Workshop Presentation

ROSS’19, June 25, 2019, Phoenix, AZ, USA

Towards a Practical Ecosystem of
Specialized OS Kernels

Conghao Liu and Kyle C. Hale
Illinois Institute of Technology
{cliu115@hawk,khale@cs}.iit.edu

ABSTRACT

Specialized operating systems have enjoyed a recent revival driven
both by a pressing need to rethink the system software stack in
several domains and by the convenience and flexibility that on-
demand infrastructure and virtual execution environments offer.
Several barriers exist which curtail the widespread adoption of such
highly specialized systems, but perhaps the most consequential of
them is that these systems are simply difficult to use. In this pa-
per we discuss the challenges faced by specialized OSes, both for
HPC and more broadly, and argue that what is needed to make
them practically useful is a reasonable development and deploy-
ment model that will form the foundation for a kernel ecosystem
that allows intrepid developers to discover, experiment with, con-
tribute to, and write programs for available kernel frameworks
while safely ignoring complexities such as provisioning, deploy-
ment, cross-compilation, and interface compatibility. We argue that
such an ecosystem would allow more developers of highly tuned
applications to reap the performance benefits of specialized kernels.

CCS CONCEPTS

« Software and its engineering — Operating systems; Devel-
opment frameworks and environments; Virtual machines; Soft-
ware architectures;

ACM Reference Format:

Conghao Liu and Kyle C. Hale. 2019. Towards a Practical Ecosystem of Spe-
cialized OS Kernels. In 9th International Workshop on Runtime and Operating
Systems for Supercomputers (ROSS’19), June 25, 2019, Phoenix, AZ, USA. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3322789.3328742

1 INTRODUCTION

Several recent trends have prompted a reopening of the discussion
on limitations of general-purpose OSes. Increasing hardware het-
erogeneity [45, 48] poses significant challenges for system software
aiming to support a wide array of applications efficiently [32]. Anin-
creasing diversity of applications means that a general-purpose OS
must be all things to all users, potentially sacrificing well-matched

This project is made possible by support from the United States National Science
Foundation (NSF) via grants CNS-1718252 and CNS-1763612.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ROSS’19, June 25, 2019, Phoenix, AZ, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.

ACM ISBN 978-1-4503-6755-4/19/06. .. $15.00
https://doi.org/10.1145/3322789.3328742

abstractions and mechanisms. Predictable operation and perfor-
mance, while sometimes detrimental to resilience against exploita-
tion [43], can be very important for certain applications [36], but
is often elusive for general-purpose systems [10, 18, 34]. Unmet
needs for fine-grained task abstractions [37], e.g. to enable server-
less computing [27], have sparked new specialized system designs
such as ZygOS [41] and Amazon’s Firecracker VMM.!

Specialized OSes (SOSes) provide one avenue for addressing
these challenges, where here we broadly construe a specialized OS
as one tailored for a specific workload or class of workloads. This
includes library OSes, Unikernels, and light-weight kernels. While
they have been discussed in the literature for many years [2, 6, 8,
33], their recent resurgence is in part due to the availability and
ease-of-use of commodity virtualization software and public cloud
platforms like Amazon’s AWS and Chameleon [20]. One of the
early visions for virtualization technology—namely, practical OS
experimentation—is now coming true. There is now a wide array
of specialized OSes available today, from kernels designed for the
cloud such as OSv [23], Arrakis [39], and Mirage [31] to OS designs
to support language and hybrid parallel runtimes [1, 15, 16, 19].
Many efforts focus on extreme scalability at both the intra-node
and inter-node level, including Barrelfish [3], Andromeda [44],
and Corey [7]. Lightweight kernels (LWKs) specifically designed
for raw performance have been around in HPC for more than a
decade [13, 21, 28], and the HPC community is now also looking
at Unikernels [29], in addition to multi-kernel and co-kernel ap-
proaches [4, 12, 38, 47]. Benefits of specialized kernels include their
small size, their performance, predictability, and in some cases
security. Unikernels and LWKs can make virtualization more at-
tractive, as their execution environment can be more hypervisor-
friendly [24].

Despite their benefits, SOSes still face several challenges. The de-
signers must make the decision whether or not the kernel interface
will retain POSIX compatibility (or binary compatibility with, e.g.
Linux), pick the right abstractions for the target workload(s), and
decide on the right level of protection, among other issues. Special-
ization for its own sake is not necessarily a good idea, and as work
in the architecture community shows, striking a good balance be-
tween domain-specific design and general-purpose abstractions can
pay off [35]. Some of these design points can (and should) be based
on foundational principles, but others require experimentation and
design iteration.

However, because SOSes often eschew the usual interfaces, and
because their build toolchains and supported hardware vary, they
tend to be difficult to use®. This difficulty, of course, impedes the

Uhttps://firecracker-microvm.github.io/

20ne could, of course, make the argument that this is true for any OS, but commodity
OSes with momentum in the community (with industry and open-source support)
have already by necessity built up an ecosystem of support tools. Take, for example,

Workshop Presentation

progress of OS experimentation and can discourage developers
from getting involved in kernel development.

