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Abstract—In this paper, we formulate and solve the ac optimal
power flow (AC-OPF) as an equivalent circuit problem in terms
of current, voltage, and admittance state variables. The generator
models are represented using conductance and susceptance state
variables, and the operational and network constraints are trans-
lated to corresponding current/voltage constraints without loss of
accuracy or generality. To understand the physics behind the op-
timality conditions of the optimization problem, we extend the
linear adjoint circuit theory to translate them to equivalent circuit
domain. It is shown that the operating point that defines the equiv-
alent circuit solution precisely represents an AC-OPF solution. We
then further exploit the equivalent circuit representation to use
power flow simulation techniques to robustly solve the optimiza-
tion problem. The efficiency of our approach is demonstrated for
several AC-OPF benchmark test cases (up to 70 k buses) under
nominal and congested operating conditions, and the runtime and
scalability properties are presented.

Index Terms—AC optimal power flow, equivalent circuit,
circuit formulation, circuit formalism, nonlinear optimization.

I. INTRODUCTION

HE AC Power Flow analysis, based on iteratively solving
T the nonlinear power mismatch equations, was first con-
ceived five decades ago [1], and still remains the standard anal-
ysis for operation and planning of the transmission-level power
grids. Not long after the first power flow formulation was postu-
lated, the Alternating Current Optimal Power Flow (AC-OPF)
was introduced by Carpentier [2] and Dommel and Tinney in
[3]. The motivation behind the first AC-OPF problem was to
find a steady-state operating point of a power system that min-
imizes the cost of generated real power while satisfying the
operating, network and stability constraints. Most notably, the
financial market is defined by nonlinear pricing, while the highly
nonlinear ‘PQV’ based power mismatch equations characterize
the network constraints that model the electrical power sys-
tem [4]. When both are combined with operating and stability
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constraints, they create a daunting optimization problem with
many possible local optimal solutions [5]. For this reason, the
classical OPF is recognized as a NP hard problem to solve, and a
robust technique that can solve for an optimal solution in a rea-
sonable amount of time still does not exist [4]. FERC (Federal
Energy Regulatory Commission) has reported [4] that today’s
“approximate-solution techniques may unnecessarily cost tens
of billions of dollars per year” and “result in environmental harm
from unnecessary emissions.”

Developing the robust and efficient methodology that can
solve for an optimal solution of the AC-OPF problem has been
a prominent research challenge and was until recently based
on improving the local optimization algorithms [6]. The recent
breakthrough has been made by introduction of relaxation algo-
rithms that claim to find the global optimal solution of AC-OPF
in [7]-[11]. The most promising advancement is presented in
[8], [9], where the authors use the Semi-Definite (SDP) and
Second-Order Cone (SOCP) Programing relaxation to handle
the non-convexities of the AC-OPF problem. The proposed re-
laxation algorithms are demonstrated to be exact and yield the
zero-duality gap for the initially examined test cases [8]. Unfor-
tunately, this is not the case in general [5], [12], and as discussed
in [5], the proposed SDP/SOCP relaxations succeed in solving
radial network configuration test cases but are exact for meshed
network test cases when there is only one feasible solution [5],
[12]. The other major drawbacks that further affect the recov-
ery of the global optimum from the relaxed problems, such as
the inability to handle negative Lagrange multipliers caused by
bounding line constraints, are discussed in [12].

Understanding and exploiting the physics of a power sys-
tem is the key factor to robust simulation and relaxation al-
gorithms [10]. Importantly, the inherent nonlinearity of the
traditionally used ‘PQV’ formulation due to the power mismatch
equations represent the biggest impediment to the formulation
and efficient solution [4]. Therefore, different formulations that
have been proposed since the introduction of AC-OPF problem
mostly differ in the approaches used to characterize the net-
work constraints [4]. Notably, it has been suggested [4] that the
current-voltage based (I-V) formulations with linear network
constraints and local nonlinearities isolated at each bus, seem-
ingly represents the most promising formulation for modeling
of network constraints. However, efficient handling of genera-
tor models that has previously shown to be challenging for I-V
formulations of transmission level powerflow simulations [13],
[14] worsened in the optimization problem, causing numerical
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instability to occur [14]. To address this, the authors in [14]
have proposed the hybrid method, where the generator buses
are modeled using power mismatch equations while the rest of
the network is handled using current mismatch equations. Im-
portantly, this and all of the proposed formulations are based
on the models that introduce other non-convexities in both the
equality and inequality constraints. This keeps the OPF prob-
lem highly nonlinear, as well as prevents the robust large-scale
optimization of power systems due to the inability to efficiently
handle the nonlinear constraints [4]. Therefore, the challenge
remains to find a robust algorithm that is capable of solving the
generalized AC-OPF problem with all the emerging and existing
grid technologies.

Recent advances in power system simulations have included
the use of complex current and voltage state variables within
the equivalent split-circuit framework for solving the powerflow
[15]-[17]. This formulation has demonstrated that the equivalent
circuit formalism provides new insight into robustly analyzing
the complete powerflow simulation problem [16]. More impor-
tantly, decades of research toward advancing circuit simulation
methods that are now capable of robustly simulating nonlinear
circuits with billions of nodes can be adapted and directly ap-
plied to the analysis of power systems [18]. Thus, it is shown
that the generator model problems introduced by application of
the -V formulation can be successfully overcome, thereby al-
lowing the robust scaling to massive-size transmission problems
[17].

In this paper we propose a novel framework for solving the
AC Optimal Power Flow problem in terms of equivalent split-
circuit state variables as an extension of the recent advancements
in power flow analysis. The key contribution of the paper is the
representation of the AC-OPF problem in terms of a nonlinear
equivalent circuit problem. Importantly, the generator model is
redefined (Section III) in terms of conductance and susceptance
state variables, where the negative conductance supplies the
real power to the circuit, while the susceptance represents an
inductor or capacitor that supplies or absorbs the reactive power
respectively. The objective of real power cost minimization is
now related to the network constraints through the generator ad-
mittance state variables. This formulation does not encounter the
convergence problems as reported for existing /-V formulations
[14].

As part of this formulation, a significant contribution is at-
tributed to extending the theory for linear adjoint (dual) circuits
to modeling the steady-state nonlinearities at fixed frequency
introduced by constant power models. We derive the adjoint
circuits for constant power models in Section IV, and further
show that coupled simulation of power flow and its adjoint cir-
cuit with addition of other control circuits exactly maps the
necessary optimality conditions of the optimization problem.
Therefore, if sufficient conditions are met, the circuit solution
exactly represents an optimal power flow solution.

