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1. Introduction

Trading via dynamic order-splitting algorithms is a per-
vasive fact in today’s financial markets.! Informed investors
use dynamic order-splitting to increase trading profits by
slowing the public revelation of their private information.
Order-splitting is not, however, limited to informed in-
vestors. Less informed investors — index mutual funds
and comparatively more passive pensions and insurance
companies — rely on order-splitting to minimize trading
costs for hedging and portfolio rebalancing. As described
in O’Hara (2015), portfolio managers transmit parent orders
— specifying the total amount of a security to be bought

T Pension & Investments (2007) reported that in a survey of leading
institutional investors, 72% said they used order-execution algorithms.
Anecdotal evidence suggests that the use of order-execution algorithms
has grown further in subsequent years. Order-execution algorithms are
different from computer-based market making, latency arbitrage, and
other high-frequency trading strategies.
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or sold over a fixed trading horizon — to brokers who use
computer algorithms to break parent orders into sequences
of smaller child orders.”> While dynamic informed trading
has been studied extensively (see, e.g., Kyle, 1985), order-
splitting for portfolio rebalancing is less understood.

Our paper is the first to model a market equilibrium
with dynamic trading given both long-lived private infor-
mation and portfolio rebalancing. We consider a multi-
period (Kyle, 1985) market in which there are two strategic
investors with different trading motives who each follow
optimal dynamic trading strategies. One investor is a stan-
dard Kyle strategic informed investor with long-lived pri-
vate information. The other investor is a strategic portfolio
rebalancer who trades over multiple rounds to minimize
the cost of hitting a private parent terminal trading target.

Our model lets us investigate the economic motivations
for dynamic order-splitting for portfolio rebalancing and its
equilibrium effects. Our analysis leads to three main in-
sights:

» Dynamic rebalancing and dynamic informed trading are
structurally different from each other. Child orders for
dynamic rebalancing, like informed trading, are timed
to reduce the price-impact cost of trading, but rebal-
ancing orders also have components driven by sunshine
trading, endogenous learning, and constrained short-
term speculative trading.

Dynamic rebalancing affects the mix of information and
trading noise in the arriving order flow and, thereby,
affects equilibrium price discovery and liquidity pro-
vision.> There are direct effects given the mixture of
noise and information in the rebalancer’s parent trad-
ing target and also because the rebalancer learns en-
dogenously through the trading process itself. In partic-
ular, the rebalancer can filter the aggregate order flow
better than market makers by incorporating his knowl-
edge about his own past order submissions. In addi-
tion, there are indirect effects due to the equilibrium
response of the informed investor to the rebalancer’s
trading, i.e., how aggressively she trades on her pri-
vate information given informational competition with
the rebalancer and how she exploits additional noise
in prices due to price pressure from the rebalancer’s
orders.

Trading constraints induce autocorrelation in the ag-
gregate order flow. In particular, dynamic rebalancing
based on a parent target leads to autocorrelated
child order flow that is different from unpredictable
informed-investor orders and serially independent

2 Keim and Madhavan (1995) is the first empirical study of dy-
namic order-splitting by institutional investors. Recently, van Kervel and
Menkveld (2018) estimate an average of 156 child trades per parent order
for four large institutions trading on Nasdag OMX. Korajczyk and Mur-
phy (2018) estimate an average of between 327 and 604 child orders per
large parent order depending on whether the parent order is nonstressful
(lower three quartiles of large trades) or stressful (top quartile) for Cana-
dian equities. See (Johnson, 2010) for more on specific dynamic trading
algorithms. The (Securities and Exchange Commission, 2010) report also
discusses the role of trading algorithms in the current market landscape.

3 Uninformed trading noise plays a critical role in markets with adverse
selection. See Akerlof, (1970); Grossman and Stiglitz, (1980); Kyle, (1985);
and Glosten and Milgrom (1985).

noise-trader orders. Autocorrelated rebalancing orders
lead to a type of sunshine trading with market mak-
ers trying to forecast the remaining future latent trad-
ing demand of the rebalancer since predictable orders
have no price impact.

In addition, an extensive battery of numerical experi-
ments identifies a number of testable implications of dy-
namic rebalancing:

» Dynamic rebalancing induces U-shaped intraday pat-
terns in expected trading volume, price volatility, and
order-flow autocorrelation and twists the price impact
of order flow over the day, where the magnitude of
these intraday patterns is increasing in the volatility of
the rebalancing target. Thus, daily time-variation in the
volatility of rebalancing targets should induce comove-
ment in a cross-section of multiple intraday price and
volume patterns.

Rebalancer and informed-investor orders tend to be-
come negatively correlated over time as the informed
investor trades against price pressure from past rebal-
ancer orders.

Our analysis integrates two literatures on pricing and
trading. The first literature is about price discovery. Kyle
(1985) describes equilibrium pricing and dynamic trading
in a market with a single investor with long-lived pri-
vate information. Subsequent work by Holden and Sub-
rahmanyam (1992); Foster and Viswanathan (1994, 1996);
and Back et al. (2000) allows for multiple informed in-
vestors with long-lived information. Our model extends
Foster and Viswanathan, (1996) — who were the first to
model a dynamic equilibrium with multiple investors with
heterogeneous information and to solve the “forecasting
the forecasts of others” problem — to allow for trading-
target constraints. Given our interest in information aggre-
gation and intraday order-flow dynamics, the Kyle set-up
lets us abstract from the arms race for speed (Hoffmann,
2014; Biais et al., 2015), intermediation chains linking mul-
tiple market makers (Weller, 2013), limit order cance-
lation and flickering quotes (Hasbrouck and Saar, 2009;
Baruch and Glosten, 2013), market fragmentation and la-
tency (Kumar and Seppi, 1994; Menkveld et al., 2017), and
other millisecond-level high-frequency trading (HFT) phe-
nomena.

A second literature studies optimal dynamic order exe-
cution for uninformed investors with trading targets. This
includes (Bertsimas and Lo, 1998; Almgren and Chriss,
1999; 2000; Gatheral and Schied, 2011; Engle et al., 2012;
Predoiu et al., 2011; Boulatov et al. 2016) as well as mod-
els of predatory trading in Brunnermeier and Pedersen
(2005) and Carlin et al. (2007). This research takes the
price impact function for orders as an exogenous model
input. In contrast, we model optimal order execution in
an equilibrium setting that endogenizes the effect of dy-
namic rebalancing on pricing.* A partial equilibrium anal-
ysis misses these equilibrium effects. In addition, unlike in

4 In our model, order flow has a price impact due to adverse selection.
Alternatively, price impacts can be due to inventory costs and imperfect
competition in liquidity provision (see Choi et al., 2018).
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the predatory trading models, our rebalancer’s trading tar-
get is not publicly known ex ante, but is random and pri-
vate information. This is arguably the usual situation on
normal trading days, as opposed to special days (e.g., fu-
tures rolls and index reconstitutions) on which the direc-
tion of rebalancing is predictable.

Models combining both informed trading and opti-
mized uninformed rebalancing have largely been restricted
to static settings or to multi-period settings with short-
lived information and/or exogenous restrictions on rebal-
ancer trading. Admati and Pfleiderer (1988) study a series
of repeated one-period trading rounds with short-lived in-
formation and uninformed discretionary traders who only
trade once but who decide when to time their trading.
An exception is Seppi (1990) who models an informed in-
vestor and a strategic uninformed investor with a trading
target who both can trade dynamically. He solves for sep-
arating and partial pooling equilibria with upstairs block
trading for a restricted set of model parameterizations.

Our paper is related to Degryse et al. (2014). Both pa-
pers model dynamic order-splitting by an uninformed re-
balancer. Consequently, both models have autocorrelated
order flows. Order-flow autocorrelation is empirically sig-
nificant but absent in previous Kyle models.” However,
there are two differences between our model and Degryse
et al. (2014). First, informed investors in Degryse et al.
(2014) have short-lived private information; i.e., they only
have one chance to trade on intraday signals before they
become public. In contrast, our informed investor trades
on long-lived information over multiple intraday time pe-
riods. Consequently, it is harder to distinguish cumulative
order imbalances due to rebalancing from imbalances due
to information trading. This reduces the value of sunshine
trading. Second, our rebalancer orders depend adaptively
on the realized path of aggregate order flow over the day
in addition to the trading target. Adaptive trading is ab-
sent in Degryse et al. (2014) where the rebalancer trades
deterministically over time to reach his target. In particu-
lar, our rebalancer learns endogenously about the informed
investor’s information, because he can filter the aggregate
order flow better than the market makers. Our analysis
is possible because we adapt the approach of Foster and
Viswanathan (1996) to circumvent the large state-space
problem mentioned in Degryse et al. (2014).

Our analysis includes three types of sunshine trading.
The first is the previously discussed zero-price impact of
predictable orders. In our model and in Degryse et al.
(2014), predictable orders have no incremental information
content and, thus, absent frictions in the supply of liquid-
ity, no price impact.® A second type of sunshine trading
exploits predictable market dynamics as liquidity is tem-
porarily depleted and then replenished over time (see, e.g.,
Predoiu et al., 2011). In our model, the informed-investor
trading corrects price pressure from past rebalancer orders,

> For early empirical evidence on order-flow autocorrelation in equity
markets, see (Hasbrouck, 1991a; 1991b). More recently, Brogaard et al.
(2016) find autocorrelation in orders from non-HFT investors (which is
our focus) as well as in HFT orders.

6 Predictable sunshine trading is statistically inferred in our model
rather than publicly preannounced as in Admati and Pfleiderer (1991).

which lowers the rebalancer’s subsequent trading costs.
The third type of sunshine trading exploits predictable in-
traday variation in liquidity.

2. Model

We model a multi-period discrete-time market for a
risky stock. A trading day is normalized to the interval
[0,1] during which there are N € N time points at which
trading occurs where A := % > 0 is the time step. As in
Kyle (1985), the stock’s terminal value ¥ becomes publicly
known at time N+ 1 after the market closes at the end
of the day. The value ¥ is normally distributed with mean
zero and volatility op > 0. Additionally, there is a money
market account that pays a zero interest rate.

Four types of investors trade in the model:

+ An informed investor (who we call a hedge fund portfo-
lio manager) knows the terminal stock value ¥ at the
beginning of trading and has zero initial positions in
the stock and the money market account. The hedge
fund manager is risk-neutral and maximizes the ex-
pected value of her fund’s final wealth. The hedge
fund’s order for the stock at time n, n=1,...,N, is de-
noted by A6l where 6} is its accumulated total stock
position at time n with 6] := 0 initially.

A constrained investor (who we call the rebalancer)
needs to rebalance his portfolio by buying or selling
stock to reach a parent terminal trading-target con-
straint d on his final stock position 9,5 by the end of the
trading day. For example, he might be a portfolio man-
ager for a large index fund or a passive pension plan
or an insurance company, who needs to rebalance his
portfolio or to respond to fund inflows/outflows. The
parent target d is private knowledge of the rebalancer.
In practice, such investors trade dynamically using opti-
mal order-execution algorithms to minimize their trad-
ing costs. He starts the day with zero initial positions
in the stock (95 :=0) and his money market account.’
The target d is jointly normally distributed with the ter-
minal stock value ¥ and has a mean of zero, a volatil-
ity o3 > 0, and a correlation p [0, 1] with 7. When p
is 0, the rebalancer is initially uninformed. If p >0, we
think of the rebalancer as being initially informed about
¥ but subject to random binding non-public risk lim-
its.® Importantly, our rebalancer rationally understands
the extent to which he is uninformed.’ The rebalancer
is risk-neutral and maximizes the expected value of
his final wealth subject to the parent-target constraint.
The rebalancer’s child order for the stock at time n,

7 This normalization simplifies the notation for their objective functions
but is without loss of generality. Both the hedge fund and the rebalancer
finance their stock trading by borrowing/lending.

8 The fact that the terminal value ¥ is measured in dollars while the
trading target d is measured in shares is not problematic for ¥ and @ being
correlated random variables.

9 Alternatively, if some investors trade under the mistaken belief that
they are informed, but the signals they condition on are in fact just
noise, then their orders should have the same functional form as actual
informed-investor orders (see Kyle and Obizhaeva, 2016). In our model,
informed investors and rebalancers trade differently because their trading
motives are different.
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n=1,...,N, is denoted by AGR, and the terminal con-
straint requires AGR =a— 6k | at time N.

Noise traders (who we think of as small non-strategic
retail investors) submit net stock orders at times n, n =
1,...,N, that are exogenous Brownian motion incre-
ments Awp. These increments are normally distributed
with zero means and variances o2A for a constant
ow > 0 and are independent of ¥ and d.

Competitive risk-neutral market makers observe the
aggregate net order flow y, at times n, n=1,...,N,
where

ni=AOL 4+ AOR 4 Aw,,  yo:=0. (1

Given competition and risk-neutrality, market makers
clear the market (i.e., trade —yjy) at a stock price
pn=E[V|y1,....,yn], n=1,2,...,N, po:=0. (2)
In the past, market makers were dealers on the floor
of an exchange. Today, market making is performed
by high-frequency trading firms running algorithms on
servers colocated near an exchange’s market-crossing
engine. These market-making algos process order-flow
information in real-time when setting prices.

