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include autocorrelated order flow, sunshine trading, endogenous learning, and short-term 
speculation. The model has testable implications for intraday patterns in volume, liquidity, 
price volatility, order-flow autocorrelation, differences between informed-investor and re- 
balancer trading strategies, and for how these patterns comove with trading-target volatil- 
ity and other market conditions. 
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1. Introduction 
Trading via dynamic order-splitting algorithms is a per- 

vasive fact in today’s financial markets. 1 Informed investors 
use dynamic order-splitting to increase trading profits by 
slowing the public revelation of their private information. 
Order-splitting is not, however, limited to informed in- 
vestors. Less informed investors — index mutual funds 
and comparatively more passive pensions and insurance 
companies — rely on order-splitting to minimize trading 
costs for hedging and portfolio rebalancing. As described 
in O’Hara (2015) , portfolio managers transmit parent orders 
— specifying the total amount of a security to be bought 

1 Pension & Investments (2007) reported that in a survey of leading 
institutional investors, 72% said they used order-execution algorithms. 
Anecdotal evidence suggests that the use of order-execution algorithms 
has grown further in subsequent years. Order-execution algorithms are 
different from computer-based market making, latency arbitrage, and 
other high-frequency trading strategies. 

https://doi.org/10.1016/j.jfineco.2018.11.003 
0304-405X/© 2018 Elsevier B.V. All rights reserved. 
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or sold over a fixed trading horizon — to brokers who use 
computer algorithms to break parent orders into sequences 
of smaller child orders . 2 While dynamic informed trading 
has been studied extensively (see, e.g., Kyle, 1985 ), order- 
splitting for portfolio rebalancing is less understood. 

Our paper is the first to model a market equilibrium 
with dynamic trading given both long-lived private infor- 
mation and portfolio rebalancing. We consider a multi- 
period ( Kyle, 1985 ) market in which there are two strategic 
investors with different trading motives who each follow 
optimal dynamic trading strategies. One investor is a stan- 
dard Kyle strategic informed investor with long-lived pri- 
vate information. The other investor is a strategic portfolio 
rebalancer who trades over multiple rounds to minimize 
the cost of hitting a private parent terminal trading target. 

Our model lets us investigate the economic motivations 
for dynamic order-splitting for portfolio rebalancing and its 
equilibrium effects. Our analysis leads to three main in- 
sights: 
• Dynamic rebalancing and dynamic informed trading are 

structurally different from each other. Child orders for 
dynamic rebalancing, like informed trading, are timed 
to reduce the price-impact cost of trading, but rebal- 
ancing orders also have components driven by sunshine 
trading, endogenous learning, and constrained short- 
term speculative trading. 

• Dynamic rebalancing affects the mix of information and 
trading noise in the arriving order flow and, thereby, 
affects equilibrium price discovery and liquidity pro- 
vision. 3 There are direct effects given the mixture of 
noise and information in the rebalancer’s parent trad- 
ing target and also because the rebalancer learns en- 
dogenously through the trading process itself. In partic- 
ular, the rebalancer can filter the aggregate order flow 
better than market makers by incorporating his knowl- 
edge about his own past order submissions. In addi- 
tion, there are indirect effects due to the equilibrium 
response of the informed investor to the rebalancer’s 
trading, i.e., how aggressively she trades on her pri- 
vate information given informational competition with 
the rebalancer and how she exploits additional noise 
in prices due to price pressure from the rebalancer’s 
orders. 

• Trading constraints induce autocorrelation in the ag- 
gregate order flow. In particular, dynamic rebalancing 
based on a parent target leads to autocorrelated 
child order flow that is different from unpredictable 
informed-investor orders and serially independent 

2 Keim and Madhavan (1995) is the first empirical study of dy- 
namic order-splitting by institutional investors. Recently, van Kervel and 
Menkveld (2018) estimate an average of 156 child trades per parent order 
for four large institutions trading on Nasdaq OMX. Korajczyk and Mur- 
phy (2018) estimate an average of between 327 and 604 child orders per 
large parent order depending on whether the parent order is nonstressful 
(lower three quartiles of large trades) or stressful (top quartile) for Cana- 
dian equities. See ( Johnson, 2010 ) for more on specific dynamic trading 
algorithms. The ( Securities and Exchange Commission, 2010 ) report also 
discusses the role of trading algorithms in the current market landscape. 

3 Uninformed trading noise plays a critical role in markets with adverse 
selection. See Akerlof, (1970); Grossman and Stiglitz, (1980); Kyle, (1985) ; 
and Glosten and Milgrom (1985) . 

noise-trader orders. Autocorrelated rebalancing orders 
lead to a type of sunshine trading with market mak- 
ers trying to forecast the remaining future latent trad- 
ing demand of the rebalancer since predictable orders 
have no price impact. 
In addition, an extensive battery of numerical experi- 

ments identifies a number of testable implications of dy- 
namic rebalancing: 
• Dynamic rebalancing induces U -shaped intraday pat- 

terns in expected trading volume, price volatility, and 
order-flow autocorrelation and twists the price impact 
of order flow over the day, where the magnitude of 
these intraday patterns is increasing in the volatility of 
the rebalancing target. Thus, daily time-variation in the 
volatility of rebalancing targets should induce comove- 
ment in a cross-section of multiple intraday price and 
volume patterns. 

• Rebalancer and informed-investor orders tend to be- 
come negatively correlated over time as the informed 
investor trades against price pressure from past rebal- 
ancer orders. 
Our analysis integrates two literatures on pricing and 

trading. The first literature is about price discovery. Kyle 
(1985) describes equilibrium pricing and dynamic trading 
in a market with a single investor with long-lived pri- 
vate information. Subsequent work by Holden and Sub- 
rahmanyam (1992) ; Foster and Viswanathan (1994, 1996) ; 
and Back et al. (20 0 0) allows for multiple informed in- 
vestors with long-lived information. Our model extends 
Foster and Viswanathan, (1996) — who were the first to 
model a dynamic equilibrium with multiple investors with 
heterogeneous information and to solve the “forecasting 
the forecasts of others” problem — to allow for trading- 
target constraints. Given our interest in information aggre- 
gation and intraday order-flow dynamics, the Kyle set-up 
lets us abstract from the arms race for speed ( Hoffmann, 
2014; Biais et al., 2015 ), intermediation chains linking mul- 
tiple market makers ( Weller, 2013 ), limit order cance- 
lation and flickering quotes ( Hasbrouck and Saar, 2009; 
Baruch and Glosten, 2013 ), market fragmentation and la- 
tency ( Kumar and Seppi, 1994; Menkveld et al., 2017 ), and 
other millisecond-level high-frequency trading (HFT) phe- 
nomena. 

A second literature studies optimal dynamic order exe- 
cution for uninformed investors with trading targets. This 
includes ( Bertsimas and Lo, 1998; Almgren and Chriss, 
1999; 20 0 0; Gatheral and Schied, 2011; Engle et al., 2012; 
Predoiu et al., 2011; Boulatov et al. 2016 ) as well as mod- 
els of predatory trading in Brunnermeier and Pedersen 
(2005) and Carlin et al. (2007) . This research takes the 
price impact function for orders as an exogenous model 
input. In contrast, we model optimal order execution in 
an equilibrium setting that endogenizes the effect of dy- 
namic rebalancing on pricing. 4 A partial equilibrium anal- 
ysis misses these equilibrium effects. In addition, unlike in 

4 In our model, order flow has a price impact due to adverse selection. 
Alternatively, price impacts can be due to inventory costs and imperfect 
competition in liquidity provision (see Choi et al., 2018 ). 
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the predatory trading models, our rebalancer’s trading tar- 
get is not publicly known ex ante, but is random and pri- 
vate information. This is arguably the usual situation on 
normal trading days, as opposed to special days (e.g., fu- 
tures rolls and index reconstitutions) on which the direc- 
tion of rebalancing is predictable. 

Models combining both informed trading and opti- 
mized uninformed rebalancing have largely been restricted 
to static settings or to multi-period settings with short- 
lived information and/or exogenous restrictions on rebal- 
ancer trading. Admati and Pfleiderer (1988) study a series 
of repeated one-period trading rounds with short-lived in- 
formation and uninformed discretionary traders who only 
trade once but who decide when to time their trading. 
An exception is Seppi (1990) who models an informed in- 
vestor and a strategic uninformed investor with a trading 
target who both can trade dynamically. He solves for sep- 
arating and partial pooling equilibria with upstairs block 
trading for a restricted set of model parameterizations. 

Our paper is related to Degryse et al. (2014) . Both pa- 
pers model dynamic order-splitting by an uninformed re- 
balancer. Consequently, both models have autocorrelated 
order flows. Order-flow autocorrelation is empirically sig- 
nificant but absent in previous Kyle models. 5 However, 
there are two differences between our model and Degryse 
et al. (2014) . First, informed investors in Degryse et al. 
(2014) have short-lived private information; i.e., they only 
have one chance to trade on intraday signals before they 
become public. In contrast, our informed investor trades 
on long-lived information over multiple intraday time pe- 
riods. Consequently, it is harder to distinguish cumulative 
order imbalances due to rebalancing from imbalances due 
to information trading. This reduces the value of sunshine 
trading. Second, our rebalancer orders depend adaptively 
on the realized path of aggregate order flow over the day 
in addition to the trading target. Adaptive trading is ab- 
sent in Degryse et al. (2014) where the rebalancer trades 
deterministically over time to reach his target. In particu- 
lar, our rebalancer learns endogenously about the informed 
investor’s information, because he can filter the aggregate 
order flow better than the market makers. Our analysis 
is possible because we adapt the approach of Foster and 
Viswanathan (1996) to circumvent the large state-space 
problem mentioned in Degryse et al. (2014) . 

Our analysis includes three types of sunshine trading. 
The first is the previously discussed zero-price impact of 
predictable orders. In our model and in Degryse et al. 
(2014) , predictable orders have no incremental information 
content and, thus, absent frictions in the supply of liquid- 
ity, no price impact. 6 A second type of sunshine trading 
exploits predictable market dynamics as liquidity is tem- 
porarily depleted and then replenished over time (see, e.g., 
Predoiu et al., 2011 ). In our model, the informed-investor 
trading corrects price pressure from past rebalancer orders, 

5 For early empirical evidence on order-flow autocorrelation in equity 
markets, see ( Hasbrouck, 1991a; 1991b ). More recently, Brogaard et al. 
(2016) find autocorrelation in orders from non-HFT investors (which is 
our focus) as well as in HFT orders. 

6 Predictable sunshine trading is statistically inferred in our model 
rather than publicly preannounced as in Admati and Pfleiderer (1991) . 

which lowers the rebalancer’s subsequent trading costs. 
The third type of sunshine trading exploits predictable in- 
traday variation in liquidity. 
2. Model 

We model a multi-period discrete-time market for a 
risky stock. A trading day is normalized to the interval 
[0,1] during which there are N ∈ N time points at which 
trading occurs where ! := 1 

N > 0 is the time step. As in 
Kyle (1985) , the stock’s terminal value ˜ v becomes publicly 
known at time N + 1 after the market closes at the end 
of the day. The value ˜ v is normally distributed with mean 
zero and volatility σ˜ v > 0 . Additionally, there is a money 
market account that pays a zero interest rate. 

Four types of investors trade in the model: 
• An informed investor (who we call a hedge fund portfo- 

lio manager ) knows the terminal stock value ˜ v at the 
beginning of trading and has zero initial positions in 
the stock and the money market account. The hedge 
fund manager is risk-neutral and maximizes the ex- 
pected value of her fund’s final wealth. The hedge 
fund’s order for the stock at time n , n = 1 , . . . , N, is de- 
noted by !θ I 

n where θ I 
n is its accumulated total stock 

position at time n with θ I 
0 := 0 initially. 

• A constrained investor (who we call the rebalancer ) 
needs to rebalance his portfolio by buying or selling 
stock to reach a parent terminal trading-target con- 
straint ˜ a on his final stock position θR 

N by the end of the 
trading day. For example, he might be a portfolio man- 
ager for a large index fund or a passive pension plan 
or an insurance company, who needs to rebalance his 
portfolio or to respond to fund inflows/outflows. The 
parent target ˜ a is private knowledge of the rebalancer. 
In practice, such investors trade dynamically using opti- 
mal order-execution algorithms to minimize their trad- 
ing costs. He starts the day with zero initial positions 
in the stock ( θR 

0 := 0 ) and his money market account. 7 
The target ˜ a is jointly normally distributed with the ter- 
minal stock value ˜ v and has a mean of zero, a volatil- 
ity σ ˜ a > 0 , and a correlation ρ ∈ [0, 1] with ˜ v . When ρ
is 0, the rebalancer is initially uninformed. If ρ > 0, we 
think of the rebalancer as being initially informed about 
˜ v but subject to random binding non-public risk lim- 
its. 8 Importantly, our rebalancer rationally understands 
the extent to which he is uninformed. 9 The rebalancer 
is risk-neutral and maximizes the expected value of 
his final wealth subject to the parent-target constraint. 
The rebalancer’s child order for the stock at time n , 

7 This normalization simplifies the notation for their objective functions 
but is without loss of generality. Both the hedge fund and the rebalancer 
finance their stock trading by borrowing/lending. 

8 The fact that the terminal value ˜ v is measured in dollars while the 
trading target ˜ a is measured in shares is not problematic for ̃  v and ˜ a being 
correlated random variables. 

9 Alternatively, if some investors trade under the mistaken belief that 
they are informed, but the signals they condition on are in fact just 
noise, then their orders should have the same functional form as actual 
informed-investor orders (see Kyle and Obizhaeva, 2016 ). In our model, 
informed investors and rebalancers trade differently because their trading 
motives are different. 
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n = 1 , . . . , N, is denoted by !θR 

n , and the terminal con- 
straint requires !θR 

N = ˜ a − θR 
N−1 at time N . 

• Noise traders (who we think of as small non-strategic 
retail investors) submit net stock orders at times n , n = 
1 , . . . , N, that are exogenous Brownian motion incre- 
ments !w n . These increments are normally distributed 
with zero means and variances σ 2 

w ! for a constant 
σw > 0 and are independent of ˜ v and ˜ a . 

• Competitive risk-neutral market makers observe the 
aggregate net order flow y n at times n , n = 1 , . . . , N, 
where 
y n := !θ I 

n + !θR 
n + !w n , y 0 := 0 . (1) 

Given competition and risk-neutrality, market makers 
clear the market (i.e., trade −y n ) at a stock price 
p n = E [ ̃ v | y 1 , . . . , y n ] , n = 1 , 2 , . . . , N, p 0 := 0 . (2) 
In the past, market makers were dealers on the floor 
of an exchange. Today, market making is performed 
by high-frequency trading firms running algorithms on 
servers colocated near an exchange’s market-crossing 
engine. These market-making algos process order-flow 
information in real-time when setting prices. 
The presence of the rebalancer with a parent trading 

constraint is the main difference between our model and 
Kyle (1985) and the multi-agent settings in Holden and 
Subrahmanyam (1992) and Foster and Viswanathan (1994, 
1996) . In particular, at each time n , the rebalancer has a 
latent demand to trade the remaining ˜ a − θR 

n −1 shares over 
the rest of the day. Previous microstructure theory says 
very little about markets with daily latent trading demand. 
As we shall see, this latent trading demand produces new 
stylized market features such as autocorrelated order flow. 

The hedge fund trades strategically to maximize its ex- 
pected terminal wealth 
E [ θ I 

N ( ̃ v − p N ) + θ I 
N−1 !p N + . . . + θ I 

1 !p 2 ∣∣∣ ˜ v ] 
= N ∑ 

n =1 E [ ( ̃ v − p n )!θ I 
n ∣∣∣ ˜ v ] , (3) 

where !p n := p n − p n −1 . Although at time n = 1 , the 
hedge fund only knows ˜ v in (3) , it knows that its orders 
at later times n ∈ {2, … , N } will also be able to incor- 
porate information about the then-past aggregate orders 
y 1 , . . . , y n −1 . Thus, the hedge fund maximizes (3) over mea- 
surable functions !θ I 

1 in the sigma algebra σ ( ̃ v ) induced 
by ˜ v at time n = 1 and measurable functions !θ I 

n in the 
sigma algebras σ ( ̃ v , y 1 , . . . , y n −1 ) at times n ∈ {2, … , N } 
where, as in Kyle (1985) , the contemporaneous aggregate 
order flow y n is not publicly known at time n but is pub- 
licly known starting at time n + 1 . 10 

10 Alternatively, we can require !θ I 
n to be in the sigma algebra 

σ ( ̃ v , p 1 , . . . , p n −1 ) and then use the one-to-one mapping between prices 
p n and aggregate order flows y n in Definition 1 below to infer the ag- 
gregate order flows. This approach is taken in, e.g., Back (1992) . Since 
in equilibrium the orders y 1 , . . . , y n −1 can be inferred from the prices 
p 1 , . . . , p n −1 provided that λ1 , . . . , λn −1 are non-zero and vice versa, the 
sigma algebras σ ( ̃ v , y 1 , . . . , y n −1 ) and σ ( ̃ a , y 1 , . . . , y n −1 ) are equivalent to 
σ ( ̃ v , p 1 , . . . , p n −1 ) and σ ( ̃ a , p 1 , . . . , p n −1 ) . However, our model simply as- 
sumes that aggregate order flows are directly observable to non-market- 
makers via high-speed market data-feeds with a one-period lag. 

The rebalancer also trades strategically to maximize his 
expected terminal wealth 

E [ ̃  a ( ̃ v − p N ) + θR 
N−1 !p N + . . . + θR 

1 !p 2 ∣∣∣ ˜ a ] 
= ρσ˜ v 

σ ˜ a ˜ a 2 − N ∑ 
n =1 E [ ( ̃  a − θR 

n −1 )!p n ∣∣∣ ˜ a ] , (4) 
but with the difference that now there is the termi- 
nal rebalancing constraint θR 

N = ˜ a relative to his initial 
position θR 

0 = 0 . The equality in (4) follows from p N = 
∑ N 

n =1 !p n , p 0 = 0 , and E [ ̃ v | ̃  a ] = ρσ˜ v 
σ ˜ a ˜ a . The rebalancer’s 

problem in (4) is conditioned on the rebalancer’s initial 
private information (here, the target ˜ a ), but the rebal- 
ancer also understands that his later orders can be con- 
ditioned on future aggregate order flows. Thus, (4) is max- 
imized over measurable functions !θR 

1 in the sigma alge- 
bra σ ( ̃  a ) at time 1 and !θR 

n in σ ( ̃  a , y 1 , . . . , y n −1 ) at times 
n ∈ {2, … , N }. 

There are two points to note here: First, the in- 
formation sets of the hedge fund σ ( ̃ v , y 1 , . . . , y n −1 ) , 
the rebalancer σ ( ̃  a , y 1 , . . . , y n −1 ) , and market makers 
σ (y 1 , . . . , y n −1 , y n ) at time n ∈ {1, 2, … , N } do not nest. 
Second, Appendix A shows that in equilibrium the hedge 
fund’s problem (3) and the rebalancer’s problem (4) are 
both quadratic in the investors’ respective orders. 
Definition 1 . A Bayesian Nash equilibrium is a collection of 
functions { θ I 

n , θR 
n , p n } N n =1 such that: 

(i) Given { θR 
n , p n } N n =1 , the strategy { θ I 

n } N n =1 maximizes the 
hedge fund’s objective (3) . 

