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Assessments of the mouse visual system based on spatial-
frequency analysis imply that its visual capacity is low, with few
neurons responding to spatial frequencies greater than 0.5 cycles
per degree. However, visually mediated behaviors, such as prey
capture, suggest that the mouse visual system is more precise.
We introduce a stimulus class—visual flow patterns—that is more
like what the mouse would encounter in the natural world than
are sine-wave gratings but is more tractable for analysis than are
natural images. We used 128-site silicon microelectrodes to mea-
sure the simultaneous responses of single neurons in the primary
visual cortex (V1) of alert mice. While holding temporal-frequency
content fixed, we explored a class of drifting patterns of black
or white dots that have energy only at higher spatial frequen-
cies. These flow stimuli evoke strong visually mediated responses
well beyond those predicted by spatial-frequency analysis. Flow
responses predominate in higher spatial-frequency ranges (0.15–
1.6 cycles per degree), many are orientation or direction selective,
and flow responses of many neurons depend strongly on sign
of contrast. Many cells exhibit distributed responses across our
stimulus ensemble. Together, these results challenge conventional
linear approaches to visual processing and expand our under-
standing of the mouse’s visual capacity to behaviorally relevant
ranges.
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The mouse has become a major model for studying vision
because of the genetic, imaging, and molecular tools avail-

able (1). Studies have revealed relationships between macro-
scopic states of the brain and activity in visual cortex [running
vs. stationary (2, 3), pupil size and activity (4, 5), and visual
interest (e.g., refs. 5–7)]. However, a basic conundrum has
arisen: Behaviorally, mice are capable of sharp, visually medi-
ated behaviors (8–10), such as accurate prey capture (11), but
when assessed using standard assays, such as spatial-frequency
gratings (Fig. 1), the mouse appears to have very poor vision.
Although orientation selectivity has been found (12), receptive
fields are large [typically ≥25(◦)2] when estimated by spike-
triggered averaging, and spatial-frequency tuning is concentrated
below 0.08 cycles per degree (cpd). While this motivates the use
of gratings at 0.04 cpd in experiments, it raises the question,
How does the visual system perform so exquisitely in natural
tasks?

We show here that ecologically relevant stimuli can exercise
mouse visual cortex in manifold ways. While plaids (13, 14) and
random-dot kinematograms (15, 16) are a step beyond gratings,
the leap to natural images (e.g., ref. 17) is more common (e.g.,
refs. 18 and 19). However, natural images are difficult to obtain
(20), difficult to control parametrically, and difficult to analyze
beyond second order (21).

For a mouse running through a field, the visual display is like
a “waterfall” of illuminated material flowing past, with bright-
or dark-oriented segments arising from complex photometric
events (Fig. 1A) (22). This visual metaphor motivates our stim-
uli. We approximate such patterns with a class of visual flows
composed of dots. These are more natural than drifting grat-

ings but can be parametrically controlled in their orientation
(content and angle), spatial frequency, and direction of motion.
We call them flows because, intuitively, they consist of a field
of particles (either dots or dotted-line segments) dropped into a
“flowing river.” More formally, each dot is displaced along a vec-
tor field in space and time and follows a dynamical system (23).
When the orientation structure is removed, the flows reduce
to random-dot kinematograms; when the temporal structure is
removed, the flows reduce to static Glass patterns (24). Thus,
they are rich in geometry and, for humans, the perception of
such flows differs from strictly aligned patterns (25, 26). Paramet-
ric variations in orientation, direction, etc., define an ensemble
of stimuli.

We here explore activity in mouse primary visual cortex (V1)
in response to the flow ensemble. In many cases flow stimuli elicit
more vigorous responses than drifting gratings, particularly at
high spatial frequencies 3–5 octaves above 0.04 cpd. Some V1
neurons are classical, resembling feature detectors, while others
exhibit a mixed selectivity rarely reported in early visual cortex.
The rich ensemble of selectivities in V1 may equip the mouse to
behave in the natural world.

Results
Cells in V1 Have Diverse Preferred Stimuli. We developed an
ensemble of stimuli including drifting gratings, single-dot flows
(random-dot kinematograms), and oriented flows where each
element consists of three or four dots (Materials and Methods).
The stimuli had either positive contrast (bright dots) or negative
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Fig. 1. Introducing flow stimuli. (A) Ecological motivation. Working with a
single frame (A, 1–3), a grassy patch is modified to emphasize salient higher
contrasts. Our abstraction (the flow field in A, 4) approximates this with a
binary pattern of random, oriented dotted segments. (B) We generalize to
flow fields consisting of dotted segments of different lengths, emphasizing
two geometries [oriented (three or four aligned dots) or nonoriented (sin-
gle dots)], two contrast polarities (positive or negative), different contrast
magnitudes, and various sizes. The full flow stimulus is a movie of one such
flow field, drifting across the screen with small random perturbations to
suppress rigidity (Materials and Methods) (examples in SI Appendix, Movies
S1 and S2). (C) Flow responses are inconsistent with classical filtering views
of V1. Shown is a Gabor receptive field at 0.04 cpd superimposed onto the
three-dot flow whose energy peaks at 0.24 cpd (example in B, Top Right),
for comparison. (D) The 1D discrete Fourier transforms (single sided) of the
flows used in our experiments (peaks at 0.15 cpd, 0.24 cpd, 0.7 cpd, 1.0 cpd,
1.25 cpd, and 1.6 cpd) have power well beyond 0.04 cpd (dashed curve),
which is the spatial frequency previously reported as optimal for cells in
mouse V1 (compare D, Inset). Adapted with permission from ref. 12. To
compare stimuli, each spectrum is normalized by the power at the peak
frequency (norm) (2D spectra in SI Appendix, Figs. S14 and S15).