The presence of the rebalancer with a parent trading
constraint is the main difference between our model and
Kyle (1985) and the multi-agent settings in Holden and
Subrahmanyam (1992) and Foster and Viswanathan (1994,
1996). In particular, at each time n, the rebalancer has a
latent demand to trade the remaining d — Hr’f_] shares over
the rest of the day. Previous microstructure theory says
very little about markets with daily latent trading demand.
As we shall see, this latent trading demand produces new
stylized market features such as autocorrelated order flow.

The hedge fund trades strategically to maximize its ex-
pected terminal wealth

E[@,’V(f/—pN) 4 0L Apy+...+6lAp, ‘v]

N
= Y B[ @~ pn o]
n=1

17], 3)

where App := pn— Pn_1- Although at time n=1, the
hedge fund only knows ¥ in (3), it knows that its orders
at later times ne{2, ... , N} will also be able to incor-
porate information about the then-past aggregate orders
Y1»---,¥Yn_1. Thus, the hedge fund maximizes (3) over mea-
surable functions AQ{ in the sigma algebra o (¥) induced
by ¥ at time n=1 and measurable functions A6] in the
sigma algebras o (#,y1,...,yp—1) at times ne{2, ... , N}
where, as in Kyle (1985), the contemporaneous aggregate
order flow y;, is not publicly known at time n but is pub-
licly known starting at time n + 1.1°

10 Alternatively, we can require A} to be in the sigma algebra
o (@, p1,...,Pn_1) and then use the one-to-one mapping between prices
pn and aggregate order flows y, in Definition 1 below to infer the ag-
gregate order flows. This approach is taken in, e.g., Back (1992). Since

in equilibrium the orders y,..., Yn_1 can be inferred from the prices
D1, ..., Pn_1 provided that Aq,...,A,_; are non-zero and vice versa, the
sigma algebras o (7,1, ..., Yno1) and o (@, y1, ..., Yn_1) are equivalent to
o@, p1,...,Pn1) and o (@, p1,..., pn_1). However, our model simply as-

sumes that aggregate order flows are directly observable to non-market-
makers via high-speed market data-feeds with a one-period lag.

The rebalancer also trades strategically to maximize his
expected terminal wealth
d

a. @

E[d(f)f pN) + 08 (Apy+...+0RAp,

N
PO - N
= aﬁ”a2 - ZE[(a -6} YAp,

n=1

but with the difference that now there is the termi-
nal rebalancing constraint 95:& relative to his initial
position O = 0. The equality in (4) follows from py =
Z’,Ll Apn, po=0, and E[V|d] = %ﬂd. The rebalancer’s
problem in (4) is conditioned on the rebalancer’s initial
private information (here, the target d), but the rebal-
ancer also understands that his later orders can be con-
ditioned on future aggregate order flows. Thus, (4) is max-
imized over measurable functions AOf in the sigma alge-
bra o (@) at time 1 and AOR in o (d,y1,...,yn_1) at times
ne{2, ..., N}

There are two points to note here: First, the in-

formation sets of the hedge fund o (¥,y1,...,¥n-1),
the rebalancer o (d,yi,....Yn—1), and market makers
o(1,..-,¥Yn_1,¥Yn) at time ne{l, 2, ... , N} do not nest.

Second, Appendix A shows that in equilibrium the hedge
fund’s problem (3) and the rebalancer’s problem (4) are
both quadratic in the investors’ respective orders.

Definition 1. A Bayesian Nash equilibrium is a collection of
functions {6}, X, po}N_; such that:

(i) Given {6, pn}l_,, the strategy {6]}N_, maximizes the
hedge fund’s objective (3).
(ii) Given {6}, pn}N_,, the strategy {6F}N_, maximizes the
rebalancer’s objective (4).
(ili) Given  {6], 0R}\N the

s (oo ne1® pricing  rule
satisfies (2).

{pn}ﬁzl

We construct a Bayesian Nash equilibrium with the fol-
lowing linear structure: First, the rebalancer’s and hedge
fund’s optimal trading strategies are!2

AOR = BR@—-0F ) +afq,1, 6F:=0, (5)

Aeill = :34(17 — Pn-1),

68 =0, (6)
where {B], BR aR}N_ are constants with B8 =1 and of =
0 and the process g, is the market makers’ expectation
qn =E[@—6R|y1,...,yn] of the rebalancer’s latent trading
demand d— 6R for the rest of the day conditional on the
history of aggregate order flows up through time n. The
rebalancer and hedge fund are not restricted to use lin-
ear strategies, but they optimally choose linear strategies
in the equilibrium we construct.

' The Doob-Dynkin lemma clarifies Definition 1: For any random
variable B and any o(B)-measurable random variable A, there is a
deterministic function f such that A = f(B). Therefore, we can write
OR = fR@.y1.....¥n-1), Oh=fi@.y1.....¥n1). and po= fE¥1.....¥0)
for three deterministic functions f¥, f!, and f?. The functions fF, fI, and
fP are fixed whereas the realization of the aggregate order-flow variables
Y1, ... , Yo vary with the controls ' and 6R.

12 If an additional o}g, ¢ term is included in the hedge fund’s strategy
in (6), then &}, = 0 in equilibrium. Contact the authors for a proof of this
result.
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Second, the g process in (5) is a structural conse-
quence of the rebalancing constraint in equilibrium. Much
like p, gives the market-maker beliefs about the stock val-
uation, g, gives the market-maker beliefs at time n about
how much the rebalancer still needs to trade to reach his
parent target. The presence of g, in (5) means that the re-
balancer’s orders are not limited to be deterministic func-
tions of his target d. Rather, they can depend adaptively on
the prior order-flow history, which is in contrast to the de-
terministic rebalancer orders in Degryse et al. (2014). It fol-
lows from (5) that the market makers’ expectation at time
n — 1 of the rebalancer’s next order at time n is

E[AOR|y1, ... yna] = (@R + BRYGns. (7)

Consequently, the aggregate order flow is autocorrelated in
this market: '3

Elyn Y1, Yol = E[AOy + AOF + Awy [ y1, ..., Y]
= (Olﬁ + :35) qn-1- (8)
The dynamics of q, are'*

A :=E[d—08y1.....¥n] — qna
=E[d- 68 |y1,....¥n1]
+rnn —Elyn Y1, Yn1]) — Qo
= E[—Aeﬁ |.VI7~~7.Vn—1]
+nn —Elyn | y1. ... YD)
= rnyn — (1 +10) (@R + BR)qn-1. 9)

for go:=0 and constants {r;}_,.
Third, the pricing rule in our linear equilibrium has dy-
namics

Apn = An(¥n —ElYn Y1, Yn1])
= An(Vn — (@ + BF)Gn 1), (10)

for n=1,...,N where {A,}_, are constants.!> The price
at time n is not affected by the part of the order flow
at time n that is predictable given past orders. Thus, the
(@R + B®)q,,_; term in (10) represents a type of predictable
sunshine trading.

Optimal trading for portfolio rebalancing reflects a
number of considerations: First, the rebalancer needs to
reach his parent trading target d@ at time N. Second, he
wants to reach this target at the lowest cost possible. Cost
minimization occurs through several channels:

13 The second equality in (8) follows from i) the independence of ¥ —
Pn_1, and, thus, A} from (6), and the past aggregate order flows, ii) the
assumption that the noise-trader orders are zero-mean, independent, and
identically distributed over time, and iii) the expression for expected re-
balancer orders in (7).

4 The second equality in (9) follows from the definition of g, and the
projection theorem where r, is a projection coefficient. The third equal-
ity follows from E[d@ — Oy, ..., Yno1]l = E[@—0F | — AOR|yy..... Yno1l =
Gn1 —E[ABR|y1, ..., Yn_1]. The fourth equality follows from (7) and (8).

15 The first equality in (10) follows because conditional expectations are
linear projections given the jointly Gaussian structure of the linear equi-
librium. In particular, the projection theorem is used to update price p,
relative to price p,_; given the innovation in the aggregate order flow y,
relative to its expectation given past orders. The second equality follows
from (8).

« The rebalancer splits up his child orders to spread their
price impact over time taking into account intraday
patterns of the price-impact coefficients A;.

» The rebalancer takes advantage of sunshine trading.

Early orders signal predictable future orders at later

dates, which, from (10), have no price impact.

The rebalancer trades strategically on information about

the stock value ¥ to reduce his costs and even, some-

times, to earn a trading profit. If p >0, the rebal-
ancer starts out with private stock-valuation informa-
tion. However, even if the rebalancer is initially unin-
formed about ¥ (i.e., p = 0), he still learns information
endogenously over time via the trading process (see

(12) below).

« The rebalancer reduces his trading costs using the fact
that, on average, the hedge fund trades against price
pressure induced by the rebalancer’s past orders. If, for
example, early uninformed rebalancer buy orders raise
prices, then, in expectation, the hedge fund should buy
less/sell more in the future, thereby putting downward
pressure on later prices which, in turn, reduces the ex-
pected cost of subsequent rebalancer buying.

Despite the complexity of the multiple drivers of rebal-
ancing trading, the rebalancer’s equilibrium orders take the
simple linear form in (5). To gain intuition, we rearrange
the rebalancer’s order at time n from (5) as follows:

AOR = (R + BRY qnr + BR (G- 68 | — qn_1). (11)

The first component, (af + B8R)q,_;, as noted in (7), is the
market makers’ expectation of the rebalancer’s order at
time n. From the sunshine-trading property in (10), this
amount is traded with no price impact at time n. The sec-
ond component, BR(d@— 68 | —q,_1). in (11) is due to two
effects: First, 6—9571 — (n_1 is mechanically the amount
the rebalancer still needs to trade beyond the market mak-
ers’ expectation of his remaining latent trading demand
in order to reach his parent target d. Second, d 705_1 -
Gn_1 summarizes the private information of the rebalancer
provided that the lagged rebalancer strategy coefficients

R ..., BR | are all different from 1. The proviso about the
rebalancer coefficients is a knife-edge technical condition
that ensures information about @ is not lost when 95_1
is subtracted from d.!% Given this proviso, @ —6R | —q,_4
is informative about two factors that allow the rebalancer
to speculate on future price changes. The first is current
stock-price misvaluation after trading at time n—1 in the

16 We require that the equilibrium paths produce o (d,y;., ..., Yno1) =
o(@—0F | —qn-1.¥1..... Yn-1). For n=2, we have d—60f =d— p,d and
the desired property holds when B; #1. For n =3, we have d— 608 =d -
@(B2(1—P1) + B1) —azq; and the desired property holds when B;#1
and B, # 1. The general case for n arbitrary is similar.
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market:!”

IE[17_1711—1 |5,Y1s---,}’n_1]
=E[V— pp1 A= 08y — Gu-1. Y1, ... Ynal
=E[V - pp1 |G- 0571 —qn_1] (12)

In general, d — 9571 — @n_1 is informative about ¥ — p,,_; at
times n—1>2, even if p=0 (i.e, d and ¥ are ex ante
independent), because knowledge about his own past or-
ders lets the rebalancer filter the prior order-flow history
to learn about ¥ better than the market makers. This dy-
namic learning is absent from deterministic rebalancing
as in Degryse et al. (2014). The second speculative fac-
tor is that d —0,’1{1 — (n_1 is also informative about fore-
cast errors in market-maker sunshine-trading expectations
(af + BR)qy_1 for dates k>n given that

Elqy — Elqkly1. .- Yol @Y1, - Y1l
=E[qx — Elqi | Y1, ... Ynalld—6OF 1 — qna] (13)

which, via (10), lets the rebalancer forecast the next price
pn at time n and also subsequent prices pj, at k>n. The
predictability of the order-flow impacts on these prices is
important — in addition to the predictability of 7 — be-
cause the rebalancer cannot hold stock positions to time
N +1 and liquidate them at #. Rather, his speculative po-
sitions must be liquidated at endogenous future market
prices at time N or earlier to satisfy the parent target d
at time N.

Turning to the informed investor, the term ¥ — p,_; in
(6) plays two roles in the hedge fund’s strategy: It is pri-
vate information about both the stock value and also, in
equilibrium, about the rebalancer’s remaining latent trad-
ing demand @ — OF |:18

Eld— 08 19, y1...., Yn1]
=qn1 +E[d— 608y —qn1 |V = Pro1. Yoo Vil
=(p1 +E[d— 9571 —Gn-11V— Pn-1l. (14)

Summary: There are three qualitative ways in which
the equilibrium structure of a market changes with order-
splitting from dynamic portfolio rebalancing. First, rebal-
ancer child orders are structurally different from informed-
investor orders. For example, the rebalancer orders in
(5) have a two-factor structure depending on ¢,_; and
a— 95_1 whereas the informed-investor orders in (6) have
a one-factor structure depending on ¥ — p,_;. Second, ag-
gregate order flow becomes autocorrelated. Third, the ag-
gregate order flow now has two components, one pre-

17 The first equality in (12) follows from q,_1,6F ; e o(d@. y1.....¥n-1).
which produces o (d,ys, ..., Yno1) =0 (G- 0571 —Qn1:Y1s s Yn_1) given
the proviso about the rebalancer strategy coefficients and using (5) to
compute OF . The independence, given multivariate normality, between
7 —pp_1 and (¥1,...,Yn_1) and between d — 9,'571 —(qn_1 and (yq,..., Yn-1)
allow us to discard (yq,..., Yn_1) When computing E[? — pp_q |d— 6% | —
Gn-1,Y1,--.,Yn_1] in the second equality in (12). As a practical matter, the
strategy coefficient proviso was never relevant in the numerical analysis
presented in Section 4.