Lastly, a supporting contribution is the development of cir-
cuit simulation techniques to ensure the robust large-scale con-
vergence of proposed circuit formulation. The overall result
is our algorithm, ESCAPE (Enhanced Simulation of Circuit-
based AC-OPF Problem Equivalent), that is an extension of our
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recently introduced powerflow circuit simulation methods [16],
[17], with inclusion of diode limiting heuristics [20], [21] to pre-
serve the robust and efficient convergence properties, scalable
to any-size power grids.

The proposed framework is applied to solve the AC-OPF cir-
cuit for congested and nominal (without congestion constraints)
operating conditions of various available test cases (up to 70 k
buses), and the results are compared with traditional AC-OPF
and SDP relaxed AC-OPF results in Section VI.

II. TRADITIONAL AC-OPF FORMULATIONS

Consider a power system given by the set of buses A/, whereas
set of generators G and load demands D are subsets of N,
that are further connected by a set of network elements, 7.
The objective of traditional AC-OPF is to find a steady-state
solution of a power system that minimizes the cost function of
real power generation, F..(P¢), defined throughout the paper
as a quadratic function given by a set of coefficients {a, b, c}:

gl
. B 2
rzglcnfc (Pg) *Z[% + 0PG4 + ¢ PG ] M

g=1

while satisfying the power balance equations (2), (3) and addi-
tional operational constraints (4)—(7).

V]
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Pmin,g < PG,g < Pm,(u',g Vg €g (4)

Qmin,g < QG,g < Qmar,g Vg S g (5)

vain,i < |‘/L| < ‘/maw,i Vi€ N (6)

P+ QF < Shave veeTx (D)

where |V;| and 6; represent voltage magnitude and angle state
variables, whereas Py (4eg(i))> Pp.i» Qa,(geg(i)) and Qp ; are
generated and demanded real and reactive powers at the ith bus
respectively. Variable 6;;, defines the voltage angle difference
between buses i and k, while G, and B}, represent the real and
imaginary parts of the bus admittance matrix. Each generator
in the set G is further defined by the operating bounds on real
and reactive powers (Pin, ¢» Prnaz, g» @min, ¢ and Qnaz, ¢)
given in (4) and (5), while the voltage magnitude of each bus
is bounded by the operating limits given in (6). Lastly, (7) rep-
resents the thermal limits of a eth network branch, given for
maximum apparent power flow bounds (S;,qz.¢), Where real
and reactive power flows can be written as functions of ¢th
and kth bus voltage magnitudes and angles connected by the



2356

branch e as:

Vi’ GY, — Vil |Vi| (GY cos O + Bl sinf;,) (8

P,
Q. = —|Vi|’ Bl — |Vi| Vi | (B}, cos 0, — Gy sin i) (9)

It is important to note that the AC-OPF problem formulated
using the power mismatch equations in rectangular coordinates
seems to provide a less nonlinear (quadratic nonlinearities) for-
mulation, and as such, is used for the relaxation approaches that
are proposed in [7]-[11]. It does, however, preserve the local
optimal solutions [5] and remains nonlinear and non-convex
both locally and within the network configuration that has a lin-
ear nature in terms of current and voltage state variables (linear
RLC network) [4].

III. DEFINING NETWORK AND OPERATIONAL CONSTRAINTS
USING EQUIVALENT CIRCUIT STATE VARIABLES

The equivalent circuit approach to generalized modeling of
power flow was recently introduced in [15]-[17]. It was shown
that each of the power system components can be translated to an
equivalent circuit model based on underlying relations between
current and voltage state variables without loss of generality. To
further ensure the analyticity of nonlinear complex governing
circuit equations for solution via Newton Raphson, the equations
are split into real and imaginary parts and represented by two
equivalent sub-circuits, real and imaginary, that are coupled by
controlled sources. The equivalent split-circuit representation
of the most prominent powerflow models are described in [15],
[16].

In this section we rederive the circuit model of a gener-
ator based on the relationship between current, voltage and
impedance, as well as introduce the transmission line congestion
constraint based on maximum current limit. The two new mod-
els incorporated within the powerflow split-circuit formulation
define the network constraints of the circuit theoretic AC-OPF
problem.

A. Generator GB Macro-Model

Considering the Vi and ING.,, as the output complex voltage
and complex current of the gth generator from the set G, oper-
ating at a fundamental frequency, where the subscript index I"
represents the corresponding bus index of the gth generator.

For any operating point of a power system, there must ex-
ist a driving point admittance that completely characterizes the
current and voltage relationship of that generator. Hence, a first
order equivalent circuit model defined by a conductance that
supplies the real power (a negative conductance) and a suscep-
tance that adjusts the reactive power can completely capture
such characteristics without loss of generality. The governing
equation of the generator, whose equivalent circuit can be seen
in Fig. 1(a), is obtained from Ohm’s Law:

Igy = (Goy+iBoy)Vr Yg€G (10)

The generated real and reactive powers (Pg 4, Qg ¢) are then
constrained as given in (11), (12) and used to relate the equiv-
alent circuit governing equations to the cost function of the
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Fig. 1. (a) Macro-model of a generator in terms of conductance and suscep-

tance state variables and (b) complex pi model of a transmission line.

optimization problem.
2

Foy=—Ga Vvl

Qag =
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B. Modeling the Voltage Magnitude Constraint

It can be shown that the voltage magnitude variable only ap-
pears as a squared term in the definitions of real and reactive
powers, (11), (12). Therefore, to further control the bus volt-
age magnitudes within the optimization problem, we introduce
a new variable, ds, ; that replaces the ‘|V;|*>’ term and further
reduces the nonlinearities of the formulation. The voltage mag-
nitude constraint and its limits are then redefined as:

dsqi = Vi + Vi Vie N (13)
V;?Lin,i < dsq,i < V7r210z,i Vie N (14)

Therefore, the generator real and reactive power constraints
from (11), (12) are reformulated in terms of conductance, sus-
ceptance and d, variables, as follows:

PG,g = _GG,gdsq,F (15)
QGA“(] = BG,.(]dsq,F (16)

The operating limits on real and reactive powers generated
remain the same, as in (4) and (5).

Similarly, the PQ load split-circuit model [15], [16] connected
to bus ¢, is reformulated in terms of d, as nonlinear real and
imaginary current sources (I ;» Ip ;):

Qr.i

Vgeg
Yg € G

Pr;

Ifg,: = @VRJ i Vi, Yie(DCN) (17
Pr K .
Iho. = ﬁVz - ?ZVR Vie (DCN)  (18)

where P, ; and (), ; are specified PQ load parameters, Vp ; and
Vr i are real and imaginary load voltages respectively.