(ii) Given { θ I 
n , p n } N n =1 , the strategy { θR 

n } N n =1 maximizes the 
rebalancer’s objective (4) . 

(iii) Given { θ I 
n , θR 

n } N n =1 , the pricing rule { p n } N n =1 
satisfies (2) . 11 
We construct a Bayesian Nash equilibrium with the fol- 

lowing linear structure: First, the rebalancer’s and hedge 
fund’s optimal trading strategies are 12 
!θR 

n = βR 
n ( ̃  a − θR 

n −1 ) + αR 
n q n −1 , θR 

0 := 0 , (5) 
!θ I 

n = β I 
n ( ̃ v − p n −1 ) , θ I 

0 := 0 , (6) 
where { β I 

n , βR 
n , αR 

n } N n =1 are constants with βR 
N = 1 and αR 

N = 
0 and the process q n is the market makers’ expectation 
q n = E [ ̃  a − θR 

n | y 1 , . . . , y n ] of the rebalancer’s latent trading 
demand ˜ a − θR 

n for the rest of the day conditional on the 
history of aggregate order flows up through time n . The 
rebalancer and hedge fund are not restricted to use lin- 
ear strategies, but they optimally choose linear strategies 
in the equilibrium we construct. 

11 The Doob-Dynkin lemma clarifies Definition 1 : For any random 
variable B and any σ ( B )-measurable random variable A , there is a 
deterministic function f such that A = f (B ) . Therefore, we can write 
θR 

n = f R n ( ̃ a , y 1 , . . . , y n −1 ) , θ I 
n = f I n ( ̃ v , y 1 , . . . , y n −1 ) , and p n = f p n (y 1 , . . . , y n ) 

for three deterministic functions f R n , f I n , and f p n . The functions f R n , f I n , and 
f p n are fixed whereas the realization of the aggregate order-flow variables 
y 1 , … , y n vary with the controls θ I and θR . 

12 If an additional αI 
n q n −1 term is included in the hedge fund’s strategy 

in (6) , then αI 
n = 0 in equilibrium. Contact the authors for a proof of this 

result. 
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Second, the q n process in (5) is a structural conse- 

quence of the rebalancing constraint in equilibrium. Much 
like p n gives the market-maker beliefs about the stock val- 
uation, q n gives the market-maker beliefs at time n about 
how much the rebalancer still needs to trade to reach his 
parent target. The presence of q n in (5) means that the re- 
balancer’s orders are not limited to be deterministic func- 
tions of his target ˜ a . Rather, they can depend adaptively on 
the prior order-flow history, which is in contrast to the de- 
terministic rebalancer orders in Degryse et al. (2014) . It fol- 
lows from (5) that the market makers’ expectation at time 
n − 1 of the rebalancer’s next order at time n is 
E [!θR 

n | y 1 , . . . , y n −1 ] = (αR 
n + βR 

n ) q n −1 . (7) 
Consequently, the aggregate order flow is autocorrelated in 
this market: 13 
E [ y n | y 1 , . . . , y n −1 ] = E [!θ I 

n + !θR 
n + !w n | y 1 , . . . , y n −1 ] 

= (αR 
n + βR 

n ) q n −1 . (8) 
The dynamics of q n are 14 
!q n : = E [ ̃  a − θR 

n | y 1 , . . . , y n ] − q n −1 
= E [ ̃  a − θR 

n | y 1 , . . . , y n −1 ] 
+ r n (y n − E [ y n | y 1 , . . . , y n −1 ]) − q n −1 

= E [ −!θR 
n | y 1 , . . . , y n −1 ] 

+ r n (y n − E [ y n | y 1 , . . . , y n −1 ]) 
= r n y n − (1 + r n )(αR 

n + βR 
n ) q n −1 , (9) 

for q 0 := 0 and constants { r n } N n =1 . 
Third, the pricing rule in our linear equilibrium has dy- 

namics 
!p n = λn (y n − E [ y n | y 1 , . . . , y n −1 ] )

= λn (y n − (αR 
n + βR 

n ) q n −1 ), (10) 
for n = 1 , . . . , N where { λn } N n =1 are constants. 15 The price 
at time n is not affected by the part of the order flow 
at time n that is predictable given past orders. Thus, the 
(αR 

n + βR 
n ) q n −1 term in (10) represents a type of predictable 

sunshine trading. 
Optimal trading for portfolio rebalancing reflects a 

number of considerations: First, the rebalancer needs to 
reach his parent trading target ˜ a at time N . Second, he 
wants to reach this target at the lowest cost possible. Cost 
minimization occurs through several channels: 

13 The second equality in (8) follows from i) the independence of ˜ v −
p n −1 , and, thus, !θ I 

n from (6) , and the past aggregate order flows, ii) the 
assumption that the noise-trader orders are zero–mean, independent, and 
identically distributed over time, and iii) the expression for expected re- 
balancer orders in (7) . 

14 The second equality in (9) follows from the definition of q n and the 
projection theorem where r n is a projection coefficient. The third equal- 
ity follows from E [ ̃ a − θR 

n | y 1 , . . . , y n −1 ] = E [ ̃ a − θR 
n −1 − !θR 

n | y 1 , . . . , y n −1 ] = 
q n −1 − E [!θR 

n | y 1 , . . . , y n −1 ] . The fourth equality follows from (7) and (8) . 
15 The first equality in (10) follows because conditional expectations are 

linear projections given the jointly Gaussian structure of the linear equi- 
librium. In particular, the projection theorem is used to update price p n 
relative to price p n −1 given the innovation in the aggregate order flow y n 
relative to its expectation given past orders. The second equality follows 
from (8) . 

• The rebalancer splits up his child orders to spread their 
price impact over time taking into account intraday 
patterns of the price-impact coefficients λn . 

• The rebalancer takes advantage of sunshine trading. 
Early orders signal predictable future orders at later 
dates, which, from (10) , have no price impact. 

• The rebalancer trades strategically on information about 
the stock value ˜ v to reduce his costs and even, some- 
times, to earn a trading profit. If ρ > 0, the rebal- 
ancer starts out with private stock-valuation informa- 
tion. However, even if the rebalancer is initially unin- 
formed about ˜ v (i.e., ρ = 0 ), he still learns information 
endogenously over time via the trading process (see 
(12) below). 

• The rebalancer reduces his trading costs using the fact 
that, on average, the hedge fund trades against price 
pressure induced by the rebalancer’s past orders. If, for 
example, early uninformed rebalancer buy orders raise 
prices, then, in expectation, the hedge fund should buy 
less/sell more in the future, thereby putting downward 
pressure on later prices which, in turn, reduces the ex- 
pected cost of subsequent rebalancer buying. 
Despite the complexity of the multiple drivers of rebal- 

ancing trading, the rebalancer’s equilibrium orders take the 
simple linear form in (5) . To gain intuition, we rearrange 
the rebalancer’s order at time n from (5) as follows: 
!θR 

n = (αR 
n + βR 

n ) q n −1 + βR 
n ( ̃  a − θR 

n −1 − q n −1 ) . (11) 
The first component, (αR 

n + βR 
n ) q n −1 , as noted in (7) , is the 

market makers’ expectation of the rebalancer’s order at 
time n . From the sunshine-trading property in (10) , this 
amount is traded with no price impact at time n . The sec- 
ond component, βR 

n ( ̃  a − θR 
n −1 − q n −1 ) , in (11) is due to two 

effects: First, ˜ a − θR 
n −1 − q n −1 is mechanically the amount 

the rebalancer still needs to trade beyond the market mak- 
ers’ expectation of his remaining latent trading demand 
in order to reach his parent target ˜ a . Second, ˜ a − θR 

n −1 −
q n −1 summarizes the private information of the rebalancer 
provided that the lagged rebalancer strategy coefficients 
βR 

1 , . . . , βR 
n −1 are all different from 1. The proviso about the 

rebalancer coefficients is a knife-edge technical condition 
that ensures information about ˜ a is not lost when θR 

n −1 
is subtracted from ˜ a . 16 Given this proviso, ˜ a − θR 

n −1 − q n −1 
is informative about two factors that allow the rebalancer 
to speculate on future price changes. The first is current 
stock-price misvaluation after trading at time n − 1 in the 

16 We require that the equilibrium paths produce σ ( ̃ a , y 1 , . . . , y n −1 ) = 
σ ( ̃ a − θR 

n −1 − q n −1 , y 1 , . . . , y n −1 ) . For n = 2 , we have ˜ a − θR 
1 = ̃  a − β1 ̃ a and 

the desired property holds when β1 ̸ = 1. For n = 3 , we have ˜ a − θR 
2 = ̃  a −

˜ a (β2 (1 − β1 ) + β1 ) − α2 q 1 and the desired property holds when β1 ̸ = 1 
and β2 ̸ = 1. The general case for n arbitrary is similar. 
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market: 17 
E [ ̃ v − p n −1 | ̃  a , y 1 , . . . , y n −1 ] 

= E [ ̃ v − p n −1 | ̃  a − θR 
n −1 − q n −1 , y 1 , . . . , y n −1 ] 

= E [ ̃ v − p n −1 | ̃  a − θR 
n −1 − q n −1 ] . (12) 

In general, ˜ a − θR 
n −1 − q n −1 is informative about ˜ v − p n −1 at 

times n − 1 ≥ 2 , even if ρ = 0 (i.e., ˜ a and ˜ v are ex ante 
independent), because knowledge about his own past or- 
ders lets the rebalancer filter the prior order-flow history 
to learn about ˜ v better than the market makers. This dy- 
namic learning is absent from deterministic rebalancing 
as in Degryse et al. (2014) . The second speculative fac- 
tor is that ˜ a − θR 

n −1 − q n −1 is also informative about fore- 
cast errors in market-maker sunshine-trading expectations 
(αR 

k + βR 
k ) q k −1 for dates k ≥ n given that 

E [ q k − E [ q k | y 1 , . . . , y n −1 ] | ̃  a , y 1 , . . . y n −1 ] 
= E [ q k − E [ q k | y 1 , . . . , y n −1 ] | ̃  a − θR 

n −1 − q n −1 ] (13) 
which, via (10) , lets the rebalancer forecast the next price 
p n at time n and also subsequent prices p k at k > n . The 
predictability of the order-flow impacts on these prices is 
important — in addition to the predictability of ˜ v — be- 
cause the rebalancer cannot hold stock positions to time 
N + 1 and liquidate them at ˜ v . Rather, his speculative po- 
sitions must be liquidated at endogenous future market 
prices at time N or earlier to satisfy the parent target ˜ a 
at time N . 

Turning to the informed investor, the term ˜ v − p n −1 in 
(6) plays two roles in the hedge fund’s strategy: It is pri- 
vate information about both the stock value and also, in 
equilibrium, about the rebalancer’s remaining latent trad- 
ing demand ˜ a − θR 

n −1 : 18 
E [ ̃  a − θR 

n −1 | ̃  v , y 1 , . . . , y n −1 ] 
= q n −1 + E [ ̃  a − θR 

n −1 − q n −1 | ̃  v − p n −1 , y 1 , . . . , y n −1 ] 
= q n −1 + E [ ̃  a − θR 

n −1 − q n −1 | ̃  v − p n −1 ] . (14) 
Summary: There are three qualitative ways in which 

the equilibrium structure of a market changes with order- 
splitting from dynamic portfolio rebalancing. First, rebal- 
ancer child orders are structurally different from informed- 
investor orders. For example, the rebalancer orders in 
(5) have a two-factor structure depending on q n −1 and 
˜ a − θR 

n −1 whereas the informed-investor orders in (6) have 
a one-factor structure depending on ˜ v − p n −1 . Second, ag- 
gregate order flow becomes autocorrelated. Third, the ag- 
gregate order flow now has two components, one pre- 

17 The first equality in (12) follows from q n −1 , θR 
n −1 ∈ σ ( ̃ a , y 1 , . . . , y n −1 ) , 

which produces σ ( ̃ a , y 1 , . . . , y n −1 ) = σ ( ̃ a − θR 
n −1 − q n −1 , y 1 , . . . , y n −1 ) given 

the proviso about the rebalancer strategy coefficients and using (5) to 
compute θR 

n −1 . The independence, given multivariate normality, between 
˜ v − p n −1 and (y 1 , . . . , y n −1 ) and between ˜ a − θR 

n −1 − q n −1 and (y 1 , . . . , y n −1 ) 
allow us to discard (y 1 , . . . , y n −1 ) when computing E [ ̃ v − p n −1 | ̃  a − θR 

n −1 −
q n −1 , y 1 , . . . , y n −1 ] in the second equality in (12) . As a practical matter, the 
strategy coefficient proviso was never relevant in the numerical analysis 
presented in Section 4 . 

18 The logic for (14) is similar to the logic for (12) in footnote 17. The 
only difference is that no proviso is needed on the informed-investor 
strategy coefficients since here there is no analogue in (14) to the sub- 
traction of θR 

n −1 in (12) . 

dictable and one a random innovation. Only the latter has 
a price impact. 
3. Equilibrium 

In this section we give sufficient conditions for a linear 
Bayesian Nash equilibrium as in (5) through (10) . Our anal- 
ysis extends the logic of Foster and Viswanathan (1996) to 
allow for a trading constraint. Their approach solves the 
“forecasting the forecasts of others” problem when show- 
ing deviations from equilibrium strategies are suboptimal. 
Appendix A presents the analysis in greater detail. 

To begin, consider a set of possible candidate values for 
the equilibrium constants 
λn , r n , βR 

n , αR 
n , β I 

n , n = 1 , . . . , N, (15) 
with 
βR 

1 ̸ = 1 , . . . , βR 
N−1 ̸ = 1 , (16) 

βR 
N = 1 , αR 

N = 0 . (17) 
The restrictions in (16) for times 1 , . . . , N − 1 are the tech- 
nical proviso discussed in regards to the representation of 
the rebalancer’s information in (12) , and the restrictions in 
(17) at time N follow because the rebalancer must reach 
his target ˜ a after his last round of trade. Given a set of 
candidate constants (15) –(17) , we define a system of “hat”
price and order-flow processes 
! ˆ θ I 

n := β I 
n ( ̃ v − ˆ p n −1 ) ˆ θ I 

0 := 0 , (18) 
! ˆ θR 

n := βR 
n ( ̃  a − ˆ θR 

n −1 ) + αR 
n ̂  q n −1 , ˆ θR 

0 := 0 , (19) 
ˆ y n := ! ˆ θ I 

n + ! ˆ θR 
n + !w n , ˆ y 0 := 0 , (20) 

! ˆ p n := λn ( ̂  y n − (αR 
n + βR 

n ) ̂  q n −1 ) , ˆ p 0 := 0 , (21) 
! ˆ q n := r n ̂  y n − (1 + r n )(αR 

n + βR 
n ) ̂  q n −1 , ˆ q 0 := 0 , (22) 

which denote the processes that agents conjecture that 
other agents follow. In equilibrium, conjectured beliefs 
must be correct in that p n = ˆ p n (the price process is the 
conjectured price process), θR 

n = ˆ θR 
n (the rebalancer orders 

follow the conjectured strategy), etc. The conjectured pro- 
cesses (18) –(22) make problems (3) and (4) analytically 
tractable in that the hedge-fund and rebalancer problems 
can both be described with low-dimensional state variable 
processes (see (35) and (42) below). 

The conjectured system { ! ˆ θ I 
n , ! ˆ θR 

n , ̂  y n , ! ˆ p n , ! ˆ q n } is 
fully specified (autonomous) by the coefficients (15) . Given 
the zero-mean and joint normality of ˜ v , ˜ a , and w, the con- 
jectured system (18) –(22) is zero-mean and jointly normal. 
The variances and covariance for the conjectured dynamics 
over time are denoted 19 
((1) 

n := V [ ˜ a − ˆ θR 
n − ˆ q n ], (23) 

19 The variance ((2) 
n of ˜ v and the conditional variance of ˜ a by itself are, 

by definition, non-increasing over time. However, the variance ((1) 
n of the 

latent trading demand ˜ a − θR 
n might not be monotonely decreasing. The 

stock positions θR 
n in ˜ a − θR 

n are random variables that change stochasti- 
cally over different times n rather than a fixed random variable. In par- 
ticular, the possibility of speculative trading means that θR 

n can, at some 
dates, move randomly away from ˜ a before eventually moving towards ˜ a 
later in the day and thereby driving ˜ a − θR 

n to zero. 
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((2) 

n := V [ ̃ v − ˆ p n ], (24) 
((3) 

n := E [( ˜ a − ˆ θR 
n − ˆ q n )( ̃ v − ˆ p n ) ]. (25) 

These moments are “post-trade” at time n in that they re- 
flect trading up-through and including the time- n order 
flow y n . In other words, they are inputs for trading deci- 
sions and pricing in round n + 1 . The initial variances and 
covariance at n = 0 are exogenously given by 
((1) 

0 = σ 2 
˜ a , ((2) 

0 = σ 2 
˜ v , ((3) 

0 = ρ σ ˜ a σ˜ v . (26) 
In equilibrium, the constants (15) must satisfy consis- 

tency restrictions, which we explain in two steps: 
Step 1: The first set of restrictions on the pricing coef- 

ficients { λn , r n } N n =1 is that in equilibrium ˆ p n and ˆ q n must 
be consistent with Bayesian updating. For the conjectured 
prices ˆ p n to be conditional expectations E [ ̃ v | ̂  y 1 , . . . , ̂  y n ] for 
the conjectured system, the same logic as for the equilib- 
rium prices p n in (10) , implies 
! ˆ p n = λn ( ˆ y n − E [ ̂  y n | ̂  y 1 , . . . , ̂  y n −1 ] )

= λn ( ˆ y n − (αR 
n + βR 

n ) ̂  q n −1 ), (27) 
for n = 1 , . . . , N where λn equals the projection coeffi- 
cient 
Cov ( ̃ v − ˆ p n −1 , ̂  y n − E [ ̂  y n | ̂  y 1 , . . . , ̂  y n −1 ]) 

V ( ̂  y n − E [ ̂  y n | ̂  y 1 , . . . , ̂  y n −1 ]) . (28) 
This is a restriction on the price-process coefficients in 
terms of the hedge-fund and rebalancer strategy coeffi- 
cients. A related logic gives restrictions on r n for ˆ q n to be 
the conditional expectation E [ ̃  a − ˆ θR 

n | ̂  y 1 , . . . , ̂  y n ] over time. 
The resulting two restrictions on the equilibrium constants 
for n = 1 , . . . , N (see Lemma 1 in A.1 ) are 
λn = β I 

n ((2) 
n −1 + βR 

n ((3) 
n −1 

(β I 
n ) 2 ((2) 

n −1 + (βR 
n ) 2 ((1) 

n −1 + 2 β I 
n βR 

n ((3) 
n −1 + σ 2 

w !, 
(29) 

r n = (1 − βR 
n ) (β I 

n ((3) 
n −1 + βR 

n ((1) 
n −1 )

(β I 
n ) 2 ((2) 

n −1 + (βR 
n ) 2 ((1) 

n −1 + 2 β I 
n βR 

n ((3) 
n −1 + σ 2 

w !. (30) 
The conditional variances and covariance in (23) –(25) are 
computed recursively as 
((1) 

n = (1 − βR 
n ) ((1 − βR 

n − r n βR 
n )((1) 

n −1 − r n β I 
n ((3) 

n −1 ), (31) 
((2) 

n = (1 − λn β I 
n )((2) 

n −1 − λn βR 
n ((3) 

n −1 , (32) 
((3) 

n = (1 − βR 
n ) ((1 − λn β I 

n )((3) 
n −1 − λn βR 

n ((1) 
n −1 ). (33) 

Note the “block” structure here: The updating coefficients 
λn and r n just depend on the strategy coefficients βR 

n and 
β I 

n and the prior variances and covariance from time n − 1 
(along with the exogenous noise-trading variance σ 2 

w ). The 
post-trade variances and covariance ((1) 

n , ((2) 
n , and ((3) 

n 
just depend on the updating coefficients λn and r n , the 
strategy coefficients βR 

n and β I 
n , and the prior variances 

and covariance from time n − 1 . 
Step 2: The second set of restrictions is that the coef- 

ficients { β I 
n , βR 

n , αR 
n } N n =1 give optimal trading strategies for 

the hedge fund and the rebalancer. 