contrast (dark dots). Activity is plotted as an array of peristimu-
lus time histograms (PSTHs) and tuning curves for each unit, to
facilitate a quick assessment of the different “dimensions” of a
cell’s response. Experiments were conducted in two cohorts, the
first one with grating stimuli at 0.04 cpd and both grating and
flow stimuli at 0.15 cpd and 0.24 cpd and the second cohort with
grating stimuli at 0.04 cpd and both grating and flow stimuli at
0.7 cpd, 1.0 cpd, 1.25 cpd, and 1.6 cpd. All stimuli in both cohorts
had a fixed temporal frequency of 4 Hz.

We begin with example cells from cohort 1. The first one
(Fig. 2A) has the response profile one would expect for a simple
cell in V1. It responds almost exclusively to low-frequency grat-
ings; the PSTHs for high-frequency gratings and for flows (both
one-dot and three-dot elements) remain virtually at baseline. Its
spike-triggered average (STA) depicts a classical receptive field,
consistent with the frequency response, and it is well tuned for

orientation. But such cells were relatively rare in our experi-
ments (discussed below). Another example (Fig. 2B) exhibits a
weak response to gratings and a stronger response to flows. The
STA, which would predict a strong response to low-frequency
gratings, completely fails to predict this response profile. Finally,
many cells are multidimensional (Fig. 2C): They respond well to
several stimuli from the ensemble, including gratings and flows
at multiple spatial frequencies. Note the diversity in the tem-
poral response profile: a periodic (often interpreted as linear)
response to gratings at low spatial frequency; a sustained (inter-
preted as nonlinear) response to gratings at higher frequencies;
and a transient burst of activity to positive, oriented flows. It
would be inappropriate to label this cell a classical feature detec-
tor. The STA again does not predict the response profile, and
the PSTHs reveal different tuning widths and different first-
spike latencies, as well as linear vs. nonlinear and transient vs.
sustained responses.

Responses to Optimal Flows Span a Wide Range of Spatial Frequen-
cies. To quantify this diversity at the population level, we relaxed
the notion of a unique preferred stimulus for a cell to allow for
multiple possible preferences, according to the following defini-
tions. While this leads to a crude classification of cell types, we
stress that it is merely a set of labels for discussion; the underlying
complexity remains in the PSTHs.

An individual stimulus is significant for a particular cell if the
average firing rate for that stimulus is significantly higher than
that for its preceding interstimulus interval (Mann–Whitney U
test). A cell prefers a stimulus class (e.g., flows or gratings) if
at least one variation of that class (spatial frequency, geometry,
or contrast polarity) is significant and has average peak firing
rate significantly higher than the peak firing rates of all signifi-
cant variations of the other class (Kruskal–Wallis rank-sum test,
Conover–Iman post hoc, Bonferroni correction, P < 0.05). When
there is no preferred stimulus class but there are significant stim-
uli in both classes, we classify the cell as multiclass, or simply
multi. Thus, the preferred stimulus class, or type of a cell, is one
of grating, flow, multi, nonselective. By this classification, the cell
in Fig. 2A would be classified as a grating cell, Fig. 2B would be a
flow cell, and Fig. 2C would be a multi cell.

Once each cell’s type, or preferred stimulus class, has been
determined, its preferred spatial frequency can be defined as the
one with highest average firing rate among all significant vari-
ations of the preferred class (or classes, when cells are labeled
multi).

We plot the proportion of preferred types at each preferred
frequency in Fig. 2D; the two separate plots denote units from
experimental cohort 1 (0.04–0.24 cpd, n = 357 cells, three ani-
mals) and cohort 2 (0.04–1.6 cpd, n = 256 cells, three animals),
respectively. Note the predominance of gratings among cells at
the lowest frequency, replicating Fig. 1D, Inset, and the predom-
inance of flow and multi types at the higher frequencies.