C. Thermal Transmission Line Constraint

Traditional AC-OPF defines the transmission line thermal
constraint as the upper bound of the apparent power flowing
in the line, as in (7). However, the transmission line thermal
constraints are determined by material properties of the trans-
mission line conductors and equipment in terms of maximum
current magnitude [4]. Therefore, constraining the current flow
represents the most natural way of modeling this constraint.
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Herein we show the thermal limit of a transmission line seg-
ment between nodes ¢ and k, from Fig. 1(b), can be mapped to
the equivalent maximum current limit and thereby trivially han-
dled within the equivalent split-circuit framework. Thermal line
constraint given in terms of the real and imaginary line currents
can be expressed from the nominal voltage magnitude as:

SQ
ETC Y ke N Ve e Ty

V2
19)

nom
The real and imaginary transmission line currents (g, ;3 and
I, ;) are further defined in terms of real and imaginary bus
voltages:

2 S
Tip ik + 11y ik = tsqiik <

I = ~22Vii 4 Gy (Ve — Vi) — Br (Vi = Vi)
(20)
By,
Ireir = 5 Vri+Gr (Vi — Vi) +Br (Ve — Ver)
20
where G = R%]j_LX% and By = R%—&—XLX% .

Alternatively, the thermal limit can be directly defined by the
upper bound on current magnitude [4].

IV. FORMULATING EQUIVALENT SPLIT-CIRCUIT MODELS OF
THE AC-OPF PROBLEM
A. Defining the Reformulated Optimization Problem

Consider the AC-OPF problem formulated in terms of power
and our equivalent circuit state variables (X):

min 7. (Pg) (22)
subject to:
I, (X) <0 (23)
I.(X) =0 4)
where
X = [Vg,V1,dsq,G,B,Pc,Qg,isq]”  (25)

the bounds in (23) represent the operating limits of the power
system defined in (4), (5), (15) and (19), while the set generalized
circuit equations from (24) is given as:

GOVR—BoVi+I,+G Vr—B" V=0 (26)
GOVi+BOVR+Ipg+G Vi+B ' Vr=0 (27)

Pe+Godeyg=0 (28)

Qg —B®deg =0 (29)
VROVRE+VIOVi—deyg=0 (30)
TRe © TRy +I1 ® Iy —isg =0 31)

Herein, operator ® represents the Hadamard product, GV
and BY represent the linear network given in terms of real and
imaginary components of the bus admittance matrix, while the
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nonlinear PQ load currents (I 11§Q, I ng) are functions of voltage
variables as defined by (17), (18). Note that the conductance and
susceptance (G and B) represent the variable vectors with zero
elements, corresponding to indices that are not in G.

We start the derivation of the necessary optimality conditions
by writing the Lagrangian function as:

LXMp)=F AL (X)+p"[,(X) (32

Since the governing split-circuit equations are the real-valued
functions continuous on the feasible domain, the primal, dual
and complementary slackness (CS) problems, namely Karush-
Kuhn-Tucker (KKT) conditions, are obtained by differentiating
(32) with respect to primal and dual variables as:

JE(X)A=-VxF. - J 1 (33)
I (X)=0 (34)
pr'L, (X)=0 (35)
I,(X)<0 (36)
p=0 (37)

where J¢ (X)) and 7, represent the Jacobian matrices of vector-
valued functions /. (X) and I, (X'), while V x F. is the gradient
vector of the cost function F..

Finally, the first order sensitivity matrix of the equivalent
circuit constraints J- (X)) is dependent on X, and therefore
a solution to the redefined optimization problem (X*) is said
to be optimal if in addition to satisfying the regulatory KKT
conditions from (33)—(37), it further satisfies the second order
sufficient condition [19] given by:

0X
where T'x- represents the tangent linear sub-space at X *.

To solve for the stationary point of KKT conditions (X™),
there exist many algorithms that can be found in literature.
One of them is the Primal-Dual Interior Point (PDIP) method
[19], which approximates the complementary slackness condi-
tion from (35) as in (39), and iteratively solves the linearized

(first order Taylor expansion) set of equations from (33), (34),
(39).

>0 V(r#0) €Ty (38)

nol, (X)=—ce 39)

where the average complementary slackness violation (&) ap-
proaches zero at convergence and e is vector of ones.

B. Translating Optimization Problem to Nonlinear Circuit
Problem

The circuit theoretic formulation for modeling the network
constraints of AC-OPF problem remains nonlinear due to the
models that define the constant power elements, hence intro-
duced the nonlinearities within the dual problem (33). Impor-
tantly, the generalized nonlinear optimization algorithms such
as PDIP method, do not fully utilize the physics of the primal
and dual AC-OPF nonlinearities, but apply the different types
of generalized backtracking and damping techniques to ensure
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feasibility and help convergence [19]. In contrast, the robust and
scalable nonlinear simulation algorithms are developed from an
understanding of the physics behind each nonlinear element
within the problem. For instance, it would be intractable to use
generalized nonlinear solvers to simulate a billion-node inte-
grated circuit with nonlinearities such as diodes and transistors
without utilizing knowledge of the physical device characteris-
tics as done by SPICE, [20], [21].

We have recently demonstrated that the circuit formalism en-
abled within the equivalent split-circuit of a powerflow offers
a new insight to understanding the knowledge of the physical
characteristics of power grid device models. For instance, from
the circuit perspective, the reported convergence instabilities re-
ported in [14] for the generator model that is used for current
injection based /-V formulations for power flow can be par-
tially attributed to managing the set of constraints that control
the voltage across the independent current sources [18]. This
insight regarding the grid device characteristics can be utilized
to ensure robust convergence along with scalability to any-size
power flow problems [16], [17]. Hence, the same circuit simu-
lation heuristics can be applied to the primal problem from (34).
Herein, our objective is to understand the nature of nonlinear-
ities of dual problem (33) by representing it as an equivalent
circuit and solve it as a circuit simulation problem as well. The
mapping doesn’t introduce any approximation, but rather pro-
vides the important information that can be used in developing
the circuit simulation heuristics solely based on the physics of
the AC-OPF dual problem to enable robust convergence and
scalability.

Adjoint (dual) linear circuit theory has been well studied and
understood in the circuit modeling community and has been
used for various circuit analyses, most notably noise analysis in
SPICE [20]-[22]. It has been shown that every circuit element is
further defined by the corresponding adjoint element in the dual
domain [21], [22]. This mapping from primal to adjoint circuit
domain is usually derived from Tellegen’s Theorem and calculus
of variations, however, due to the lack of circuit models that
exhibit the constant steady-state power behavior, it has not been
explored for the nonlinearities at fixed frequency. Therefore,
to allow the circuit representation of dual problem from (33),
we first extend the linear adjoint circuit theory to include the
nonlinearities at fixed frequency.