Consider first the hedge fund at a generic time n . For a 
conjectured strategy ˆ θ I to be the hedge fund’s equilibrium 
strategy, deviations from ˆ θ I cannot be profitable. Proving 
this requires modeling the effects of possible past sub- 
optimal play. The hedge fund knows not only the termi- 
nal stock value ˜ v , but also, as in Foster and Viswanathan 
(1996) , the extent to which the actual prices, quantity ex- 
pectations, and rebalancer positions (i.e., p n , q n , and θR 

n 
in (10), (9) , and (5) given its actual orders !θ I 

1 , . . . , !θ I 
n ) 

deviate from their conjectured values (i.e., ˆ p n , ˆ q n , and 
ˆ θR 
n from (21), (22) , and (19) given the conjectured orders 

! ˆ θ I 
1 , . . . , ! ˆ θ I 

n in (18) ). In particular, the actual “un-hatted”
processes depend on actual past orders whereas the con- 
jectured “hat” processes depend on conjectured past or- 
ders. Although the rebalancer’s strategy is fixed by the se- 
quences of coefficients βR 

1 , . . . , βR 
N and αR 

1 , . . . , αR 
N in (5) , its 

actual holdings θR 
n are subject to the hedge fund’s choice of 

θ I because the aggregate order flows affect the rebalancer’s 
orders. Similar statements apply to the prices p n and latent 
trading-demand expectations q n . 

A natural set of state variables to consider for the hedge 
fund’s problem in (3) is 
˜ v − ˆ p n , ˆ q n , ˆ θ I 

n − θ I 
n , 

ˆ θR 
n − θR 

n , ˆ q n − q n , ˆ p n − p n . (34) 
The first two quantities in (34) describe market pricing 
errors (given the hedge fund’s private valuation informa- 
tion) and the predicted future latent rebalancer trading de- 
mand (given market information) in the conjectured equi- 
librium. The next four quantities describe the hedge fund’s 
private information about its actual holdings and about de- 
viations its actual past orders have induced in the rebal- 
ancer’s holdings, market expectations about the future re- 
balancer latent trading demand, and market prices relative 
to the conjectured processes in (18) –(22) . However, the 
state space for the hedge fund can be simplified, because 
in equilibrium some of these state variables only matter 
in combination for the hedge fund’s optimization problem. 
Appendix A shows that two composite state variables are 
sufficient for the hedge fund’s value function: 
X (1) 

n : = ˜ v − p n , X (2) 
n := ( ̂  θR 

n − θR 
n ) + ( ̂  q n − q n ) 

+ ((3) 
n 

((2) 
n (

˜ v − ˆ p n ), n = 0 , . . . , N. (35) 
From a technical point of view, this is a substantial reduc- 
tion from the six state variables in (34) . Two seems likely 
to be the minimum number of state variables necessary 
for the hedge fund’s problem. Lemma 2 in Appendix A en- 
sures that the X (1) 

n and X (2) 
n processes are observable for 

the hedge fund. In equilibrium, with θ I 
n = ˆ θ I 

n and, thus, 
p n = ˆ p n , q n = ˆ q n , and θR 

n = ˆ θR 
n , it follows from (35) that 

X (2) 
n = ((3) 

n 
((2) 

n X (1) 
n , n = 0 , 1 . . . , N. (36) 

Thus, on the equilibrium path, the hedge fund’s state space 
reduces to just ˜ v − p n , which is consistent with the form of 
its equilibrium orders in (6) . 

Lemma 2 in Appendix A shows that the hedge fund’s 
value function at each time n = 1 , . . . , N has the quadratic 
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form 

max 
!θ I 

k ∈ σ ( ̃ v ,y 1 , ... ,y k −1 ) 
n +1 ≤k ≤N E [ N ∑ 

k = n +1 ( ̃ v − p k )!θ I 
k ∣∣∣ ˜ v , y 1 , . . . , y n ]

= I (0) 
n + I (1 , 1) 

n (X (1) 
n ) 2 + I (1 , 2) 

n X (1) 
n X (2) 

n + I (2 , 2) 
n (X (2) 

n ) 2 , (37) 
where I (0) 

n , I (1 , 1) 
n , I (1 , 2) 

n , and I (2 , 2) 
n are constants. 

Lemma 2 also shows that the hedge fund’s problem (37) is 
quadratic in its orders !θ I 

n . The first-order condition for 
(37) gives the hedge fund’s optimal orders 
!θ I 

n = γ (1) 
n X (1) 

n −1 + γ (2) 
n X (2) 

n −1 , n = 1 , . . . , N, (38) 
where the coefficients γ (1) 

n and γ (2) 
n depend on the hedge- 

fund value-function coefficients and on the parameters 
of the conjectured price, latent trading demand, and re- 
balancer strategy processes given in (A.28) and (A.29) in 
Appendix A . The second-order condition for the strategy in 
(38) to be optimal for the hedge fund is 
I (2 , 2) 
n r 2 n + I (1 , 2) 

n r n λn + I (1 , 1) 
n λ2 

n < λn , n = 1 . . . , N. (39) 
By inserting the hedge fund’s candidate strategy (38) and 
(A .28) –(A .29) into the expectation in (37) , we can deter- 
mine the hedge fund’s value-function coefficients recur- 
sively as in Eqs. (A .42) –(A .44) in Section A.5 . 

Equating the coefficients in (38) with (6) and using the 
equilibrium condition (36) gives the following restriction 
on the hedge fund’s strategy coefficients: 
β I 

n = γ (1) 
n + γ (2) 

n ((3) 
n −1 

((2) 
n −1 , n = 1 . . . , N. (40) 

For fixed moments ((1) 
n , ((2) 

n , and ((3) 
n , we can use the 

linear Eqs. (31) –(33) to express ((1) 
n −1 , ((2) 

n −1 , and ((3) 
n −1 in 

terms of r n , λn , β I 
n , βR 

n . Eqs. (A .28) –(A .29) and (29) –(30) can 
then be used to see that (40) is a fifth–degree polynomial 
in { βR 

n , β I 
n } whenever ((i ) 

n , i = 1 , 2 , 3 , and I (i, j) 
n , i = 1 , 2 and 

i ≤ j ≤ 2, are fixed. 
Similarly, six natural state variables for the rebalancer’s 

problem in (4) are 
˜ a − ˆ θR 

n , ˆ q n , ˆ θR 
n − θR 

n , ˆ θ I 
n − θ I 

n , ˆ q n − q n , ˆ p n − p n . 
(41) 

The first two quantities in (41) describe the rebalancer’s 
latent trading demand (given his private information about 
his target and past orders) and the market-maker predic- 
tion of his future latent trading demand (given the pub- 
lic order-flow history) in a conjectured equilibrium. The 
next four quantities describe the rebalancer’s private in- 
formation about its own past orders and how they caused 
the hedge fund’s holdings, the market’s latent trading de- 
mand predication, and prices to deviate from the conjec- 
tured equilibrium. However, the rebalancer’s state space 
can also be simplified. Just three composite state variables 
are sufficient for the rebalancer’s value function: 
Y (1) 

n : = ˜ a − θR 
n , Y (2) 

n := ( ̂  p n − p n ) + ((3) 
n 

((1) 
n ( ̃  a − ˆ θR 

n − ˆ q n ) , 
Y (3) 

n : = q n , n = 0 , 1 , . . . , N. (42) 
Lemma 3 in Appendix A ensures these processes are ob- 
servable for the rebalancer. In equilibrium, with p n = ˆ p n , 

q n = ˆ q n , and θ I 
n = ˆ θ I 

n , it follows from (42) that 
Y (2) 

n = ((3) 
n 

((1) 
n (Y (1) 

n − Y (3) 
n ) , n = 1 , . . . , N. (43) 

Thus, on the equilibrium path, the state space for the re- 
balancer at time n reduces to just two state variables, 
˜ a − θR 

n and q n , which is consistent with (5) . When the 
hedge fund’s strategy is fixed as in (6) , Lemma 3 in 
Appendix A shows that the rebalancer’s value function is 
quadratic in the rebalancer state variables 

max 
!θR 

k ∈ σ ( ̃ a ,y 1 , ... ,y k −1 ) 
n +1 ≤k ≤N−1 −E [ N ∑ 

k = n +1 ( ̃  a − θR 
k −1 )!p k ∣∣∣ ˜ a , y 1 , . . . , y n ]

= L (0) 
n + ∑ 

1 ≤i ≤ j≤3 L (i, j) 
n Y (i ) 

n Y ( j) 
n , (44) 

where L (0) 
n , . . . , L (3 , 3) 

n are constants. Lemma 3 also ensures 
that the rebalancer’s problem (44) is quadratic in his or- 
ders !θR 

n . The corresponding first-order condition gives 
the rebalancer’s optimal orders 
!θR 

n = δ(1) 
n Y (1) 

n −1 + δ(2) 
n Y (2) 

n −1 + δ(3) 
n Y (3) 

n −1 , n = 1 , . . . , N, (45) 
where the coefficients δ(1) 

n , δ(2) 
n , and δ(3) 

n depend on the 
rebalancer’s value-function coefficients, and the parame- 
ters of the conjectured price, latent trading demand, and 
hedge fund’s strategy processes given in (A .38) –(A .40) in 
Appendix A . The associated second-order condition for the 
rebalancer’s optimal strategy is 
L (1 , 1) 

n + L (3 , 3) 
n r 2 n + L (1 , 2) 

n λn + L (2 , 2) 
n λ2 

n < L (1 , 3) 
n r n + L (2 , 3) 

n r n λn , 
n = 1 , . . . , N. (46) 
Similar to the hedge fund’s problem, by inserting the re- 
balancer’s candidate strategy (45) and (A .38) –(A .40) into 
the expectation in (44) , we can find the rebalancer’s value- 
function coefficients recursively as in Eqs. (A .45) –(A .50) in 
Section A.5 . 

By equating the coefficients in (45) with (5) and using 
the equilibrium condition (43) , we get two restrictions: 
βR 

n = δ(1) 
n + δ(2) 

n ((3) 
n −1 

((1) 
n −1 , αR 

n = δ(3) 
n − δ(2) 

n ((3) 
n −1 

((1) 
n −1 , n = 1 , . . . , N. 

(47) 
Similarly to (40) , the first equation in (47) is a fifth–
degree polynomial in { βR 

n , β I 
n } whenever ((i ) 

n , i = 1 , 2 , 3 , 
and L (i, j) 

n , i = 1 , 2 , 3 and i ≤ j ≤ 3, are fixed. The second 
equation in (47) is a linear equation in αR 

n once all of the 
other parameters are determined. 

Our main theoretical result is the following: 
Theorem 1 . Constants { λn , r n , βR 

n , αR 
n , β I 

n } N n =1 satisfying re- 
strictions (16) –(17) describe a linear Bayesian Nash equilib- 
rium of the form in (5) , (6) , (9) , and (10) if, for all times 
n = 1 , . . . , N, the following restrictions hold: 
i) The pricing and latent-trading prediction restrictions in 

(29) –(30) hold where the moments ((1) 
n , ((2) 

n , and ((3) 
n 

are given in (26) and (31) –(33) . 
ii) The equilibrium strategy conditions (40) and (47) are 

satisfied with the second-order conditions (39) and 
(46) holding where the value-function coefficients 
{ I (i, j) 

n } 1 ≤i ≤ j≤2 and { L (i, j) 
n } 1 ≤i ≤ j≤3 for n = 1 , . . . , N − 1 
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are computed via the recursions (A .42) –(A .44) and 
(A .45) –(A .50) in Section A.5 . 
Theorem 1 is a verification result for a set of model 

parameters to constitute a linear equilibrium. It extends 
Proposition 1 in Foster and Viswanathan (1996) to al- 
low for an investor with a trading constraint. As with 
most discrete-time Kyle models, including ( Foster and 
Viswanathan, 1996 ), we do not have analytic expressions 
for the equilibrium. Equilibria must be computed numeri- 
cally. Section A.6 describes our numerical algorithm. How- 
ever, there is an existence and comparative-static result for 
the asset-value variance σ 2 

˜ v . 
Proposition 1 . Assume the linear equilibrium of Theorem 
1 exists with coefficients 
λn , r n , β I 

n , βR 
n , αR 

n , ((1) 
n −1 , ((2) 

n −1 , ((3) 
n −1 , n = 1 , . . . , N, (48) 

for a given parameterization 
((1) 

0 = σ 2 
˜ a , ((2) 

0 = σ 2 
˜ v , ((3) 

0 = ρ σ ˜ a σ˜ v (49) 
where σ ˜ a > 0 , σ˜ v > 0 , ρ ≥ 0 . Then for any parameterization 
((1) 

0 = σ 2 
˜ a , ((2) 

0 = h 2 σ 2 
˜ v , ((3) 

0 = ρ σ ˜ a h σ˜ v (50) 
for any constant h > 0, an equilibrium exists with 
h λn , r n , β I 

n 
h , βR 

n , αR 
n , ((1) 

n −1 , h 2 ((2) 
n −1 , h ((3) 

n −1 , n = 1 , . . . , N. 
(51) 

This result follows immediately from verifying that, if 
the set of equations and inequalities for the equilibrium 
conditions hold for (48) , then they also hold for (51) . 20 
As is expected, greater asset-value volatility makes prices 
more sensitive to order flow ( λn is increasing in σ 2 

˜ v ), and 
this reduction in the absolute level of liquidity causes in- 
formed investors to trade less aggressively ( β I 

n is decreas- 
ing in σ 2 

˜ v ). Perhaps more surprisingly, the rebalancer’s 
strategy coefficients are unaffected by σ 2 

˜ v . One piece of in- 
tuition is the following: The rebalancer has to reach his 
target ˜ a at time N and relative trade-offs between liquid- 
ity at different dates ( λn /λn ′ ) are unaffected by σ 2 

˜ v . 
4. Numerical results 

Our analysis in this section investigates two quanti- 
tative questions: What do dynamic rebalancing strategies 
look like in our market? And what are the equilibrium ef- 
fects of the rebalancing constraint on price discovery, liq- 
uidity, and order flow? To answer these questions, we con- 
duct an extensive battery of numerical experiments over 
the model parameter space. 

Our numerical specification has N = 10 rounds of trad- 
ing and the total variance of the Brownian motion noise- 
trading order flow over the day ( N periods) is normal- 
ized at σ 2 

w = 1. The variance of the terminal stock value 
˜ v is set to σ 2 

˜ v = 1. We do not numerically vary σ 2 
˜ v , be- 

cause Proposition 1 gives analytic comparative statics. In 
20 The value function coefficients change from I (1 , 1) 

n , I (1 , 2) 
n , I (2 , 2) 

n , L (1 , 1) 
n , 

L (1 , 2) 
n , L (1 , 3) 

n , L (2 , 2) 
n , L (2 , 3) 

n , and L (3 , 3) 
n to I (1 , 1) 

n 
h , I (1 , 2) 

n , h I (2 , 2) 
n , h L (1 , 1) 

n , L (1 , 2) 
n , 

h L (1 , 3) 
n , L (2 , 2) 

n 
h , L (2 , 3) 

n , and h L (3 , 3) 
n for n = 1 , . . . , N. 

particular, intraday patterns in the strategy and price co- 
efficients are either invariant to σ 2 

˜ v or scale proportionally 
with σ˜ v , σ 2 

˜ v , or 1 /σ˜ v . The target variance σ 2 
˜ a and target in- 

formativeness ρ are varied over a 2 × 2 grid with σ 2 
˜ a tak- 

ing values 0 . 2 , 0 . 4 , . . . , 2 (i.e., from one-fifth up to twice 
the daily noise-trading variance) and with ρ taking values 
0 , 0 . 05 , 0 . 10 , . . . , 0 . 45 . Over this range of σ 2 

˜ a and ρ param- 
eters, our results are numerically well-behaved. However, 
when ρ is greater than 0.45 and the target variance σ 2 

˜ a 
is small (e.g., typically 0.2 or 0.4), our numerical results 
are sometimes less well-behaved. 21 Our discussion focuses 
on results in the numerically well-behaved region. While 
our numerical findings are not necessarily global proper- 
ties, they hold for a large portion of the parameter space. 
Moreover, given the prevalence of order-splitting in real- 
world markets by passive and less informed institutions, a 
low ρ and a high σ 2 

˜ a are, arguably, the empirically relevant 
cases. 