8 The logic for (14) is similar to the logic for (12) in footnote 17. The
only difference is that no proviso is needed on the informed-investor
strategy coefficients since here there is no analogue in (14) to the sub-
traction of OF | in (12).

dictable and one a random innovation. Only the latter has
a price impact.

3. Equilibrium

In this section we give sufficient conditions for a linear
Bayesian Nash equilibrium as in (5) through (10). Our anal-
ysis extends the logic of Foster and Viswanathan (1996) to
allow for a trading constraint. Their approach solves the
“forecasting the forecasts of others” problem when show-
ing deviations from equilibrium strategies are suboptimal.
Appendix A presents the analysis in greater detail.

To begin, consider a set of possible candidate values for
the equilibrium constants

hnoToy BRQR B n=1,... N, (15)
with

BY#1... B #1, (16)
BE=1, of=0. (17)
The restrictions in (16) for times 1,...,N — 1 are the tech-

nical proviso discussed in regards to the representation of
the rebalancer’s information in (12), and the restrictions in
(17) at time N follow because the rebalancer must reach
his target d after his last round of trade. Given a set of
candidate constants (15)-(17), we define a system of “hat”
price and order-flow processes

A} = BL(@ - par) 6:=0, (18)
AOF = BR@—OF ) + kg, OF =0, (19)
P = AOL + AOR + Aw,,  §o:=0, (20)
Apn i= A — (@ + B)dn-1),  Po:=0, (21)

AGn :=Tnfn— (1 + 7’11)(05:’12 + ﬂﬁ)Qn—l, Go :=0, (22)
which denote the processes that agents conjecture that
other agents follow. In equilibrium, conjectured beliefs
must be correct in that p, = p, (the price process is the
conjectured price process), OF = é,’f (the rebalancer orders
follow the conjectured strategy), etc. The conjectured pro-
cesses (18)-(22) make problems (3) and (4) analytically
tractable in that the hedge-fund and rebalancer problems
can both be described with low-dimensional state variable
processes (see (35) and (42) below).

The conjectured system {Aé,ﬁ, Aéff,fn, Apn, AGn} is
fully specified (autonomous) by the coefficients (15). Given
the zero-mean and joint normality of ¥, d, and w, the con-
jectured system (18)-(22) is zero-mean and jointly normal.
The variances and covariance for the conjectured dynamics
over time are denoted!?

=0 = vla— 08 - i), (23)

19 The variance £.? of ¥ and the conditional variance of @ by itself are,
by definition, non-increasing over time. However, the variance 2,(,” of the
latent trading demand @ — 6} might not be monotonely decreasing. The
stock positions 6f in d@— OF are random variables that change stochasti-
cally over different times n rather than a fixed random variable. In par-
ticular, the possibility of speculative trading means that 6% can, at some
dates, move randomly away from d before eventually moving towards d
later in the day and thereby driving d — 6X to zero.
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2 1= V[T - pal. (24)

=y = E[(@~0F — ) @ - pn)]- (25)
These moments are “post-trade” at time n in that they re-
flect trading up-through and including the time-n order
flow yn. In other words, they are inputs for trading deci-
sions and pricing in round n + 1. The initial variances and
covariance at n = 0 are exogenously given by

V=02 3P =02, T =poio (26)

a’ v

In equilibrium, the constants (15) must satisfy consis-
tency restrictions, which we explain in two steps:

Step 1: The first set of restrictions on the pricing coef-
ficients {An, rp}N_, is that in equilibrium p, and g, must
be consistent with Bayesian updating. For the conjectured
prices p, to be conditional expectations E[V|$1, ..., V] for
the conjectured system, the same logic as for the equilib-
rium prices p, in (10), implies

Aﬁn = )bn(yn —E[yn |_)71, ~-~’J7n—l])
= An(Vn — (@f + B)An1), (27)
for n=1,..., N where A, equals the projection coeffi-
cient
Cov(? — Pu_1,n —E[Iu V1. .. .. Ina])
V(o —EFn 191, ... Fa1]) '
This is a restriction on the price-process coefficients in

terms of the hedge-fund and rebalancer strategy coeffi-
cients. A related logic gives restrictions on r, for §, to be

(28)

the conditional expectation E[d — é,f |91, ...,Yn] over time.
The resulting two restrictions on the equilibrium constants
forn=1,...,N (see Lemma 1 in A.1) are

1y (2) Ry (3)

)Ln _ nzn—] + ﬁn En—]
= 5 ] .
B’ + (BB, + 28482, + 02A

(29)
~ (1-BH(BES, + R
n= 2 2 )
B, + (BO Y, +2BLBFEY) + a2
The conditional variances and covariance in (23)-(25) are
computed recursively as

2 = (1 -1 - B -rpDED, - Bz, (31)

(30)

22 = (1-2pHE?

n

—dapRz® (32)

n-1°

2P = (1 -1 - D=, - 1Bl (33)

Note the “block” structure here: The updating coefficients
An and ry just depend on the strategy coefficients AR and
Bl and the prior variances and covariance from time n — 1
(along with the exogenous noise-trading variance o). The
post-trade variances and covariance E,ﬁ”, 2,52), and 2,23)
just depend on the updating coefficients A, and r,, the
strategy coefficients SR and B!, and the prior variances
and covariance from time n — 1.

Step 2: The second set of restrictions is that the coef-
ficients {8}, BR, aR}N . give optimal trading strategies for
the hedge fund and the rebalancer.

Consider first the hedge fund at a generic time n. For a
conjectured strategy 0! to be the hedge fund’s equilibrium
strategy, deviations from @' cannot be profitable. Proving
this requires modeling the effects of possible past sub-
optimal play. The hedge fund knows not only the termi-
nal stock value ¥, but also, as in Foster and Viswanathan
(1996), the extent to which the actual prices, quantity ex-
pectations, and rebalancer positions (i.e., pn, qn, and 6F
in (10), (9), and (5) given its actual orders Af!,..., AG])
deviate from their conjectured values (i.e., pn, dn, and
é,f from (21), (22), and (19) given the conjectured orders
Aé{, ..., A6l in (18)). In particular, the actual “un-hatted”
processes depend on actual past orders whereas the con-
jectured “hat” processes depend on conjectured past or-
ders. Although the rebalancer’s strategy is fixed by the se-
quences of coefficients R, ..., R and of, ..., f in (5), its
actual holdings 6F are subject to the hedge fund’s choice of
0! because the aggregate order flows affect the rebalancer’s
orders. Similar statements apply to the prices p, and latent
trading-demand expectations qp.

A natural set of state variables to consider for the hedge
fund’s problem in (3) is

lj_ﬁfl’ qn, éé_eév
Pn — Dn. (34)

The first two quantities in (34) describe market pricing
errors (given the hedge fund’s private valuation informa-
tion) and the predicted future latent rebalancer trading de-
mand (given market information) in the conjectured equi-
librium. The next four quantities describe the hedge fund'’s
private information about its actual holdings and about de-
viations its actual past orders have induced in the rebal-
ancer’s holdings, market expectations about the future re-
balancer latent trading demand, and market prices relative
to the conjectured processes in (18)-(22). However, the
state space for the hedge fund can be simplified, because
in equilibrium some of these state variables only matter
in combination for the hedge fund’s optimization problem.
Appendix A shows that two composite state variables are
sufficient for the hedge fund’s value function:

é,f—@,f, dn — qn,

XV =0 po X = OF - 600) + @ —an)
+Z0 (U= Pa). n=0.....N. (35)

From a technical point of view, this is a substantial reduc-
tion from the six state variables in (34). Two seems likely
to be the minimum number of state variables necessary
for the hedge fund’s problem. Lemma 2 in Appendix A en-
sures that the X,E” and X,EZ) processes are observable for
the hedge fund. In equilibrium, with 6} =6} and, thus,
Pn = Pn, qn = Gn, and OF = OR, it follows from (35) that

X@ = 2 x ™

soXn n=0,1...,N. (36)
Thus, on the equilibrium path, the hedge fund’s state space
reduces to just ¥ — p,, which is consistent with the form of
its equilibrium orders in (6).

Lemma 2 in Appendix A shows that the hedge fund’s
value function at each time n=1,..., N has the quadratic
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form

max [Z(v pk)A9’uy1,...,y]

A6l eo (Byq.yp_q)
k k=1 k=n+1
n+1<k<N +

=10 + IV XD+ EPXOXP 18P ()2, (37)

where [ [(D (12 and 122 are  constants.
Lemma 2 also shows that the hedge fund’s problem (37) is
quadratic in its orders A@). The first-order condition for
(37) gives the hedge fund’s optimal orders

AB) = yn(”X“) y(z)Xlgz)l, n=1,...,N, (38)
where the coefficients y“) and ynz) depend on the hedge-
fund value-function coefficients and on the parameters
of the conjectured price, latent trading demand, and re-
balancer strategy processes given in (A.28) and (A.29) in
Appendix A. The second-order condition for the strategy in
(38) to be optimal for the hedge fund is

122972 M h, #1022 < dp, n=1....N.  (39)

By inserting the hedge fund’'s candidate strategy (38) and
(A.28)-(A.29) into the expectation in (37), we can deter-
mine the hedge fund’s value-function coefficients recur-
sively as in Eqs. (A.42)-(A.44) in Section A.5.

Equating the coefficients in (38) with (6) and using the
equilibrium condition (36) gives the following restriction
on the hedge fund’s strategy coefficients:

2()
BL=r" 4y B n=1.LN (40)

For fixed moments 2(1) 2(2), and 2(3), we can use the
linear Eqgs. (31)-(33) to express 2(1) Eﬁ)l, and Er(i)l in
terms of ry, An, BL, BR. Egs. (A.28)- (A 29) and (29)-(30) can
then be used to see that (40) is a fifth- degree polynomial
in {BR, 1} whenever £, i=1,2,3, and I, i=1,2 and
i<j<2, are fixed.

Similarly, six natural state variables for the rebalancer’s
problem in (4) are

=05, n. OF 68 O,-6l. Gu—Gn Pn— P

(41)
The first two quantities in (41) describe the rebalancer’s
latent trading demand (given his private information about
his target and past orders) and the market-maker predic-
tion of his future latent trading demand (given the pub-
lic order-flow history) in a conjectured equilibrium. The
next four quantities describe the rebalancer’s private in-
formation about its own past orders and how they caused
the hedge fund’s holdings, the market’s latent trading de-
mand predication, and prices to deviate from the conjec-
tured equilibrium. However, the rebalancer’s state space
can also be simplified. Just three composite state variables
are sufficient for the rebalancer’s value function:

YV =a— 08 Y i= (o pu) + i @—0F ~ G,

Y :=q. n=0,1,....N. (42)

Lemma 3 in Appendix A ensures these processes are ob-
servable for the rebalancer. In equilibrium, with p, = pn,

Gn = Gn, and 6} = 01, it follows from (42) that
y® _ 2“) (y<1> Y®), n=1,....N. (43)

Thus, on the equilibrium path, the state space for the re-
balancer at time n reduces to just two state variables,
d—06F and g, which is consistent with (5). When the
hedge fund’s strategy is fixed as in (6), Lemma 3 in
Appendix A shows that the rebalancer’s value function is
quadratic in the rebalancer state variables

N
max —IE:|: > (&—Q,f])Apk‘ﬁ,yl,.‘.,yn}

R~
A9k o (@yq.Yg_1)

4 1<k<N_1 k=n+1
=LP+ > LYY, (44)
1=i<j<3
where L,(.,O), ...,L,(13‘3) are constants. Lemma 3 also ensures

that the rebalancer’s problem (44) is quadratic in his or-
ders AOR. The corresponding first-order condition gives
the rebalancer’s optimal orders

ABF = 8YD) 4 5Py L8OV 1. N, (45)

where the coefficients §{", 8, and 8 depend on the
rebalancer’s value-function coefficients, and the parame-
ters of the conjectured price, latent trading demand, and
hedge fund’s strategy processes given in (A.38)-(A.40) in
Appendix A. The associated second-order condition for the
rebalancer’s optimal strategy is

LD 18372 4 L0 + LEPA2 < L1 + L8 1,
n=1,...,N. (46)

Similar to the hedge fund’'s problem, by inserting the re-
balancer’s candidate strategy (45) and (A.38)-(A.40) into
the expectation in (44), we can find the rebalancer’s value-
function coefficients recursively as in Eqs. (A.45)-(A.50) in
Section A.5.

By equating the coefficients in (45) with (5) and using
the equilibrium condition (43), we get two restrictions:

1 2) =), 3 2) B
Br=8" +8 2k, an =87 -8, n=1,....N
1
(47)

Similarly to (40), the first equation in (47) is a fifth-
degree polynomial in {8k, B!} whenever E(’) i=1,2,3,
and L,(f]), i=1,2,3 and i<j<3, are fixed. The second
equation in (47) is a linear equation in af once all of the
other parameters are determined.

Our main theoretical result is the following:

Theorem 1. Constants {An,tn. BR. R, BN | satisfying re-
strictions (16)-(17) describe a linear Bayesian Nash equilib-
rium of the form in (5), (6), (9), and (10) if, for all times
n=1,...,N, the following restrictions hold:

i) The pricing and latent-trading prediction restrictions in
(29)-(30) hold where the moments E,(,]), 2,52), and 253)
are given in (26) and (31)-(33).

ii) The equilibrium strategy conditions (40) and (47) are
satisfied with the second-order conditions (39) and
(46) holding where the value-function coefficients
Y cicjer and L8 hoejes for n=1,....N-1
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are computed via the recursions (A.42)-(A.44) and
(A.45)-(A.50) in Section A.5.