Consider a primal time invariant circuit C and its topologically
equivalent adjoint (dual) C, as defined in phasor domain for a
fixed frequency. To ensure the analyticity of complex circuits
and their governing equations, we can without loss of generality
split them into the respective real and imaginary sub-circuits,
Sand S. Now, let the I, X, ¥ and A represent the real valued
branch current and state variables that fully define the primal and
adjoint split-circuits respectively. From Tellegen’s Theorem, in
the most general form we can then write the following equivalent
relationships [18], [21], [22]:

I"x=0 (40)

XT'g=0 41)
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primal circuit C primal split-circuit §

RLC network Real sub-circuit Imag. sub-circuit
+| Vs B e A B V; =BV, Vs —B.V; BV,
G JjBc G G

Fig. 2. n-node linear RLC circuit example.

The generalized governing equations of primal split-circuit S
can be defined in terms of a sensitivity matrix Jx :

I.=Jx X (42)

where vector I. defines the branch circuit currents and excita-
tion sources that set the circuit operating point. Note that Jx
of a liner split-circuit S represent a linear matrix given by the
network conductance/susceptance values, while the nonlinear
circuit elements (e.g., PQ load) additionally introduce the X
dependent elements within Jx .

If the generalized primal circuit equations from (42) are sub-
stituted for the branch currents I in (40), we obtain:

XTgiv =0 (43)

Hence, by comparing the (41) and (43), in order for Tellegen’s
Theorem to remain satisfied, the vector of adjoint currents ¥ that
further defines the generalized transformation from network &
to its adjoint S has to correspond to:

T=Ji (44)

It can be inferred from (44), that the linear primal split-circuit
corresponds to the respective linear adjoint circuit, while the
nonlinear elements from the primal circuit S also introduce
nonlinearities within the adjoint circuit S. Interestingly, from
the mathematical perspective, the sensitivity matrix that relates
the adjoint currents and state variables also represents the dual
matrix of Jx.

To further clarify the mapping from primal to adjoint split
circuits, we consider an n-node RLC network excited by a single
fixed frequency voltage source, as shown in Fig. 2.

As can be seen from Fig. 2, we split the primal complex cir-
cuit (left) into the intercoupled real and imaginary sub-circuits
(right). Note that the governing equations of the obtained sub-
circuits correspond to the split real and imaginary parts of com-
plex equations defining circuit C. Hence, we write the sensitivity
(split-admittance) matrix Jx gz in terms of conductance, and
inductor and capacitor susceptance elements:

G By — B¢

(45)
B¢ — By, G

Jx RLC =

By further applying the primal to adjoint circuit mapping de-
fined in (44), we can see that the dual RLC circuit represents
nothing else but the complex conjugate of the primal one. For
instance, a capacitive susceptance becomes inductive (conju-
gated), etc. The relationship between the RLC circuit elements
in primal and adjoint domain, as well as constant power ele-
ments, is further summarized in Table 1.
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TABLE I
MAPPING OF CIRCUIT ELEMENTS TO DUAL DOMAIN

Primal circuit - § Adjoint circuit - 5
Inductor
Conductance
Constant real power load
Constant reactive power
Element (Capacitive)
open
short
Adjoint input source

Capacitor
Conductance

Constant real power load

Constant reactive power

Element (Inductive)

Independent current source
Independent voltage source
Objective function gradient

)

1

To analyze the mapping and effect of excitation sources to
the adjoint network, we first consider the excitation sources
of primal split-circuit S. As it was shown in [21], [22], the
sensitivities of excitation sources that set the operating point of
the primal circuit S are zero (e.g., constant current and voltage
source), and hence do not affect the adjoint circuit. Therefore,
the primal excitation sources in the adjoint circuit are turned
OFF, as presented in Table I. To further understand and analyze
the effect of adding the excitation to the adjoint circuit, let 1.,
represent the vector of adjoint excitation sources. We can then
reformulate the expression from (44) as:

Tx k=1,

Next, by comparing the generalized adjoint circuit equations
from (46) with the dual problem form the optimality KKT con-
ditions given in (33), we recognize that the vector of adjoint
excitation sources correspond to the negative gradient of the op-
timization problem, in addition to the contributions of the dual
variables related to the inequality constraints. Therefore, from
the circuit perspective, the negative gradient of the objective
function and the dual variables related to inequality constraints
represent the adjoint sources that set the operating point of the
adjoint circuit in a manner that ensures controlled and optimized
primal circuit operating point. For instance, consider again the
n-node RLC circuit from Fig. 2. Its adjoint circuit corresponds
to the conjugated RLC network and shorted voltage sources
(OFF). However, it can be shown that turning the adjoint excita-
tion voltage sources ON ensures that the current supplied by the
primal voltage sources is minimized, thereby corresponding to
adding the objective function of minimizing the voltage source
current to the optimization problem constrained by the RLC
circuit equations from Fig. 2.

With the relationship between the primal and dual problems
from (33), (34) and their equivalent circuit representation estab-
lished, the set of complementary slackness conditions from (35)
remain to be considered. Therefore, we introduce the optimiza-
tion control circuits, whose governing equations are defined by
the complementary slackness conditions, which as discussed
above, further set the values of the adjoint (dual) variables rep-
resenting the portion of adjoint excitation sources.

Any equivalent circuit variable, including the real and reac-
tive powers, as well as the voltage magnitude and congestion
constraints given by (4), (5), (15) and (19) can be represented
by the box inequality constraints. Hence, to obtain the general-
ized optimization control circuit representation, we perturb and
reformulate the complementary slackness conditions (35),
which can be written in terms of “diode-like” nonlinearities

(46)
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—a a
Hy, K
Upper
pp X, X, Lower
Bound Bound
control control
circuit circuit
Fig. 3. Generalized control optimization circuits. Note that a diode circuit

symbol only indicates the type of the circuit nonlinearity.

for uth and [th upper and lower bounds (X, X DR
B €
B Xu - Xo + /jsat,u

I Yu € [1, |f(,|] ,Vo e [1,1X]]