Most of our analysis is presented visually in figures 
showing intraday patterns. In our standard template, Fig- 
ure “A” is for the case of uninformative targets ( ρ = 0 ) 
with target variances σ 2 

˜ a equal to 0.2, 1, and 2. Figure “B”
is for the case of informative targets ( ρ = 0 . 45 ) with the 
same three target variances. The various intraday patterns 
are qualitatively similar for other parameterizations in be- 
tween those shown here, and the patterns change rela- 
tively smoothly in the target variance σ 2 

˜ a and correlation 
ρ . Thus, one can interpolate between the cases in the fig- 
ures to infer the patterns for other variances σ 2 

˜ a and corre- 
lations ρ . These patterns are also qualitatively similar out- 
side of our parameter grid for correlations ρ > 0.45 so long 
as σ 2 

˜ a is not too small. 
We assess the impact of portfolio rebalancing by com- 

paring our model with two alternative models. For ρ = 0 , 
we compare our equilibrium with Kyle (1985) . For ρ > 0, 
we compare our model with a variant of the Foster and 
Viswanathan (1994) model, which we call the modified FV 
model . In the modified FV model, one investor has supe- 
rior information in that she knows the terminal stock value 
˜ v , while a less-informed investor receives a noisy signal 
˜ a with a correlation ρ > 0 with ˜ v . 22 The signal ˜ a in the 
modified FV model has the same distribution as the tar- 
get ˜ a in our rebalancing model. However, in the modified 
FV model there is no trading constraint. The one difference 
between our modified FV model and the original Foster 
and Viswanathan (1994) model is that our better-informed 
investor does not know the less-informed investor’s in- 
formation whereas in Foster and Viswanathan (1994) the 
better-informed investor knows both ˜ v and ˜ a . Hence, our 
dynamic rebalancing model and the modified FV model 
have identical information structures. Comparing equilib- 
ria in the two models shows the effect of the parent-target 
constraint when ρ > 0. The modified FV model is described 
in more detail in Appendix B and in the Internet Appendix. 
One feature of the modified FV model to note is that the 

21 Some variables occasionally take large values quite different from 
their values at adjacent times n and n + 1 . 

22 The modified FV model reduces to the Kyle (1985) model when ρ = 
0 since then the less-informed investor has no private information and, 
thus, in equilibrium does not trade. 
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signal variance σ 2 

˜ a does not affect the informativeness of 
the less-informed investor’s signal. Thus, many properties 
of the modified FV model are unaffected by changes in σ 2 

˜ a . 
In contrast, changing σ 2 

˜ a has an effect in our rebalancing 
model because σ 2 

˜ a is an ex ante measure of the size of the 
parent constraint on the rebalancer’s trading. 
4.1. Overview of numerical results 

Our numerical analysis produces a variety of empiri- 
cal predictions. One set of results describes quantitative 
properties of equilibrium rebalancing orders and the im- 
portance of various economic considerations in the rebal- 
ancer trading strategy. 
• The mean and standard deviation of rebalancer orders 

have intraday patterns that are U -shaped for param- 
eterizations within our numerically well-behaved set. 
In addition, the magnitude of the U -shape increases 
when the target variance σ 2 

˜ a increases and becomes 
skewed when the correlation ρ increases. Thus, the 
model not only predicts the existence of U -shaped in- 
traday rebalancer order-flow patterns, but also predicts 
how these intraday patterns vary with time-variation in 
the volatility of rebalancing targets. 

• The realized parent target ˜ a has a large effect on the re- 
balancer child orders relative to adaptive trading. In ad- 
dition, predictable interactions with informed-investor 
orders have an important impact on the U -shaped tim- 
ing of optimal rebalancing orders. 
A second set of findings describes the equilibrium ef- 

fects of dynamic rebalancing on the price and order-flow 
processes. 
• Trading volume, price volatility, and order-flow auto- 

correlation have U -shaped intraday patterns that are 
increasing in target variance σ 2 

˜ a . 23 This prediction is 
testable by looking at whether these intraday patterns 
increase for stocks on days for which rebalancing-target 
uncertainty is greater (e.g., days with highly volatile 
mutual fund inflows/outflows). 

• Daily order-flow autocorrelation (estimated using intra- 
day data) can be used — given its low sensitivity to 
changes in ρ and insensitivity to σ 2 

˜ v — as an empiri- 
cal proxy to track time-variation in rebalancing volatil- 
ity. Thus, time-variation in the size of the various intra- 
day patterns and in the aggregate order-flow autocorre- 
lation level should be positively correlated. 

• Autocorrelation of the aggregate order flow is linked 
to autocorrelation in the orders of individual investors 
who are rebalancing. This is in contrast to order-flow 
autocorrelation due to cross-autocorrelation across dif- 
ferent investors due to front-running and back-running 
(see Yang and Zhu, 2015 ). 

23 Order-splitting is certainly not the only cause of U -shaped intraday 
patterns, since many of the empirically documented intraday patterns 
predate the widespread use of order-splitting algorithms. However, the 
magnitude of these U -shaped patterns should co-vary with rebalancing 
volatility. 

We have a few more observations about testability. 
First, the aggregate order-flow and pricing predictions are 
testable using standard intraday price and order-flow data. 
On the other hand, predictions about rebalancing strate- 
gies and structural differences between rebalancers and 
informed investors require investor-level order-flow data 
(e.g., from the Investment Industry Regulatory Organiza- 
tion of Canada). Second, since rebalancer order flows are 
autocorrelated, while informed-investor orders are not, this 
difference can be used to identify individual institutions 
in an investor-level order database as being likely rebal- 
ancers (if their orders have above-average autocorrelation) 
or likely informed investors (if their orders are less autocor- 
related). Third, we can use a direct (or inferred as above) 
classification of individual investors to test whether the 
orders of likely rebalancers become more negatively cor- 
related with orders from likely informed investors over 
the day. Fourth, our comparative static predictions are 
not just about individual patterns, but rather about the 
co-movement of a cross-section of multiple intraday pat- 
terns. Fifth, our predications about time-variation in the 
volatility (i.e., second moment) of non-public portfolio- 
rebalancing trading demand are different from predictions 
about changing means (i.e., first moments) of publicly 
predictable trading demand investigated in Bessembinder 
et al. (2016) 
4.2. Dynamic rebalancing 

The rebalancer’s orders are described by the strategy 
coefficients βR 

n and αR 
n . Figs. 1 A and 1 B show intraday pat- 

terns for these coefficients. The fact that βR 
n is positive 

means, from (11) , that the rebalancer trades in the direc- 
tion of his private information ˜ a − θR 

n −1 − q n −1 . Intuitively, 
the larger ˜ a − θR 

n −1 is relative to q n −1 , the more the rebal- 
ancer must trade mechanically to achieve his target. It is 
also intuitive that the βR 

n coefficient increases as the end of 
the day (and the binding rebalancing deadline) approaches. 
Fig. 1 B shows that there is an interaction between the tar- 
get variance σ 2 

˜ a and the informativeness ρ of the target. 
When σ 2 

˜ a is small (e.g., 0.2), the information content of a 
given magnitude of target realization ˜ a is large, and, thus, 
the rebalancer in Fig. 1 B scales his trades aggressively early 
in the day to exploit the information in ˜ a . Consequently, 
the βR 

n coefficients are larger in Fig. 1 B (with ρ = 0 . 45 ) 
than in Fig. 1 A. In contrast, when σ 2 

˜ a is large (e.g., 1.0 or 
2.0), the magnitudes of the rebalancer’s trades are already 
large given the βR 

n coefficients when ρ = 0 (as in Fig 1 A), 
and so the impact of informativeness ρ = 0 . 45 on the or- 
der size in Fig. 1 B is negligible. 

Next, consider the sunshine-trading component (αR 
n + 

βR 
n ) q n −1 from (11) . The fact that αR 

n + βR 
n is positive (if the 

two coefficients in Fig. 1 are added together) means that, 
on average, the rebalancer buys more when market mak- 
ers believe he has a large latent buying demand. Again, 
this is intuitive. The sum αR 

n + βR 
n is small for most of the 

day, but increases towards the end of the day, when the 
rebalancer engages in more sunshine trading to close the 
predictable part q n −1 (as well as the unpredictable part 
˜ a − θR 

n −1 − q n −1 ) of his remaining gap ˜ a − θR 
n . 
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Fig. 1. Intraday patterns for the rebalancer strategy coefficients αR 
n (lines with • , ! , ") and βR 

n (lines with ◦, △ , #) for times n = 1 , 2 , . . . , 10 . The parameters 
are N = 10 , σ 2 

˜ v = 1 , σ 2 
w = 1 , and σ 2 

˜ a = 0 . 2 (− − with ◦ or •) , 1 . 0 (− · −with △ or ! ) , 2 . 0 (− · · − with #or ") . 
The coefficient αR 

n captures the incremental impact of 
trading motives that are present when trading on the pri- 
vate information ˜ a − θR 

n −1 − q n −1 but absent when trading 
on q n −1 . In particular, when trading on ˜ a − θR 

n −1 − q n −1 , the 
rebalancer is motivated in part by opportunities for spec- 
ulation and the fact that non-sunshine trading has price 
impacts in addition to the mechanical effects of trading to- 
wards his target. A negative value of αR 

n means that non- 
mechanical motives increase the rebalancer’s trading on 
his information ˜ a − θR 

n −1 − q n −1 relative to his trading on 
q n −1 . Intuitively, the larger the rebalancer’s actual future 
latent trading demand ˜ a − θR 

n −1 is relative to the market- 
maker forecast, q n −1 , the more the market underestimates 
future aggregate buying relative to the rebalancer’s pri- 
vate information. This predictability causes the rebalancer 
to anticipate rising future prices and, thereby, leads him 
to buy more/sell less at time n . Since sunshine-trading 
forecast-error predictability causes the rebalancer to trade 
more in the direction of his information ˜ a − θR 

n − q n −1 , 
it makes αR 

n smaller or negative. In contrast, the intu- 
ition for predictability about current mispricing ˜ v − p n −1 
is more complicated. 24 However, it can be shown that the 
impact of current mispricing predictability potentially can 
have the opposite sign of the impact of sunshine-trading 
forecast-error predictability. As a result, the net impact 
measured by αR 

n cannot be signed unambiguously a priori. 
In our numerical analysis, however, αR 

n is consistently neg- 
ative, even when ρ > 0. This suggests that the sunshine- 
trading forecast-error motive is dominant here. 

The rebalancer’s strategy coefficients αR 
n and βR 

n re- 
flect the combined effects of the economic considera- 
tions described in Section 2 . We disentangle these various 
economic considerations and assess their quantitative im- 
portance using two different decompositions. The first 

24 For example, at time 1, the direction of the mispricing predictabil- 
ity is determined by cov [ ̃ v − p 1 , ̃  a − θR 

1 − q 1 ] = −(1 − βR 
1 ) λ1 βR 

1 σ 2 
˜ a + (1 −

βR 
1 )(1 − λ1 β I 

1 ) σ ˜ a σ˜ v ρ . If ρ = 0 and given 0 < βR 
1 < 1 and λ1 > 0, then 

cov [ ̃ v − p 1 , ̃  a − θR 
1 − q 1 ] is negative. 

decomposes the rebalancer orders into their dependence 
on the underlying variables. The second, considered in the 
Internet Appendix, is based on a set of ad hoc strategies 
that include and omit various economic considerations. 

Decomposition into underlying variables: The latent 
trading-demand expectation q n and cumulative holdings 
θR 

n −1 in (11) are endogenous processes, so we further de- 
compose the rebalancer’s orders into linear functions of 
the underlying exogenous random variables — the rebal- 
ancing target ˜ a , the terminal value ˜ v , and noise-trader or- 
ders !w j — in the market: 
!θR 

n = A R n ˜ a + B R n ̃  v + ∑ 
j=1 , ... n −1 c R j,n !w j . (52) 

This decomposition follows from the joint linearity of 
prices, orders, and the q n process. The dependence on ˜ v 
and the noise-trader orders !w j comes through the q n 
process and its dependence on lagged aggregate orders. 
The dependence on the target ˜ a is both direct and also in- 
direct through the lagged θR 

n −1 and q n −1 terms in (11) . This 
decomposition is then used to relate statistical properties 
of the rebalancer child orders to the statistical properties 
of ˜ a , ˜ v , and the noise-trader orders. 

Fig. 2 shows the linear decomposition coefficients from 
(52) for the rebalancer orders over time for our six refer- 
ence parameterizations. Similar patterns hold for other pa- 
rameterizations in our parameter-space analysis. One fact 
affecting these intertemporal patterns is the terminal par- 
ent constraint ( θR 

N = ˜ a ), which, by construction, requires ∑ 
n =1 , ... N A R n = 1 , ∑ 

n =1 , ... N B R n = 0 , and ∑ 
n = j+1 , ... N c R j,n = 0 for 

j = 1 , . . . , N − 1 . Thus, the rebalancer trades on price ef- 
fects from ˜ v and noise-trader orders but then must even- 
tually unwind these positions. Note that the coefficients 
c R 

j,n on noise-trader orders !w j in the lower two plots in 
Fig. 2 do not start until one period after time j when an 
order !w j arrives and is cleared in the market. 

Quantitatively, the target ˜ a is a major driver of the re- 
balancer’s orders. In addition, the trajectory of the A R n de- 
composition coefficients on ˜ a have a U -shaped intraday 
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Fig. 2. Intraday patterns for the linear-decomposition coefficients for the rebalancer orders for times n = 1 , 2 , . . . , 10 . The top figures show the coefficients 
A R n on the target ˜ a (lines with ◦, △ , #) and B R n on the asset value ˜ v (lines with • , ! , "), and the lower figures show the coefficients c R j,n on the noise- 
trader orders !w j with arrival times j = 1 , 3 , 5 , and 7. The parameters are N = 10 , σ 2 

˜ v = 1 , σ 2 
w = 1 , and σ 2 

˜ a = 0 . 2 (− − with ◦ or •) , 1 . 0 (− · −with △ or ! ) , 
2 . 0 (− · · − with #or ") . 
pattern. These U -shaped coefficients for rebalancer orders 
mean that the trading target induces U -shapes in both the 
mean volume and volatility of rebalancer trading over the 
day. Perhaps surprisingly, the decomposition coefficient on 
˜ v is initially negative at time 2. A partial intuition follows 
from the rebalancer order in (5) . At time n = 2 , the load- 
ings on ˜ v and !w 1 come from the dependence of !θR 

2 on 
q 1 . Given a positive informed-investor strategy coefficient 
β I 

1 , the sign of the rebalancer loadings on ˜ v and !w 1 are, 
by construction, the same and are controlled by the coef- 
ficient αR 

2 in (5) . Since αR 
2 at time 2 is consistently nega- 

tive in all of our numerical examples, the rebalancer trades 
against price pressure from the noise traders rather than 
with the informed investor and ˜ v , and so the decomposi- 
tion coefficients on ˜ v and !w 1 are both negative. Later in 
the day, the coefficient on ˜ v switches sign when the rebal- 
ancer unwinds his speculative positions given his trading- 
target constraint. 

Deterministic and adaptive components: The decomposi- 
tion in (52) lets us break the rebalancer’s orders into a de- 

terministic component, 25 
E [!θR 

n | ̃  a ] = A R n ˜ a + B R n E [ ̃ v | ̃  a ] = (A R n + B R n ρ σ˜ v 
σ ˜ a 

)
˜ a (53) 

that depends on the target ˜ a and a separate random adap- 
tive component 
!θR 

n − E [!θR 
n | ̃  a ] = B R n ( ̃ v − E [ ̃ v | ̃  a ]) + ∑ 

j=1 , ... n −1 c R j,n !w j 
(54) 

that depends on the portion of ˜ v that the rebal- 
ancer cannot predict given ˜ a and on the noise orders 
{ !w 1 , . . . , !w n −1 } . The deterministic component is due to 
price-impact smoothing, predictable sunshine trading, and 
predictable interactions with orders from the informed in- 
vestor who, on average, trades to reverse price pressure 
caused by the rebalancer orders. The adaptive component 

25 The expectation E [!θR 
n | ̃  a ] in (53) is taken over the stock value ˜ v 

(which is mean-zero but can be correlated with ˜ a ) and the noise-trader 
orders !w j (which are mean-zero and uncorrelated with ˜ a ). The second 
equality follows from the joint normality of ˜ a and ˜ v . 
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Fig. 3. Intraday patterns for the ratio E [!θR 
n | ̃  a ] / ̃ a of the conditional expected rebalancer order relative to the target ˜ a ̸ = 0 at times n = 1 , . . . , 10 . The 

parameters are N = 10 , σ 2 
˜ v = 1 , σ 2 

w = 1 , and σ 2 
˜ a = 0 . 2 (− − with ◦) , 1 . 0 (− · −with △ ) , 2 . 0 (− · · − with #) . 

comes from the q n term in (11) after controlling for the tar- 
get ˜ a . This component reflects real-time sunshine trading 
(i.e., reactions to fluctuations in q n induced by the arriv- 
ing aggregate order flow over the day) and speculation on 
information learned through the trading process. Here, we 
use the decomposition in (53) and (54) to identify direct 
effects of rebalancing trading on market volume. Later, in 
Section 4.3 , it is used to understand the equilibrium effects 
of rebalancing on pricing and on the informed-investor 
orders. 

The separation here is not just algebraic; rather it has 
meaning in terms of separability of the rebalancer’s opti- 
mization problem in (4) . The deterministic expected orders 
in (53) give the optimal strategy for a rebalancer who pre- 
commits at time 0 to using deterministic child orders given 
by functions { x n ( ̃  a ) } N n =1 . The proof of the next result is in 
Appendix C . 
Proposition 2 . Assume the linear equilibrium of Theorem 1 
exists. Then the conditional expected equilibrium orders 
E [!θR 

n | ̃  a ] are the optimal orders x ∗n for a rebalancer who is 
constrained to trade deterministically over time. 

The adaptive order component in (54) shows how our 
rebalancer, who is not constrained to trade deterministi- 
cally, optimally deviates over time from the optimal deter- 
ministic strategy x ∗n to respond to changes in market beliefs 
due to the arriving aggregate order flow. 

Fig. 3 shows the expected rebalancer orders over 
the day conditional on the target ˜ a scaled as a ratio 
E [!θR 

n | ̃  a ] / ̃  a relative to the target ˜ a ̸ = 0 . From the linearity 
in (53) , the ratio does not depend on the realized target ˜ a . 
If ρ = 0 , then the ratio E [!θR 

n | ̃  a ] / ̃  a has the identical intra- 
day pattern as the decomposition coefficients A R n on ˜ a (e.g., 
compare the U -shaped pattern for the ratio in Fig. 3 A with 
the A R n coefficients in Fig. 2 A). 26 If ρ > 0, then, the ratios 

26 Degryse et al. (2014) obtain a similar U -shaped pattern but with 
both short-lived information and deterministic rebalancing. Optimal or- 
der execution models can also have U -shaped optimal strategies (see, e.g., 

are shifted by the B R n ρ σ˜ v 
σ ˜ a term in (53) . This U -shape vol- 

ume pattern is common to all of the parameterizations we 
consider. For example, Fig. 3 B shows the U -shaped pattern 
for the ρ = 0 . 45 case. These intraday patterns for rebal- 
ancer orders are conceptually different from those for the 
less-informed investor’s orders in the modified FV model. 27 
Because of the rebalancing constraint and the dynamics of 
sunshine trading, the rebalancer trading has an upturn in 
expected volume at the end of the day. In the Internet Ap- 
pendix, the rebalancer orders are decomposed further to 
identify the specific portion due to predictable sunshine 
trading. 

The second component of the rebalancer orders is the 
adaptive component in (54) that responds to fluctuations 
in the aggregate order flow over the trading day. The ran- 
domness is due to speculative trading by the rebalancer 
(given his endogenous learning through trading over time) 
and real-time sunshine trading (given fluctuations in the 
market-maker expectations q n ). The size of adaptive trad- 
ing is measured using the standard deviation SD [!θR 

n | ̃  a ] 
given the target ˜ a . Figs. 4 A-B show that the standard devi- 
ation is initially zero at time n = 1 (when the rebalancer 
only knows ˜ a and has not yet observed any lagged ag- 
gregate order flows) but then is roughly U -shaped over 
the rest of the trading day (i.e., higher at times 2 and 
10). The U -shape becomes more pronounced when the cor- 
relation ρ is large. In contrast, the standard deviation is 
hump-shaped in the modified FV model. Our parameter- 
space analysis finds that the U -shape increases as σ 2 

˜ a 
increases. This is consistent with increased endogenous 
learning (since the rebalancer’s orders are a larger part 
of the noise in the aggregated order flow and since the 
Predoiu et al., 2011 ), but our model endogenizes the liquidity resilience 
and replenishment dynamics that drive this result. 