While others have worked toward making the kernels them-
selves easier to build [42], we contrast the current state of affairs
for writing a program for, e.g. a Unikernel, with starting a new
cargo project in Rust (with several simple commands, you can
easily initialize/build/run your project. Package dependencies, com-
pilation dependencies will be automatically handled by the cargo
system)—starting from the outset with ecosystem integration in
mind.

We propose a new development model for SOSes which is rooted
in the idea of building an ecosystem for OS kernels. Much like
the public ecosystems built around container images and virtual
machine images have been a boon to those technologies, we believe
a sound development model paired with a vibrant kernel ecosystem
will not only encourage developers to more actively experiment
with specialized OSes and Unikernels, but will also make them a
more practically useful tool.

A key research challenge for tools which support such an ecosys-
tem, however—especially for HPC—is the preservation of perfor-
mance gains given by the SOS.

2 MOTIVATION

While it is easier than it has ever been to build, debug, experiment
with, and deploy specialized OSes (e.g. using IaaS clouds, QEMU,
IPMI, kgdb, etc.), writing programs for them is often very cumber-
some, even when the kernel maintains binary compatibility with
a more popular OS. We are currently involved in development of
an SOS kernel called Nautilus® which is designed to be paired with
high-performance, parallel-runtime systems [15, 16]. When writ-
ing (or porting) programs or runtime systems for Nautilus, the
developer currently has to add invocation hooks into the kernel’s
initialization code and manually integrate their code into the kernel
build system. This is obviously cumbersome, as it requires devel-
opers to modify a kernel codebase and in some cases deal with the
intricacies of its build system.

Building and running a program for OSv is simpler. OSv has a
convenient tool called Capstan which makes writing and deloying
new applications easier.

$> capstan package init \
--name "java-example"

This command initializes a new Capstan app package in the
current directory. Then the user can start writing code for the new
program. Once finished, the user can run:

$> capstan package compose \
-p java-example

This command fuses the application and kernel into a bootable
OSv QCOW?2 image. To run it, we do the following:

$> capstan run java-example \
-p gemu --boot default

In addition to the convenience of developing and deloying new
apps, OSv also provides scripts to help users tailor, generate, or
publish new kernel images to Capstan, Google Cloud Storage, or

the slow evolution of the Multiboot2 standard (very useful for SOSes, but Linux does
not use it).
Shttps://github.com/hexsa-1ab/nautilus

ROSS’19, June 25, 2019, Phoenix, AZ, USA

Amazon AWS. However, there is no way to integrate other special-
ized OSes, or to use complicated deployment modes as discussed
in Section 4. Similar inspiration also comes from Rust. Consider
building a program with the Rust* programming language. The
Rust developers have developed a build tool called cargo which
allows programmers to write code in a way that is amenable to
testing and release. For example, rather than writing a program
and then manually preparing the code for release (e.g. by providing
a configure script and integrating with Autotools and the GNU
Build System), the Cargo system sets the programmer up from the
start for releasing their code and publishing it to an ecosystem of
Rust packages®. The below shows the series of invocations needed
to create, test, and publish a project using this system:

$> cargo new my-program

$> cd my-program

...development. ..

$> cargo build

$> cargo test

$> cargo package

$> cargo publish

This program could then be run (and performance measured) in

a specialized software environment, for example using containers.
Our vision is to combine these approaches to promote an ecosystem
of specialized OS kernels, where steps above would correspond to
writing an application for a specific OS or a component of that
OS, and subsequently deploying that OS on virtual or physical
hardware. We claim such an ecosystem (and systems to support it)
should ideally meet the following requirements.

Discoverability: It should be easy for developers to find ker-
nels which fit their particular needs, for example systems designed
for application sandboxing (e.g. Drawbridge [40]), kernels for the
cloud (OSv [23]), or kernels for HPC (HermitCore [29], Kitten [28],
IHK/McKernel [12], Nautilus [15], mOS [47]). Ideally images would
be tagged and searchable. This would look very similar to exist-
ing ecosystems for VM disk images (VMware’s virtual appliance
marketplace) or container images (Docker Hub).

Ease-of-Use: When using a kernel image, it should not be neces-
sary for the developer to understand kernel internals. Complexities
of the build toolchain and deployment should also be abstracted
away by default when possible. Advanced users, however, and de-
velopers wishing to augment a kernel should be given the option.