We now examine the distribution of preferred types in two dif-
ferent ways, either including or not including the responses to
low-frequency gratings. This is necessary, since the performance
measure is a simple spike statistic that is easily dominated by the
gratings. First, when low-frequency gratings are included among
the stimuli, by the above definitions 45% of the cells respond
equally well (i.e., are of the multi type), 28% are flow cells,
26% prefer gratings, and 29% of the cells were not significantly
responsive to any of the stimuli displayed (Fig. 2E, blue). When
low-frequency gratings are not included, so that the compari-
son is among flows and gratings at the same spatial frequencies,
responses favoring flow (50%) and multi (43%) predominate
over those favoring gratings (7%) (Fig. 2E, red). The difference
between these two plots comes from a more detailed analysis:
The cells responding strongly to 0.04 cpd can be divided into
roughly two subgroups: one that has no significant response other

Dyballa et al. PNAS | October 30, 2018 | vol. 115 | no. 44 | 11305



A B C

D E F

Fig. 2. Variety of responses in V1. (A–C) Tuning curves and PSTHs of three example cells in response to drifting gratings and flows at 0.04 cpd, 0.15 cpd,
and 0.24 cpd in eight equally spaced directions of motion. Time axis in histograms encompasses an entire period of stimulus presentation (1.5 s). Insets in
STAs show, at the same scale, stimuli that produced the most significant responses. (A) Cell responding to low-frequency gratings only. Bin size is 34 ms.
(B) Cell responding preferentially to single-dot flows with negative contrast. Bin size is 83 ms. (C) Cell responding strongly to both oriented (three dots),
positive flows and gratings (at both high and low spatial frequencies). Bin size is 46 ms. (D) Distribution of optimal spatial frequency in terms of proportion of
cells significantly responding to at least one of the stimuli. In the group of experiments using the first set of stimuli (D, Left, 0.04–0.24 cpd, n = 357 cells,
three animals), the majority of cells fired more strongly for stimuli at 0.15 cpd, followed closely by 0.04 cpd. For the second set of stimuli (D, Right, 0.04–1.6
cpd, n = 256 cells, three animals) there was an overwhelming preference for 0.04 cpd, although more than half the cells had optimal spatial frequency in
the range 0.7–1.6 cpd. (E) Distribution of preferred stimulus among all cells. When low-frequency gratings (0.04 cpd) are included among the stimuli (E,
Left), the majority of cells respond equally well to both classes (“Multi”), followed by only flows and only gratings; 29% of the cells were not significantly
responsive (“N.S.”) to any of the stimuli displayed (n = 1,026 cells; 10 experiments, six animals). When we do not include low-frequency gratings (grat), thereby
limiting the comparison with flows and gratings with similar spatial frequencies, there is a significant preference for flows only and for both over gratings
only. Comparison of E, Left and Right reveals that ∼20% of cells preferred low-frequency gratings. When we recompute stimulus preference considering
only stimuli with comparable spatial frequencies, most cells that preferred low-frequency gratings now either prefer none of the high-frequency stimuli or
significantly prefer flows over high-frequency gratings, given that the fraction that prefers both remains essentially constant in the two scenarios. *P = 0.025;
**P < 0.001. Error bars represent SEM. (F) Distribution of preferred stimulus among well-tuned cells (i.e., those with OSI > 0.5 or DSI > 0.5), n = 295 cells (Left)
and 241 cells (Right); 8 experiments, four animals. Here, note that most of the cells responding to orientation and/or direction will fire more strongly to
low-frequency gratings; F, Right reveals, however, that the fraction of cells well tuned to flows is just as large. And, similarly to E, many of the well-tuned cells
preferring 0.04 cpd gratings prefer flows to gratings of comparable spatial frequency. *P < 0.05; **P < 0.001; ***P < 0.0001. Error bars represent SEM.

than to low-frequency gratings and another that also responds
well to flows (or, in fewer cases, to both flows and high-frequency
gratings). These plots include all cells. A similar distinction is

obtained when only cells well tuned to orientation [orientation
selectivity index (OSI) > 0.5] or direction [direction selectivity
index (DSI) > 0.5] are considered (Fig. 2F).

11306 | www.pnas.org/cgi/doi/10.1073/pnas.1811265115 Dyballa et al.
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To summarize, among cells with significant preference for
flows or both flows and gratings, responses were distributed
across all spatial frequencies explored. For “classical” cells
(those that significantly preferred gratings to flows) there is a
clear preference for 0.04 cpd with a distribution in accordance
with that in ref. 12 (Fig. 1D). Curiously, some cells that are well
tuned to low-frequency gratings are also well tuned to flows with
higher spatial frequency, albeit usually with lower firing rates.
Nevertheless, many of these cells have higher firing rates to flows
than to gratings of similar spatial frequency, showing that there is
some aspect of the flow stimulus that strongly excites these cells
despite the fact that the flow elements would not excite the filter
predicted by these cells’ STAs. In SI Appendix, Figs. S1–S13 show
plots of responses to the entire stimulus ensemble for these and
other cells.

Cells Remain Well Tuned at High Spatial Frequencies. Since higher
firing rates do not necessarily imply high orientation or direction
selectivity, and since a cell might retain its selectivity at several
spatial frequencies (SFs), we investigated the fraction of well-
tuned cells (OSI > 0.5 or DSI > 0.5) across spatial frequencies
regardless of preferred stimulus (Fig. 3B). This is an estimate of
the probability of a cell significantly responsive to a certain SF
being well tuned.

There are many cells well tuned to direction and/or orientation
at all SFs. Cells with high orientation selectivity tend to prefer
stimuli in the 0.04- to 0.24-cpd range. The direction-selective
cells seem to be more uniformly distributed across SFs, with a
preference for intermediate SFs (0.15–0.24 cpd).