27 Unlike other plots in which the modified FV model is insensitive to 
σ 2 

˜ a , the ratio here is decreasing in σ 2 
˜ a because the order size in the nu- 

merator of this ratio is invariant to how the information in the signal ˜ a is 
scaled, but the denominator in this ratio is the scaled signal ˜ a . 
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Fig. 4. Plots A and B show intraday patterns for the conditional standard deviation SD [!θR 
n | ̃  a ] of the rebalancer’s orders at times n = 1 , . . . , 10 . Plots C 

and D show examples of ten sample paths of rebalancer orders !θR 
n for two particular target values. The parameters are N = 10 , σ 2 

˜ v = 1 , σ 2 
w = 1 , and 

σ 2 
˜ a = 0 . 2 (− − with ◦) , 1 . 0 (− · −with △ ) , 2 . 0 (− · · − with #) (A and B only). For C and D, σ 2 

˜ a = 1 and ρ = 0 . 
rebalancer can filter his larger orders better than the mar- 
ket makers) and a larger real-time sunshine component 
(as market-maker expectations about the rebalancer’s la- 
tent trading demand become more sensitive to aggregate 
order-flows). 28 

Fig. 4 C shows an example of ten simulated paths of the 
rebalancer’s order flows over time in the case of σ 2 

˜ a = 1 
and ρ = 0 . The realized stock value ˜ v here is one, and the 
realized trading target ˜ a is zero, but the noise-trader or- 
der paths are random. Along these paths, the rebalancer 
buys/sells more than his terminal parent target ˜ a = 0 at 
early times (e.g., n = 2 ) and then unwinds his position 
later to achieve his trading target. This is not manipula- 
tion. Rather, it is constrained short-term speculation due 
to the combination of endogenous learning about ˜ v and 

28 The rebalancer and the informed trader acquire information at differ- 
ent times than each other (as in Foucault et al., 2016 ), and the rebalancer 
endogenously engages in short-term speculation (as in Froot et al., 1992 ), 
since he must unwind his speculative positions before the definitive pub- 
lic value revelation of ˜ v at time N + 1 . 

the trading constraint ˜ a . The rebalancer does not trade at 
time n = 1 because, given ˜ a = 0 , he does not need to rebal- 
ance, and because, initially, he does not have any valuation 
information given ρ = 0 . However, at time n = 2 the re- 
balancer trades based on whether — given the stock-value 
information gleaned from filtering the order flow y 1 bet- 
ter than the market makers — the stock appears over- or 
under-valued. Later, however, he unwinds these positions 
to achieve his parent target θR 

N = ˜ a = 0 at the end of the 
day. The dispersion across the paths is consistent with the 
intraday pattern of the rebalancer order-flow standard de- 
viation. Paths for non-zero targets ˜ a involve shifting the 
means of these paths from zero to the appropriate deter- 
ministic path given ˜ a . 29 This is illustrated in Fig. 4 D for a 
target ˜ a = 1 . 

29 When the realized target ˜ a is large, the rebalancer’s orders tend to be 
in the same direction over time (e.g., a large positive target ˜ a is associated 
with a series of buy orders). Randomness in his orders due to the q n pro- 
cess (connected with sunshine trading and endogenous learning) usually 
just causes the rebalancer to speed up or slow down his trading relative 
to his expected orders given his target. 
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Fig. 5. Intraday patterns for the unconditional corr( !θ I 
n , !θR 

n ) for times n = 1 , . . . , 10 . The parameters are N = 10 , σ 2 
˜ v = 1 , σ 2 

w = 1 , and σ 2 
˜ a = 0 . 2 (− −

with ◦) , 1 . 0 (− · −with △ ) , 2 . 0 (− · · − with #) . 
Interactions with informed-investor orders: Another factor 

that reduces rebalancing costs is that the rebalancer’s or- 
ders tend to become negatively correlated with the hedge 
fund’s orders over time. Fig. 5 A shows that, if ρ = 0 , then 
the correlation between the hedge fund’s orders and the 
rebalancer’s orders is negative at times n > 1. This nega- 
tive correlation is mutually beneficial for the rebalancer 
and the hedge fund. By trading in opposite directions (in 
expectation), they symbiotically provide liquidity to each 
other (i.e., their orders partially offset each other). If ρ > 0, 
then, as illustrated in Fig. 5 B, the order correlation starts 
out positive, but later turns negative. In contrast, orders for 
better-informed and less-informed investors in the modi- 
fied FV model are always positively correlated. 30 

Additional analysis in the Internet Appendix shows that 
the predictable interaction with the informed-investor or- 
ders has a significant impact on the rebalancer’s trad- 
ing. First, a large part of the negative correlation between 
informed-investor and rebalancer orders is due to the in- 
formed investor trading against price pressure due to the 
rebalancer’s orders. As the rebalancer trades towards his 
(uninformative or imperfectly informative) target ˜ a , the 
hedge fund trades opposite the noise that rebalancing in- 
duces in prices. 31 Second, the predictable interactions with 
the informed-investor orders are a quantitatively impor- 
tant driver of the U -shape in the deterministic component 
of the rebalancer’s orders. The intuition is that the rebal- 
ancer trades less during the middle of the day to give the 
informed investor time to offset price pressure from the 

30 In the modified FV model, iterated expectations gives 
cov (! ˆ θ I 

n , ! ˆ θR 
n ) = β I 

n βR 
n E [( ̃ v − ˆ p n −1 )( ̂ s n −1 − ˆ p n −1 )] = β I 

n βR 
n V [ ̂ s n −1 − ˆ p n −1 ] , 

which is positive given β I 
n > 0 and βR 

n > 0 , where ˆ s n −1 = 
E [ ̃ v | ̃ a , y 1 , . . . , y n −1 ] . 

31 Foster and Viswanathan (1996) also has negative cross-investor order 
correlation when both investors have symmetric noisy signals. However, 
our price-pressure correction mechanism is different from their Bayesian 
learning mechanism. 

rebalancer’s orders early in the day before the rebalancer 
then trades again later in the day. 

Summary: The rebalancer orders have a large determin- 
istic component — that depends on the parent target ˜ a —
that reflects price-impact smoothing, predictable sunshine 
trading, and anticipated reactions from the informed in- 
vestor’s trading. There is also an adaptive component due 
to learning and real-time sunshine trading. The adaptive 
component is relatively small except when the target vari- 
ance and informativeness are high. These observations fol- 
low from the large rebalancer decomposition loadings on 
˜ a (in Fig. 2 A) and the rebalancer order standard deviations 
SD [!θR 

n | ̃  a ] (in Fig. 4 ). They are confirmed further in the 
Internet Appendix based on a second decomposition using 
ad hoc strategies. Thus, equilibrium rebalancing strategies 
are more complicated than simple TWAP (time-weighted 
average price) strategies. 32 These features of rebalancing 
orders also drive the equilibrium impact of dynamic rebal- 
ancing on prices, liquidity, informed-investor trading, and 
the aggregate order flow discussed next in Section 4.3 . 
In particular, the U -shaped patterns in the determinis- 
tic and adaptive components of the rebalancer orders are 
connected with U -shaped patterns in prices and market 
volume. 
4.3. Equilibrium effects 

Stock markets have a variety of significant empirical 
intraday patterns in prices and order flows. 33 We now 
consider how dynamic rebalancing affects the equilibrium 
properties of pricing and the trading behavior of other in- 
vestors and, thus, the resulting intraday patterns in prices, 
liquidity, and order flows in our model. 

32 The ability to reduce trading costs on parent orders benchmarked to 
TWAP and VWAP (value-weighted average price) is part of the business 
model for agency order execution. 

33 Intraday patterns are robust properties of volume and price volatility 
in equity markets that were first documented in Wood et al. (1985) and 
Jain and Joh (1988) . 
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Fig. 6. Intraday patterns for price impacts λn for times n = 1 , . . . , 10 . The parameters are N = 10 , σ 2 
˜ v = 1 , σ 2 

w = 1 , and σ 2 
˜ a = 0 . 2 (− − with ◦) , 1 . 0 (− ·

−with △ ) , 2 . 0 (− · · − with #) . 
The economics underlying these equilibrium effects fol- 

lows from how dynamic rebalancing affects the mix of in- 
formation and noise in the aggregate order flow. There are 
two direct channels for this effect: First, the trading target 
˜ a can be written as a combination of noise and valuation 
information 
˜ a = σ ˜ a [ ρσ˜ v ˜ v + √ 

1 − ρ2 ˜ ϵ] (55) 
where (given the joint multivariate normality) ˜ ϵ is a stan- 
dard Normal random variable that is independent of ˜ v , 
and where ρ controls the information content in ˜ a , and 
σ ˜ a scales the volatility of ˜ a (but not its informativeness) 
and, thus, scales the magnitude of the constraint on the 
rebalancer’s trading. The second direct channel is that 
the rebalancer speculates on private information about ˜ v 
learned endogenously over time by filtering the aggregate 
order flow better than market makers. There are also in- 
direct channels due to equilibrium effects of information- 
competition and rebalancing noise on how the hedge fund 
trades on its private information about ˜ v . 

Price dynamics: Fig. 6 shows how dynamic rebalancing 
affects the price impact of order-flow parameter λn over 
the trading day. This relation is complicated because it is 
the net effect of all of the direct and indirect channels 
through which rebalancing affects the order-flow mix of 
information and noise. It is further complicated because 
the relation between λn and the aggressiveness β I 

n of in- 
formed trading in (29) is non-monotone. However, individ- 
ual channels can be isolated in a few special cases. Con- 
sider the ρ = 0 case in Fig. 6 A. At time n = 1 , there has 
been no endogenous learning by the rebalancer, and, given 
ρ = 0 , the target ˜ a is uninformative noise. From (29) , the 
direct effect of the rebalancing noise at n = 1 is, therefore, 
to lower the price impact λ1 . Hence, the fact that the equi- 
librium λ1 with rebalancing (non-black dashed lines) actu- 
ally increases relative to Kyle (solid black line) is entirely 
due to the indirect effect of rebalancing on the informed- 
investor trading at time n = 1 . At later times n > 2, the 
price impacts in Fig. 6 A are lower than in Kyle. The re- 

sult is a twist in the slope of λn over time. Fig. 6 B shows 
similar twists relative to the modified FV model (same 
black line given the independence from σ 2 

˜ a in the modi- 
fied FV model) when ρ > 0. The twist in λn consistently 
increases when there is more trading-target volatility σ 2 

˜ a , 
as shown in both Figs. 6 A and 6 B. The price-impact twist 
in our model differs from Degryse et al. (2014) in which 
intraday price impacts have an inverted U -shape (see their 
Fig. 1 ). This difference is due to the direct and indirect ef- 
fects of endogenous learning given long-lived information 
and, when ρ > 0, of the fact that rebalancing targets in our 
model are then also informative. 

Fig. 7 shows the variance ((2) 
n of the market pricing er- 

rors ˜ v − p n over time, which measures the quality of price 
discovery. When ρ = 0 , more information is revealed at 
early times compared to the Kyle model (due to more ag- 
gressive informed trading by the hedge fund, see below), 
but pricing accuracy is reduced later in the day. When 
ρ > 0 (so that ˜ a is ex ante informative), the trading target 
constrains the aggressiveness of the rebalancer’s orders rel- 
ative to the unconstrained purely informational orders of 
the less-informed investor in the modified FV model. This 
constraint, depending on the parameterization, can cause 
the rebalancer’s orders to be larger or smaller than in the 
modified FV model. For example, holding fixed the infor- 
mativeness of the target at ρ = 0 . 45 , a larger target vari- 
ance σ 2 

˜ a increases the size of the rebalancer’s orders in- 
duced by a target realization with a given amount of asset- 
value information, which leads to faster information ag- 
gregation in Fig. 7 . This is due to both the direct effect 
of larger information-based rebalancer trades and also an 
indirect information-competition race-to-trade effect that 
increases the aggressiveness of the informed hedge funds’ 
orders (see Fig. 9 below). The Internet Appendix shows fur- 
ther that these price-discovery dynamics lead to U -shaped 
intraday patterns in price volatility that are increasing in 
the rebalancing target variance σ 2 

˜ a . 
A novel feature of dynamic rebalancing is sunshine 

trading, since predictable orders do not have price im- 
pacts (see (10) ). The key variable here is the market-maker 
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Fig. 7. Intraday patterns for the variance ((2) 
n of the pricing error ˜ v − p n for times n = 0 , 1 , . . . , 9 . The parameters are N = 10 , σ 2 

˜ v = 1 , σ 2 
w = 1 , and σ 2 

˜ a = 
0 . 2 (− − with ◦) , 1 . 0 (− · −with △ ) , 2 . 0 (− · · − with #) . 

Fig. 8. Intraday patterns for the variance ((1) 
n of uncertainty about remaining latent trading-demand ˜ a − θR 

n − q n for times n = 0 , 1 , . . . , 9 . The parameters 
are N = 10 , σ 2 

˜ v = 1 , σ 2 
w = 1 , and σ 2 

˜ a = 0 . 2 (− − with ◦) , 1 . 0 (− · −with △ ) , 2 . 0 (− · · − with #) . 
expectation q n of the rebalancer’s remaining latent trading 
demand ˜ a − θR 

n −1 . Fig. 8 shows the market makers’ uncer- 
tainty ((1) 

n = V [ ̃  a − θR 
n − q n ] about the rebalancer’s remain- 

ing latent trading demand. Although a priori ((1) 
n need not 

be monotone over time (see footnote 19), Fig. 8 shows that 
uncertainty about the remaining latent trading demand is 
monotonely decreasing for a wide range of values of σ 2 

˜ a 
and ρ . 

Informed investor: Fig. 9 shows the hedge fund’s strat- 
egy coefficients β I 

n , which determine how aggressively 
the hedge-fund manager trades on her private informa- 
tion ˜ v − p n −1 over time. As in Kyle (1985) , the intensity 
of informed trading in our model increases as time ap- 
proaches the terminal time N . This is consistent with the 
fact that the incentive to delay trading on information be- 
comes weaker later in the day as the remaining time left 
for trading becomes shorter. We also see that the effect 
of increased rebalancing target variance σ 2 

˜ a on informed 
trading is U -shaped. Increasing σ 2 

˜ a increases β I 
n (i.e., causes 

the informed investor to trade more aggressively) earlier 
and later in the day but leaves β I 

n relatively unchanged 
in the middle of the day. In addition, if ρ > 0, hedge- 
fund trading aggressiveness increases somewhat due to the 
information-competition effect. The apparent size of the 
changes in β I 

1 — which are on the order of 10% — is vi- 
sually understated in Fig. 9 because of the vertical scaling 
(due to the size of β I 

10 ). 
A linear decomposition for the informed hedge fund’s 

orders, 
!θ I 

n = A I n ̃  a + B I n ̃  v + ∑ 
j=1 , ... n −1 c I j,n !w j , (56) 

lets us break the hedge fund’s orders into a deterministic 
component given the signal ˜ v and an adaptive component 
that depends on the rebalancer target ˜ a and the noise- 
trader orders. This decomposition is considered further in 
the Internet Appendix. 

Aggregate order-flow and volume: Autocorrelation in the 
aggregate order flow is one of the novel effects of dynamic 
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Fig. 9. Intraday patterns for the hedge-fund strategy coefficient β I 
n at times n = 1 , . . . , 10 . The parameters are N = 10 , σ 2 

˜ v = 1 , σ 2 
w = 1 , and σ 2 

˜ a = 0 . 2 (− −
with ◦) , 1 . 0 (− · −with △ ) , 2 . 0 (− · · − with #) . 

Fig. 10. Intraday patterns for the aggregate order-flow autocorrelation E [ y n −1 y n ] √ 
E [ y 2 n −1 ] E [ y 2 n ] for times n = 2 , 3 , . . . , 10 . The parameters are N = 10 , σ 2 

˜ v = 1 , σ 2 
w = 1 , 

and σ 2 
˜ a = 0 . 2 (− − with ◦) , 1 . 0 (− · −with △ ) , 2 . 0 (− · · − with #) . 

rebalancing. Fig. 10 shows the unconditional autocorrela- 
tion of the (signed) aggregate order flow over the trading 
day. Although the absolute level of autocorrelation is not 
high, there is a clear U -shaped pattern of higher order-flow 
autocorrelation at the beginning and end of the day (when, 
from Fig. 3 , the rebalancer trades more) and lower autocor- 
relation during the middle of the day (when the rebalancer 
trades less). Our parameter-space analysis shows that the 
order-flow autocorrelation level and the magnitude of the 
U -shape are both increasing in the target variance σ 2 

˜ a . 
Market trading volume over the day is also affected by 

dynamic rebalancing. Our proxy for trading volume is 
max (0 , !θR 

n ) + max (0 , !θ I 
n ) 

+ max (0 , !w n ) + max (0 , −y n ) , (57) 
which is buy-side volume except that it ignores crosses 
among the noise traders. Fig. 11 confirms that the U - 
shaped intraday patterns of rebalancer volume carry over 
and induce U -shaped patterns in the intraday means and 

standard deviations of market volume in the rebalancing 
model and also relative to Kyle (1985) and the modified 
FV model. As can be seen, these U -shaped volume patterns 
are increasing in the parent-target variance σ 2 

˜ a . 
4.4. Asset-value variance and intraday patterns 

A variety of intraday patterns in pricing and order flows 
is documented in the previous sections. Proposition 1 can 
be extended to show that these intraday patterns are ei- 
ther insensitive to asset-value volatility or scale simply rel- 
ative to σ˜ v . 
Proposition 3 . Given a market parameterization 
{ σ 2 

˜ a , σ 2 
˜ v , ρ σ ˜ a σ˜ v } as in (49) with an equilibrium, if the 

parameterization changes to { σ 2 
˜ a , h 2 σ 2 

˜ v , ρ σ ˜ a h σ˜ v } , then 
in the new equilibrium the intraday patterns in market 
characteristics change as follows: 
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Fig. 11. Plots A and B show intraday patterns in the unconditional means of market volume, and plots C and D show the unconditional standard deviations 
of market volume at times n = 1 , . . . , 10 . The parameters are N = 10 , σ 2 

˜ v = 1 , σ 2 
w = 1 , and σ 2 

˜ a = 0 . 2 (− − with ◦) , 1 . 0 (− · −with △ ) , 2 . 0 (− · · − with #) . 
• The order-decomposition coefficients A R n and c R j,n for the 

rebalancer and A I n and c I 
j,n for the informed investor on 

˜ a and !w j are unaffected by h. 
• The order-decomposition coefficients B R n and B I n on ˜ v be- 

come B R n /h and B I n /h . 
• The expectation E [!θR 

n | ̃  a ] , sunshine-trading ratio, 
SD [!θR 

n | ̃  a ] , order correlation corr [!θ I 
n , !θR 

n ] , and 
aggregate order-flow autocorrelation are all unaffected by 
h. 

• The informed-investor expected volume E [!θ I 
n | ̃ v ] becomes 

1 
h E [!θ I 

n | ̃ v ] . 
• The price-change volatility SD [ !p n ] becomes h SD [ !p n ] . 