Composability: Users should be able to build pipelined work-
flows using different kernels deployed in different ways. This allows
users to build complex functionality out of basic building blocks,
where here the building blocks are app/kernel invocations. This
presents a challenge because (1) it requires a standard communi-
cation substrate and messaging protocol between kernels and (2)
the deployment tool must be able to reconcile workflow structure
with the specific kernel invocations while maximizing parallelism.
For example, one kernel invocation might involve a multi-kernel
approach which uses most physical cores on the machine, while
another might only use a unikernel on a single physical core. The
deployment tool then must play the role of job scheduler. For (1),
once the communication mechanisms are decided uopn (e.g. IPIs

*https://www.rust-lang.org/
Shttps://crates.io/

Workshop Presentation

Build

Deployment
ploy App/kernel

JO)

ROSS’19, June 25, 2019, Phoenix, AZ, USA

client cloud

fusion

rt
ReEss kana ||
Al
[| [s [|| s L k| - ¢
LMot | st | [F] west [

fully virtualized partitioned VM partitioned HW " Borariie

Ny i)
oin_thread(t[i1);

Development

| kernrun -d splitVM -k kernelB -a appC

Composition

) {
_launch_thread(foo, NULL);

kernel image K

\ Specialized OS Image Repo

LXTEREEY)

! | kernel [+| boot
<——q ' |config | +|_descriptor_| .

@ . 1 Kernel A Kernel B Kernel C
1 | export .
: WPMIs dev headers :
A ——— 0N ()
U Discovery

Figure 1: Overview of our proposed model.

with a page of shared memory), we can force compilation of the ker-
nel with a static library. However, OS developers still must provide
hooks into this communication library. For (2), we can leverage
prior art on job scheduling in heterogeneous systems and take
inspiration from workflow languages, e.g. Swift [46].

Customizability: Advanced developers should have a way to
rapidly modify existing parts of a kernel, contribute their own com-
ponents, test them, and deploy them (much like cargo, as above).
We contrast this with the laborious process for building, testing,
and deploying a Linux kernel, which is mostly manual.

Performance: Systems involved (e.g. build tools and deploy-
ment support runtimes) should have very little performance over-
head. This is critically important for HPC applications running in a
large-scale environment.

Figure 1 depicts an example of an app/kernel (e.g. Unikernel) de-
velopment workflow. Kernel images are stored in a publicly search-
able catalog (1). A developer then pulls one of these kernels down
(2) to begin working on a project. While this might just be one
invocation of a build tool, everything necessary to do develop-
ment for this particular kernel, such as kernel headers, exported
symbols, and other configuration and metadata is pulled down
transparently for the developer. The developer might specify a par-
ticular kernel version or kernel configuration in this invocation (e.g.
pull nautilus:infiniband). Once the developer has finished
writing the app or kernel component, the build toolchain is invoked
to perform any necessary app + kernel compilation and linking (3).
This might only be necessary if using a kernel that does not include
support for separately compiled code and dynamic linking. Once
this is complete, the user can deploy the combination in a variety
of ways (4). We discuss these deployment modes in more detail in
Section 4. The output of one kernel invocation can be composed
with another to enable pipeline-oriented workflows (5).

In addition to being able to pull existing kernel versions or con-
figurations, developers should be able to create their own (e.g. forks
of existing images) either by changing configurations or modifying
the kernel code directly. Once created they can be published in the
public catalog using the build tool (again, much like cargo publish).
Mechanisms for easing the pain of debugging kernel code (e.g. au-
tomatic linking of gdb stubs, IPMI/Redfish integration, and serial
console support) should be available as well.

3 DIVER

Driven by the requirements in Section 2, we developed Diver, a
development, compilation, and deployment toolchain which aims
to help users discover kernel images, develop and deploy new ap-
plications, and tailor and publish new kernel images.

Diver is a client-side tool which works in a similar fashion to
Cargo and Capstan, and which implements a specialized kernel
workflow as shown in Figure 1. It can be used to search for kernels
by tags based on users’ needs from a catalog server. Once the kernel
name is known, it can can be used to fetch the target kernel image.
Diver can also initiate an app/runtime development environment
based on the particular kernel. Diver automatically generates a
Makefile template for the new app, and downloads all necessary
kernel files like headers, symbol tables, and bootloader configura-
tions. When users are finished with development, Diver can help
build and boot the app using different deployment modes.

Diver also supports uploading new kernel images to a catalog
server. Kernel publishers must follow Diver’s requirements, pro-
viding necessary scripts for generating kernel images, configuring
kernels, testing, and deploying applications. One of our primary
goals with Diver is to develop standard interfaces for developmen-
t/management tools aimed at specialized OSes. We take build and
deployment tools like Capstan and Cargo as inspiration and strive
to ease unnecessary burdens from developers and users of these
systems.

Figure 2 depicts a workflow using Diver. The user first creates
a development environment. They can then create an app/kernel
combination (which we call a "net") using diver build. Finally,
the user can deploy the net using a chosen mode (in this case a
partitioned VM) with the "dive" command. While Diver currently
supports just Nautilus and OSv, we plan to extend it to other special-
ized OSes. Our Diver prototype and its code will be freely available
when this paper is published.