Higher Stimulus Selectivity in Superficial and Deep Layers. To fur-
ther characterize how the response profile of multi cells is
distributed across stimulus variations, we extend the concept of
selectivity indexes such as OSI and DSI (e.g., ref. 12) to com-
pare pairs of stimulus classes. A stimulus selectivity index (SSI)
is thus defined for a pair of classes (e.g., flows vs. gratings or one-
dot flows vs. three-dot flows) as (Rmax −Rmin)/(Rmax), where
Rmax (Rmin) is the average peak firing rate (FR) of the stimulus
with the higher (lower) FR in the pair. Essentially, it measures
the difference in FR between two stimuli, relative to the one
with highest FR. E.g., an SSI of 0.2 means the FR for the less
preferred stimulus is 20% lower than that for the preferred one.
When comparing stimulus classes for which there are possibly

several stimulus variations in each class, we take the variation
that elicited the highest response in each one. Note that the SSI
for a cell population assesses how well those cells’ responses can
be used to differentiate between two stimuli, regardless of which
one is the preferred one.

Cells responsive to both flows and high-frequency gratings
were found in all cortical layers. Cells in layer 2/3 had signif-
icantly higher values of SSI than those in all other layers for
differentiating flows from gratings (P < 10−3, P = 10−6, and P =
10−4 for layers 4, 5, and 6, respectively), while cells in layer 5 had
significantly lower SSI than those in layers 2/3 (P < 10−4) and
6 (P < 0.05) when differentiating between flows with opposite
contrast polarities and lower than those in layer 2/3 (P < 0.005)
when differentiating oriented from nonoriented flows (Fig. 4).
The same trends were found when only broad-spiking cells (puta-
tive excitatory, ref. 12) were considered. Thus, speculatively, cells
in the superficial layers could have higher selectivity, while cells
in layer 5 could be more invariant to geometry, length, and con-
trast. This may be related to ref. 12, in which it was reported
that layer 5 cells were significantly less linear than cells in other
layers.

Preference Among Different Variations of Flow Stimuli Goes Beyond
Differences in Spatial Frequency. Among cells that responded sig-
nificantly to flows, we also compared the average proportion of
cells that significantly preferred oriented (three dots) vs. nonori-
ented flow patterns (single dots) (Fig. 5A). Analysis of the entire
population across different experiments does not reveal any par-
ticular preference, with the vast majority responding to both
geometries. However, if analysis is restricted to those cells well
tuned to direction and/or orientation, the preference for a spe-
cific flow geometry—be it oriented or nonoriented—increases
markedly. In particular, there is an overall preference for the
oriented patterns.

Fig. 5B shows that only a minority of the cells responding
to flows prefer negative contrast (15%, on average). The vast
majority either prefer positive contrast or respond significantly to
both contrast polarities. This difference in preference disappears
among cells that are well tuned to direction and/or orientation.

Discussion
Receptive Fields Redux? Cells are routinely classified as “simple”
if they exhibit a linear response to moving bars or gratings (27)

A B

Fig. 3. Cells remain highly selective at higher spatial frequencies. (A) Example of cell exhibiting a stronger response to oriented, negative flows at 0.7 cpd
and 1.0 cpd compared with gratings at various spatial frequencies. Bin size is 47 ms. (B) Overall proportion of well-tuned cells among cells significantly
responsive to each spatial frequency (Mann–Whitney U test, P < 0.05), irrespective of stimulus class. Sample sizes: 0.04 cpd (n = 508), 10 experiments, six
animals; 0.15 cpd (n = 385), 0.24 cpd (n = 365), 5 experiments, three animals; and 0.7 cpd (n = 214), 1.0 cpd (n = 214), 1.25 cpd (n = 186), 1.6 cpd (n = 173), 5
experiments, three animals.
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Fig. 4. Cells in different layers have distinct selectivity toward different
stimulus classes, as measured by a SSI (main text). ***P < 0.001; **P < 0.005;
*P < 0.05. Error bars represent SEM.

and as “complex” if the response is nonlinear (over phase).
However, these are operational definitions and depend on the
stimuli. Arguments against such classical receptive field concepts
are developing (28), and our results contribute to this. Unlike the
traditional, optimal feature viewpoint, selectivity does not appear
to be 1D; cells can respond linearly to one part of the stimulus
ensemble while being nonlinear to others. In particular, we found
many cells that exhibit a “linear” response to low-frequency grat-
ings while also responding vigorously at high spatial frequencies
to some type of flow (SI Appendix, Fig. S16).

The fact that linear methods (e.g., ref. 29) cannot explain such
complex and varied responses to an ensemble of stimuli has sev-
eral implications (SI Appendix, Figs. S17 and S18). First, it brings
some of the feature variability seen in higher visual areas (e.g.,
refs. 30 and 31 and references therein) down to V1. Second, since
the receptive field is often taken as the signature of function-
ality, attempts to relate function to structure based on it (e.g.,
ref. 32) may attribute to “noise” in connectivity genuine features
important for neural responses. It follows that stimulus ensem-
bles richer than low-frequency gratings are required to properly
assess visual system function. Finally, it suggests that network
computations, not individual features, should be the focus of
investigation (33).