The proposition follows from algebraic substitution of 
the scaling factor h in the expressions for the various quan- 
tities of interest. As in Proposition 1 , the rebalancer’s trad- 
ing strategy is relatively unaffected by the stock-value vari- 
ance. One exception is the coefficient B R n , but this is just a 
pass-through from the informed-investor orders in the ag- 
gregate order flow. 

5. Robustness 
The qualitative properties of our model are likely to 

be robust to relaxing our modeling assumptions. First, our 
model assumes a hard rebalancing constraint. Alternatively, 
the rebalancing constraint could be soft with a quadratic 
penalty for deviations from the target, or investors could 
have a random private value for the asset that is de- 
creasing in their terminal holdings. In either case, the re- 
balancer should still engage in order-splitting to reduce 
their trading costs. These alternative rebalancing motives 
should result in some amount of price elasticity in the to- 
tal amount traded by rebalancers. This should increase the 
importance of the adaptive part of rebalancer orders that 
responds to the prior order-flow history. 

Second, informed investors and rebalancers only use 
market orders in our model. In practice, however, order- 
splitting algorithms also use limit orders (see O’Hara, 
2015 ). While the mathematics of the dynamic program- 
ming problems and the rational-expectations fixed point 
would be complicated, we still expect rebalancing to re- 
sult in order-flow autocorrelation and for predictable com- 
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ponents of market and limit order flows to have no persis- 
tent price impacts. Empirically, limit order flows are also 
autocorrelated (see Biais et al., 1995 ). 

Third, our market makers are competitive, risk-neutral, 
and have no order processing costs. As a result, prices 
are martingales in our model. We do not expect market- 
making frictions and transitory price effects to eliminate 
the informational aspects of rebalancing. It would be in- 
teresting to investigate empirically how transitory mar- 
ket frictions and persistent informational aspects of order- 
splitting interact. 
6. Conclusion 

This paper has explored dynamic order-splitting for 
portfolio rebalancing and its equilibrium interactions with 
price discovery, order-flow dynamics, and market liquid- 
ity. Our paper is the first to investigate these issues with 
both long-lived information and dynamic rebalancing given 
a terminal parent trading target. Dynamic rebalancing does 
not just inject additional trading noise in the market; 
rather it affects the structure of the market equilibrium. 
Order flow becomes autocorrelated and liquidity and price- 
discovery dynamics change because of sunshine trading. 
In addition, dynamic rebalancing affects equilibrium prices 
and also the process for arriving orders from the informed 
investor. Our model has a variety of empirically testable 
implications for intraday market patterns and their co- 
movement with rebalancing target volatility. 

Our model has many interesting possible extensions for 
future theory. One possible extension is to model dynamic 
rebalancing in continuous-time. Another extension is to re- 
lax the assumption that all investors are risk-neutral. For 
example, exponential utility is a natural specification to 
consider. Finally, our model could be extended to include 
multiple informed investors and rebalancers. 
Appendix A. Proofs and algorithm 
A1. Kalman filtering 
Lemma 1 . Consider the conjectured system (18) –(22) corre- 
sponding to arbitrary coefficients { β I 

n , βR 
n , αR 

n } N n =1 . Whenever 
(29) –(30) hold, we have 
ˆ p n = E [ ̃ v | ̂  y 1 , . . . , ̂  y n ] , (A.1) 
ˆ q n = E [ ̃  a − ˆ θR 

n | ̂  y 1 , . . . , ̂  y n ] , (A.2) 
where ˆ p is defined by (21) and ˆ q is defined by (22) . Further- 
more, the recursions for the variances and covariance (31) –
(33) hold. 
Proof . For n = 1 , . . . , N, we have the moment definitions in 
(23) –(25) where the starting values are given in (26) . We 
then define the process ˆ z M 

n as 
ˆ z M 

n := ̂  y n − (αR 
n + βR 

n ) ̂  q n −1 
= β I 

n ( ̃ v − ˆ p n −1 ) + βR 
n ( ̃  a − ˆ θR 

n −1 − ˆ q n −1 ) + !w n . (A.3) 

These Gaussian variables ˆ z M 
1 , ̂  z M 

2 , ...., ̂  z M 
N are mutually inde- 

pendent and satisfy σ ( ̂ z M 
1 , . . . , ̂  z M 

n ) = σ ( ̂  y 1 , . . . ̂  y n ) . The pro- 
jection theorem for Gaussian random variables gives 
! ˆ p n = E [ ̃ v | ̂  z M 

1 , . . . , ̂  z M 
n ] − E [ ̃ v | ̂  z M 

1 , . . . , ̂  z M 
n −1 ] 

= E [ ̃ v ̂  z M 
n ] 

V [ ̂ z M 
n ] ˆ z M 

n , (A.4) 
! ˆ q n = E [ ̃  a − ˆ θR 

n | ̂  z M 
1 , . . . ̂  z M 

n ] − E [ ̃  a − ˆ θR 
n −1 | ̂  z M 

1 , . . . , ̂  z M 
n −1 ] 

= E [ ̃  a − ˆ θR 
n −1 | ̂  z M 

1 , . . . ̂  z M 
n ] − E [ ̃  a − ˆ θR 

n −1 | ̂  z M 
1 , . . . , ̂  z M 

n −1 ] 
− E [! ˆ θR 

n | ̂  z M 
1 , . . . , ̂  z M 

n ] 
= E [( ̃  a − ˆ θR 

n −1 ) ̂ z M 
n ] 

V [ ̂ z M 
n ] ˆ z M 

n 
− E [βR 

n ( ̃  a − ˆ θR 
n −1 − ˆ q n −1 ) 

+ (αR 
n + βR 

n ) ̂  q n −1 ∣∣ ˆ z M 
1 , . . . , ̂  z M 

n ]
= E [( ̃  a − ˆ θR 

n −1 − ˆ q n −1 ) ̂ z M 
n ] 

V [ ̂ z M 
n ] ˆ z M 

n 
− βR 

n E [ ̃  a − ˆ θR 
n −1 − ˆ q n −1 | ̂  z M 

n ] − (αR 
n + βR 

n ) ̂  q n −1 
= (1 − βR 

n ) E [( ̃  a − ˆ θR 
n −1 − ˆ q n −1 ) ̂ z M 

n ] 
V [ ̂ z M 

n ] ˆ z M 
n 

− (αR 
n + βR 

n ) ̂  q n −1 . (A.5) 
To proceed, we first compute 
V [ ̂ z M 

n ] = E [ (β I 
n ( ̃ v − ˆ p n −1 ) 

+ βR 
n ( ̃  a − ˆ θR 

n −1 − ˆ q n −1 ) + !w n )2 ] 
= (β I 

n ) 2 ((2) 
n −1 + (βR 

n ) 2 ((1) 
n −1 + 2 β I 

n βR 
n ((3) 

n −1 + σ 2 
w !, 

(A.6) 
E [ ̃ v ̂ z M 

n ] = E [( ̃ v − ˆ p n −1 ) ̂ z M 
n ] 

= E [ ( ̃ v − ˆ p n −1 ) (β I 
n ( ̃ v − ˆ p n −1 ) 

+ βR 
n ( ̃  a − ˆ θR 

n −1 − ˆ q n −1 ) + !w n )] 
= β I 

n ((2) 
n −1 + βR 

n ((3) 
n −1 , (A.7) 

E [( ̃  a − ˆ θR 
n −1 − ˆ q n −1 ) ̂ z M 

n ] 
= E [ ( ̃  a − ˆ θR 

n −1 − ˆ q n −1 ) (β I 
n ( ̃ v − ˆ p n −1 ) 

+ βR 
n ( ̃  a − ˆ θR 

n −1 − ˆ q n −1 ) + !w n )] 
= β I 

n ((3) 
n −1 + βR 

n ((1) 
n −1 . (A.8) 

Combining these expressions and by matching coefficients 
with (21) and (22) , we find the lemma’s statement equiv- 
alent to the restrictions (29) –(30) . Based on these expres- 
sions, the recursion for ((1) 

n , n = 1 , . . . , N, in (31) is 
((1) 

n : = V [ ̃  a − ˆ θR 
n − ˆ q n ] 

= V [ ̃  a − ˆ θR 
n −1 − ˆ q n −1 − ! ˆ θR 

n − ! ˆ q n ] 
= V [ ̃  a − ˆ θR 

n −1 − ˆ q n −1 − ! ˆ θR 
n − r n ̂  y n 

+ (1 + r n )(αR 
n + βR 

n ) ̂  q n −1 ] 
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= V [ ̃  a − ˆ θR 

n −1 − (1 − (1 + r n )(αR 
n + βR 

n )) ̂  q n −1 
− (1 + r n )(βR 

n ( ̃  a − ˆ θR 
n −1 ) + αR 

n ̂  q n −1 ) 
− r n (β I 

n ( ̃ v − ˆ p n −1 ) ) − r n !w n ] 
= V [ (1 − (1 + r n ) βR 

n )( ̃  a − ˆ θR 
n −1 ) 

−
(
1 − (1 + r n ) βR 

n ) ˆ q n −1 
− r n β I 

n ( ̃ v − ˆ p n −1 ) − r n !w n ] 
= V [ (1 − (1 + r n ) βR 

n )( ̃  a − ˆ θR 
n −1 − ˆ q n −1 ) 

− r n β I 
n ( ̃ v − ˆ p n −1 ) − r n !w n ] 

= (1 − (1 + r n ) βR 
n )2 

((1) 
n −1 + (r n β I 

n ) 2 ((2) 
n −1 

+ r 2 n σ 2 
w ! − 2 (1 − (1 + r n ) βR 

n )r n β I 
n ((3) 

n −1 
= (1 − βR 

n ) ((1 − βR 
n − r n βR 

n )((1) 
n −1 − r n β I 

n ((3) 
n −1 ), 

(A.9) 
where the last equality uses (30) . The recursions for 
((2) 

n and ((3) 
n , n = 1 , . . . , N, in (32) and (33) are found 

similarly. !

A2. Informed investor’s optimization problem 
We start with the following lemma which contains 

most of the calculations we will need later. Recall the 
hedge fund’s state processes { X (1) 

n , X (2) 
n } are defined by 

(35) . 
Lemma 2 . Fix the constants (15) subject to the pricing- 
coefficient restrictions (29) –(30) holding and use them to de- 
fine !θR 

n by (5) and to define the moments (31) –(33) with 
initial values (26) . Let !θ I 

n ∈ σ ( ̃ v , y 1 , . . . , y n −1 ) , n = 1 , . . . , N, 
be arbitrary for the hedge fund. We can then define the Gaus- 
sian random variables 
ˆ z I n := ˆ y n − ! ˆ θ I 

n − (αR 
n + βR 

n ) ̂  q n −1 − βR 
n ((3) 

n −1 
((2) 

n −1 ( ̃ v − ˆ p n −1 ) , 
n = 1 , . . . , N (A.10) 
where the conjectured “hat” processes are defined in (18) –
(22) . The variable ˆ z I 

k is independent of { ̃ v , ̂  y 1 , ...., ̂  y k −1 } for 
k ≤ N , and the following measurability properties are satis- 
fied: 
ˆ θR 
n − θR 

n ∈ σ ( ̃ v , y 1 , . . . , y n ) = σ ( ̃ v , ̂  y 1 , . . . , ̂  y n ) = σ ( ̃ v , ̂  z 1 , . . . ̂  z n ) , 
n ∈ 1 , . . . , N. (A.11) 
Furthermore, the state variables X (1) 

n and X (2) 
n defined in 

(35) for n = 1 , . . . , N have Markovian dynamics 
!X (1) 

n = −λn (!θ I 
n + βR 

n X (2) 
n −1 ) − λn ̂  z I n , X (1) 

0 = ˜ v , (A.12) 
!X (2) 

n = −r n !θ I 
n − (1 + r n ) βR 

n X (2) 
n −1 − ((3) 

n 
((2) 

n λn ̂  z I n , 
X (2) 

0 = ρσ ˜ a 
σ˜ v ˜ v . (A.13) 

Finally, for any constants I (1 , 1) 
n , I (1 , 2) 

n , and I (2 , 2) 
n , we have the 

conditional expectation 
E [ ( ̃ v − p n )!θ I 

n + I (1 , 1) 
n (

X (1) 
n )2 

+ I (1 , 2) 
n X (1) 

n X (2) 
n 

+ I (2 , 2) 
n (

X (2) 
n )2 ∣∣∣ ˜ v , y 1 , . . . , y n −1 ] 

= X (1) 
n −1 !θ I 

n − (!θ I 
n ) 2 λn − !θ I 

n λn βR 
n X (2) 

n −1 
+ I (1 , 1) 

n ((
X (1) 

n −1 )2 
− 2 λn X (1) 

n −1 (!θ I 
n + βR 

n X (2) 
n −1 )

+ λ2 
n (!θ I 

n + βR 
n X (2) 

n −1 )2 
+ λ2 

n V [ ̂ z I n ] )
+ I (1 , 2) 

n (
X (1) 

n −1 X (2) 
n −1 − X (1) 

n −1 (r n !θ I 
n + (1 + r n ) βR 

n X (2) 
n −1 )

− X (2) 
n −1 λn (!θ I 

n + βR 
n X (2) 

n −1 )
+ λn (!θ I 

n + βR 
n X (2) 

n −1 )(
r n !θ I 

n + (1 + r n ) βR 
n X (2) 

n −1 )
+ λ2 

n ((3) 
n 

((2) 
n V [ ̂ z I n ] )

+ I (2 , 2) 
n ((

X (2) 
n −1 )2 

− 2 X (2) 
n −1 (r n !θ I 

n + (1 + r n ) βR 
n X (2) 

n −1 )
+ (r n !θ I 

n + (1 + r n ) βR 
n X (2) 

n −1 )2 
+ λ2 

n (((3) 
n 

((2) 
n 

)2 
V [ ̂ z I n ] ), 

(A.14) 
which is quadratic in !θ I 

n , and where the variance V [ ̂ z I n ] can 
be computed to be 
V [ ̂ z I n ] = (βR 

n ) 2 (((1) 
n −1 −

(
((3) 

n −1 )2 
((2) 

n −1 
)

+ σ 2 
w !. (A.15) 

Proof . The joint normality claim follows by an induction 
argument. To see the independence claim for ˆ z I n in (A.10) , 
notice that ˆ z I n is the order-flow innovation process for the 
informed investor 
ˆ y n − E [ ̂  y n | ̃ v , ̂  y 1 , . . . , ̂  y n −1 ] 

= βR 
n ( ˜ a − ˆ θR 

n −1 − ˆ q n −1 
− E [ ̃  a − ˆ θR 

n −1 − ˆ q n −1 | ̃  v , ̂  y 1 , . . . , ̂  y n −1 ] ) + !w n 
= βR 

n ( ˜ a − ˆ θR 
n −1 − ˆ q n −1 − ((3) 

n −1 
((3) 

n −1 ( ̃ v − ˆ p n −1 ) )
+ αR 

n ̂  q n −1 − αR 
n ̂  q n −1 + !w n 

= ˆ y n − ! ˆ θ I 
n − (αR 

n + βR 
n ) ̂  q n −1 − βR 

n ((3) 
n −1 

((3) 
n −1 (˜ v − ˆ p n −1 )

= ˆ z I n . (A.16) 
Let k ≤ n − 1 be arbitrary, and then iterated expectations 
produce the zero-correlation property: 
E [ ̂  y k ̂  z I n ] = E [ E [ ̂  y k ̂  z I n | ̃  v , ̂  y 1 , . . . , ̂  y k ]] 

= E [ ̂  y k E [ ̂ z I n | ̃  v , ̂  y 1 , . . . , ̂  y k ]] = 0 . (A.17) 
Independence follows then from the joint normality. 

Next, we observe that the last equality in (A.11) fol- 
lows directly from (A.10) . We proceed by induction and ob- 
serve 
σ ( ̃ v , y 1 ) = σ ( ̃ v , βR 

1 ̃  a + !w 1 ) = σ ( ̃ v , ̂  y 1 ) , (A.18) 
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ˆ θR 
1 − θR 

1 = 0 , (A.19) 
which follows from ˆ θ I 

1 , θ I 
1 ∈ σ ( ̃ v ) . Suppose that (A.11) holds 

for n . Then, 
ˆ θR 
n +1 − θR 

n +1 = (1 − βR 
n +1 )( ̂  θR 

n − θR 
n ) 

+ αR 
n +1 ( ̂  q n − q n ) ∈ σ ( ̃ v , y 1 , . . . , y n ) , 

σ ( ̃ v , ̂  y 1 , . . . , ̂  y n +1 ) = σ ( ̃ v , y 1 , . . . , y n , ̂  y n +1 ) 
= σ ( ̃ v , y 1 , . . . , y n , y n +1 + ! ˆ θ I 

n +1 − !θ I 
n +1 

+ ! ˆ θR 
n +1 − !θR 

n +1 ) 
= σ ( ̃ v , y 1 , . . . , y n +1 ) , (A.20) 

which proves (A .11) . The dynamics (A .12) can be seen as 
follows 
!X (1) 

n = −!p n 
= −λn (!θ I 

n + βR 
n ( ̃  a − θR 

n −1 ) + αR 
n q n −1 + !w n )

+ λn (αR 
n + βR 

n ) q n −1 
= −λn (!θ I 

n + βR 
n ( ̃  a − θR 

n −1 ) + αR 
n q n −1 + ˆ y n 

− ! ˆ θ I 
n − ! ˆ θR 

n ) + λn (αR 
n + βR 

n ) q n −1 
= −λn (!θ I 

n + βR 
n ( ̂  θR 

n −1 − θR 
n −1 ) 

+ ̂  z I n + βR 
n ( ̂  q n −1 − q n −1 ) + βR 

n ((3) 
n −1 

((2) 
n −1 (˜ v − ˆ p n −1 ))

= −λn (!θ I 
n + βR 

n X (2) 
n −1 + ̂  z I n ). (A.21) 

The dynamics (A.13) follow similarly using expressions 
(29) –(30) and (32) –(33) . 

The expression for the variance (A.15) is found as fol- 
lows: 
V [ ̂ z I n ] = V [ βR 

n ( ˜ a − ˆ θR 
n −1 − ˆ q n −1 

− E [ ̃  a − ˆ θR 
n −1 − ˆ q n −1 | ̃  v , ̂  y 1 , . . . , ̂  y n −1 ] ) + !w n ] 

= V [ βR 
n ( ˜ a − ˆ θR 

n −1 − ˆ q n −1 − ((3) 
n −1 

((2) 
n −1 ( ̃ v − ˆ p n −1 ) )] 

+ σ 2 
w !