Theorem 1 is a verification result for a set of model
parameters to constitute a linear equilibrium. It extends
Proposition 1 in Foster and Viswanathan (1996) to al-
low for an investor with a trading constraint. As with
most discrete-time Kyle models, including (Foster and
Viswanathan, 1996), we do not have analytic expressions
for the equilibrium. Equilibria must be computed numeri-
cally. Section A.6 describes our numerical algorithm. How-
ever, there is an existence and comparative-static result for

the asset-value variance 0172.

Proposition 1. Assume the linear equilibrium of Theorem
1 exists with coefficients

hno . B B ef B0 22 B

n-1’ “n-1" “n-1°

n=1,....N, (48)

for a given parameterization

rV =02 3P =02 3T =posoy (49)
where oz > 0,03 > 0, p > 0. Then for any parameterization
V=02 2P =h02 I =poshoy (50)

for any constant h> 0, an equilibrium exists with

1
hAn, 1o, % BRaR, =M R2E® hE®  n=1,. N
(51)

This result follows immediately from verifying that, if
the set of equations and inequalities for the equilibrium
conditions hold for (48), then they also hold for (51).2°
As is expected, greater asset-value volatility makes prices
more sensitive to order flow (A, is increasing in %2), and
this reduction in the absolute level of liquidity causes in-
formed investors to trade less aggressively (B} is decreas-
ing in 0172). Perhaps more surprisingly, the rebalancer’s
strategy coefficients are unaffected by 0172. One piece of in-
tuition is the following: The rebalancer has to reach his
target d at time N and relative trade-offs between liquid-
ity at different dates (An/A,/) are unaffected by oﬁz.

4. Numerical results

Our analysis in this section investigates two quanti-
tative questions: What do dynamic rebalancing strategies
look like in our market? And what are the equilibrium ef-
fects of the rebalancing constraint on price discovery, liq-
uidity, and order flow? To answer these questions, we con-
duct an extensive battery of numerical experiments over
the model parameter space.

Our numerical specification has N = 10 rounds of trad-
ing and the total variance of the Brownian motion noise-
trading order flow over the day (N periods) is normal-
ized at 02 = 1. The variance of the terminal stock value
7 is set to 62 = 1. We do not numerically vary o7, be-
cause Proposition 1 gives analytic comparative statics. In

20 The value function coefficients change from 1"V, (2 |22 (LD
1.2 13 2,2 23 3.3 i 1.2 2,2 1,1 1.2
LML 122133 and L3P to b, 1M, hIEP, ALY, L),

hLP, 52123 and R forn=1,...,N.

particular, intraday patterns in the strategy and price co-
efficients are either invariant to 0172 or scale proportionally
with o3, 02, or 1/0y. The target variance o7 and target in-
formativeness p are varied over a 2 x 2 grid with 062 tak-
ing values 0.2,04,...,2 (i.e., from one-fifth up to twice
the daily noise-trading variance) and with p taking values
0, 0.05, 0.10, ..., 0.45. Over this range of adz and p param-
eters, our results are numerically well-behaved. However,
when p is greater than 0.45 and the target variance 062
is small (e.g., typically 0.2 or 0.4), our numerical results
are sometimes less well-behaved.?! Our discussion focuses
on results in the numerically well-behaved region. While
our numerical findings are not necessarily global proper-
ties, they hold for a large portion of the parameter space.
Moreover, given the prevalence of order-splitting in real-
world markets by passive and less informed institutions, a
low p and a high 052 are, arguably, the empirically relevant
cases.

Most of our analysis is presented visually in figures
showing intraday patterns. In our standard template, Fig-
ure “A” is for the case of uninformative targets (p = 0)
with target variances O“ﬁz equal to 0.2, 1, and 2. Figure “B”
is for the case of informative targets (p = 0.45) with the
same three target variances. The various intraday patterns
are qualitatively similar for other parameterizations in be-
tween those shown here, and the patterns change rela-
tively smoothly in the target variance aﬁz and correlation
p. Thus, one can interpolate between the cases in the fig-
ures to infer the patterns for other variances Uﬁz and corre-
lations p. These patterns are also qualitatively similar out-
side of our parameter grid for correlations p > 0.45 so long
as 02 is not too small.

We assess the impact of portfolio rebalancing by com-
paring our model with two alternative models. For p = 0,
we compare our equilibrium with Kyle (1985). For p >0,
we compare our model with a variant of the Foster and
Viswanathan (1994) model, which we call the modified FV
model. In the modified FV model, one investor has supe-
rior information in that she knows the terminal stock value
D, while a less-informed investor receives a noisy signal
d with a correlation p >0 with 7.2 The signal @ in the
modified FV model has the same distribution as the tar-
get d in our rebalancing model. However, in the modified
FV model there is no trading constraint. The one difference
between our modified FV model and the original Foster
and Viswanathan (1994) model is that our better-informed
investor does not know the less-informed investor’s in-
formation whereas in Foster and Viswanathan (1994) the
better-informed investor knows both ¥ and d. Hence, our
dynamic rebalancing model and the modified FV model
have identical information structures. Comparing equilib-
ria in the two models shows the effect of the parent-target
constraint when p > 0. The modified FV model is described
in more detail in Appendix B and in the Internet Appendix.
One feature of the modified FV model to note is that the

21 Some variables occasionally take large values quite different from
their values at adjacent times n and n + 1.

22 The modified FV model reduces to the Kyle (1985) model when p =
0 since then the less-informed investor has no private information and,
thus, in equilibrium does not trade.
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signal variance 0&2 does not affect the informativeness of
the less-informed investor’s signal. Thus, many properties
of the modified FV model are unaffected by changes in adz.
In contrast, changing 052 has an effect in our rebalancing
model because oaz is an ex ante measure of the size of the
parent constraint on the rebalancer’s trading.

4.1. Overview of numerical results

Our numerical analysis produces a variety of empiri-
cal predictions. One set of results describes quantitative
properties of equilibrium rebalancing orders and the im-
portance of various economic considerations in the rebal-
ancer trading strategy.

« The mean and standard deviation of rebalancer orders
have intraday patterns that are U-shaped for param-
eterizations within our numerically well-behaved set.
In addition, the magnitude of the U-shape increases
when the target variance O'ﬁz increases and becomes
skewed when the correlation p increases. Thus, the
model not only predicts the existence of U-shaped in-
traday rebalancer order-flow patterns, but also predicts
how these intraday patterns vary with time-variation in
the volatility of rebalancing targets.

The realized parent target d has a large effect on the re-
balancer child orders relative to adaptive trading. In ad-
dition, predictable interactions with informed-investor
orders have an important impact on the U-shaped tim-
ing of optimal rebalancing orders.

A second set of findings describes the equilibrium ef-
fects of dynamic rebalancing on the price and order-flow
processes.

 Trading volume, price volatility, and order-flow auto-
correlation have U-shaped intraday patterns that are
increasing in target variance ¢2.** This prediction is
testable by looking at whether these intraday patterns
increase for stocks on days for which rebalancing-target
uncertainty is greater (e.g., days with highly volatile
mutual fund inflows/outflows).

Daily order-flow autocorrelation (estimated using intra-
day data) can be used — given its low sensitivity to
changes in p and insensitivity to ol.)z — as an empiri-
cal proxy to track time-variation in rebalancing volatil-
ity. Thus, time-variation in the size of the various intra-
day patterns and in the aggregate order-flow autocorre-
lation level should be positively correlated.
Autocorrelation of the aggregate order flow is linked
to autocorrelation in the orders of individual investors
who are rebalancing. This is in contrast to order-flow
autocorrelation due to cross-autocorrelation across dif-
ferent investors due to front-running and back-running
(see Yang and Zhu, 2015).

23 QOrder-splitting is certainly not the only cause of U-shaped intraday
patterns, since many of the empirically documented intraday patterns
predate the widespread use of order-splitting algorithms. However, the
magnitude of these U-shaped patterns should co-vary with rebalancing
volatility.

We have a few more observations about testability.
First, the aggregate order-flow and pricing predictions are
testable using standard intraday price and order-flow data.
On the other hand, predictions about rebalancing strate-
gies and structural differences between rebalancers and
informed investors require investor-level order-flow data
(e.g., from the Investment Industry Regulatory Organiza-
tion of Canada). Second, since rebalancer order flows are
autocorrelated, while informed-investor orders are not, this
difference can be used to identify individual institutions
in an investor-level order database as being likely rebal-
ancers (if their orders have above-average autocorrelation)
or likely informed investors (if their orders are less autocor-
related). Third, we can use a direct (or inferred as above)
classification of individual investors to test whether the
orders of likely rebalancers become more negatively cor-
related with orders from likely informed investors over
the day. Fourth, our comparative static predictions are
not just about individual patterns, but rather about the
co-movement of a cross-section of multiple intraday pat-
terns. Fifth, our predications about time-variation in the
volatility (i.e.,, second moment) of non-public portfolio-
rebalancing trading demand are different from predictions
about changing means (i.e., first moments) of publicly
predictable trading demand investigated in Bessembinder
et al. (2016)

4.2. Dynamic rebalancing

The rebalancer’s orders are described by the strategy
coefficients BR and «R. Figs. 1A and 1B show intraday pat-
terns for these coefficients. The fact that AR is positive
means, from (11), that the rebalancer trades in the direc-
tion of his private information & — 95_1 — qn_1. Intuitively,
the larger d — 95_] is relative to g,_1, the more the rebal-
ancer must trade mechanically to achieve his target. It is
also intuitive that the B coefficient increases as the end of
the day (and the binding rebalancing deadline) approaches.
Fig. 1B shows that there is an interaction between the tar-
get variance 062 and the informativeness o of the target.
When aﬁz is small (e.g., 0.2), the information content of a
given magnitude of target realization d is large, and, thus,
the rebalancer in Fig. 1B scales his trades aggressively early
in the day to exploit the information in d. Consequently,
the BR coefficients are larger in Fig. 1B (with p = 0.45)
than in Fig. 1A. In contrast, when 052 is large (e.g., 1.0 or
2.0), the magnitudes of the rebalancer’s trades are already
large given the BR coefficients when p =0 (as in Fig 1A),
and so the impact of informativeness p = 0.45 on the or-
der size in Fig. 1B is negligible.

Next, consider the sunshine-trading component (af +
BRY,_q from (11). The fact that of + BR is positive (if the
two coefficients in Fig. 1 are added together) means that,
on average, the rebalancer buys more when market mak-
ers believe he has a large latent buying demand. Again,
this is intuitive. The sum af + BR is small for most of the
day, but increases towards the end of the day, when the
rebalancer engages in more sunshine trading to close the
predictable part g,_; (as well as the unpredictable part
@—6R | —qy_1) of his remaining gap d— 65.
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The coefficient af captures the incremental impact of
trading motives that are present when trading on the pri-
vate information d — 9,571 — @n_1 but absent when trading
on ¢,_1. In particular, when trading on d — 9,571 —Qn_1, the
rebalancer is motivated in part by opportunities for spec-
ulation and the fact that non-sunshine trading has price
impacts in addition to the mechanical effects of trading to-
wards his target. A negative value of «f means that non-
mechanical motives increase the rebalancer’s trading on
his information 6—9,‘,{1 — qn_1 relative to his trading on
Gn_1. Intuitively, the larger the rebalancer’s actual future
latent trading demand d —9571 is relative to the market-
maker forecast, g,_1, the more the market underestimates
future aggregate buying relative to the rebalancer’s pri-
vate information. This predictability causes the rebalancer
to anticipate rising future prices and, thereby, leads him
to buy more/sell less at time n. Since sunshine-trading
forecast-error predictability causes the rebalancer to trade
more in the direction of his information ﬁ—@,’f—qn_1,
it makes of smaller or negative. In contrast, the intu-
ition for predictability about current mispricing 7 — p,_4
is more complicated.>* However, it can be shown that the
impact of current mispricing predictability potentially can
have the opposite sign of the impact of sunshine-trading
forecast-error predictability. As a result, the net impact
measured by of cannot be signed unambiguously a priori.
In our numerical analysis, however, of is consistently neg-
ative, even when p > 0. This suggests that the sunshine-
trading forecast-error motive is dominant here.

The rebalancer’s strategy coefficients af and BR re-
flect the combined effects of the economic considera-
tions described in Section 2. We disentangle these various
economic considerations and assess their quantitative im-
portance using two different decompositions. The first

24 For example, at time 1, the direction of the mispricing predictabil-
ity is determined by cov[? — p;,d—0F —q1] = —(1 - BRABRoZ + (1 -
B —r1B)ogopp. If p=0 and given 0<BR <1 and A;>0, then
cov[D — pq,d— OF — qq] is negative.

decomposes the rebalancer orders into their dependence
on the underlying variables. The second, considered in the
Internet Appendix, is based on a set of ad hoc strategies
that include and omit various economic considerations.

Decomposition into underlying variables: The latent
trading-demand expectation g, and cumulative holdings
9571 in (11) are endogenous processes, so we further de-
compose the rebalancer’s orders into linear functions of
the underlying exogenous random variables — the rebal-
ancing target d, the terminal value ¥, and noise-trader or-
ders Aw; — in the market:

AOF=ARa+BiI+ Y K Aw; (52)
j=1,..n-1

This decomposition follows from the joint linearity of
prices, orders, and the g, process. The dependence on ¥
and the noise-trader orders Aw; comes through the g,
process and its dependence on lagged aggregate orders.
The dependence on the target d is both direct and also in-
direct through the lagged 9,571 and q,_1 terms in (11). This
decomposition is then used to relate statistical properties
of the rebalancer child orders to the statistical properties
of d, ¥, and the noise-trader orders.