4 INTEGRATING DEPLOYMENT MODES

Once a specialized kernel is built and made ready to boot (paired
with an application or runtime system), the user then must choose
how to run (deploy) it. Existing tools simply launch the SOS in
a VM, but for HPC systems, which might involve complex multi-
kernel environments, a simple VM-based deployment may not be
sufficient. We thus must support different ways of using the un-
derlying hardware. When deploying with Diver, our goal is to hide

Workshop Presentation

$> diver init test

new dev
environment

$> diver build test
[Net (test) successfully created “test.bin”]

new app/kernel
fusion

$> diver list nets

[Net ©: Nautilus id=0x98901 ..]
[Net 1: OSv id=0x89871 ..]
[Net 2: test id=0x1098 ..]

$> diver dive -1in nautilus -d splitVM
nautilus-shell> 3

new
deployment

Figure 2: An example workflow using Diver.

as of this complexity as possible by default, but allow advanced
users to customize the deployment. For example, we put in place
a sane default deployment mode (e.g., fully virtualized), but the
user can choose a different mode for each app/kernel invocation.
Users will also be able to customize options for machine configu-
ration. For example, in a virtualized deployment mode, users can
choose attached devices, passthrough configurations, virtual disks,
console options, etc. This will be very similar to libvirt invocations
(e.g. with virsh). With native deployment modes, users will be
able to specify resource partitioning (e.g. physical core distribution,
physical memory map, shared address space layout, etc.).

Figure 1(4) shows three possible modes of deployment. We now
describe these modes and outline how Diver integrates with them.

4.1 Fully Virtualized

This deployment mode (left side of Figure 1(4)) puts the specialized
OS and app combination in its own virtual machine. This is the
most commmon model that many specialized kernels support, es-
pecially Unikernels, which are designed with paravirtualization (i.e.
only virtio device drivers) in mind. Our current Diver prototype
supports this model. Invocations are similar to libvirt tools, and
the backend hypervisor can be configured, e.g. gemu-kvm [5, 22]
or Palacios [28]. To support this deployment mode, the specialized
OS need only support automatic shutdown (i.e., a kernel bootup,
application invocation, kernel shutdown sequence rather than an
always-on mode of operation). This will ensure that several kernel
invocations can be composed properly. Ideally the kernel would
also support debugging stubs for integration with Diver.

ROSS’19, June 25, 2019, Phoenix, AZ, USA

50 - _
Native ——
Virtual
40 - Multiverse =
©
5 30
£
S 20+
o
10
0 F 9 S N N
N ; ;
060 ‘\e \tb, é\@ ,006 Qé &0\'
B < & AN °
RO & ¥
& & &
& £ ¢

Figure 3: Language shootout benchmark performance with
Racket runtime running native, in a virtual machine, and a
VM split between two OSes (using Multiverse).

4.2 Partitioned VMs

In this mode (middle portion of Figure 1(4)), a virtual machine is
space-partitioned between two operating systems. One is a general-
purpose OS (GPOS in the figure) such as Linux. This OS serves the
role of fielding forwarded requests for functionality not supported
by the specialized OS. For example, a Unikernel with no filesystem
support might forward syscalls to the GPOS to be serviced. This
also gives the specialized kernel a way to use devices while relying
on the device drivers of the GPOS (much like a Dom0 VM in Xen).
Libra [1] first used this mode for a JVM-specific kernel. Unlike a
Domo0 setup, however, the virtual cores and memory of the VM are
space-shared between the OSes. This gives an opportunity for more
efficient communication and interesting superpositions of OS state.
We previously explored this mode using Hybrid Virtual Machines
(HVM), which allowed us to share portions of the virtual address
space between kernels and run a user program in a split execution
environment between the kernels [16]. Namely, the "high-half" (ker-
nel) of the address space are distinct, and the "low-half" (user) of the
address space is shared. A runtime system called Multiverse [17]
paired with an HVM allows legacy parallel programs (for Linux) to
be automatically transformed to work with this model.

This type of deployment mode requires paravirtual support (hy-
percalls) for communication between kernels, and if state superpo-
sitions are to be supported, special handling for them.

As we pointed out in Section 2, underlying deployment modes
should not introduce significant overheads for systems booted with
Diver. Figure 3 shows a performance comparison for the The Lan-
guage Benchmarks Game for the Racket language on an 8-core
AMD system. Here we compare the performance of the bench-
marks running on Linux, running on a Linux VM, and a running
on a version of the Racket runtime system that has automatically
been ported to the partitioned VM mode using Multiverse. There
is little overhead (on the order of a few thousand cycles), and this

Workshop Presentation

1000 160k
140k
800
) 120k
®
S 600 100k
o
5 80k
Qo
400
E 60k
c
200 40k
20k
o S N Q. o0t AP o
B AN R B N e B et 8200 @ (B (22 oS ok B (R @R
. °\§L’ ge\\\a Ccew%?é% o EACaRex e @‘QOQQ“Q%) ‘otgag\\ NS ‘g\\‘x\ =
c\%c‘ - o RS2 <