(47)

m=x—x 3, WeLIL[ Yoe L |X]]
° - Ssatl

(48)

where /i, and 1, represent the uth and [th dual variables related

to the respective upper and lower limits, |I,| and |I,| are the
total number of upper and lower bounds, while i, ., and 2

represent the upper and lower adjoint saturation currents.
Importantly, since the range fi, and i, values can be now
determined from the problem’s nature and physical character-

istics, the addition of saturation currents (jis,¢, and Kooy 1)

are similar to models for semiconductor diodes in SPICE [21].
The model discontinuity at the bound can now be eliminated
by constraining the adjoint currents to be defined by the maxi-
mum physically meaningful value when the controlled variable
reaches the bound. The discussion of choosing the values of
adjoint saturation currents is further given in Section V. Fur-
thermore, beside the complete removal of model discontinuities
within the feasible space, a common practice in SPICE mod-
eling of the steep nonlinearities [20], [21] is to keep the exact
model only in the physical range, while approximating the “non-
physical” regions by piecewise-continuous linear functions that
are usually obtained as a Taylor linearization at the boundary
point of physical regions. Therefore, the redefined piecewise
continuous complementary slackness conditions that represent
the governing equations of optimization control circuits (shown
in Fig. 3) can be written as:

X, _Xoc+ﬁ.sal.'u if XO < X“'
—a
=4 (49)
sat,u—Xu e . 7
e ) e, X, > X,
Hsat,u Fsat,u
X“7XIC+H’MM.I if Xo > Xl
a __
H’ - 5<H.¢af.l+Xl> . (50)
- =X, ifX, <X,

u?

sat,l

14

Ssat,l

As can be seen from (49), (50), the steepness of diode nonlin-
earities and hence the accuracy of CS constraints is defined
by an ¢ constant. The traditional PDIP methods define the
“homotopy-like” algorithms [19] that provide more stable con-
vergence properties with iteratively updating e constant (barrier
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parameter) until it approaches a small number at the point of
convergence. However, beside the increase of iteration count
during the homotopic stepping toward the original problem, the
nonlinear constraint optimization problems cannot guarantee
the problem feasibility on the whole homotopy path [19]. On
the other side, SPICE has developed the limiting and homotopy
algorithms [21] that efficiently handle the extremely steep non-
linearities (e.g., diodes, transistor switches, etc.) within circuits
of enormous scale and complexity. Therefore, instead of ap-
plying the traditional PDIP algorithms to handle the steepness
of the “diode-like” curves, we keep (49), (50) steep from the
beginning of simulation, and modify the SPICE-style heuristics
[21] to develop the Critical Curvature Region for limiting. This
is discussed in further detail in Section V.

Lastly, after we showed that the complete optimization prob-
lem defined by the equivalent circuit constraints can be repre-
sented in terms of equivalent circuits and solved as an equivalent
circuit problem, we define the Equivalent Circuit Programming
as a new class of optimization problems.

Definition 1: (Equivalent Circuit Program - ECP). An opti-
mization problem whose constraints can be expressed in terms
of equivalent circuit equations. Therefore, the problem optimal-
ity conditions represent the governing equations of an equiva-
lent circuit, whose operating point can be obtained by solving a
circuit simulation problem. Most importantly, if sufficient con-
ditions are met, the ECP operating point exactly represent an
optimal solution of the optimization problem.

1) Generic Framework for Optimizing Power Grid: An
equivalent split-circuit formulation was demonstrated to pro-
vide a generalized power system simulation framework [15]—
[17], [23]-[27] that can include any physics-based model, such
as induction motors [24] or power electronics [23]. Since both
transmission and distribution networks can be represented by an
equivalent circuit, they can be simulated (jointly [26] or sepa-
rately [25]) within the same framework. Furthermore, the circuit
simulation modeling methodology used in modeling the steeply
nonlinear devices, such as transistor switches, can be adapted
[27] to develop the continuous models of nonlinear power grid
device characteristics. This includes PV/PQ conversion of the
generators and shunts, as well as the transformer tap control
[27]. Most importantly, the globally convergent heuristics that
are relied upon in SPICE can be adapted to ensure the robust
convergence properties of the developed nonlinear models [21],
[27].

Lastly, since each of the split-circuit models are further de-
fined within the adjoint domain, the proposed framework for
modeling and solving the optimal power flow problem can be
generalized to incorporate any physics-based models. For the
AC-OPF problem specifically, we derive the ECP model of a
generator that contains the embedded objective function gradi-
ent within the model. This further ensures the minimized gen-
erated real power solution.

2) AC-OPF Circuit Model of a Generator: The complex
governing equations of a generator model and the respective
real and reactive power constraints are given in (10) and (15),
(16). The powerflow circuit for the generator in terms of admit-
tance state variables is derived by splitting (10) into its real and
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Real Circuit IGRg Imag. Circuit IGIg
sqF S; sq,I jé
Fig. 4. Powerflow equivalent circuit of a generator.
imaginary currents Igr 4 and Igy 4
Icrg=GagVrr —BegVir Vgeg (51
Igryg =GayVir +BayVrr Vgeg§ (52)

Moreover, the real and reactive power constraints are repre-
sented by the two additional equivalent circuits as in Fig. 4,
where the powers are proportional to the currents flowing
through the voltage source set by the bus voltage magnitude.

We start the derivation of adjoint power flow circuit by finding
the first order sensitivity J,(X) matrix of the GB generator
governing equations that satisfies (42):

Goy —Bay Var —Vir 0 0 0
5 (x) = Boy Gay, Vir Ver 0 0 0
: 0 0 dyr 0 1 0 Gay
0 0 0 —dyr 0 1—Bg,

(53)

To further set the operating point of the adjoint power flow cir-
cuit that ensures that the real power supplied by the generator is
minimized as well as bounded by the power control circuits, the
governing equations of generator adjoint circuit can be written
from established relationships in (33) and (46) as:

0 0 0 0
- 00 0 0| rap,

)»1’r 0 0 00 H OF,

T, (X)" LU0 0 0 0 ﬂgz :—aX"‘
/\P“" L-rooo
@9 0 0 1 —1| L0y

0 0 0 0
(54)

where Apr and A;r represent the adjoint voltages, jipg,
Bp, o Qg and Ky, are the dual variables related to upper and
lower bounds of real and reactive powers respectively, while
Ap,g and Aq 4 are the LMPs related to real and reactive powers.

The first two equations from (54) represent the main adjoint
split-circuit governing equations of a generator. By letting the
real and imaginary adjoint currents (S¢r,, and Sgry) be a
function of currents at the generator output terminal, we further
write the nonlinear adjoint split-circuit currents of a generator:

Vgeg (55
Vgeg  (56)

Note that the currents from (55), (56) define the adjoint ad-
mittance of the generator GB model, as shown by Table I. Most

Scrg =G grrr + Baghir

Sarg = Gagirr — Be ghpr
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Fig. 5. Adjoint powerflow circuit of a generator that supplies optimal real
power, enforced by embedded to objective function gradient to G-Circuit.

importantly, the use of power flow and adjoint generator cur-
rents is the typical practice in equivalent circuit modeling. The
respective currents are not the variables of the formulation,
but rather an aggregation of the rest of the system, for which
governing equations are built by hierarchically combining the
respective circuit models of the simulation problem.