= (βR 
n ) 2 (((1) 

n −1 −
(
((3) 

n −1 )2 
((2) 

n −1 
)

+ σ 2 
w !. (A.22) 

To compute the conditional expectation (A.14) , we 
compute the four individual terms. The first term in 
(A.14) equals 
E [( ̃ v − p n )!θ I 

n | ̃  v , y 1 , . . . , y n −1 ] 
= ( ̃ v − p n −1 )!θ I 

n − !θ I 
n E [!p n | ̃  v , y 1 , . . . , y n −1 ] 

= X (1) 
n −1 !θ I 

n 
− !θ I 

n λn E [!θ I 
n + βR 

n ( ̃  a − θR 
n −1 − q n −1 ) | ̃  v , y 1 , . . . , y n −1 ] 

= X (1) 
n −1 !θ I 

n − (!θ I 
n ) 2 λn 

− !θ I 
n λn βR 

n ( ˆ θR 
n −1 − θR 

n −1 + ˆ q n −1 − q n −1 
+ E [ ̃  a − ˆ θR 

n −1 − ˆ q n −1 | ̃  v , y 1 , . . . , y n −1 ] )
= X (1) 

n −1 !θ I 
n − (!θ I 

n ) 2 λn − !θ I 
n λn βR 

n ( ˆ θR 
n −1 − θR 

n −1 + ˆ q n −1 

− q n −1 + ((3) 
n −1 

((2) 
n −1 ( ̃ v − ˆ p n −1 ) )

= X (1) 
n −1 !θ I 

n − (!θ I 
n ) 2 λn − !θ I 

n λn βR 
n X (2) 

n −1 . (A.23) 
The second term in (A.14) is 
E [ (X (1) 

n )2 | ̃  v , y 1 , . . . , y n −1 ] 
= (X (1) 

n −1 )2 
+ 2 X (1) 

n −1 E [!X (1) 
n | ̃  v , y 1 , . . . , y n −1 ] 

+ E [ (!X (1) 
n )2 | ̃  v , y 1 , . . . , y n −1 ] 

= (X (1) 
n −1 )2 

− 2 λn X (1) 
n −1 (!θ I 

n + βR 
n X (2) 

n −1 )
+ λ2 

n (!θ I 
n + βR 

n X (2) 
n −1 )2 

+ λ2 
n V [ ̂ z I n ] . (A.24) 

The third term in (A.14) is 
E [ X (1) 

n X (2) 
n | ̃  v , y 1 , . . . , y n −1 ] 

= X (1) 
n −1 X (2) 

n −1 + X (1) 
n −1 E [!X (2) 

n | ̃  v , y 1 , . . . , y n −1 ] 
+ X (2) 

n −1 E [!X (1) 
n | ̃  v , y 1 , . . . , y n −1 ] 

+ E [!X (1) 
n !X (2) 

n | ̃  v , y 1 , . . . , y n −1 ] 
= X (1) 

n −1 X (2) 
n −1 − X (1) 

n −1 (r n !θ I 
n + (1 + r n ) βR 

n X (2) 
n −1 )

− X (2) 
n −1 λn (!θ I 

n + βR 
n X (2) 

n −1 )
+ λn (!θ I 

n + βR 
n X (2) 

n −1 )(
r n !θ I 

n + (1 + r n ) βR 
n X (2) 

n −1 )
+ λ2 

n ((3) 
n 

((2) 
n V [ ̂ z I n ] . (A.25) 

Finally, the last term in (A.14) is 
E [ (X (2) 

n )2 | ̃  v , y 1 , . . . , y n −1 ] 
= (X (2) 

n −1 )2 
+ 2 X (2) 

n −1 E [!X (2) 
n | ̃  v , y 1 , . . . , y n −1 ] 

+ E [ (!X (2) 
n )2 | ̃  v , y 1 , . . . , y n −1 ] 

= (X (2) 
n −1 )2 

− 2 X (2) 
n −1 (r n !θ I 

n + (1 + r n ) βR 
n X (2) 

n −1 )
+ (r n !θ I 

n + (1 + r n ) βR 
n X (2) 

n −1 )2 
+ λ2 

n (((3) 
n 

((2) 
n 

)2 
V [ ̂ z I n ] . 

(A.26) 
!

Remark . The dynamics (A.12) and (A.13) show that the pair 
( X (1) , X (2) ) form a Markov process. This implies that for 
any continuous function f : R 2 → R with f (X (1) 

n , X (2) 
n ) in- 

tegrable, the conditional expectation 
E [ f (X (1) 

n , X (2) 
n ) | ̃ v , ̂  z I 1 , . . . , ̂  z I n −1 ] (A.27) 

is again a function g of (X (1) 
n −1 , X (2) 

n −1 ) . Furthermore, 
(A.14) shows i) if f is a second-degree polynomial, the re- 
sulting function g is also a second-degree polynomial, and 
ii) the conditional expectation of p n is also a quadratic 
function of (X (1) 

n −1 , X (2) 
n −1 ) . In other words, the pair ( X (1) , X (2) ) 

is the state process for the informed investor’s optimiza- 
tion problem. 
Theorem 2 . Fix the constants (15) subject to the pricing- 
coefficient restrictions (29) –(30) holding and use them to 



44 J.H. Choi, K. Larsen and D.J. Seppi / Journal of Financial Economics 132 (2019) 22–49 
define !θR 

n by (5) , define the moments (31) –(33) with 
initial values (26) , and compute the value-function coeffi- 
cients { I (i, j) 

n } 1 ≤i ≤ j≤2 , n = 0 , . . . , N using recursions (A.42) –
(A.44) with I (i, j) 

N = 0 , subject to the second-order condition 
(39) holding. Then the hedge fund’s value function has the 
quadratic form (37) where X (1) 

n and X (2) 
n are defined in 

(35) and !p n is defined by (10) . Furthermore, the hedge 
fund’s optimal trading strategy is given by (38) with coeffi- 
cients 
γ (1) 

n := −1+ I (1 , 2) 
n r n +2 I (1 , 1) 

n λn 
2(I (2 , 2) 

n r 2 n + λn (−1+ I (1 , 2) 
n r n + I (1 , 1) 

n λn )) , (A.28) 
γ (2) 

n := −βR 
n + −2 I (2 , 2) 

n r n (−1+ βR 
n )+ I (1 , 2) 

n λn −βR 
n λn (I (1 , 2) 

n +1) 
2(I (2 , 2) 

n r 2 n + λn (−1+ I (1 , 2) 
n r n + I (1 , 1) 

n λn )) . (A.29) 
Proof . We prove the theorem by backward induction. Sup- 
pose that (37) holds for time n + 1 . The hedge fund’s value 
function in the n ’th iteration then becomes 

max 
!θ I 

k ∈ σ ( ̃ v ,y 1 , ... ,y k −1 ) 
n ≤k ≤N E 

[ 
N ∑ 

k = n ( ̃ v − p k )!θ I 
k ∣∣∣ ˜ v , y 1 , . . . , y n −1 

] 

= max 
!θ I 

n ∈ σ ( ̃ v ,y 1 , ... ,y n −1 ) E 
[ 

( ̃ v − p n )!θ I 
n + I (0) 

n 
+ ∑ 

1 ≤i ≤ j≤2 I (i, j) 
n X (i ) 

n X ( j) 
n ∣∣∣ ˜ v , y 1 , . . . , y n −1 

] 
. (A.30) 

Because (39) holds, Lemma 2 shows that the coefficient 
in front of (!θ I 

n ) 2 appearing in (A.30) is strictly negative. 
Consequently, the first-order condition is sufficient for op- 
timality and the maximizer is (38) . By inserting the opti- 
mizer (38) into (A.30) , we obtain the quadratic expression 
(37) for time n , 
I (0) 
n −1 + ∑ 

1 ≤i ≤ j≤2 I (i, j) 
n −1 X (i ) 

n −1 X ( j) 
n −1 , (A.31) 

where the value-function coefficient recursions for I (i, j) 
n −1 are 

in (A .42) –(A .44) . !

A3. Rebalancer’s optimization problem 
The following analogue of Lemma 2 uses the rebal- 

ancer’s state variables { Y (1) 
n , Y (2) 

n , Y (3) 
n } defined in (42) . 

Lemma 3 . Fix constants (15) satisfying (16) –(17) and subject 
to the pricing-coefficient restrictions (29) –(30) holding and 
use them to define !θ I 

n by (6) and define the moments (31) –
(33) with initial values (26) . Let !θR 

n ∈ σ ( ̃  a , y 1 , . . . , y n −1 ) , 
n = 1 , . . . , N, be arbitrary for the rebalancer. We can then de- 
fine the Gaussian random variables 
ˆ z R n := ˆ y n − ! ˆ θR 

n − β I 
n ((3) 

n −1 
((1) 

n −1 ( ̃  a − ˆ θR 
n −1 − ˆ q n −1 ) , n = 1 , . . . , N 

(A.32) 
where the conjectured “hat” processes are defined in (18) –
(22) . The variable ˆ z R 

k is independent of { ̃  a , ̂  y 1 , ...., ̂  y k −1 } for 
k ≤ N and the following measurability properties are satisfied 
σ ( ̃  a , y 1 , . . . , y k ) = σ ( ̃  a , ̂  y 1 , . . . , ̂  y k ) = σ ( ̃  a , ̂  z R 1 , . . . , ̂  z R k ) . 

(A.33) 

Furthermore, the state variables Y (1) 
n , Y (2) 

n , and Y (3) 
n defined 

in (42) n = 1 , . . . , N have Markovian dynamics 
!Y (2) 

n = −λn (!θR 
n + β I 

n Y (2) 
n −1 − (αR 

n + βR 
n ) Y (3) 

n −1 ) − r n ((3) 
n 

((1) 
n ˆ z R n , 

Y (2) 
0 = σ˜ v ρ

σ ˜ a ˜ a , (A.34) 
!Y (3) 

n = r n (!θR 
n + β I 

n Y (2) 
n −1 ) − (1 + r n )(αR 

n + βR 
n ) Y (3) 

n −1 + r n ̂  z R n , 
Y (3) 

0 = 0 . (A.35) 
For constants L (1 , 1) 

n , L (1 , 2) 
n , L (1 , 3) 

n , L (2 , 2) 
n , L (2 , 3) 

n , and L (3 , 3) 
n we 

have the conditional expectation 
E [ −( ̃  a − θR 

n −1 )!p n + ∑ 
1 ≤i ≤ j≤3 L (i, j) 

n Y (i ) 
n Y ( j) 

n | ̃  a , y 1 , . . . , y n −1 ] 
= −Y (1) 

n −1 (λn (!θR 
n + β I 

n Y (2) 
n −1 ) − λn (αR 

n + βR 
n ) Y (3) 

n −1 )
+ L (1 , 1) 

n (
(Y (1) 

n −1 − !θR 
n ) 2 )

+ L (1 , 2) 
n (Y (1) 

n −1 − !θR 
n ) (Y (2) 

n −1 − λn (!θR 
n + β I 

n Y (2) 
n −1 

− (αR 
n + βR 

n ) Y (3) 
n −1 ))

+ L (1 , 3) 
n (Y (1) 

n −1 − !θR 
n ) (Y (3) 

n −1 + r n (!θR 
n + β I 

n Y (2) 
n −1 )

− (1 + r n )(αR 
n + βR 

n ) Y (3) 
n −1 )

+ L (2 , 2) 
n (

(Y (2) 
n −1 ) 2 − 2 Y (2) 

n −1 λn (!θR 
n + β I 

n Y (2) 
n −1 

− (αR 
n + βR 

n ) Y (3) 
n −1 )

+ λ2 
n (!θR 

n + β I 
n Y (2) 

n −1 − (αR 
n + βR 

n ) Y (3) 
n −1 )2 

+ r 2 n (((3) 
n 

((1) 
n 

)2 
V [ ̂ z R n ] )

+ L (2 , 3) 
n (

Y (2) 
n −1 Y (3) 

n −1 + Y (2) 
n −1 (r n (!θR 

n + β I 
n Y (2) 

n −1 )
− (1 + r n )(αR 

n + βR 
n ) Y (3) 

n −1 )
− Y (3) 

n −1 λn (!θR 
n + β I 

n Y (2) 
n −1 − (αR 

n + βR 
n ) Y (3) 

n −1 )
− r 2 n ((3) 

n 
((1) 

n V [ ̂ z R n ] − λn (!θR 
n + β I 

n Y (2) 
n −1 − (αR 

n + βR 
n ) Y (3) 

n −1 )
×

(
r n (!θR 

n + β I 
n Y (2) 

n −1 ) − (1 + r n )(αR 
n + βR 

n ) Y (3) 
n −1 ))

+ L (3 , 3) 
n (

(Y (3) 
n −1 ) 2 + 2 Y (3) 

n −1 (r n (!θR 
n + β I 

n Y (2) 
n −1 )

− (1 + r n )(αR 
n + βR 

n ) Y (3) 
n −1 )

+ (r n (!θR 
n + β I 

n Y (2) 
n −1 ) − (1 + r n )(αR 

n + βR 
n ) Y (3) 

n −1 )2 
+ r 2 n V [ ̂ z R n ] ), (A.36) 

which is quadratic in !θR 
n , and where the variance V [ ̂ z R n ] is 

given by 
V [ ̂ z R n ] = (β I 

n ) 2 (((2) 
n −1 −

(
((3) 

n −1 )2 
((1) 

n −1 
)

+ σ 2 
w !. (A.37) 
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Proof . The proof is similar to the proof of Lemma 2 and is therefore omitted. The one difference is that restrictions (16) –
(17) are used to change the sigma algebra σ ( ̃  a , y 1 , . . . , y n −1 ) into σ ( ̃  a − ˆ θR 

n −1 − ˆ q n −1 , y 1 , . . . , y n −1 ) in the derivation of the 
expectation in (A.36) . !

Theorem 3 . Fix the constants (15) satisfying (16) –(17) and subject to the pricing-coefficient restrictions (29) –(30) holding and 
use them to define !θ I 

n by (6) , define the moments (31) –(33) with initial values (26) , and compute the value-function coefficients 
{ L (i, j) 

n } 1 ≤i ≤ j≤3 , n = 0 , . . . , N using recursions (A .45) –(A .50) with L (i, j) 
N = 0 subject to the second-order-condition (46) holding. Then 

the rebalancer’s value function has the quadratic form (44) where { Y (1) 
n , Y (2) 

n , Y (3) 
n } are defined by (42) and !p n is defined by 

(10) . Furthermore, the rebalancer’s optimal trading strategy is given by (45) with coefficients 
δ(1) 

n := 2 L (1 , 1) 
n −L (1 , 3) 

n r n + λn + L (1 , 2) 
n λn 

2 (L (1 , 1) 
n −L (1 , 3) 

n r n + L (3 , 3) 
n r 2 n + λn (L (1 , 2) 

n −L (2 , 3) 
n r n + L (2 , 2) 

n λn ) ) , (A.38) 

δ(2) 
n := −β I 

n + L (1 , 2) 
n − r n (L (2 , 3) 

n + L (1 , 3) 
n β I 

n ) + L (1 , 2) 
n β I 

n λn + 2(L (1 , 1) 
n β I 

n + L (2 , 2) 
n λn ) 

2 (L (1 , 1) 
n − L (1 , 3) 

n r n + L (3 , 3) 
n r 2 n + λn (L (1 , 2) 

n − L (2 , 3) 
n r n + L (2 , 2) 

n λn ) ) , (A.39) 

δ(3) 
n := 

(
− 2 L (3 , 3) 

n r n − L (1 , 3) 
n (−1 + αR 

n + r n αR 
n + βR 

n + r n βR 
n ) + L (2 , 3) 

n λn 
+(αR 

n + βR 
n ) (2 L (3 , 3) 

n r n (1 + r n ) + λn (L (1 , 2) 
n − L (2 , 3) 

n − 2 L (2 , 3) 
n r n + 2 L (2 , 2) 

n λn ) ))
2 (L (1 , 1) 

n − L (1 , 3) 
n r n + L (3 , 3) 

n r 2 n + λn (L (1 , 2) 
n − L (2 , 3) 

n r n + L (2 , 2) 
n λn ) ) . (A.40) 

Proof . The proof is similar to the proof of Theorem 2 and is therefore omitted. !

A4. Remaining proof 
Proof of Theorem 1 . Part (iii) of Definition 1 holds from Lemma 1 . Parts (i)–(ii) of Definition 1 hold from Theorem 2 and 
Theorem 3 as soon as we show that the optimizers (38) and (45) agree with (18) and (19) . This, however, follows from the 
equilibrium conditions (40) and (47) . !

A5. Value-function coefficients 
Set the terminal coefficients 

I (1 , 1) 
N := . . . := I (2 , 2) 

N := L (1 , 1) 
N := . . . := L (3 , 3) 

N := 0 . (A.41) 
The recursion for the hedge fund’s value-function coefficients is given by 
I (1 , 1) 
n −1 = −1 + r n (2 I (1 , 2) 

n − (I (1 , 2) 
n ) 2 r n + 4 I (1 , 1) 

n I (2 , 2) 
n r n ) 

4(I (2 , 2) 
n r 2 n + λn (−1 + I (1 , 2) 

n r n + I (1 , 1) 
n λn )) , (A.42) 

I (1 , 2) 
n −1 = −

(
(−1 + I (1 , 2) 

n r n )(I (1 , 2) 
n (−1 + βR 

n ) + βR 
n ) λn 

+2 I (2 , 2) 
n r n (−1 + βR 

n + r n βR 
n − 2 I (1 , 1) 

n (−1 + βR 
n ) λn ) )

2(I (2 , 2) 
n r 2 n + λn (−1 + I (1 , 2) 

n r n + I (1 , 1) 
n λn )) , (A.43) 

I (2 , 2) 
n −1 = 

λn ( − (I (1 , 2) 
n (−1 + βR 

n ) + βR 
n ) 2 λn 

−4 I (2 , 2) 
n (−1 + βR 

n )(−1 + I (1 , 1) 
n λn + βR 

n (1 + r n − I (1 , 1) 
n λn )) )

4(I (2 , 2) 
n r 2 n + λn (−1 + I (1 , 2) 

n r n + I (1 , 1) 
n λn )) . (A.44) 

The recursion for the rebalancer’s value-function coefficients is given by 

L (1 , 1) 
n −1 = −

(
(L (1 , 3) 

n ) 2 r 2 n − 2(1 + L (1 , 2) 
n ) L (1 , 3) 

n r n λn + (1 + L (1 , 2) 
n ) 2 λ2 

n 
+4 L (1 , 1) 

n (−L (3 , 3) 
n r 2 n + λn + L (2 , 3) 

n r n λn − L (2 , 2) 
n λ2 

n ) )
4 (L (1 , 1) 

n − L (1 , 3) 
n r n + L (3 , 3) 

n r 2 n + λn (L (1 , 2) 
n − L (2 , 3) 

n r n + L (2 , 2) 
n λn ) ), (A.45) 
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L (1 , 2) 
n −1 = −

(
(L (1 , 3) 

n r n − λn )(L (2 , 3) 
n r n + L (1 , 3) 

n r n β I 
n − 2 L (2 , 2) 

n λn ) 
+(L (1 , 2) 

n ) 2 λn (−1 + β I 
n λn ) + L (1 , 2) 

n (r n (L (1 , 3) 
n − 2 L (3 , 3) 

n r n ) + λn 
+ r n (L (2 , 3) 

n − 2 L (1 , 3) 
n β I 

n ) λn + β I 
n λ2 

n ) + 2 L (1 , 1) 
n (−r n (L (2 , 3) 

n + 2 L (3 , 3) 
n r n β I 

n ) 
+(2 L (2 , 2) 

n + β I 
n + 2 L (2 , 3) 

n r n β I 
n ) λn − 2 L (2 , 2) 

n β I 
n λ2 

n ) )
2 (L (1 , 1) 

n − L (1 , 3) 
n r n + L (3 , 3) 

n r 2 n + λn (L (1 , 2) 
n − L (2 , 3) 

n r n + L (2 , 2) 
n λn ) ) , (A.46) 