(a) (b)

Figure 4: Histograms representing syscall invocation trace
for memcached and bzip2.

arises due to forwarding between kernels. In general, an applica-
tion or runtime’s heavy reliance on the legacy (e.g. Linux) ABI will
increase the number of these forwarded events, and will thus affect
performance. As an example, Figure 4 shows a breakdown of a
system call trace for memcached (a) and bzip2 (b). Memcached does
has a more varied distribution of syscalls, but fewer instances of
these invocations. This indicates that forwarding overhead would
be minimal for this deployment mode. Bzip2, however, has sev-
eral hundred thousand invocations of read() and write(). This
benchmark invocation runs for about two minutes, which means
that the overall performance may still be acceptable depending on
forwarding overheads (usually on the order of 1000 psec for effi-
cient shared memory communication). A more complete analysis
of forwarding events for this type of deployment (specifically for
scientific workloads) can be found in [14]. While the performance
of the underlying deployment mode is somewhat orthogonal to
Diver itself, we must ensure that Diver does not introduce any
further overheads, e.g. by scheduling kernel invocations on top of
one another, or by introducing interference by space-sharing the
machine inappropriately.

Based on the observation from our syscall breakdown experi-
ments, here we argue that one of the important use cases of this
partitioned VM model is incremental porting of legacy programs.
Porting existing applications from Linux to another OS that is not
ABI compatible with Linux requires huge engineering effort. With
the help of this partitioned VM model, developers are able to se-
lectively rewrite the code related to those syscalls of the biggest
concern in terms of performance (e.g. epoll_wait in Figure 4 (a)).

4.3 Partitioned Hardware

This mode (right side of Figure 1(4)) is similar to the one discussed
in the previous section, but allows the cores, memory, and devices
of the physical hardware to be partitioned between a GPOS and
a specialized kernel. Lange et al. explored this model using the
Pisces Co-kernel architecture [38] and the XEMEM system for
efficiently sharing memory between kernels [25]. These systems
help to support efficient, in-node application composition [9, 26].
The main requirement with this mode is that the GPOS must support
offlining cores, and the specialized OS must support bootup in a
special software environment. Both kernels in this mode must have

ROSS’19, June 25, 2019, Phoenix, AZ, USA

some mechanism for inter-kernel communication and memory
sharing. Hardware for core isolation (as in on the Blue Gene/L [11])
makes things easier.

5 CHALLENGES AND FUTURE WORK

While we have an existing prototype, realizing the ambitious vision
laid out in Section 2 will involve addressing several challenges.
First, we must integrate the more complex (partitioned) deployment
modes into Diver. We must also add support for more specialized
kernels, such as IHK/McKernel and HermitCore. An ultimate goal
is to develop standard features and interfaces that kernels must
implement to fit in with the Diver system. Supporting efficient
composition of app/kernel invocations (e.g., piping the output of one
or several app/kernel invocation to another as shown in Figure 1(5)),
where both the app/kernel combination and the deployment mode
may vary, also presents a challenge. We also plan to extend the
deployment model to include support for heterogeneous systems
with various accelerators and devices.

6 RELATED WORK

UniK® from solo.io is the only tool we are aware of that is similar to
Diver. It serves as a glue between user applications and unikernels.
UniK helps to compile application source code into a unikernel
(using lightweight bootable disk images) and lightweight virtual
machines rather than traditional application binaries. It utilizes
a simple Docker-like command line interface, making building
unikernels as easy as building containers. UniK runs and manages
instances of compiled images across a variety of cloud providers as
well as locally using VMs.

Unlike Diver, however, UniK is primarily focused on cloud en-
vironments. The following are some major differences. (1) Per-
formance is not the primary concern for UniK. It only supports
running the application in a VM (either on cloud or locally). Diver
supports three different deployment models to allow the user to
make tradeoffs between performance and flexibility. (2) UniK does
not consider the composition of multiple kernel/app combinations.
(3) UniK focuses on the compilation (image generation) process. It
does not help in setting up a sane development environment for
the user, which includes searching for and downloading necessary
unikernel header files and preparing a default build toolchain.

EbbRT is a framework for building per-application library oper-
ating systems [42]. It consists of a set of components called Elas-
tic Building Blocks (Ebbs) that developers can extend, replace, or
discard to construct and deploy a particular application. EbbRT
provides an event-driven execution environment and a minimal
abstraction over the hardware, allowing applications to directly
interact with hardware resources. EbbRT splits applications across
both specialized and general-purpose OSes. Thus, functionality
(such as system calls) can be offloaded. With this replaceable and
modularized Elastic Building Blocks design, EbbRT makes libOSes
easier to build. However, EbbRT does not target other types of
SOSes (e.g. lightweight kernels), and does not consider different
split execution environments. Furthermore, they do not consider
kernel discovery or kernel composition.