Fig. 2 shows the linear decomposition coefficients from
(52) for the rebalancer orders over time for our six refer-
ence parameterizations. Similar patterns hold for other pa-
rameterizations in our parameter-space analysis. One fact
affecting these intertemporal patterns is the terminal par-
ent constraint (A% = &), which, by construction, requires
Shet NAR=1,3,y NBE=0,and ¥,y y C?,n =0 for
j=1,...,N—1. Thus, the rebalancer trades on price ef-
fects from ¥ and noise-trader orders but then must even-
tually unwind these positions. Note that the coefficients
cﬁn on noise-trader orders Aw; in the lower two plots in
Fig. 2 do not start until one period after time j when an
order Aw; arrives and is cleared in the market.

Quantitatively, the target d is a major driver of the re-
balancer’s orders. In addition, the trajectory of the AR de-
composition coefficients on d@ have a U-shaped intraday
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pattern. These U-shaped coefficients for rebalancer orders
mean that the trading target induces U-shapes in both the
mean volume and volatility of rebalancer trading over the
day. Perhaps surprisingly, the decomposition coefficient on
¥ is initially negative at time 2. A partial intuition follows
from the rebalancer order in (5). At time n = 2, the load-
ings on ¥ and Aw; come from the dependence of A9§ on
q1. Given a positive informed-investor strategy coefficient
{, the sign of the rebalancer loadings on ¥ and Aw; are,
by construction, the same and are controlled by the coef-
ficient o in (5). Since of at time 2 is consistently nega-
tive in all of our numerical examples, the rebalancer trades
against price pressure from the noise traders rather than
with the informed investor and ¥, and so the decomposi-
tion coefficients on 7 and Aw; are both negative. Later in
the day, the coefficient on ¥ switches sign when the rebal-
ancer unwinds his speculative positions given his trading-
target constraint.
Deterministic and adaptive components: The decomposi-
tion in (52) lets us break the rebalancer’s orders into a de-

terministic component,2>

E[AOR |d] = ARG+ BRE[D | d] = (A';+B',$p %)a (53)
a

that depends on the target d and a separate random adap-

tive component
AOR —E[AOF @] =Bf W —E[D|d]) + Y. cf, Aw,
j=1,..n-1
(54)

that depends on the portion of ¥ that the rebal-
ancer cannot predict given d and on the noise orders
{Awyq, ..., Aw,_1}. The deterministic component is due to
price-impact smoothing, predictable sunshine trading, and
predictable interactions with orders from the informed in-
vestor who, on average, trades to reverse price pressure
caused by the rebalancer orders. The adaptive component

25 The expectation E[AOR|d] in (53) is taken over the stock value ¥
(which is mean-zero but can be correlated with d@) and the noise-trader
orders Aw; (which are mean-zero and uncorrelated with &). The second
equality follows from the joint normality of @ and .
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comes from the g, term in (11) after controlling for the tar-
get d. This component reflects real-time sunshine trading
(i.e., reactions to fluctuations in g, induced by the arriv-
ing aggregate order flow over the day) and speculation on
information learned through the trading process. Here, we
use the decomposition in (53) and (54) to identify direct
effects of rebalancing trading on market volume. Later, in
Section 4.3, it is used to understand the equilibrium effects
of rebalancing on pricing and on the informed-investor
orders.

The separation here is not just algebraic; rather it has
meaning in terms of separability of the rebalancer’s opti-
mization problem in (4). The deterministic expected orders
in (53) give the optimal strategy for a rebalancer who pre-
commits at time 0 to using deterministic child orders given
by functions {x;, (d)}ﬁ’:l. The proof of the next result is in
Appendix C.

Proposition 2. Assume the linear equilibrium of Theorem 1
exists. Then the conditional expected equilibrium orders
E[AOR| d] are the optimal orders x: for a rebalancer who is
constrained to trade deterministically over time.

The adaptive order component in (54) shows how our
rebalancer, who is not constrained to trade deterministi-
cally, optimally deviates over time from the optimal deter-
ministic strategy x;, to respond to changes in market beliefs
due to the arriving aggregate order flow.

Fig. 3 shows the expected rebalancer orders over
the day conditional on the target d scaled as a ratio
E[AOR | d)/a relative to the target d # 0. From the linearity
in (53), the ratio does not depend on the realized target d.
If p = 0, then the ratio E[AOR | d]/d has the identical intra-
day pattern as the decomposition coefficients AR on @ (e.g.,
compare the U-shaped pattern for the ratio in Fig. 3A with
the AR coefficients in Fig. 2A).%5 If p >0, then, the ratios

26 Degryse et al. (2014) obtain a similar U-shaped pattern but with
both short-lived information and deterministic rebalancing. Optimal or-
der execution models can also have U-shaped optimal strategies (see, e.g.,

are shifted by the Bﬁpg—g term in (53). This U-shape vol-
ume pattern is common to all of the parameterizations we
consider. For example, Fig. 3B shows the U-shaped pattern
for the p =0.45 case. These intraday patterns for rebal-
ancer orders are conceptually different from those for the
less-informed investor’s orders in the modified FV model.?’
Because of the rebalancing constraint and the dynamics of
sunshine trading, the rebalancer trading has an upturn in
expected volume at the end of the day. In the Internet Ap-
pendix, the rebalancer orders are decomposed further to
identify the specific portion due to predictable sunshine
trading.

The second component of the rebalancer orders is the
adaptive component in (54) that responds to fluctuations
in the aggregate order flow over the trading day. The ran-
domness is due to speculative trading by the rebalancer
(given his endogenous learning through trading over time)
and real-time sunshine trading (given fluctuations in the
market-maker expectations ¢n). The size of adaptive trad-
ing is measured using the standard deviation SD[AGOR|d]
given the target d. Figs. 4A-B show that the standard devi-
ation is initially zero at time n =1 (when the rebalancer
only knows d and has not yet observed any lagged ag-
gregate order flows) but then is roughly U-shaped over
the rest of the trading day (i.e., higher at times 2 and
10). The U-shape becomes more pronounced when the cor-
relation p is large. In contrast, the standard deviation is
hump-shaped in the modified FV model. Our parameter-
space analysis finds that the U-shape increases as %2
increases. This is consistent with increased endogenous
learning (since the rebalancer’s orders are a larger part
of the noise in the aggregated order flow and since the

Predoiu et al.,, 2011), but our model endogenizes the liquidity resilience
and replenishment dynamics that drive this result.

27 Unlike other plots in which the modified FV model is insensitive to
o2, the ratio here is decreasing in o2 because the order size in the nu-
merator of this ratio is invariant to how the information in the signal d is
scaled, but the denominator in this ratio is the scaled signal d.
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rebalancer can filter his larger orders better than the mar-
ket makers) and a larger real-time sunshine component
(as market-maker expectations about the rebalancer’s la-
tent trading demand become more sensitive to aggregate
order-flows).28

Fig. 4C shows an example of ten simulated paths of the
rebalancer’s order flows over time in the case of aﬁz =1
and p = 0. The realized stock value ¥ here is one, and the
realized trading target d is zero, but the noise-trader or-
der paths are random. Along these paths, the rebalancer
buys/sells more than his terminal parent target d =0 at
early times (e.g., n=2) and then unwinds his position
later to achieve his trading target. This is not manipula-
tion. Rather, it is constrained short-term speculation due
to the combination of endogenous learning about ¥ and

28 The rebalancer and the informed trader acquire information at differ-
ent times than each other (as in Foucault et al., 2016), and the rebalancer
endogenously engages in short-term speculation (as in Froot et al., 1992),
since he must unwind his speculative positions before the definitive pub-
lic value revelation of ¥ at time N + 1.

the trading constraint d. The rebalancer does not trade at
time n = 1 because, given d = 0, he does not need to rebal-
ance, and because, initially, he does not have any valuation
information given p = 0. However, at time n =2 the re-
balancer trades based on whether — given the stock-value
information gleaned from filtering the order flow y; bet-
ter than the market makers — the stock appears over- or
under-valued. Later, however, he unwinds these positions
to achieve his parent target 08 = d =0 at the end of the
day. The dispersion across the paths is consistent with the
intraday pattern of the rebalancer order-flow standard de-
viation. Paths for non-zero targets d involve shifting the
means of these paths from zero to the appropriate deter-
ministic path given @.2° This is illustrated in Fig. 4D for a
target d = 1.

29 When the realized target d is large, the rebalancer’s orders tend to be
in the same direction over time (e.g., a large positive target d is associated
with a series of buy orders). Randomness in his orders due to the g, pro-
cess (connected with sunshine trading and endogenous learning) usually
just causes the rebalancer to speed up or slow down his trading relative
to his expected orders given his target.
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Interactions with informed-investor orders: Another factor
that reduces rebalancing costs is that the rebalancer’s or-
ders tend to become negatively correlated with the hedge
fund’s orders over time. Fig. 5A shows that, if p =0, then
the correlation between the hedge fund’'s orders and the
rebalancer’s orders is negative at times n> 1. This nega-
tive correlation is mutually beneficial for the rebalancer
and the hedge fund. By trading in opposite directions (in
expectation), they symbiotically provide liquidity to each
other (i.e., their orders partially offset each other). If p >0,
then, as illustrated in Fig. 5B, the order correlation starts
out positive, but later turns negative. In contrast, orders for
better-informed and less-informed investors in the modi-
fied FV model are always positively correlated.>®

Additional analysis in the Internet Appendix shows that
the predictable interaction with the informed-investor or-
ders has a significant impact on the rebalancer’s trad-
ing. First, a large part of the negative correlation between
informed-investor and rebalancer orders is due to the in-
formed investor trading against price pressure due to the
rebalancer’s orders. As the rebalancer trades towards his
(uninformative or imperfectly informative) target d, the
hedge fund trades opposite the noise that rebalancing in-
duces in prices.?! Second, the predictable interactions with
the informed-investor orders are a quantitatively impor-
tant driver of the U-shape in the deterministic component
of the rebalancer’s orders. The intuition is that the rebal-
ancer trades less during the middle of the day to give the
informed investor time to offset price pressure from the

30 In the modified FV model, iterated expectations gives
cov(AGy, AGR) = BLBRELW = Pn1) a1 — Pu-1)] = BaBEVISn 1 — Pual,

which is positive given B, >0 and BFf>0 where $§, ;=

31 Foster and Viswanathan (1996) also has negative cross-investor order
correlation when both investors have symmetric noisy signals. However,

our price-pressure correction mechanism is different from their Bayesian
learning mechanism.

rebalancer’s orders early in the day before the rebalancer
then trades again later in the day.

Summary: The rebalancer orders have a large determin-
istic component — that depends on the parent target d —
that reflects price-impact smoothing, predictable sunshine
trading, and anticipated reactions from the informed in-
vestor’s trading. There is also an adaptive component due
to learning and real-time sunshine trading. The adaptive
component is relatively small except when the target vari-
ance and informativeness are high. These observations fol-
low from the large rebalancer decomposition loadings on
d (in Fig. 2A) and the rebalancer order standard deviations
SD[AOR| @] (in Fig. 4). They are confirmed further in the
Internet Appendix based on a second decomposition using
ad hoc strategies. Thus, equilibrium rebalancing strategies
are more complicated than simple TWAP (time-weighted
average price) strategies.>> These features of rebalancing
orders also drive the equilibrium impact of dynamic rebal-
ancing on prices, liquidity, informed-investor trading, and
the aggregate order flow discussed next in Section 4.3.
In particular, the U-shaped patterns in the determinis-
tic and adaptive components of the rebalancer orders are
connected with U-shaped patterns in prices and market
volume.

4.3. Equilibrium effects

Stock markets have a variety of significant empirical
intraday patterns in prices and order flows.>> We now
consider how dynamic rebalancing affects the equilibrium
properties of pricing and the trading behavior of other in-
vestors and, thus, the resulting intraday patterns in prices,
liquidity, and order flows in our model.

32 The ability to reduce trading costs on parent orders benchmarked to
TWAP and VWAP (value-weighted average price) is part of the business
model for agency order execution.

33 Intraday patterns are robust properties of volume and price volatility
in equity markets that were first documented in Wood et al. (1985) and
Jain and Joh (1988).
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The economics underlying these equilibrium effects fol-
lows from how dynamic rebalancing affects the mix of in-
formation and noise in the aggregate order flow. There are
two direct channels for this effect: First, the trading target
d can be written as a combination of noise and valuation
information

&=05[0_£17+w/17,026~1| (55)
v

where (given the joint multivariate normality) € is a stan-
dard Normal random variable that is independent of 7,
and where p controls the information content in d, and
o5 scales the volatility of d (but not its informativeness)
and, thus, scales the magnitude of the constraint on the
rebalancer’s trading. The second direct channel is that
the rebalancer speculates on private information about ¥
learned endogenously over time by filtering the aggregate
order flow better than market makers. There are also in-
direct channels due to equilibrium effects of information-
competition and rebalancing noise on how the hedge fund
trades on its private information about 7.