Flow Responses Suggest Network Computations. At a small scale,
responses to high-frequency flow stimuli (i.e., within a recep-
tive field) are reminiscent of the subzones observed in flies (34)
and primates (35), each of which can be direction or orienta-
tion selective. And, as in flies (36), many cells with a preference
for flow stimuli are also contrast selective. At a large scale,
our stimuli were displayed wide field, so extraclassical effects
may also be playing a role. While investigations of such contex-
tual interactions in mice are just beginning, when stimuli were
restricted to gratings (37) and bars (38), only suppressive effects
were observed (39). By contrast, in primates the situation is
much richer (40–42), and the arrangements of dots and bars in
these studies are reminiscent of our flow stimuli. Despite the
fact that mice lack orientation columns (43), flow responses are
remarkably consistent among the different species. Flow stimuli
are also informative about the geometry of surrounding objects
(44), although how these geometric, network computations are
realized remains an open question.

Materials and Methods
Animal Procedures. Experiments were performed on adult C57/BL6 mice
(age 2–6 mo) of either sex. The animals were maintained in the animal facil-

ity at the University of California, San Francisco and used in accordance with
protocols approved by the University of California, San Francisco Institu-
tional Animal Care and Use Committee. Preparation, extracellular recording,
and single-neuron analysis were generally performed as in ref. 45. See SI
Appendix, Materials and Methods for additional materials and methods.

Design of Flow Stimuli. The flow stimuli consist of local flow elements that
move according to an underlying displacement field. The displacement field
is defined as a vector in R

2 (i.e., a magnitude and a direction) at each screen
position. Each flow element consists of a linear arrangement of n adjacent
dots, with n = 1 corresponding to a random-dot kinematogram and n = 2, 3,
4 corresponding to oriented elements (compare Fig. 1B). The stimulus den-
sity defines an integer screen lattice. Each flow element is dropped onto
this lattice, and then its position is perturbed by a normally distributed
random variable. This destroys the impression of a perfectly regular grid
of elements.

The displacement field is built on top of this and is organized around
a screen partition consisting of a grid of rectangular or hexagonal tiles,
with a single displacement vector within each tile. The tiles provide con-
trollable flexibility in the motion. A planar translation results from choosing
all displacement vectors the same. To avoid the impression of such simple
translations, each displacement vector is “jittered” by sampling from a nor-
mal distribution, so that there are now both position jitter and motion jitter.
More generally, one can develop more complex motions, either in geome-
try or in time, by varying the size of the tiles (discreteness) and by varying
the displacement directions. For the experiments reported in this paper, a
common mean and variance for all vectors in the field were used (see SI
Appendix, Materials and Methods for specific parameter values).

The movement of each flow element is made even more “lifelike” by
controlling its acceleration with a steering force computed as the difference
between the element’s desired and current directions of motion. This behav-
ior is based on the boids from ref. 46 and on the steering behavior described
in ref. 47. Using this, the desired direction can be a function of both the
underlying flow field and the proximity between elements; this guarantees
that elements do not overlap one another, creating different geometries,
densities, or sizes. The final force applied to each element is the resultant
between the steering force and a repulsion force exerted by every other
element within an allowed distance. The advantage of this approach is that
the flow elements can make successive changes in direction as they drift
through the flow field by following a smooth and continuous trajectory,
without abrupt changes in direction or occlusion. They also wrap around the
screen boundaries to preserve a constant number of patterns being shown
at all times.

It remains to control the overall luminance and its changes, both for
different stages in the trial and for the local dots. For some experiments,
the screen luminance during the interstimulus period was set equal to the

A B

Fig. 5. Preference over flow stimuli variations. Percentages refer to the
population of cells that had significant response to at least one flow varia-
tion. (A and B) All cells: n = 667, 10 experiments, six animals. Well-tuned cells:
n = 187, 8 experiments, four animals. Error bars represent SEM (*P < 0.001).
(A) Flow geometry preference. Among all cells responding significantly to
flows, most showed no significant prefernce for either type. Among well-
tuned cells, oriented flows were preferred over nonoriented flows. (B) Flow
contrast polarity preference. Among all cells significantly responding to
flows, positive polarity was preferred. The population of well-tuned cells
showed no overall preference for contrast polarity. n.s., nonsignificant.
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global average luminance of the stimulus used in the upcoming trial. This
controls for responses that could be caused by the global change in the
screen luminance only and not by the actual moving stimuli. However, for
this strategy there will still be a change in the luminance of the back-
ground when the trial starts. To control for this, i.e., for possible responses
due to changes in background luminance, we also ran experiments with a
constant gray background both during the flow trials and during the inter-
stimuli intervals. For dot-luminance effects, the diameter of each dot in a
multidotted flow element was chosen such that the total area occupied
by the element was the same as that of the single-dotted version of the

stimulus with the same spatial frequency. In any case, repeated experiments
showed that there was little (if any) effect of these different luminance
change variations. Code for generating the flow stimuli is available at
https://github.com/zuckerlab/FlowStims.
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Supporting Information Text

Materials and methods

Animal procedures. Experiments were performed on adult C57BL/6J mice (age 2–6 months) of either sex. All protocols and
procedures are approved by the University of California–San Francisco Institutional Animal Care and Use Committee. Animals
were maintained on a 12 h light/12 h dark cycle. Recordings were performed during the dark cycle, more active phase of the
cycle.