The next four equations from (54) are given as:

VerArr +Virirr +dsgripy =0  Vge G (57)
Vrrirr — VirArr —dsgrirg,y =0 Vge G (58)
Apg=pp, —by—2¢Fqy —firy,  VgeG (59)
hug =y, ~Hes  VIEG  (60)

To further reduce the variable count of the AC-OPF circuit,
we can eliminate the Lagrange multipliers related to the real and
reactive powers (Ap , and Ag 4) by substituting (59), (60) into
(57), (58) respectively. This which further yields the constraints
added to ensure the optimality and control of the powers supplied
by the conductance and susceptance state variables, governing
the G-circuit and B-circuit from Fig. 5. The nonlinear adjoint
powerflow circuit of a generator that maps (55), (56) and (57)-
(60) is shown in Fig. 5.

It is important to note that the derived governing circuit equa-
tions precisely represent the part of KKT conditions contributed
to the generator modeling constraints. Hence, to solve the non-
linear circuit simulation problem, each of the nonlinear primal
and adjoint circuit equations are linearized by means of the
first order Taylor expansion [15]-[17] to obtain the linearized
ECP circuit models that are then combined together to build to
complete ECP representation of AC-OPF problem.

3) Building and Solving an Equivalent Circuit Program:
The complete ECP circuit representation is obtained by hi-
erarchically combining (connecting) the primal, adjoint and
control circuit models, as defined by the grid (network) topol-
ogy. It is important to note that the hierarchical building of the
circuit representation corresponds to a modular construction of
the Jacobian/Hessian matrix and constant vector that defines the
Newton Raphson values during the iteration process.

Once the complete equivalent split-circuit is built, its set of
governing circuit equations correspond to the nonlinear set of
KKT optimality conditions as linearized by a first order Taylor
expansion. This linearization represents that step for the inner
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most loop of the Newton Raphson method. Since iteratively
solving the circuit simulation problem corresponds to Newton
Raphson iterations, at every iteration only circuit elements (Ja-
cobian/Hessian terms) that are dependent on the values from
the previous iteration are rebuilt, while the linear parts are built
once at the beginning of the simulation. This approach was
shown to represent an extremely efficient formulation and so-
lution method for solving nonlinear circuit problems [18], [21].
The main difference between the circuit simulation and tradi-
tional methods, however, is the circuit formalism obtained from
the circuit representation of the problem. This provides impor-
tant information that allows for developing efficient heuristics
to ensure the robust convergence properties and scalability di-
rectly from the physical characteristics of the problem, as further
discussed in the following section.

V. ENHANCED SIMULATION OF CIRCUIT-BASED AC-OPF
PROBLEM EQUIVALENT (ESCAPE) APPROACH

Solving the nonlinear constrained optimization (NCO) prob-
lem can be a very challenging task that is prone to divergence
or very slow convergence. These challenges can arise due to
the inefficient handling of nonlinear constraints combined with
modeling of inequality constraints. One of the widely used meth-
ods for solving the NCO problems, Primal Dual Interior Point
(PDIP) method [19], tackles those challenges by multiplying the
entire solution vector with the smallest damping factor needed
to maintain the iteration as feasible and further decrease the
error. However, since the first introduction of the SPICE-like
simulators [20], it has been shown that damping the complete
solution vector of a nonlinear simulation has two serious draw-
backs [20]. First, if the iterative solutions are in vicinity of
the correct solution, the convergence process is unnecessarily
slowed down. Second, if the solutions of two consecutive it-
erations differ widely, the problem may diverge or oscillate.
Importantly, from the perspective of optimization problem, the
unnecessary damping of certain variables from a complete so-
lution vector can force the iteration process to remain stuck in
the local area, hence increases the chances of converging to a
local solution or a saddle point. Therefore, instead of applying
the traditional PDIP algorithms to solve the AC-OPF circuit,
we use the idea of modeling the complementary slackness con-
ditions as in PDIP and combine it with a circuit simulation
solution approach to the problem to derive a new simulation
technique.

Herein, we introduce our Enhanced Simulation of Circuit-
based AC-OPF Problem Equivalent (ESCAPE) approach as an
adaptation of limiting heuristics from circuit simulations.

A limiting technique can be generalized as follows: for a given
maximum step size vector AY ., we can find the vector of
damping factors (d¢) that limits the NR variable update as:

dc = min {e, [sign (AY) © AY.x | @AY} (61)

YT =YF 4 §c 0 AY (62)
where © represent the pointwise division, e is a vector of ones,

and Y is a placeholder vector of limited variables. Note from
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(61) that in contrast to the traditional damping approaches, each
of the variables herein can have its own limiting factor.

A. Voltage Limiting

Voltage Limiting was shown be a simple and effective sim-
ulation technique that limits the value of the step change that
the real and imaginary voltage vectors are allowed to make dur-
ing each NR iteration in powerflow problem [16], [17]. For the
AC-OPF circuit, the voltage limiting is done in two stages. In
the first one, we limit the powerflow real and imaginary volt-
age steps, i.e., ¥ € {V g, V} asin (61) and use the obtained
damping vectors to limit the real and imaginary adjoint volt-
ages respectively. To further ensure that the step sizes of adjoint
voltages do not exceed the predefined limits, the second stage
applies limiting technique to adjoint voltages.

B. Admittance Limiting

As discussed in [16], the voltages of powerflow equivalent
circuit are very sensitive to the reactive power change during
nonlinear iteration. Hence, we redefine the Q limiting [16], [17]
to limit the NR step change of the admittance state variables
of the generator model. With well-defined bounds on admit-
tance state variables from the bounds on real and reactive power
and voltage magnitude, we establish the maximum step change
vectors for the generator conductance and susceptance:

AC'\"ma,.qr =« (Gma;n - Grnv’,n)
ABmanc =« (Bmaz - Bmzn)

where « € (0, 1] represent the discretizing factor.

(63)
(64)

C. Critical Curvature Region (CCR) Limiting

In contrast to the feasible range of the power flow split-circuit
variables that are normalized and well defined by the bounds of
the optimization problem, the set of adjoint variables, partic-
ularly the ones related to problem bounds, may not be well
bounded in general. However, as shown in Section III, the gra-
dient of the objective function represents an excitation source of
the adjoint circuit, and thereby determines its operating point.
Therefore, in order to prevent the large variations of dual vari-
ables, the first step in obtaining the efficient limiting heuristics
is normalizing the adjoint circuit.