Price dynamics: Fig. 6 shows how dynamic rebalancing
affects the price impact of order-flow parameter A, over
the trading day. This relation is complicated because it is
the net effect of all of the direct and indirect channels
through which rebalancing affects the order-flow mix of
information and noise. It is further complicated because
the relation between A, and the aggressiveness B} of in-
formed trading in (29) is non-monotone. However, individ-
ual channels can be isolated in a few special cases. Con-
sider the p =0 case in Fig. 6A. At time n =1, there has
been no endogenous learning by the rebalancer, and, given
p =0, the target d is uninformative noise. From (29), the
direct effect of the rebalancing noise at n =1 is, therefore,
to lower the price impact A;. Hence, the fact that the equi-
librium A; with rebalancing (non-black dashed lines) actu-
ally increases relative to Kyle (solid black line) is entirely
due to the indirect effect of rebalancing on the informed-
investor trading at time n = 1. At later times n> 2, the
price impacts in Fig. 6A are lower than in Kyle. The re-

sult is a twist in the slope of A, over time. Fig. 6B shows
similar twists relative to the modified FV model (same
black line given the independence from 052 in the modi-
fied FV model) when p > 0. The twist in A, consistently
increases when there is more trading-target volatility G&Z*
as shown in both Figs. 6A and 6B. The price-impact twist
in our model differs from Degryse et al. (2014) in which
intraday price impacts have an inverted U-shape (see their
Fig. 1). This difference is due to the direct and indirect ef-
fects of endogenous learning given long-lived information
and, when p > 0, of the fact that rebalancing targets in our
model are then also informative.

Fig. 7 shows the variance 2,52) of the market pricing er-
rors ¥ — p, over time, which measures the quality of price
discovery. When p =0, more information is revealed at
early times compared to the Kyle model (due to more ag-
gressive informed trading by the hedge fund, see below),
but pricing accuracy is reduced later in the day. When
p >0 (so that d is ex ante informative), the trading target
constrains the aggressiveness of the rebalancer’s orders rel-
ative to the unconstrained purely informational orders of
the less-informed investor in the modified FV model. This
constraint, depending on the parameterization, can cause
the rebalancer’s orders to be larger or smaller than in the
modified FV model. For example, holding fixed the infor-
mativeness of the target at p = 0.45, a larger target vari-
ance 062 increases the size of the rebalancer’s orders in-
duced by a target realization with a given amount of asset-
value information, which leads to faster information ag-
gregation in Fig. 7. This is due to both the direct effect
of larger information-based rebalancer trades and also an
indirect information-competition race-to-trade effect that
increases the aggressiveness of the informed hedge funds’
orders (see Fig. 9 below). The Internet Appendix shows fur-
ther that these price-discovery dynamics lead to U-shaped
intraday patterns in price volatility that are increasing in
the rebalancing target variance aﬁz.

A novel feature of dynamic rebalancing is sunshine
trading, since predictable orders do not have price im-
pacts (see (10)). The key variable here is the market-maker
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expectation g, of the rebalancer’s remaining latent trading
demand d — 9571. Fig. 8 shows the market makers’ uncer-
tainty 2,51) = V[d@ — OF — gn] about the rebalancer’s remain-
ing latent trading demand. Although a priori E,f,l) need not
be monotone over time (see footnote 19), Fig. 8 shows that
uncertainty about the remaining latent trading demand is
monotonely decreasing for a wide range of values of 052
and p.

Informed investor: Fig. 9 shows the hedge fund’s strat-
egy coefficients B, which determine how aggressively
the hedge-fund manager trades on her private informa-
tion ¥ — p,_q over time. As in Kyle (1985), the intensity
of informed trading in our model increases as time ap-
proaches the terminal time N. This is consistent with the
fact that the incentive to delay trading on information be-
comes weaker later in the day as the remaining time left
for trading becomes shorter. We also see that the effect
of increased rebalancing target variance oﬁz on informed
trading is U-shaped. Increasing 052 increases B (i.e., causes

the informed investor to trade more aggressively) earlier
and later in the day but leaves B} relatively unchanged
in the middle of the day. In addition, if p >0, hedge-
fund trading aggressiveness increases somewhat due to the
information-competition effect. The apparent size of the
changes in /3{ — which are on the order of 10% — is vi-
sually understated in Fig. 9 because of the vertical scaling
(due to the size of 1))

A linear decomposition for the informed hedge fund’s
orders,
AOy=Ala+Bo+ ¢, Awj, (56)

j=1,..n-1

lets us break the hedge fund’s orders into a deterministic
component given the signal ¥ and an adaptive component
that depends on the rebalancer target d and the noise-
trader orders. This decomposition is considered further in
the Internet Appendix.

Aggregate order-flow and volume: Autocorrelation in the
aggregate order flow is one of the novel effects of dynamic
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Fig. 9. Intraday patterns for the hedge-fund strategy coefficient B! at times n=1,..., 10. The parameters are N=10, 62 =1, 62 =1, and 62 =0.2 (- —
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rebalancing. Fig. 10 shows the unconditional autocorrela-
tion of the (signed) aggregate order flow over the trading
day. Although the absolute level of autocorrelation is not
high, there is a clear U-shaped pattern of higher order-flow
autocorrelation at the beginning and end of the day (when,
from Fig. 3, the rebalancer trades more) and lower autocor-
relation during the middle of the day (when the rebalancer
trades less). Our parameter-space analysis shows that the
order-flow autocorrelation level and the magnitude of the
U-shape are both increasing in the target variance oﬁz.
Market trading volume over the day is also affected by
dynamic rebalancing. Our proxy for trading volume is

max (0, AG%) + max(0, AB))

+max(0, Awy) + max(0, —yn), (57)
which is buy-side volume except that it ignores crosses
among the noise traders. Fig. 11 confirms that the U-

shaped intraday patterns of rebalancer volume carry over
and induce U-shaped patterns in the intraday means and

standard deviations of market volume in the rebalancing
model and also relative to Kyle (1985) and the modified
FV model. As can be seen, these U-shaped volume patterns
are increasing in the parent-target variance aﬁz.

4.4. Asset-value variance and intraday patterns

A variety of intraday patterns in pricing and order flows
is documented in the previous sections. Proposition 1 can
be extended to show that these intraday patterns are ei-
ther insensitive to asset-value volatility or scale simply rel-
ative to oy.

Proposition 3. Given a market  parameterization
{02.02. pogop} as in (49) with an equilibrium, if the
parameterization changes to {02 h*0?.pozhoy}. then
in the new equilibrium the intraday patterns in market
characteristics change as follows:
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« The order-decomposition coefficients AR and cﬁn for the
rebalancer and Al and c}n for the informed investor on
d and Aw; are unaffected by h.

The order-decomposition coefficients BR and B, on ¥ be-
come BR/h and B, /h.

The expectation TE[AOR|d], sunshine-trading ratio,
SD[AGR|@], order correlation corr[AB), AOR], and
aggregate order-flow autocorrelation are all unaffected by

The informed-investor expected volume E[ A} |¥] becomes
% E[AO}|D].
« The price-change volatility SD[ Ap,] becomes h SD[ Apy].

The proposition follows from algebraic substitution of
the scaling factor h in the expressions for the various quan-
tities of interest. As in Proposition 1, the rebalancer’s trad-
ing strategy is relatively unaffected by the stock-value vari-
ance. One exception is the coefficient BR, but this is just a
pass-through from the informed-investor orders in the ag-
gregate order flow.

5. Robustness

The qualitative properties of our model are likely to
be robust to relaxing our modeling assumptions. First, our
model assumes a hard rebalancing constraint. Alternatively,
the rebalancing constraint could be soft with a quadratic
penalty for deviations from the target, or investors could
have a random private value for the asset that is de-
creasing in their terminal holdings. In either case, the re-
balancer should still engage in order-splitting to reduce
their trading costs. These alternative rebalancing motives
should result in some amount of price elasticity in the to-
tal amount traded by rebalancers. This should increase the
importance of the adaptive part of rebalancer orders that
responds to the prior order-flow history.

Second, informed investors and rebalancers only use
market orders in our model. In practice, however, order-
splitting algorithms also use limit orders (see O’Hara,
2015). While the mathematics of the dynamic program-
ming problems and the rational-expectations fixed point
would be complicated, we still expect rebalancing to re-
sult in order-flow autocorrelation and for predictable com-
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ponents of market and limit order flows to have no persis-
tent price impacts. Empirically, limit order flows are also
autocorrelated (see Biais et al., 1995).

Third, our market makers are competitive, risk-neutral,
and have no order processing costs. As a result, prices
are martingales in our model. We do not expect market-
making frictions and transitory price effects to eliminate
the informational aspects of rebalancing. It would be in-
teresting to investigate empirically how transitory mar-
ket frictions and persistent informational aspects of order-
splitting interact.

6. Conclusion

This paper has explored dynamic order-splitting for
portfolio rebalancing and its equilibrium interactions with
price discovery, order-flow dynamics, and market liquid-
ity. Our paper is the first to investigate these issues with
both long-lived information and dynamic rebalancing given
a terminal parent trading target. Dynamic rebalancing does
not just inject additional trading noise in the market;
rather it affects the structure of the market equilibrium.
Order flow becomes autocorrelated and liquidity and price-
discovery dynamics change because of sunshine trading.
In addition, dynamic rebalancing affects equilibrium prices
and also the process for arriving orders from the informed
investor. Our model has a variety of empirically testable
implications for intraday market patterns and their co-
movement with rebalancing target volatility.

Our model has many interesting possible extensions for
future theory. One possible extension is to model dynamic
rebalancing in continuous-time. Another extension is to re-
lax the assumption that all investors are risk-neutral. For
example, exponential utility is a natural specification to
consider. Finally, our model could be extended to include
multiple informed investors and rebalancers.

Appendix A. Proofs and algorithm

Al. Kalman filtering

Lemma 1. Consider the conjectured system (18)-(22) corre-
sponding to arbitrary coefficients {B}, BR, aR}N_,. Whenever
(29)-(30) hold, we have

ﬁan[f}“?]wns)”\n]s (A.])

o =E[d—OR | 91.....9n]. (A2)

where p is defined by (21) and § is defined by (22). Further-
more, the recursions for the variances and covariance (31)-
(33) hold.

Proof. For n=1,..., N, we have the moment definitions in
(23)-(25) where the starting values are given in (26). We
then define the process ZM as

2nM ::yn - (055 + ﬁrlf)qn—l
=BLW = Pu1) + BR@E—OF | — G 1)+ AWy (A3)

These Gaussian variables 23, 2), ... 2 are mutually inde-
pendent and satisfy o (ZM,...,ZM) = o (1, ...7n). The pro-

jection theorem for Gaussian random variables gives
A ~ AM AM ~ AM AM
Apn=E[V|2),....2 1 -E[V |2}, ..., 20 4]

_E[0Z] .y

“vEn T (A4)
Adn=Ela—0F |2, .. 2] —Ela—6F ,|2),... 2]
=E[a-0f, |21, . .2 -Ela-0f |2, ... 2]
—E[AGR |21, . M)
_ BI@-0F DAy
oo
- E['Brf(d - é)f—l —Gn-1)
+ (R + B an |2 20
— E[(@— ér?q —Gn-1)Z] M
- v(z)] m
— BREIG - O 1 — o1 |2] - (of + B+
=(1-pR El@- érz,[}g;]ém )z M
— (o5 + BDn1- (A5)

To proceed, we first compute
vz = B[ (8L~ o)
+ ,Bﬁ(d - é;f.] —Gn1) + AWn)2:|

= (BH22Z, + (B2 +2BLBRE ) +02A,

(A.6)
E[12)] = Bl ~ n-1)2)]
= 5[ (BT Pr0)
+BN@= 08y~ don) + Bwn) |
= B + BEZ ) (A7)

E[(@-0F | —dn1)2)]
=E[@- 08~ (BL0~ u)
+BRa - 9‘111271 —Gn-1) + AWn>:|
=B + R (A.8)

Combining these expressions and by matching coefficients
with (21) and (22), we find the lemma’s statement equiv-
alent to the restrictions (29)-(30). Based on these expres-
sions, the recursion for 2,51), n=1,..., N, in (31) is

= v[a-6F - gi
=V[@— 08 | — Go_1 — AOF — AGy]
=V[@— 08 | — oy — AOF — 1,
+ (14 r) (@l + BN Gn-1]
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_ v[a —0F = (1= (1 + 1) (@R + BF)an s
— (141 (BR@= 08 ) + afidn 1)
= (B~ Bu-1)) = TS |

=v[(1- a+rph@-aLy
~ (1= (1 + 1) BR)Gn-1
= 1By B1) — Tl |

— v[(1 ~ A+ m)BR) @ - 08 —Gnr)
= 1By B1) — Tadw |

=(1-(1+ rn)ﬁ;'f)zxél,)l + (B,
+r2opA =2(1- (1+m) BBz,

= (1 - ﬂﬁ)((l - :35 - rnﬁﬁ)xrgg - rHIBIII E;Si)l)’
(A.9)

where the last equality uses (30). The recursions for
2,52) and E,(f), n=1,..., N, in (32) and (33) are found
similarly. O

A2. Informed investor’s optimization problem

We start with the following lemma which contains
most of the calculations we will need later. Recall the
hedge fund’s state processes {X,§1>,X,§2)} are defined by
(35).