Preparation of mice for extracellular recording on the spherical treadmill. Recordings were done on alert mice free to run on a
spherical treadmill modified from the design described by (2). Briefly, a polystyrene ball (200 mm diameter, Graham Sweet
Studios) is placed on a shallow polystyrene bowl (250 mm in diameter, 25 mm thick) with a single air inlet at the bottom. Two
optical USB mice, placed 1 mm away from the edge of the ball, are used to sense rotation of the floating ball and transmit
signals to the data analysis system using custom driver software. The optical mice acquire locomotion information in an
event-driven mode at up to 300 Hz. The data is then translated to the net physical displacement of the top surface of the ball.

During recordings, the animal’s head is fixed to a rigid crossbar above the floating ball by screwing a titanium headplate
that is attached to animal’s skull. The headplate—consisting of two side bars and a circular center with a 5 mm central
opening—is cemented to the skull one week before recording using surgical procedures as described by (2). Briefly, animals are
anesthetized with isofluorane in oxygen (3% induction, 1.5% maintenance), given subcutaneous Meloxicam (10 mg/kg) as a
postoperative analgesic and a subcutaneous injection of 0.2 mL of saline to prevent postoperative dehydration. After a scalp
incision, the fascia is cleared from the surface of the skull and the metal headplate is then attached with Metabond (Parkell
Co.), covering the entire skull, except for the region in the center of the headplate, which is covered with a 0.2% benzethonium
chloride solution (New-Skin Liquid Bandage) to protect the skull. The animal is then allowed to recover on a heating pad.
Several days following headplate implant, the animal is allowed to habituate to the recording setup and learn to control the
ball by spending time on the floating ball over the course of 2–3 days (15 min to 1 h). The average amount of time the animal
spent running (threshold used 0.5 cm/s) was 23% ± 3% (s.e.m.) of the total experiment. Excluding the running trials did not
result in any statistically significant change in the results.

Visual stimuli. Visual stimuli were presented with gamma-correction correction on a monitor (Nanao Flexscan, 30 × 40 cm, 60
Hz refresh rate, 32 cd/m2 mean luminance) placed 25 cm from the mouse, subtending 60°–75° of visual space. For current
source density (CSD) analysis, we present a contrast-reversing square checkerboard (0.04 cpd, square-wave reversing at 1 Hz).
For localization of receptive fields by spike-triggered averaging we presented spatiotemporal band-limited noise patterns, as in
(1).

To characterize neural responses with single-unit recordings, we presented interleaved drifting square-wave grating stimuli
and flow stimuli (shown at 60 frames/s) moving in 8 directions at a temporal frequency of 4 cycle/s over two sets of spatial
frequencies: the first included 0.04, 0.15, and 0.24 cpd (100% contrast, trial duration 1.5 s); the second included 0.04, 0.7, 1.0,
1.25, and 1.6 cpd (50% contrast, trial duration 1.0 s). Only gratings were shown at 0.04 cpd. We used flow stimuli with two
different geometries. The first are non-oriented single-dot flows, and the other are oriented flow elements with 3 or 4 dots. Both
oriented and non-oriented variations had one version with positive contrast (white dots against a black or gray background),
and another with negative contrast (black dots against a white or gray background). Dominant spatial frequency contents of
0.15 cpd, 0.24 cpd, 0.7 cpd, 1.0 cpd, 1.25 cpd, and 1.6 cpd were used, corresponding to the following dot diameters, in degrees
of visual angle (resp., spacing between dot centers, in multiples of dot diameter): 2.1 (3), 1.5 (3), 0.7 (2), 0.5 (2), 0.4 (2), 0.3
(2) for single dots; for n dots, the diameter is divided by

√
n so as to preserve the total area occupied by flow elements. For all

flow stimuli, both parallel and jittered versions (0 and 0.1 rad std. dev. of flow field direction distribution, respectively) were
used, with no detectable difference in the results; flow field tile side: 2.5 times the space between dots; initial positions on the
lattice had std. dev. equal to 10% of dot spacing. All stimuli variations were repeated 20–25 times according to a randomized
sequence. Contrast and trial duration were the same for all stimuli used in the same experiment.

Extracellular recording in awake mice. Extracellular microelectrode recording procedure was slightly modified from (2). On
the day of recording, the animal is again anesthetized as described above. The liquid bandage is removed, and the skull is
thinned and removed to produce a craniotomy 1–2 mm in diameter centered above the monocular zone of V1 (2.5–3 mm
lateral to midline, 1–2 mm anterior to lambda). This small opening is enough to allow insertion of a 1.1-mm-long double-shank
128-channel probe (3), fabricated by the Masmanidis laboratory (University of California–Los Angeles) and assembled by the
Litke laboratory (University of California–Santa Cruz). The electrode is placed at an angle of 30°–45° to the cortical surface
and inserted to a depth of 500–1000 μm below the cortical surface. A period of 30 min to 1 h is allowed to pass before recording
begins. For each animal, the electrode is inserted no more than twice. Microelectrode and stimulus synchronization data are
acquired using an Intan Technologies RHD2000Series Amplifier Evaluation System, sampled at 25 kHz.

