direction.

Thus, our experiments provide a thorough test of the scaling approach and the regimes of their
applicability, as opposed to direct numerical simulations of the thin plate equations which, while
accurate, give rise to less insight on the development of the instabilities, and the various operative
mechanisms. This approach also yields simple forms for the dependence on material parameters.
Our study provides the prefactors in addition to testing the derived scaling laws against materials
with Young’s modulus distributed over three orders of magnitude.

Finally, in closing, we note that the twisted ribbon configuration is an ideal experimental
benchmark to test nonlinear plate models. Such work may further lead to a deeper understanding
and modelling of more complex materials including fabrics [41,42], cellular solids [43], besides
mechanical metamaterials [44].
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