Shttps://github.com/solo-io/unik

Workshop Presentation

Jitsu [30] is a system for securely managing multi-tenant net-
worked applications on embedded infrastructure. It utilizes fast
shared-memory channels to provide services that launch MirageOS
unikernels in VMs in response to network traffic. Jitsu is designed
for Xen/ARM and it modifies the Xen toolstack to lower resource
overheads of manipulating virtual machines. Jitsu is similar to Diver
in that they both help to run and manage unikernels in VMs, but
they do not consider disparate kernels or complex deployment
modes.

7 CONCLUSIONS

Both pressing needs for rethinking the software stack and the wide-
spread availability of virtual, on-demand infrastructure have led to
aresurgence of specialized operating systems. We argue that now is
the time to begin building ecosystems for these SOSes to encourage
experimentation and design iteration. We discussed requirements
that we believe tools to support this ecosystem should meet, and
we presented a prototype of such a tool called Diver which we hope
will be a step towards a specialized OS ecosystem. While Diver cur-
rently supports deploying SOSes on virtual infrastructure, we plan
to extend the toolchain to support more non-traditional deployment
modes including physically partitioned hardware and partitioned
virtual machine environments. We further plan to explore coordina-
tion between kernel invocations which utilize different deployment
modes.

REFERENCES

[1] G. Ammons, J. Appavoo, M. Butrico, D. Da Silva, D. Grove, K. Kawachiya,
O. Krieger, B. Rosenburg, E. Van Hensbergen, and R. W. Wisniewski. Libra:
A library operating system for a JVM in a virtualized execution environment. In
Proceedings of the 374 International Conference on Virtual Execution Environments,
VEE ’07, pages 44-54, June 2007.

[2] T.E.Anderson. The case for application-specific operating systems. In Proceedings
of the 3" Workshop on Workstation Operating Systems, Apr. 1992.

[3] A.Baumann, P. Barham, P. E. Dagand, T. Harris, R. Isaacs, S. Peter, T. Roscoe,
A. Schiipbach, and A. Singhania. The Multikernel: A new OS architecture for
scalable multicore systems. In Proceedings of the 224 ACM Symposium on
Operating Systems Principles, SOSP *09, pages 29-44, Oct. 2009.

[4] P. Beckman. Argo: An exascale operating system. http://www.mcs.anl.gov/
project/argo-exascale-operating-system.

[5] F.Bellard. QEMU, a fast and portable dynamic translator. In Proceedings of 2005
USENIX Annual Technical Conference, USENIX ATC’05, pages 41-46, Apr. 2005.

[6] B.N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski, D. Becker,
C. Chambers, and S. Eggers. Extensibility, safety and performance in the SPIN
operating system. In Proceedings of the 15" AcM Symposium on Operating
Systems Principles, SOSP °95, pages 267-283, Dec. 1995.

[7] S.Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek, R. Morris, A. Pesterev,
L. Stein, M. Wu, Y. Dai, Y. Zhang, and Z. Zhang. Corey: An operating system for
many cores. In Proceedings of the 8" USENIX Conference on Operating Systems
Design and Implementation, OSDI'08, pages 4357, Dec. 2008.

[8] D.R.Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exokernel: An operating system
architecture for application-level resource management. In Proceedings of the
15" AcM Symposium on Operating Systems Principles, SOSP *95, pages 251-266,
Dec. 1995.

[9] N. Evans, K. Pedretti, B. Kocoloski, J. Lange, M. Lang, and P. G. Bridges. A
cross-enclave composition mechanism for exascale system software. In Proceed-
ings of the 6'" International Workshop on Runtime and Operating Systems for
Supercomputers, ROSS ’16, June 2016.

[10] K. B. Ferreira, P. Bridges, and R. Brightwell. Characterizing application sensi-
tivity to OS interference using kernel-level noise injection. In Proceedings of
Supercomputing, SC *08, Nov. 2008.

[11] A. Gara, M. A. Blumrich, D. Chen, G. L.-T. Chiu, P. Coteus, M. E. Giampapa, R. A.
Haring, P. Heidelberger, D. Hoenicke, G. V. Kopcsay, T. A. Liebsch, M. Ohmacht,
B. D. Steinmacher-Burow, T. Takken, and P. Vranas. Overview of the Blue Gene/L
system architecture. IBM Journal of Research and Development, 49(2):195-212,
Mar. 2005.

=
)

=
&

(17]

[18

(19]

)
=

[21

[22

[23

[24]

[25]

[26

[27

(28]

[30]

(31]

(32]

ROSS’19, June 25, 2019, Phoenix, AZ, USA

B. Gerofi, M. Takagi, A. Hori, G. Nakamura, T. Shirasawa, and Y. Ishikawa. On the
scalability, performance isolation and device driver transparency of the IHK/M-
cKernel hybrid lightweight kernel. In Proceedings of the 30* " IEEE International
Parallel and Distributed Processing Symposium, IPDPS 16, pages 1041-1050, May
2016.