L (1 , 3) 
n −1 = 

[ 
(L (1 , 3) 

n ) 2 r n ((1 + r n )(αR 
n + βR 

n ) − 1) + (1 + L (1 , 2) 
n ) λn (2 L (3 , 3) 

n r n (1 − αR 
n − βR 

n ) 
−L (2 , 3) 

n λn + (L (1 , 2) 
n + L (2 , 3) 

n )(αR 
n + βR 

n ) λn )
+2 L (1 , 1) 

n (
2 L (3 , 3) 

n r n (1 − (1 + r n )(αR 
n + βR 

n )) 
−L (2 , 3) 

n λn + (αR 
n + βR 

n ) λn (1 + L (2 , 3) 
n + 2 L (2 , 3) 

n r n − 2 L (2 , 2) 
n λn ) )

+ L (1 , 3) 
n λn (αR 

n − 1 + βR 
n + L (2 , 3) 

n r n (αR 
n + βR 

n − 1) − (αR 
n + βR 

n )(r n + 2 L (2 , 2) 
n λn ) 

−L (1 , 2) 
n (−1 + αR 

n + 2 r n αR 
n + βR 

n + 2 r n βR 
n ) + 2 L (2 , 2) 

n λn )] 
2(L (1 , 1) 

n − L (1 , 3) 
n r n + L (3 , 3) 

n r 2 n + λn (L (1 , 2) 
n − L (2 , 3) 

n r n + L (2 , 2) 
n λn )) , (A.47) 

L (2 , 2) 
n −1 = −

[ 
(L (1 , 2) 

n ) 2 (−1 + β I 
n λn ) 2 − 2 L (1 , 2) 

n r n (L (2 , 3) 
n − L (2 , 3) 

n β I 
n λn 

+ β I 
n (−L (1 , 3) 

n + 2 L (3 , 3) 
n r n + L (1 , 3) 

n β I 
n λn ) ) + r n ((

(L (2 , 3) 
n ) 2 − 4 L (2 , 2) 

n L (3 , 3) 
n )

r n 
+(L (1 , 3) 

n ) 2 r n (β I 
n ) 2 + L (1 , 3) 

n (4 L (2 , 2) 
n + 2 L (2 , 3) 

n r n β I 
n − 4 L (2 , 2) 

n β I 
n λn ) )

−4 L (1 , 1) 
n (

L (2 , 2) 
n (−1 + β I 

n λn ) 2 + r n β I 
n (L (2 , 3) 

n + L (3 , 3) 
n r n β I 

n − L (2 , 3) 
n β I 

n λn ) )] 
4(L (1 , 1) 

n − L (1 , 3) 
n r n + L (3 , 3) 

n r 2 n + λn (L (1 , 2) 
n − L (2 , 3) 

n r n + L (2 , 2) 
n λn )) , (A.48) 

L (2 , 3) 
n −1 = 

[ (
L (1 , 3) 

n r n (L (2 , 3) 
n + L (1 , 3) 

n β I 
n ) 

−2 L (1 , 1) 
n (L (2 , 3) 

n + 2 L (3 , 3) 
n r n β I 

n ) )((1 + r n )(αR 
n + βR 

n ) − 1) 
+ ((L (2 , 3) 

n ) 2 r n (αR 
n + βR 

n − 1) + 2 L (1 , 1) 
n L (2 , 3) 

n β I 
n (αR 

n + 2 r n αR 
n + βR 

n + 2 r n βR 
n − 1) 

+4 L (2 , 2) 
n (−L (3 , 3) 

n r n (−1 + αR 
n + βR 

n ) + L (1 , 1) 
n (αR 

n + βR 
n )) 

+ L (1 , 3) 
n (L (2 , 3) 

n r n β I 
n (αR 

n + βR 
n − 1) − 2 L (2 , 2) 

n (1 − (1 − r n )(αR 
n + βR 

n )) )λn 
−2 L (2 , 2) 

n β I 
n (L (1 , 3) 

n (−1 + αR 
n + βR 

n ) + 2 L (1 , 1) 
n (αR 

n + βR 
n )) λ2 

n 
+(L (1 , 2) 

n ) 2 (αR 
n + βR 

n ) λn (−1 + β I 
n λn ) + L (1 , 2) 

n (L (2 , 3) 
n λn 

−2 L (3 , 3) 
n r n (−1 + αR 

n + r n αR 
n + βR 

n + r n βR 
n + β I 

n (−1 + αR 
n + βR 

n ) λn ) 
+ L (2 , 3) 

n λn ((−1 + r n )(αR 
n + βR 

n ) + β I 
n (−1 + αR 

n + βR 
n ) λn ) 

+ L (1 , 3) 
n (−1 + αR 

n + r n αR 
n + βR 

n + r n βR 
n + β I 

n λn − (1 + 2 r n ) β I 
n (αR 

n + βR 
n ) λn )) ] 

2 (L (1 , 1) 
n − L (1 , 3) 

n r n + L (3 , 3) 
n r 2 n + λn (L (1 , 2) 

n − L (2 , 3) 
n r n + L (2 , 2) 

n λn ) ) , (A.49) 

L (3 , 3) 
n −1 = −

[ 
(L (1 , 3) 

n ) 2 ((1 + r n )(αR 
n + βR 

n ) − 1) 2 + 2 L (1 , 3) 
n λn (((1 + r n )(αR 

n + βR 
n ) − 1) ×

(
L (2 , 3) 

n (αR 
n + βR 

n − 1) − L (1 , 2) 
n (αR 

n + βR 
n ) )

−2 L (2 , 2) 
n (αR 

n + βR 
n − 1)(αR 

n + βR 
n ) λn )

−4 L (1 , 1) 
n (

L (3 , 3) 
n (−1 + αR 

n + r n αR 
n + βR 

n + r n βR 
n ) 2 + (αR 

n + βR 
n ) λn ×

(
− L (2 , 3) 

n (−1 + αR 
n + r n αR 

n + βR 
n + r n βR 

n ) + L (2 , 2) 
n (αR 

n + βR 
n ) λn ))

+ λn ((
(L (2 , 3) 

n ) 2 − 4 L (2 , 2) 
n L (3 , 3) 

n )
(−1 + αR 

n + βR 
n ) 2 λn + (L (1 , 2) 

n ) 2 (αR 
n + βR 

n ) 2 λn 
−2 L (1 , 2) 

n (αR 
n + βR 

n − 1)(2 L (3 , 3) 
n ((1 + r n )(αR 

n + βR 
n ) − 1) 

−L (2 , 3) 
n (αR 

n + βR 
n ) λn ) )] 

4 (L (1 , 1) 
n − L (1 , 3) 

n r n + L (3 , 3) 
n r 2 n + λn (L (1 , 2) 

n − L (2 , 3) 
n r n + L (2 , 2) 

n λn ) ) . (A.50) 
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A6. Algorithm 

This section describes an algorithm for searching nu- 
merically for a linear Bayesian Nash equilibrium. The al- 
gorithm is similar in logic to the algorithm in Section 5 in 
Foster and Viswanathan (1996) , except that our algorithm 
requires three constants as inputs (due to the presence 
of two strategic agents) whereas ( Foster and Viswanathan, 
1996 ) only has one constant as an input. 

The algorithm starts by taking as inputs three conjec- 
tured conditional moments for the final time N round of 
trading: 34 
((1) 

N−1 > 0 , ((2) 
N−1 > 0 , ((3) 

N−1 ∈ R such that 
(
((3) 

N−1 )2 
≤ ((1) 

N−1 ((2) 
N−1 . (A.51) 

The algorithm then proceeds through backward induction. 
Starting step for trading time N: We need { λN , β I 

N } to sat- 
isfy (29) for n = N where 
β I 

N = 1 
2 λN − ((3) 

N−1 
2((2) 

N−1 (A.52) 
from the hedge fund’s equilibrium strategy coefficient in 
(40) with λN > 0 in order to satisfy (39) . Given those two 
constants { λN , β I 

N } , we set 
βR 

N := 1 , αR 
N := r N := 0 . (A.53) 

Because of the rebalancer’s terminal constraint, his last 
round of trading (i.e., at time N ) does not involve any op- 
timization, and so we have 
E [−( ̃  a − θR 

N−1 )!p N | ̃  a , y 1 , . . . , y N−1 ]
= −Y (1) 

N−1 (λN (Y (1) 
N−1 + β I 

N Y (2) 
N−1 ) − λN Y (3) 

N−1 ). (A.54) 
This relation implies the rebalancer’s value-function coeffi- 
cients for n = N − 1 are 
L (1 , 1) 

N−1 = −λN , L (1 , 2) 
N−1 = −λN β I 

N , L (1 , 3) 
N−1 = λN , 

L (2 , 2) 
N−1 = L (2 , 3) 

N−1 = L (3 , 3) 
N−1 = 0 . (A.55) 

On the other hand, the hedge fund’s problem in the last 
round of trading is similar to her problem in any other 
round of trading. By inserting the boundary conditions 
I (1 , 1) 
N = I (1 , 2) 

N = I (2 , 2) 
N = 0 (A.56) 

into the recursions (A .42) –(A .44) , we produce the value- 
function coefficients I (i, j) 

N−1 . 
Induction step: At each time n the algorithm takes the 

following terms as inputs: 
((1) 

n , ((2) 
n , ((3) 

n , { I (i, j) 
n } 1 ≤i ≤ j≤2 , { L (i, j) 

n } 1 ≤i ≤ j≤3 . (A.57) 
We first find the constants { λn , r n , ((1) 

n −1 , ((2) 
n −1 , ((3) 

n −1 , 
β I 

n , βR 
n } by requiring that (29) –(30), (31) –(33) with ((1) 

n −1 > 
0 , ((2) 

n −1 > 0 and
(
((3) 

n −1 )2 
≤ ((1) 

n −1 ((2) 
n −1 , monotonicity of 

34 We do not take the post-trade time- N moments (((1) 
N , ((2) 

N , ((3) 
N ) 

as inputs because they are after the last round of trading. In addition, 
(31) and (33) together with the terminal condition βR 

N = 1 imply that 
((1) 

N = ((3) 
N = 0 . 

((2) 
n −1 , (40) , the first part of (47) , as well as the second- 

order conditions (39) –(46) hold. These are seven polyno- 
mial equations in seven unknown constants. We can then 
subsequently define αR 

n by the second part of (47) . 
Next, the value-function coefficients { I (i, j) 

n −1 } 1 ≤i ≤ j≤2 and 
{ L (i, j) 

n −1 } 1 ≤i ≤ j≤3 at time n − 1 are found by the recursions 
(A .42) –(A .44) and (A .45) –(A .50) . 

Termination: The iteration above is continued back to 
time n = 0 . If the resulting values at time n = 0 do not sat- 
isfy (26) , then we adjust the conjectured starting input val- 
ues in (A.51) and start the algorithm all over. If the result- 
ing values at time n = 0 do satisfy (26) , then the algorithm 
terminates. If the rebalancer coefficients satisfy (16) , then 
the computed constants produce a linear Bayesian Nash 
equilibrium. Otherwise, no equilibrium was found. 
Appendix B. Modified Foster and Viswanathan (1994) 

Our modification of the Foster and Viswanathan 
(1994) model has N periods of trade after which the 
traded security pays off ˜ v ∼ N(0 , σ 2 

˜ v ) at time N + 1 . Four 
types of investors trade: First, a strategic risk-neutral in- 
vestor who knows ˜ v at time 0 and who trades dynami- 
cally over time using orders !θ I 

n . Second, a strategic risk- 
neutral less-informed investor who receives an initial sig- 
nal ˜ a ∼ N(0 , σ 2 

˜ a ) with ˜ a and ˜ v being jointly normally dis- 
tributed random variables with corr ( ̃  a , ̃  v ) = ρ ∈ (0 , 1) and 
who trades dynamically using orders !θ L 

n . The “L ” super- 
script here denotes that this second investor is “less” in- 
formed than the first (better-informed) investor with su- 
perscript “I ”. Third, noise traders submit random orders 
!w n ∼ N(0 , σ 2 

w !) which are independent of ( ̃ v , ̃  a ) . Fourth, 
competitive risk-neutral market makers see the aggregate 
order flow at each time 
y n := !θ I 

n + !θ L 
n + !w n , y 0 := 0 , (B.1) 

and set prices p n at which they then clear the market. 
In our modified FV model, the better-informed investor 

does not know ˜ a , whereas in the original ( Foster and 
Viswanathan, 1994 ) the better-informed investor knows 
both ˜ v and ˜ a . Thus, except for the rebalancing constraint, 
the modified FV model has the identical information struc- 
ture as in our model of strategic rebalancing. 

A Bayesian Nash equilibrium for the modified FV model 
consists of: (i) Order strategies that, at each time n , maxi- 
mize the expected profits of the better-informed and less- 
informed investors given their their respective informa- 
tion sets σ ( ̃ v , y 1 , . . . , y n −1 ) and σ ( ̃  a , y 1 , . . . , y n −1 ) , and (ii) 
A pricing rule that sets prices to be conditional expecta- 
tions 
p n = E [ ̃ v | y 1 , . . . , y n ] , n = 1 , . . . , N. (B.2) 

Our goal is to find a linear equilibrium in which the 
price dynamics are given by 
!p n = λn y n , p 0 := 0 . (B.3) 
The two informed investors’ optimal orders take the 
form: 
!θ I 

n = β I 
n ( ̃ v − p n −1 ) , θ I 

0 := 0 , (B.4) 
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!θ L 

n = βL 
n (s n −1 − p n −1 ) , θ L 

0 := 0 . (B.5) 
In (B.5) the process s n denotes the less-informed investor’s 
expectation of the stock payoff ˜ v after trade at time n ; that 
is, 
s n = E [ ̃ v | ̃  a , y 1 , . . . , y n ] , s 0 := ρ σ˜ v 

σ ˜ a ˜ a . (B.6) 
The dynamics of s n are given by 
!s n = φn (y n − E [ y n | ̃  a , y 1 , . . . , y n −1 ] )

= φn (y n − (βL 
n + β I 

n )(s n −1 − p n −1 ) )
= φn (!w n + β I 

n ( ̃ v − s n −1 ) ). (B.7) 
In particular, the less-informed investor learns about ˜ v by 
updating on the observed order flow. Because the better- 
informed investor knows ˜ v initially, she does not update 
her expectations about ˜ v over time. The Internet Appendix 
presents sufficient conditions for a linear Bayesian Nash 
equilibrium to exist in the modified FV model. 

Finally, we remark that, unlike in our dynamic rebal- 
ancing model, there are no predictable components of 
the order-flow process (i.e., given the aggregate order-flow 
history) in the modified FV model. Consequently, no q n 
process is present and the aggregate order-flow process be- 
comes a martingale with respect to the flow of public in- 
formation. 
Appendix C. Expected rebalancer orders 
Proof of Proposition 2 . Let !θ I 

n be defined by (6) through- 
out this proof, and let { λn , r n } be the linear equilibrium co- 
efficients for n = 1 , . . . , N. The rebalancer’s value function, 
when he is restricted to using only deterministic controls, 
is given by 
V R,a 

m := max 
!θR 

n ∈ σ ( ̃ a ) , m +1 ≤n ≤N−1 −E 
[ 

N ∑ 
n = m +1 ( ̃  a − θR 

n −1 )!p n ∣∣∣ ˜ a 
] 

, 
m = 0 , . . . , N. (C.1) 
This definition is the restriction of (44) to deterministic 
controls. It is straightforward to show that the value func- 
tion in (C.1) is quadratic, and that the optimal determin- 
istic control — denoted here as x ∗n — is linear in ˜ a and is 
unique. 

We define the sets of random variables A n by 
A n := { Z ∈ σ ( ̃  a , y 1 , . . . , y n −1 ) : Z is independent of ˜ a } , 

n = 1 , 2 , . . . , N. 
(C.2) 

Given an arbitrary strategy !θR 
n = g n ̃  a + Z n with g n ∈ R and 

Z n ∈ A n , we define 
p a n := E [ p n | ̃  a ] , p Z n := p n − p a n , θR,a 

n := E [ θR 
n | ̃  a ] , 

θR,Z 
n := θR 

n − θR,a 
n . (C.3) 

We also define q a n := E [ q n | ̃  a ] and q Z n := q n − q a n . We then 
have the following recursive relations: 
!p a n = λn (β I 

n ( ρσ˜ v 
σ ˜ a ˜ a − p a n −1 ) + g n ̃  a ) − λn (αR 

n + βR 
n ) q a n −1 , 

(C.4) 

!p Z n = λn (β I 
n (˜ v − ρσ˜ v 

σ ˜ a ˜ a − p Z n −1 ) + !w n + Z n )
− λn (αR 

n + βR 
n ) q Z n −1 , (C.5) 

!q a n = r n (β I 
n ( ρσ˜ v 

σ ˜ a ˜ a − p a n −1 ) + g n ̃  a )
− (1 + r n )(αR 

n + βR 
n ) q a n −1 , (C.6) 

!q Z n = r n (β I 
n (˜ v − ρσ˜ v 

σ ˜ a ˜ a − p Z n −1 ) + !w n + Z n )
− (1 + r n )(αR 

n + βR 
n ) q Z n −1 . (C.7) 

Expressions (C.4) –(C.7) imply that p a n , q a n ∈ σ ( ̃  a ) , and that 
p Z n and q Z n are independent of ˜ a . This observation produces 
the following decomposition: 

max 
g n ∈ R , Z n ∈A n , 

!θR 
n = g n ̃ a + Z n , 1 ≤n ≤N−1 −E 

[ 
N ∑ 

n =1 ( ̃  a − θR 
n −1 )!p n ∣∣∣ ˜ a 

] 
(C.8) 

= 
( 

max 
g n ∈ R , 1 ≤n ≤N−1 −

N ∑ 
n =1 ( ̃  a − θR,a 

n −1 )!p a n 
) 

+ 
( 

max 
Z n ∈A n , 1 ≤n ≤N−1 E 

[ 
N ∑ 

n =1 θR,Z 
n −1 !p Z n 

] ) 
. (C.8) 

We know that the rebalancer’s equilibrium optimal 
strategy is given by ! ˆ θR 

n in (19) , which is linear in 
˜ a , y 1 , . . . , y n −1 and, therefore, can be written as ! ˆ θR 

n = 
ˆ g n ̃  a + ˆ Z n with ˆ g n ∈ R and ˆ Z n ∈ A n . Inserting the equilibrium 
optimal strategy into (C.8) we see that ( ̂  g n ) n =1 , ... ,N is the 
solution to 

max 
g n ∈ R , 1 ≤n ≤N−1 −

N ∑ 
n =1 ( ̃  a − θR,a 

n −1 )!p a n . (C.9) 
Since (C.1) is equivalent to the optimization problem in 
(C.9) , we conclude that x ∗n = ˆ g n ̃  a = E [! ˆ θR 

n | ̃  a ] , where, in 
equilibrium, ! ˆ θR 

n = !θR 
n . !
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