Lemma 2. Fix the constants (15) subject to the pricing-
coefficient restrictions (29)-(30) holding and use them to de-
fine AGR by (5) and to define the moments (31)-(33) with
initial values (26). Let A8} e o (D, y1,...,yn_1), n=1,...,N,
be arbitrary for the hedge fund. We can then define the Gaus-
sian random variables
3)
st (U= Pr),

2 o= Jn— Ay — (@f + B0 — RS
n=1,....N (A.10)

where the conjectured “hat” processes are defined in (18)-
(22). The variable 2{( is independent of {U,J1,.....V_1} for
k<N, and the following measurability properties are satis-

fied:

OF —0R c o (0, y1,....y0) =0 (.91, ...
nel,...,N. (A11)

Furthermore, the state variables X,gl) and x,§2> defined in
(35) forn=1,..., N have Markovian dynamics

AXOD = —kn<A9}, + 5§x,§3>1) o, XV =1, (A12)

>3 R
AXP = —1a Ay — (14 717) BRX?) — 272) Iz
n
X _ £, (A13)

v

,yn) :a(f/!fl,“"“

Finally, for any constants 1,9*”, 1,21’2), and 1,22’”, we have the
conditional expectation

B[ @ - p) A6L+ [ (%{")° + (12 XVX
+IED (X)) )f/,yu . sYn—l]
= X0 AGL — (ABD) Ay — AOLIBEX?)
HED ()7 - 20x(0 (205 + B1X2))
+ A2 (Ae,g - ﬁ,’;’xﬁq)z + Aﬁwz@])
+1 (X,El)lxﬁ)l -X0 (rnAH,i +(1+ rn)ﬁ,’fxﬁ)l)
— X (A0 + BEXE )

+ (8604 BIXE ) (6L + (1+ 1) BIXE )

+ AR V()

n 21(12)

2
12 ((x,gzq) _2X®, (rnAe,g +(1+1) ,3;3x,§3>1)

2 2
+(madl+ (12 ) +23(Z) i),
(A14)

which is quadratic in A6}, and where the variance V[Z!,] can
be computed to be

(=)’
wzi,]:(ﬁﬁﬁ(z;lz— )+a§vA. (A15)

@
2"*]

Proof. The joint normality claim follows by an induction
argument. To see the independence claim for 2}, in (A.10),
notice that Z, is the order-flow innovation process for the
informed investor

yn —E[fnlﬁﬁum,ﬁnq]
=B (a- 081 o

—E[d— R =G | 0,31, ---,J7n—1i|> + Awy,
=2,

= A(a— 08~ - B Pun))
+ arlfqn—l - a;EQn—l + Awy
~ A~ ~ 2(3) - “
=Jn — A0y — (g + B)dn1 — B ):’(1331 (U - pn—l)
=3 (A.16)
Let k <n—1 be arbitrary, and then iterated expectations
produce the zero-correlation property:
E[yizy] = E[E[Ji2) | 0,91, ., D]
= E[JE[Z, | D, 91, ... 9] = 0. (A7)
Independence follows then from the joint normality.
Next, we observe that the last equality in (A.11) fol-

lows directly from (A.10). We proceed by induction and ob-
serve

o (@,y1) = o @ Bra+ Awy) = o (@, 1), (A18)
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OR — R = 0, (A19)

which follows from é{ ,0! € o (D). Suppose that (A.11) holds
for n. Then,
ér?ﬂ - erfﬂ = (] - IBrIzerl)(érina - 015)
+of (@ —qn) o @y1.....yn).

o@J1..... 1) =0 @Y1, ... Y0 Ing1)
=0 (@Y1, Yn. Yns1 + AOL, — AO)
+ AénR+l - AGY,
=o(@y1, .-, Yn1), (A.20)

which proves (A.11). The dynamics (A.12) can be seen as
follows

AXV = —Apy
= (A0 + BE@ - 61 + g + Aw)
+ An(og + Bi)n-1
— A (A@,ﬁ + BR@E—OR ) + afgut + P
— Al - Aé,f) + AR + B
= k(A0 + BON, ~61)

A A =& A~
+ Z£| + :35 (qn—1 - QH—1) + ﬂrlf E’Z;)I (V - pn—l))

- —An<A9,’, +BX®, +2;). (A21)

The dynamics (A.13) follow similarly using expressions
(29)-(30) and (32)-(33).

The expression for the variance (A.15) is found as fol-
lows:

Vi) = V[ B (a- 081~ -
- E[d - é,f_l —Gn_1 |0, 31, ~~~’J7n—1i|) + AWn]

~ A ~ 2(3) - ~
= V[ﬂ,’f(a — b1 = nr — 5 (0 - pm))] +ogA

2
_ (ﬂR)Z(E(U _ ():’('3’)1) ) +0~2A (A 22)
= n n-1 21327)1 we- .

To compute the conditional expectation (A.14), we
compute the four individual terms. The first term in
(A.14) equals

E[(7 — pn) AL |, y1, ..., Yn_1]
= (U= pn1) MOy — AOE[Apy |, ¥4, ..
=X A0}

— AOJME[AD] + BR@—OF { — qu_1) | T y1, ..
= XD AOL — (MO hn

— AOL IR (é;f,l —6R 4+ Gnt — G

wyn—l]

"yﬂfl]

+EG— O | — Gy |v,y1,...,yn41)

=X\, A% — (A0 A — MG (B4~ O, + s

3)
—qn-1+ Z%Z_)j(i} - ﬁn—] ))
n
= XD AOL — (MO A — AOLILBEXZ). (A23)
The second term in (A.14) is
2,
E[(X") 1991, Yna]
2 .
= (X)) + 2XEAXY |5, y1, - Y]
2,
+E[(AXV) 19,91, .., Yna]

2
— ()" 2000 (6] + B

2
+ 2 (A@,’l + ﬂ,’,‘xﬂ) + A2V, (A24)
The third term in (A.14) is
EXOXD 0,91, Y]

—xMD x@ &) @)
- Xn—1xn—l JrXn—lE[AXn

P, Y1, Yn-1]
+XPEAX [V 31, Yna]
+E[AXVAX [0,y Ynot]

= XX = X0 (raA6) + (14T BX )

- X2 (20 + BIX)
+ An (AG,ﬁ + ,8,’}Xn(ﬂ> (rnAG,ﬁ +(1+ rﬂﬁffxﬁﬁ)

+A2Z (2],

n 2'(12)

(A.25)

Finally, the last term in (A.14) is

EL(%2)° 10,51, Y]

= (X)) + X ELAXP [D.1, . Y]
+E[(AXP) |51 Yoa]

2
= (X2)" - 2X2 (A6} + (1 + 1) IX2) )
2

2 G R
+ (a8 + XD ) 22 (2 ) ViZL
(A26)
O

Remark. The dynamics (A.12) and (A.13) show that the pair
(X, X)) form a Markov process. This implies that for
any continuous function f:R2 — R with f(XrE”,X,EZ)) in-
tegrable, the conditional expectation

E[f XD, X0, 2, 2] (A.27)

is again a function g of (Xr@l,Xn(i)l). Furthermore,
(A.14) shows i) if f is a second-degree polynomial, the re-
sulting function g is also a second-degree polynomial, and
ii) the conditional expectation of p, is also a quadratic
function of (X,ﬂ)],Xﬁ)]). In other words, the pair (X(1), X(2))
is the state process for the informed investor’s optimiza-
tion problem.

Theorem 2. Fix the constants (15) subject to the pricing-
coefficient restrictions (29)-(30) holding and use them to
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define AOR by (5), define the moments (31)-(33) with
initial values (26), and compute the value-function coeffi-
cients {1,§fvf>}1§,-§j§2, n=0,..., N using recursions (A.42)-
(A.44) with I[(\,i'J) =0, subject to the second-order condition
(39) holding. Then the hedge fund’s value function has the
quadratic form (37) where X,ﬁ” and x,§2> are defined in
(35) and Apy is defined by (10). Furthermore, the hedge
fund’s optimal trading strategy is given by (38) with coeffi-
cients

M ._ 14+ 218D 0

= A.28
Yn 20221242 (1D 11D 00)) ( )

202D rn (B2 dn = BRI (1 41)
2022+ 2 (142 1D An))

(2) ,3
n

Proof. We prove the theorem by backward induction. Sup-
pose that (37) holds for time n + 1. The hedge fund’s value
function in the n’th iteration then becomes

N
max IE|:Z(17— pk)AQ,i ‘ v, y1, -..,yn—l]

(A.29)

s
A€o Wy, Y1) k=n
n<k<N

= max
AG:’IEO @.Y1,Yn-1)

E|:(17 — p)AGL + 19

0,y1,...,yn1].

Because (39) holds, Lemma 2 shows that the coefficient
in front of (A6))? appearing in (A.30) is strictly negative.
Consequently, the first-order condition is sufficient for op-
timality and the maximizer is (38). By inserting the opti-
mizer (38) into (A.30), we obtain the quadratic expression
(37) for time n,

1'5(1)1 + Z JADx ® X(J)

n-1"n-1"n-1"
1<i<j<2

+ Z I]gi~j)xlq(i)xr](j)

1<i<j<2

(A.30)

(A31)

where the value-function coefficient recursions for Iﬁi’_jl) are
n (A42)-(A44). O

A3. Rebalancer’s optimization problem

The following analogue of Lemma 2 uses the rebal-
ancer’s state variables {Yn“), Yn(z), Yn(3)} defined in (42).

Lemma 3. Fix constants (15) satisfying (16)-(17) and subject
to the pricing-coefficient restrictions (29)-(30) holding and
use them to define AB} by (6) and define the moments (31)-
(33) with initial values (26). Let AOR e o (G, y1,...,Yn_1),
n=1,...,N, be arbitrary for the rebalancer. We can then de-
fine the Gaussian random variables

25 =9n— AHR IBn

(a— A,., 1—Gn1), n=1,...,N
(A.32)

where the conjectured “hat” processes are defined in (18)-
(22). The variable 2 R is independent of {d,7¥1,.....¥y_1} for
k <N and the followmg measurability properties are satisfied

2(1)

n—-1

J =0 @2, ...2).
(A33)

a(d,y1,...,yk) =O'(&,y1,...

Furthermore, the state variables Yn(l), Yn(z), and Yn(3) defined

in (42) n=1,..., N have Markovian dynamics
3) .
AV = <3 (865+ BY 2 - @+ POV ) - ik,
y? = 2P (A.34)

a

AY® =1, (AQR + ﬂnY(z)) — (1 + 1) @R+ BHY ) 2k,
y¥ =o. (A.35)

For constants L,(,l'1>,L,(11'2),L,(,1‘3),Lﬁ,2’2),Lﬁ,2’3>, and L,(l3’3) we
have the conditional expectation

E[-@-68 DApa+ Y LYY [dy. ... yaal

1<i<j<3

_—e (A (AGF 1 BIYD) — Ak + BR) y<3>)
FL(0 - a657?)
+LP () = AR (V2 -
- @+ DY)
+ LI = AR (YD) + (AR + BLYZ)
= (T+ ) (@f + BDY, )
+ L2 ((Yn@{)z —2v®y, (AQR +BlY®,

An(A6R + BLY2)

)
+A2 (A@,’f +BIY® — (af + B (3>)

+12(Z m) vIZ)

+L2Y (yn@] Y3 +v2) (rn(AG,’f +BY®)

- e+ Y )
-v3 An<A9R +BIY 3 — (af + BF )Y(3>)
-2 SV -

x (rn(AG,f + ,B,ﬁYH(E)]) (1 + 1) (aR + BR )Y(3)>>

+L3Y ((Y,ﬁ{ )2 +2v®) (rn(AeR +BY®)

hn( 861+ BV, - (@ + AV

~ Al + A%
(rn(AGR +BLYE)) = (1 + 1) (R + BR )YG))
+ rﬁV[iﬁ]), (A.36)

which is quadratic in AOR, and where the variance V[ZR] is
given by

(A.37)

(2»‘1”1)2) +0aA.