M. Giampapa, T. Gooding, T. Inglett, and R. W. Wisniewski. Experiences with a
lightweight supercomputer kernel: Lessons learned from Blue Gene’s CNK. In
Proceedings of Supercomputing, SC 10, Nov. 2010.

R. Gioiosa, R. W. Wisniewski, R. Murty, and T. Inglett. Analyzing system calls
in multi-OS hierarchical environments. In Proceedings of the 5 " International
Workshop on Runtime and Operating Systems for Supercomputers, ROSS 15, June
2015.

K. C. Hale and P. A. Dinda. A case for transforming parallel runtimes into
operating system kernels. In Proceedings of the 24" AcM Symposium on High-
performance Parallel and Distributed Computing, HPDC ’15, June 2015.

K. C. Hale and P. A. Dinda. Enabling hybrid parallel runtimes through kernel
and virtualization support. In Proceedings of the 128" ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, VEE’16, pages 161—
175, Apr. 2016.

K. C. Hale, C. Hetland, and P. A. Dinda. Multiverse: Easy conversion of runtime
systems into os kernels via automatic hybridization. In Proceedings of the 14t
IEEE International Conference on Autonomic Computing, ICAC’17, July 2017.

T. Hoefler, T. Schneider, and A. Lumsdaine. Characterizing the influence of system
noise on large-scale applications by simulation. In Proceedings of Supercomputing,
SC ’10, Nov. 2010.

G. C. Hunt and J. R. Larus. Singularity: Rethinking the software stack. SIGOPS
Operating Systems Review, 41(2):37-49, Apr. 2007.

K. Keahey, P. Riteau, D. Stanzione, T. Cockerill, J. Mambretti, P. Rad, and P. Ruth.
Chameleon: a scalable production testbed for computer science research. In J. Vet-
ter, editor, Contemporary High Performance Computing: From Petascale toward
Exascale, volume 3 of Chapman & Hall/CRC Computational Science, chapter 5.
CRC Press, 1 edition, 2018.

S. M. Kelly and R. Brightwell. Software architecture of the light weight kernel,
Catamount. In Proceedings of the 2005 Cray User Group Meeting, CUG’05, May
2005.

A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. kvm: the Linux virtual
machine monitor. In Proceedings of the Linux Symposium, pages 225-230, June
2007.

A. Kivity, D. Laor, G. Costa, P. Enberg, N. Har’El, D. Marti, and V. Zolotarov.
OSv—optimizing the operating system for virtual machines. In Proceedings of the
2014 USENIX Annual Technical Conference, USENIX ATC’14, June 2014.

B. Kocoloski and J. Lange. Better than native: Using virtualization to improve
compute node performance. In Proceedings of the 2"*% International Workshop on
Runtime and Operating Systems for Supercomputers, ROSS *12, June 2012.

B. Kocoloski and J. Lange. XEMEM: Efficient shared memory for composed appli-
cations on multi-os/r exascale systems. In Proceedings of the 24'" International
Symposium on High-Performance Parallel and Distributed Computing, HPDC 15,
pages 89-100, June 2015.

B. Kocoloski, J. Lange, H. Abbasi, D. E. Bernholdt, T. R. Jones, J. Dayal, N. Evans,
M. Lang, J. Lofstead, K. Pedretti, and P. G. Bridges. System-level support for
composition of applications. In Proceedings of the 5" International Workshop on
Runtime and Operating Systems for Supercomputers, ROSS ’15, June 2015.

R. Koller and D. Williams. Will serverless end the dominance of linux in the
cloud? In Proceedings of the 164" Workshop on Hot Topics in Operating Systems,
HotOS 17, pages 169-173, May 2017.

J. Lange, K. Pedretti, T. Hudson, P. Dinda, Z. Cui, L. Xia, P. Bridges, A. Gocke,
S. Jaconette, M. Levenhagen, and R. Brightwell. Palacios and kitten: New high
performance operating systems for scalable virtualized and native supercom-
puting. In Proceedings of the 24'" IEEE International Parallel and Distributed
Processing Symposium, IPDPS’10, Apr. 2010.

S. Lankes, S. Pickartz, and J. Breitbart. HermitCore: A unikernel for extreme
scale computing. In Proceedings of the 6" International Workshop on Runtime
and Operating Systems for Supercomputers, ROSS’16, June 2016.

A. Madhavapeddy, T. Leonard, M. Skjegstad, T. Gazagnaire, D. Sheets, D. Scott,
R. Mortier, A. Chaudhry, B. Singh, J. Ludlam, J. Crowcroft, and L. Leslie. Jitsu:
Just-in-time summoning of unikernels. In 12th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 15), pages 559-573, Oakland, CA, 2015.
A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T. Gazagnaire, S. Smith,
S. Hand, and J. Crowcroft. Unikernels: Library operating systems for the cloud.
In Proceedings of the 184" International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS’13, pages 461-472, Mar.
2013.