Single-neuron analysis. Single units are identified using MountainSort (4), which runs in approximately 2× real time for fully
automated spike sorting of data from our 128-site electrodes. Manual curation after a run on one hour of data takes an
additional half hour, typically yielding 150 isolated single units.
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Cortical layer. The cortical layer containing each isolated unit is determined using current source-density (CSD) analysis on data
collected during presentations of contrast-reversing square checkerboard. Briefly, extracellular voltages sampled at 20 kHz are
bandpass filtered between 1 and 300 Hz to obtain local field potentials (LFPs) and then averaged across all 1 s positive-phase
presentations of the checkerboard. Second spatial derivative of the average LFP traces along the length of the silicon probe
provides us with the profile of CSD. The borders between layers 2/3–4, 4–5, and 5–6 are identified by spatiotemporal patterns
of sinks and sources in the CSD plot ((5); for example see Fig. 1C of (6)).

Data analysis. Isolated single units that stopped firing altogether after a certain time of the recording or that only started
firing after some time were assumed to have moved away or toward the multielectrode array, respectively; therefore the trials
with zero spikes at the beginning and end of recordings were discarded.

An orientation selectivity index (OSI) was defined as: (Rpref−Rortho)/(Rpref+Rortho), where Rpref = (Rpeak_dir+Rpeak_dir+π)
is the response (average firing rate) for the preferred orientation and Rortho = (Rortho_dir + Rortho_dir+π) is the response for the
orientation orthogonal to the preferred one. A direction selectivity index (DSI) was defined as: (Rpref − Rnull)/(Rpref + Rnull),
where Rpref is the response (average firing rate) for the preferred orientation and Rnull is the response for the null orientation (π
rad apart from the preferred one). A stimulus selectivity index (SSI) was defined for a pair of stimuli as (Rmax − Rmin)/(Rmax),
where Rmax (Rmin) is the average peak firing rate of the stimulus with higher (lower) firing rate in the pair.

PSTHs were plotted using a Gaussian interpolation kernel. Bin sizes were chosen following (7). STAs were also plottted
using a Gaussian kernel.

Linearity of response was computed by first computing spike histograms with 50 ms bins and subtracting the spontaneous
rate. A discrete Fourier transform was then applied and the F1/F0 calculated as the ratio between the first harmonic (F1) and
the mean firing rate (F0). To account for the inherent stochasticity of the flow stimuli (which introduces a random phase at
each trial), the linearity of response were computed as the mean of the F1/F0 values obtained for each individual trial.

Power spectra of the stimuli were computed with a fast Fourier transform algorithm. Due to the stochasticity of the flow
stimuli, the spectra are averages over 40 instances. Data were not treated with any window.

Supplementary Movie 1. Examples of flow stimuli from cohort 1 (see text, 0.15 and 0.24 cpd, positive and negative contrast,
1-dot and 3-dot stimuli).

Supplementary Movie 2. Examples of flow stimuli from cohort 2 (see text, 0.7, 1.0, 1.25, and 1.6 cpd, positive and negative
contrast, 1-dot and 3-dot stimuli).
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Fig. S1. Full response profile for cell in Fig. 2A in the main text. Bin size 34 ms; vertical dashed lines indicate stimulus onset and offset. Spike-triggered average (STA) latency
99 ms.
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Fig. S2. Full response profile for cell in Fig. 2B in the main text. Bin size 83 ms; vertical dashed lines indicate stimulus onset and offset. Spike-triggered average (STA) latency
99 ms.
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Fig. S3. Full response profile for cell in Fig. 2C in the main text. Bin size 46 ms; vertical dashed lines indicate stimulus onset and offset. Spike-triggered average (STA) latency
66 ms.
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Fig. S4. Cell responding to all stimuli, despite its linear-like response to low-frequency gratings. Bin size 39 ms; vertical dashed lines indicate stimulus onset and offset.
Spike-triggered average (STA) latency 99 ms.
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Fig. S5. Cell responding to high frequency gratings and positive flows. Bin size 42 ms; vertical dashed lines indicate stimulus onset and offset. Spike-triggered average (STA)
latency 99 ms.
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Fig. S6. Cell responding to gratings at multiple spatial frequencies. Bin size 31 ms; vertical dashed lines indicate stimulus onset and offset. Spike-triggered average (STA)
latency 66 ms.
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Fig. S7. Cell responding to all stimuli, some with directional tuning, others with orientational tuning; the preferred direction of motion also varies depending on the stimulus.
Response to low frequency gratings is linear-like, as suggested by its STA. Bin size 58 ms; vertical dashed lines indicate stimulus onset and offset. Spike-triggered average
(STA) latency 165 ms.
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Fig. S8. Cell tuned to direction, consistent across stimuli. Negative and positive flows have distinct spatial frequency tuning. Bin size 86 ms; vertical dashed lines indicate
stimulus onset and offset. Spike-triggered average (STA) latency 66 ms.
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Fig. S9. Full response profile for cell in Fig. 3A in the main text. Bin size 51 ms; vertical dashed lines indicate stimulus onset and offset. Spike-triggered average (STA) latency
99 ms.
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Fig. S10. Cell with peak response to positive 1-dot flows at 1.6 cpd. Interestingly, despite its linear-like response to gratings at 0.04 cpd and clear STA, its response to both
gratings and flows at higher frequencies is not well-tuned. Bin size 51 ms; vertical dashed lines indicate stimulus onset and offset. Spike-triggered average (STA) latency 66 ms.
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Fig. S11. Cell responding to multiple directions at various spatial frequencies. Bin size 59 ms; vertical dashed lines indicate stimulus onset and offset. Spike-triggered average
(STA) latency 132 ms.
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Fig. S12. Cell preserves the same orientation tuning at 0.04-0.7 cpd (gratings) and 0.7-1.0 cpd (positive flows). The oriented flows (3 dots) are more well-tuned than the
single-dot flows. Bin size 74 ms; vertical dashed lines indicate stimulus onset and offset. Spike-triggered average (STA) latency 132 ms.
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Fig. S13. Cell responding almost exclusively to high frequency flows. Interestingly, direction preferences seem to change between positive 1- and 3-dot flows (especially at 1.0
cpd), as well as between different spatial frequencies (e.g., the two-peaked tuning curve seen for positive 1-dot flows at 1.0 cpd becomes four-peaked at 1.6 cpd). Bin size 70
ms; vertical dashed lines indicate stimulus onset and offset. Spike-triggered average (STA) latency 99 ms.
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Fig. S14. Example of 2-D frequency spectrum of a 1-dot flow with peak at 0.7 cpd, averaged over 15 frames taken from different trials.