1) Normalizing the Adjoint Circuit: Consider a quadratic
cost function from (1) that is defined by the set of cost func-
tion coefficients {a, b, c}. Herein, we introduce the adjoint per
unit normalization (a.p.u.) of the adjoint excitation sources; i.e.,
gradient of the objective function (Section III). Importantly,
since scaling of the cost function by a positive constant doesn’t
affect its minima, we obtain the base-factor that normalizes the
objective function as:

bapy = max [max (b, 2¢)] (65)

The normalized objective function now sets the adjoint cir-
cuit operating point in the range of around 1 a.p.u. Therefore,
the values of dual variables set by the upper and lower bound
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Defining the Critical Curvature regions.

complementary slackness constraints correspond to the per unit
amount of injected adjoint current needed to control the respec-
tive primal variables. Hence, choosing the value of saturation
adjoint currents from (49), (50) that yield the 40 a.p.u. dual cur-
rents at the boundary is sufficient as the upper bound on physical
region of dual variables.

2) Critical Curvature Regions: The Critical Curvature re-
gions (CCR) can be defined based on the maximum curva-
ture points of complementary slackness functions (49), (50) as
shown in Fig. 6. Hence, instead of damping the primal and dual
variables of the complementary slackness conditions over their
entire domain, the diode heuristics [20], [21] are adapted to
limit the NR step sizes only if the current iterates are within the
defined CCRs and exceed the predefined threshold step.

3) Adaptation of Diode Alternating Basis Technique [21]:
To ensure the efficient convergence properties of the steep non-
linearities within CCRs (see Fig. 6), as well as preserve the
feasibility of the ECP circuit operating point, we modify the
circuit simulation heuristics used in solving diode circuits [18],
[20], [21]. This approach was found to be nearly optimal for
limiting the diode circuits in SPICE [20]. The alternating basis
limiting technique is obtained [21] by equating the nonlinear
function value at (k + 1)th iteration with its linearized Taylor
approximation evaluated using the nonlimited NR step, AX,,
as shown in (66), (67).

€ e+ at*FAX, _
> Rl - =% Mk = Vu € [1,]L]]
Xu - Xoy + Hsat,u Xu - Xo + Hsat
(66)
a.k
€ e—p " AX,
Xk,+1 X = Xk 7;(1' vie [17 |lo|]
0 e +H8at,l 0 =l +H50tvl
(67)

After solving for X**! we obtain its NR step limiting ex-
pressions that are applied within the CCR regions:

9

X§+1 = Xu + fsat,u — m (X“ + Asatu — X‘Ij)
(68)
E+1 _ ° k
K=Kt t oe, (6 )
(69)

Finally, to prevent oscillation for small values of €, we ensure
that if current step makes the next iterate go from a CCR to
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neutral region or vice versa, we limit it such that it has to stop
at the maximum curvature point before entering a new region.

D. Embedding the Homotopy Within the ECP Circuit

To allow the robust convergence of any large-scale power
system optimization problem, we extend the Tx-stepping ho-
motopy method [16], [27] to the adjoint domain. The solution
of the optimal power flow is obtained by embedding the homo-
topy factor n) € [0, 1] to linear series and shunt network elements
and transformer model, as shown in (70)—(72). The system equa-
tions are then sequentially solved via the relaxed ECP problems
while gradually decreasing the homotopy factor to zero from
one. Namely, for the initial homotopy factor set to one, the ECP
circuit is virtually “shorted.” Now, the optimal power flow solu-
tion corresponds to the economic dispatch solution and can be
trivially obtained under the assumption that there is sufficient
generation in the system to supply the load. Gradually decreas-
ing the embedded homotopy factor 7 to zero sequentially relaxes
the ECP circuit toward its original state, while using the solution
from the previous sub-problem to initialize the ECP circuit for
the next homotopy decrement:

GL +3jBr = (Y +1) (G, +jBr) (70)
tn) =t+(1—-1t)n (71)
Opn (1) = (1 —1) Opn (72)

where T represents an admittance scaling factor, ¢ is the trans-
former tap, and 6, is the phase shifting angle.

E. Towards a Globally Convergent AC-OPF Algorithm

Years of research in the circuit simulation field have advanced
the techniques of Newton Raphson step limiting and applica-
tion of homotopy methods that are shown to exhibit global
convergence properties [18], [21]. We have shown that the same
heuristics can be adapted and extended to the power system
simulation problems, thereby guaranteeing similar global con-
vergence properties [17], [26], [27]. Furthermore, by strictly
removing the discontinuities of the complementary slackness
conditions (49), (50) and with extension of the power flow
heuristic and homotopy algorithms to the adjoint (dual) do-
main, it can be demonstrated that if a feasible solution does
exist, the circuit simulation techniques can bound the NR step
while maintaining the full rank solution matrix throughout the
simulation [27]. It follows that the same robust convergence
properties remain within the ECP problems, such as AC-OPF.

VI. SIMULATION RESULTS

The circuit element library for the derived models that map
the AC-OPF problem was built and incorporated in MATLAB to
implement the ESCAPE algorithm. The tool reads in the ‘mpc’
input file, translates the parsed information into the circuit pa-
rameters, hierarchically builds the sparse circuit equations by
combining the circuit models that correspond to building the
set of KKT conditions, and then iteratively solves them to
find the operating point of the AC-OPF circuit. In addition
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to the nonlinear circuit simulator, a linear simulator is used
to initialize the adjoint split-circuit. All the simulations were
run on MacBook Pro 2.9 GHz Intel Core i7.

We demonstrate the robustness of our circuit formulation
based approach by evaluating the following: 1) IEEE pglib and
PEGASE test cases libraries; 2) local optimal solutions test
cases from [5]; 3) GridPack data set library from PNLL; and
4) Synthetic Eastern Interconnection test case [29]. The prob-
lems were initialized using the real power and the voltage angle
obtained from a DC-OPF solution that includes a flat start
for voltage magnitudes and reactive powers given by the mean
values defined by respective limits. Each of the test cases is
solved for current congested (upper bound on maximum current
magnitude of transmission line) and nominal operating condi-
tions (without congestion constraints). We compare the results
for our ECP formulation with the ‘PQV’AC-OPF and relaxed
‘SDP’ AC-OPF formulations solved with ‘MIPS’/’FMINCON’
and ‘SDPT3’ toolboxes by using the default input solver param-
eters, (maximum constraint violation 5E-6, optimality tolerance
1E-4, variable tolerance of 1E-4 p.u. and a maximum iteration
count of 500 iterations) within the MATPOWER solver. The
results are summarized in Table II.