(1)
En—1

VI = () (2,52_2 -
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Proof. The proof is similar to the proof of Lemma 2 and is therefore omitted. The one difference is that restrictions (16)-
(17) are used to change the sigma algebra o (d,y1,...,¥n_1) into o (G — 9,’}71 —Gn-1.Y1-..,Yn_1) in the derivation of the
expectation in (A.36). O

Theorem 3. Fix the constants (15) satisfying (16)-(17) and subject to the pricing-coefficient restrictions (29)-(30) holding and
use them to define A6 by (6), define the moments (31)-(33) with initial values (26), and compute the value-function coefficients

{Lf,i’j)}lgisj53, n=0,...,N using recursions (A.45)-(A.50) with L,(j’j) = 0 subject to the second-order-condition (46) holding. Then

the rebalancer’s value function has the quadratic form (44) where {Yn“) , Yn(z), Y,.,(3)} are defined by (42) and Apy is defined by
(10). Furthermore, the rebalancer’s optimal trading strategy is given by (45) with coefficients

2D L0V 022,

8\ = : (A.38)
C 2L L e (LD L L ) )
5@ i _pgt 0 = + 1B L2 B + 20D By 4 1 h) (A.39)
n = s .
"2 L + 18912 10 (L0 — 131, + 12 P0)
( — 231, — 18P (<1 4 of + ek + B4 1, BR) + LA,
+ef+ B (2L (1 + 1) + A (LD — LD — 20231 4 2L,<3~2>,\n)))
53 1 (A.40)

2(LMY — L1+ LEVR2 4 an (L — LV + LD An))

Proof. The proof is similar to the proof of Theorem 2 and is therefore omitted. O

A4. Remaining proof

Proof of Theorem 1. Part (iii) of Definition 1 holds from Lemma 1. Parts (i)-(ii) of Definition 1 hold from Theorem 2 and
Theorem 3 as soon as we show that the optimizers (38) and (45) agree with (18) and (19). This, however, follows from the
equilibrium conditions (40) and (47). O

A5. Value-function coefficients

Set the terminal coefficients
1.1y . 722 ._ . 133 .
Iy == =0y ==L =0, (A41)

The recursion for the hedge fund’s value-function coefficients is given by

(=1 @i — () + 4R VR )

o= (A42)
T AUPPR A M (P + 1)
((—1 I 8D (<1 4 BR) + BRI,
+20% D1 (=1 + BR 4 1R — 21V (-1 + ﬂ,’f)kn))
12— Xy I —y , (A.43)
202212 4+ dn (1 + 121, + 18D 20))
xn( — (82 (=14 BR) + B A
—AIPP (14 BRY (=1 + 1 VA + BRA 41 — 1,51%)))
Ir(lz_,]z) _ (A.44)

A2+ A (14 1+ 1D )

The recursion for the rebalancer’s value-function coefficients is given by
((L,<3~3>)2r,§ 24 LD + (14 102)222

FALSD (L2 4 g+ LV — L,g”))\g))

Lan _ , (A45)
A L8V L8V 4 A (WP — L1+ L))




46

12 _ _

n-1

(1.3) _
Ln—l -
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(L 2rn = An) W21 + L 1Bl = 2L )

FL )2 A0 (=1 + Bidn) + L2 (rn (LS = 202 10) + A
+1a (LD = 2L By Ay + BLIAZ) + 2LV (—ry (LE + 203D 7, BL)

HQUPD 4 B+ 2L VB — 2L BAD))

2L 18V + L3V 4 an (L — LV + LD 0))

)

[(L;“”Vrn((l +r) @R+ BR) = 1)+ (1 + L)y (2L,23‘3>rn<1 —ak - R
L@+ 0P+ L) (f + ﬁ#)xn)

+2LD (2L (1 = (14 1) (@f + BF))
—LP hn + (@f + BRI (1 + LD + 2L 1 — 2L An))

+Lfﬂ’3)xn(a:$ — 14+ BE L2 ra(erf + R = 1) — (af + B (ra + 2L )

—L{" (=1 4+ oR + 2rpaf + BR 4 21, BR) + 2L,(12’2))»n>]

22) _
Ln—1 -

123

208D — L8y + LEV12 4+ A (LD — LD + LD )

[(L;”))Z (=1 + Biaa)? — 2120, (12D — LOD Bl

ALY + 2L+ L0 B) 4 (L) - 4LPPLE)r,
LB + LI ALED 120l - 4122 B )
—4L0D (LE (14 Bidn)? + T BLLEY + L3 D1 Bl — LZD) ﬁgxn))]

ALY L5V + 121 1 (10D 12 4 12D 0,))

5

(L2 @2 + L2 B

2L (W + 2L 1 BD) (1 + 1) (R + R — 1)

(@222 (@ + B = 1) + 2L VL2V B (oof + 2maf + B + 2rBf — 1)
AL (L (=1 + af + BR) + L (f + BR))

LD Bl ok + BR = 1) = 2L P (1 = (1= o) (@ff + B))) An
—2L3P B ALY (—1 + ok + BR) + 2LV (af + BR))A2

FLI22 (@R + BRI (—1 + Bidn) + LH (LD Ay

2L (=1 + af + 1R + BR + R + Bh (=1 + af + BRI
FLEI A (=1 4+ 1) (@f + BRY + BL(=1 + B+ BRYAn)

L (<1 + of + o + BR 4 rnBR 4 Bl — (1 +2m) Bl (R + ﬂ,’f)m)]

n-1

2(LY = L + L3V 4 A (L2 = L1 + L An))

(L2 + ) (@ + BR) — 1)2 + 2L 2 (1 + 1) (e + BR) — 1) x
(LD @k + BE = 1) = L) (af + BD))
2L (af + BF — 1) (@R + BF)An)
—4L{MD (L,S3'3>(71 +aR + raf + BR 4 1, BRY? + (R + BR) A, x
(- L2 (-1 +af + raf + BR+ 1R + LP? (@f + ﬂﬁ)kn))
+An (((L,(fj))z —ALPPLED) (-1 + af + B2 + L) (@f + B2 A
2L (@R 4 BR - 1) L3P (1 + 1) (@R + BR) - 1)
—L®Y (af + ﬁ,’f)xn))]

ALY = L A L 4 dn (L = L2 + LD )

(A.46)

(A47)

(A.48)

(A.49)

(A.50)
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A6. Algorithm

This section describes an algorithm for searching nu-
merically for a linear Bayesian Nash equilibrium. The al-
gorithm is similar in logic to the algorithm in Section 5 in
Foster and Viswanathan (1996), except that our algorithm
requires three constants as inputs (due to the presence
of two strategic agents) whereas (Foster and Viswanathan,
1996) only has one constant as an input.

The algorithm starts by taking as inputs three conjec-
tured conditional moments for the final time N round of
trading:?4

>0, 2P, >0 I, eR such that

3) )2 1) w2
(EN—I) = XN XNy
The algorithm then proceeds through backward induction.

Starting step for trading time N: We need {Ay, ﬂl’v} to sat-
isfy (29) for n = N where

1 O
I _ _ N-1
A=~ 5e0 e (A.52)

(A.51)

from the hedge fund’s equilibrium strategy coefficient in
(40) with Ay >0 in order to satisfy (39). Given those two

constants {iy, 8L}, we set
BR:=1, af:=ry:=0. (A.53)

Because of the rebalancer’s terminal constraint, his last
round of trading (i.e., at time N) does not involve any op-
timization, and so we have

]E[_(ﬁ_ eﬁfl)ApN | dv.V]s .. '#.ny‘l]
=% (M(YIS])] + B - )‘NYI\?A)'

This relation implies the rebalancer’s value-function coeffi-
cients for n =N -1 are

1,1 1,2 1.3
L&Y = —n, LY = =anBl, LY = A,

22) _7@3) _ 1633 _
e T

(A.54)

(A.55)

On the other hand, the hedge fund’s problem in the last
round of trading is similar to her problem in any other
round of trading. By inserting the boundary conditions

(1,1) _ j(1,2) _ 5(22) _
Iy =17 =17 =0 (A.56)
into the recursions (A.42)-(A.44), we produce the value-
function coefficients I,(\,'jl) .

Induction step: At each time n the algorithm takes the

following terms as inputs:

TV EP 2 A Lo AL iz s, (A.57)

We first find the constants {An,rp, TV, T2, 23

n-1°
BL. BR} by requiring that (29)-(30), (31)~(33) with £V, >
2
0.2, >0 and (2¥) <z z®

n’» Mmonotonicity of

3 We do not take the post-trade time-N moments (X, 5?, &)
as inputs because they are after the last round of trading. In addition,
(31) and (33) together with the terminal condition Bf =1 imply that
=P =zd =0

2152_)1, (40), the first part of (47), as well as the second-
order conditions (39)-(46) hold. These are seven polyno-
mial equations in seven unknown constants. We can then
subsequently define of by the second part of (47).

Next, the value-function coefficients {I,giij;)}lsisjsz and

{L,(l”_ff}@gﬁ at time n—1 are found by the recursions
(A.42)-(A.44) and (A.45)-(A.50).

Termination: The iteration above is continued back to
time n = 0. If the resulting values at time n = 0 do not sat-
isfy (26), then we adjust the conjectured starting input val-
ues in (A.51) and start the algorithm all over. If the result-
ing values at time n = 0 do satisfy (26), then the algorithm
terminates. If the rebalancer coefficients satisfy (16), then
the computed constants produce a linear Bayesian Nash
equilibrium. Otherwise, no equilibrium was found.

Appendix B. Modified Foster and Viswanathan (1994)

Our modification of the Foster and Viswanathan
(1994) model has N periods of trade after which the
traded security pays off 7 ~ N(O, off) at time N+ 1. Four
types of investors trade: First, a strategic risk-neutral in-
vestor who knows ¥ at time 0 and who trades dynami-
cally over time using orders AB). Second, a strategic risk-
neutral less-informed investor who receives an initial sig-
nal d ~ N(0O, ‘752) with d@ and ¥ being jointly normally dis-
tributed random variables with corr(d, ) = p € (0,1) and
who trades dynamically using orders A8L. The “L” super-
script here denotes that this second investor is “less” in-
formed than the first (better-informed) investor with su-
perscript “I”. Third, noise traders submit random orders
Awp ~ N(0, 02A) which are independent of (7, @). Fourth,
competitive risk-neutral market makers see the aggregate
order flow at each time

Y= A+ AOE + Awy,  yo =0, (B.1)

and set prices p, at which they then clear the market.

In our modified FV model, the better-informed investor
does not know d, whereas in the original (Foster and
Viswanathan, 1994) the better-informed investor knows
both 7 and d. Thus, except for the rebalancing constraint,
the modified FV model has the identical information struc-
ture as in our model of strategic rebalancing.

A Bayesian Nash equilibrium for the modified FV model
consists of: (i) Order strategies that, at each time n, maxi-
mize the expected profits of the better-informed and less-
informed investors given their their respective informa-
tion sets o (7, y1,..., Yn_1) and o (@, yq,..., Yn_1), and (ii)
A pricing rule that sets prices to be conditional expecta-
tions

pn=E[V|y1,....yn], n=1,...,N. (B.2)

Our goal is to find a linear equilibrium in which the

price dynamics are given by
Apn = AnYn, Do :=0. (B.3)

The two informed investors’ optimal orders take the
form:

AG) = BL(W—pa-1). 6h:=0, (B.4)
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ABE = BL(sp 1 —pn1), 6k:=0. (B.5)

In (B.5) the process s, denotes the less-informed investor’s
expectation of the stock payoff ¥ after trade at time n; that
is,

Si=E[0]a@y1,.... ), So:=pLa. (B.6)
The dynamics of s, are given by
Asy = ¢n(yn —Elyald.y1.. ..,ynq])

= (o= B+ B o1 = Pu)

= gu(Bwa + BLT - 51-1) ). (8.7)

In particular, the less-informed investor learns about # by
updating on the observed order flow. Because the better-
informed investor knows ¥ initially, she does not update
her expectations about ¥ over time. The Internet Appendix
presents sufficient conditions for a linear Bayesian Nash
equilibrium to exist in the modified FV model.

Finally, we remark that, unlike in our dynamic rebal-
ancing model, there are no predictable components of
the order-flow process (i.e., given the aggregate order-flow
history) in the modified FV model. Consequently, no gy
process is present and the aggregate order-flow process be-
comes a martingale with respect to the flow of public in-
formation.

Appendix C. Expected rebalancer orders

Proof of Proposition 2. Let A8} be defined by (6) through-
out this proof, and let {A;, r;} be the linear equilibrium co-
efficients for n =1, ..., N. The rebalancer’s value function,
when he is restricted to using only deterministic controls,
is given by

VRa .- max
AOReo (@), m+-1<n<N-1

N
—E| Y @-6f HApaa|.
n=m-+1
m=20,...,N. (C1)
This definition is the restriction of (44) to deterministic
controls. It is straightforward to show that the value func-
tion in (C.1) is quadratic, and that the optimal determin-
istic control — denoted here as x;, — is linear in d and is
unique.
We define the sets of random variables A, by
An:={Zeo(@y1,...,yn_1) : Z is independent of d},
n=12,....N.
(C2)

Given an arbitrary strategy AOR = g,d + Z, with g, € R and
Zn € An, we define

Py :=Elpaldl, p:=pa—p OF:=E[6F]d],

ORZ .= gR _ gRa, (C3)

We also define q% :=E[qn|d] and ¢% :=qn —q9. We then

have the following recursive relations:

Apj = An(ﬁ,’,(%‘?d - P5y) +gnd> — Mn(ef + BHGE_S.
(C4)

AP = An<ﬂ,’,(D— L2G—pl )+ Awy +Zn)
— Aoy + G5+, (C5)

Agy =Ty (ﬁ,’l("(,‘?d - Ph) +gnﬁ)

— (M +rm)(af + Bl (C6)

AGE =1, (ﬂ,ﬁ(f)— 854 — pf )+ Awy +Zn>
— (U +rm)(af + B - (€7)

Expressions (C.4)-(C.7) imply that p%,q% € o (d), and that
p% and g% are independent of d. This observation produces
the following decomposition:

N
max —E i—606R YA ~ :
> (@—05)Apa|d (C8)
AOf=g,d+Z,, 1<n<N-1 n=1
N
= max — d—ORIYA L
greR, 1<n<N-1 Z( n—l) pn
n=1
N
+ max E ORZ A ) cs
Zn€An, 1<n<N—1 ; n-1 Pﬁ (C.8)

We know that the rebalancer’s equilibrium optimal
strategy is given by Aé,f in (19), which is linear in
d,¥1,...,¥n_1 and, therefore, can be written as Aéﬁ:
8ad + 2, with &, € R and Z, e A,. Inserting the equilibrium

optimal strategy into (C.8) we see that (§n),—1, n is the
solution to
N
~ R.a a
- — 09 )ApL. C9
g g(a O AP, (C9)

Since (C.1) is equivalent to the optimization problem in
(C.9), we conclude that x% = g,d=E[AOR|d], where, in
equilibrium, AGR = AGR. O
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