Fig. S15. Example of 2-D frequency spectrum of a 3-dot flow with peak at 0.7 cpd, averaged over 15 frames taken from different trials.
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Same SF

22.5%

Different SF

77.5%

Including 0.04 cpd grat.

Same SF

53.4%

Different SF

46.6%

High SF only

Fig. S16. Comparison of spatial frequency (SF) preference across stimulus class (flows vs. gratings) for multi cells. Note that, since there are no flows at 0.04 cpd, any multi
cell whose preferred grating stimulus is at that frequency will necessarily have a different SF for its preferred flow stimulus. Furthermore, given the overwhelming preference for
gratings at 0.04 cpd (as seen in Fig. 2), the result from the left chart is somewhat expected. Therefore, it is also informative to look at how likely it is for the SF preference to be
preserved across flows and gratings when considering higher spatial frequencies only. The chart on the right shows that, in that case, tuning preference is preserved for the
majority of cells.
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Fig. S17. Distribution of linearity of response to preferred flow and/or grating stimuli. Total area at each spatial frequency (sum of the distributions for flows and gratings) is
normalized to 1. For multi cells, the F1/F0 values for both their preferred flow and grating stimuli at their respective spatial frequencies are included; therefore a single cell can
contribute with counts in two different spatial frequencies. Note that this makes the proportions between flows and gratings at each SF different than those in Fig. 1D, since
there we considered the spatial frequency of the stimulus with highest firing rate (among the multiple significant ones). Total counts at 0.04, 0.15, 0.24, 0.7, 1.0, 1.25, and 1.6
cpd, respectively: 0, 162, 100, 91, 56, 33, 41 (flows); 301, 35, 40, 57, 12, 4, 8 (gratings).
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Fig. S18. Distribution of differences in direction preference across stimulus class (flows vs. gratings) for multi cells. The difference is computed as the absolute difference in
angle between the directions of maximum response for the two stimuli. Although small values predominate, differences as big as 180 degrees are not rare.

20 of 21 Luciano Dyballa, Mahmood S. Hoseini, Maria C. Dadarlat, Steven W. Zucker, Michael P. Stryker



References

1. Niell CM, Stryker MP (2008) Highly selective receptive fields in mouse visual cortex. J Neurosci 28(30):7520–7536.
2. Niell CM, Stryker MP (2010) Modulation of visual responses by behavioral state in mouse visual cortex. Neuron 65(4):472–

479.
3. Du J, Blanche TJ, Harrison RR, Lester HA, Masmanidis SC (2011) Multiplexed, high density electrophysiology with

nanofabricated neural probes. PLoS One 6(10):e26204.
4. Chung JE, et al. (2017) A fully automated approach to spike sorting. Neuron 95(6):1381–1394.
5. Swadlow HA (2003) Fast-spike interneurons and feedforward inhibition in awake sensory neocortex. Cerebral Cortex

13(1):25–32.
6. Dadarlat MC, Stryker MP (2017) Locomotion enhances neural encoding of visual stimuli in mouse V1. J Neurosci

37(14):3764–3775.
7. Shimazaki H, Shinomoto S (2007) A method for selecting the bin size of a time histogram. Neural Computation 19(6):1503–

1527.

Luciano Dyballa, Mahmood S. Hoseini, Maria C. Dadarlat, Steven W. Zucker, Michael P. Stryker 21 of 21