The ESCAPE technique obtained a solution for all of the
examined test cases during both operating conditions and con-
verged to the same optimal solution point for each case (Table II)
starting from both DC-OPF and input file initial starts. In con-
trast, the MATPOWER ‘MIPS’ solver failed on several of the
testcases, notably the larger size systems, and the ‘FMINCON’
toolbox performed better in those cases, but also diverged for
the two smaller cases when initialized from DC-OPF. For this
reason, we present the MATPOWER results as initialized from
DC-OPF and test case input file separately. Lastly, the SDP re-
laxation performed as reported in the literature [5], [12], and it
was characterized by slower runtimes than the other approaches.
Furthermore, the SDP relaxation failed to converge for the test
cases that are known to have multiple local solutions and was
able to successfully find the global solutions of the 14, 30 and 89
bus test cases that match the solutions obtained from ESCAPE
and MATPOWER.

We next analyze the ESCAPE runtime as a function of system
size and compare it to the other formulations in Fig. 7. All cases
were run under congested operating conditions for the same de-
fault parameters. The ‘PQV’ AC-OPF formulation is run with
both ‘MIPS’ and ‘FMINCON’ solvers, and the better of the two
run times is reported. As it can be seen from Fig. 7, ESCAPE
demonstrated better robustness with problem size. We believe
that this can be attributed, in part, to exploiting the “problem
physics” to limit only specific variables that can cause diver-
gence, just as is done in SPICE [18], [20], [21]. This is in
contrast to general purpose optimization solvers, such as PDIP
methods, that uniformly limit the solver step size, while homo-
topically varying the e-parameter. Importantly, even though the
problem size is slightly increased in comparison to the tradition-
ally formulated AC-OPF, the physics-based heuristics decrease
the iteration count, and when combined with the sparse cir-
cuit methodology of building the circuit equations, improve the
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TABLE II
AC-OPF SIMULATION RESULTS: COMPARING THE PROPOSED CIRCUIT FORMULATION WITH THE TRADITIONAL ONES
AC-OPF Circuit Formulation + ESCAPE MATPOWER AC-OPF with DC-OPF start MATPOWER AC-OPF with input file start
Cat.| Test case Nominal operation | Congested operation Nominal operation Congested operation Nominal operation Congested operation
Cost [$/hr] Cost [$/hr] Cost [$/hr] Cost [$/hr] Cost [$/hr] Cost [$/hr]
2 Case 9mod 3,087.84 3,087.84 3,087.85 ** 4,246.5 (MIPS)/3,087.8 3,087.84 ** 4,246.5 (MIPS)/3,087.8
1 Case 14 11,230.52 11,230.52 11,230.52 11,230.52 11,230.52 11,230.52
1 Case 30 10,598.21 11,708.23 10,598.21 11,708.23 10,598.21 11,708.23
2 | Case 39mod2 941.74 941.74 941.74 941.74 ** 941.74 941.74 **
2 | Case 39mod3 1,888.76 1,894.05 1,888.76 ** 1,894.05 ** 1,888.76 ** 1,894.05 **
1 Case 89 5,817.60 5,817.60 5,817.60 5,817.60 5,817.60 5,817.60
2 |Case 118mod 129,625.02 129,625.02 129,625.02 129,625.03 (MIPS)/DIVERGE 129,625.02 129,625.02
1 Case 300 638,312.01 657,418.35 638,312.01 657,418.35 638,312.01 657,418.35
2 | Case 300mod 378,540.49 378,540.49 378,540.49 (MIPS)/DIVERGE|378,540.49 (MIPS)/DIVERGE 378,540.49 378,540.50
1 Case 1354 74,060.41 74,064.30 74,060.41 74,064.30 74,060.41 74,064.30
1 Case 2869 133,980.72 133,993.48 133,980.72 133,993.48 133,980.72 133,993.48
1 Case 9241 315,886.40 315,902.49 x 315,888.48 ** 315,903.4 (MIPS)/315,902.8 315,886.40%* 315,903.36
1 | Case 13659 386,106.58 x 386,106.58 » - § - § - § - §
3 | Case 40605 15,099,595.29 15,395,681.29 --- --- 15,099,595.30 ** 15,395,683.29 **
3 | Case 68251 26,960,544.97 * 27,551,688.77 x --- --- 26,960,547.17 ** -
4 | SyntheticUSA 16,439,446.70 16,439,446.70 16,441,143.10%* 16,439,446.70** 16,439,446.70 ** 16,439,446.70 **

~ Test case didn’t converge after maximum iteration count (500) is reached with both ‘MIPS’ and ‘FMINCON’.

* Lower optimal cost found by ESCAPE. The obtained optimal solution is further validated by using it as an initial start for running the AC-OPF in MATPOWER.

** ‘MIPS’ MATPOWER solver diverged or didn’t converge after one hour; optimal solution obtained using ‘FMINCON’ toolbox.

§ Case13659 did not run with both ‘MIPS” and ‘FMINCON” solvers in MATPOWER, however, authors in [30] have reported the solution obtained using ‘KNITRO’ given as:

$386,107.5 for both operating conditions.

4
10 — ECP formulation with ESCAPE and input file start I
== ECP formulation with ESCAPE and DCOPF start

PQV AC-OPF with MIPS/FMINCON and input file start
=PQV AC-OPF with MIPS/FMINCON and DCOPF start
—SDP-OPF with SDPT3

Optimiztion Runtime [seconds]
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(21
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10-4 1 L 1 1
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System Size [number of buses] (5]
Fig. 7. Optimization runtime comparison.

simulation efficiency. These results, however, do not exclude
that the other toolboxes may perform better, but rather indicate
a promising path toward developing a generalized and robust
framework for solving the power grid optimizations solely from
the physical characteristics of the problem.

VII. CONCLUSION

In this paper we introduced an equivalent circuit formulation
for modeling and solving the AC-OPF problem. A new macro-
model of a generator was defined in terms of conductance and
susceptance state variables. The linear adjoint circuit theory was
extended to include the nonlinearities at fixed frequency and fur-
ther allow the direct mapping of KKT optimality conditions to a
circuit simulation problem. The preliminary simulation results
show that understanding of physics behind the ECP circuits
helps in achieving stable and efficient convergence properties
and provides greater probability of converging to optimal so-
lution with lower cost function values. Most importantly, the
framework is scalable to realistic large-scale power systems and
facilitates incorporation of any physics-based power grid device
models.
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