K. S. McKinley. The yin and yang of hardware heterogeneity: Can software
survive? In Proceedings of the Companion Publication for the ACM SIGPLAN
Conference on Systems, Programming, Languages, and Applications: Software for
Humanity (Keynote), SPLASH 13, pages 1-2, Oct. 2013.

Workshop Presentation

[33]

(34]

[35]

[36]

[37]

A. B. Montz, D. Mosberger, S. W. O’Malley, L. L. Peterson, and T. A. Proebsting.
Scout: A communications-oriented operating system. In Proceedings of the 5"
Workshop on Hot Topics in Operating Systems, HotOS 95, pages 58-61, May 1995.
A. Morari, R. Gioiosa, R. W. Wisniewski, F. J. Cazorla, and M. Valero. A quantita-
tive analysis of os noise. In Proceedings of the 25" [EEE International Parallel
and Distributed Processing Symposium, IPDPS ’11, pages 852-863, May 2011.

T. Nowatzki, V. Gangadhan, K. Sankaralingam, and G. Wright. Pushing the limits
of accelerator efficiency while retaining programmability. In Proceedings of the
224 [EEE International Symposium on High Performance Computer Architecture,
HPCA 16, pages 27-39, Mar. 2016.

K. Ousterhout, C. Canel, M. Wolffe, S. Ratnasamy, and S. Shenker. Performance
clarity as a first-class design principle. In Proceedings of the 164" Workshop on
Hot Topics in Operating Systems, HotOS ’17, pages 1-6, May 2017.

K. Ousterhout, A. Panda, J. Rosen, S. Venkataraman, R. Xin, S. Ratnasamy,
S. Shenker, and . Stoica. The case for tiny tasks in compute clusters. In Proceed-
ings of the 14t Workshop on Hot Topics in Operating Systems, HotOS 13, May
2013.

[38] J. Ouyang, B. Kocoloski, J. R. Lange, and K. Pedretti. Achieving performance

[39]

[40]

isolation with lightweight co-kernels. In Proceedings of the 24t" International
Symposium on High-Performance Parallel and Distributed Computing, HPDC ’15,
pages 149-160, June 2015.

S. Peter and T. Anderson. Arrakis: A case for the end of the empire. In Proceedings
of the 14th Workshop on Hot Topics in Operating Systems, HotOS *13, May 2013.
D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and G. C. Hunt. Rethinking
the library OS from the top down. In Proceedings of the 16'" International
Conference on Architectural Support for Programming Languages and Operating

[41

[42

[43]

[44

[45

[46

[47]

(48]

ROSS’19, June 25, 2019, Phoenix, AZ, USA

Systems, ASPLOS’11, pages 291-304, Mar. 2011.

G. Prekas, M. Kogias, and E. Bugnion. ZygOS: Achieving low tail latency for
microsecond-scale networked tasks. In Proceedings of the 261" Symposium on
Operating Systems Principles, SOSP ’17, pages 325-341, Oct. 2017.

D. Schatzberg, J. Cadden, H. Dong, O. Krieger, and J. Appavoo. EbbRT: A frame-
work for building per-application library operating systems. In Proceedings of
the 124" USENIX Symposium on Operating Systems Design and Implementation,
OSDI 16, pages 671-688, Oct. 2016.

R. Sun, D. E. Porter, D. Oliveira, and M. Bishop. The case for less predictable
operating system behavior. In Proceedings of the 15t Workshop on Hot Topics in
Operating Systems, HotOS 15, May 2015.

N. Vasilakis, B. Karel, and J. M. Smith. From lone dwarfs to giant superclusters:
Rethinking operating system abstractions for the cloud. In Proceedings of the
154 Workshop on Hot Topics in Operating Systems, HotOS ’15, May 2015.

A. Venkat and D. M. Tullsen. Harnessing ISA diversity: Design of a heterogeneous-
ISA chip multiprocessor. In Proceedings of the 415! Annual International Sympo-
sium on Computer Architecuture, ISCA *14, pages 121-132, June 2014.

M. Wilde, L. Foster, K. Iskra, P. Beckman, Z. Zhang, A. Espinosa, M. Hategan,
B. Clifford, and I. Raicu. Parallel scripting for applications at the petascale and
beyond. IEEE Computer, 42(11):50-60, Nov. 2009.

R. W. Wisniewski, T. Inglett, P. Keppel, R. Murty, and R. Riesen. mOS: An
architecture for extreme-scale operating systems. In Proceedings of the 4th
International Workshop on Runtime and Operating Systems for Supercomputers
(ROSS 2014), pages 2:1-2:8, June 2014.

M. Zahran. Heterogeneous computing: Here to stay. ACM Queue, 14(6), Dec.
2016.

