
Towards a Practical Ecosystem of
Specialized OS Kernels

Conghao Liu and Kyle C. Hale
Illinois Institute of Technology

{cliu115@hawk,khale@cs}.iit.edu

ABSTRACT

Specialized operating systems have enjoyed a recent revival driven

both by a pressing need to rethink the system software stack in

several domains and by the convenience and flexibility that on-

demand infrastructure and virtual execution environments offer.

Several barriers exist which curtail the widespread adoption of such

highly specialized systems, but perhaps the most consequential of

them is that these systems are simply difficult to use. In this pa-

per we discuss the challenges faced by specialized OSes, both for

HPC and more broadly, and argue that what is needed to make

them practically useful is a reasonable development and deploy-

ment model that will form the foundation for a kernel ecosystem

that allows intrepid developers to discover, experiment with, con-

tribute to, and write programs for available kernel frameworks

while safely ignoring complexities such as provisioning, deploy-

ment, cross-compilation, and interface compatibility. We argue that

such an ecosystem would allow more developers of highly tuned

applications to reap the performance benefits of specialized kernels.

CCS CONCEPTS

· Software and its engineering→ Operating systems; Devel-

opment frameworks and environments; Virtual machines; Soft-

ware architectures;

ACM Reference Format:

Conghao Liu and Kyle C. Hale. 2019. Towards a Practical Ecosystem of Spe-

cialized OS Kernels. In 9th International Workshop on Runtime and Operating

Systems for Supercomputers (ROSS’19), June 25, 2019, Phoenix, AZ, USA.ACM,

New York, NY, USA, 7 pages. https://doi.org/10.1145/3322789.3328742

1 INTRODUCTION

Several recent trends have prompted a reopening of the discussion

on limitations of general-purpose OSes. Increasing hardware het-

erogeneity [45, 48] poses significant challenges for system software

aiming to support a wide array of applications efficiently [32]. An in-

creasing diversity of applications means that a general-purpose OS

must be all things to all users, potentially sacrificing well-matched

This project is made possible by support from the United States National Science
Foundation (NSF) via grants CNS-1718252 and CNS-1763612.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ROSS’19, June 25, 2019, Phoenix, AZ, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-6755-4/19/06. . . $15.00
https://doi.org/10.1145/3322789.3328742

abstractions and mechanisms. Predictable operation and perfor-

mance, while sometimes detrimental to resilience against exploita-

tion [43], can be very important for certain applications [36], but

is often elusive for general-purpose systems [10, 18, 34]. Unmet

needs for fine-grained task abstractions [37], e.g. to enable server-

less computing [27], have sparked new specialized system designs

such as ZygOS [41] and Amazon’s Firecracker VMM.1

Specialized OSes (SOSes) provide one avenue for addressing

these challenges, where here we broadly construe a specialized OS

as one tailored for a specific workload or class of workloads. This

includes library OSes, Unikernels, and light-weight kernels. While

they have been discussed in the literature for many years [2, 6, 8,

33], their recent resurgence is in part due to the availability and

ease-of-use of commodity virtualization software and public cloud

platforms like Amazon’s AWS and Chameleon [20]. One of the

early visions for virtualization technologyÐnamely, practical OS

experimentationÐis now coming true. There is now a wide array

of specialized OSes available today, from kernels designed for the

cloud such as OSv [23], Arrakis [39], and Mirage [31] to OS designs

to support language and hybrid parallel runtimes [1, 15, 16, 19].

Many efforts focus on extreme scalability at both the intra-node

and inter-node level, including Barrelfish [3], Andromeda [44],

and Corey [7]. Lightweight kernels (LWKs) specifically designed

for raw performance have been around in HPC for more than a

decade [13, 21, 28], and the HPC community is now also looking

at Unikernels [29], in addition to multi-kernel and co-kernel ap-

proaches [4, 12, 38, 47]. Benefits of specialized kernels include their

small size, their performance, predictability, and in some cases

security. Unikernels and LWKs can make virtualization more at-

tractive, as their execution environment can be more hypervisor-

friendly [24].

Despite their benefits, SOSes still face several challenges. The de-

signers must make the decision whether or not the kernel interface

will retain POSIX compatibility (or binary compatibility with, e.g.

Linux), pick the right abstractions for the target workload(s), and

decide on the right level of protection, among other issues. Special-

ization for its own sake is not necessarily a good idea, and as work

in the architecture community shows, striking a good balance be-

tween domain-specific design and general-purpose abstractions can

pay off [35]. Some of these design points can (and should) be based

on foundational principles, but others require experimentation and

design iteration.

However, because SOSes often eschew the usual interfaces, and

because their build toolchains and supported hardware vary, they

tend to be difficult to use2. This difficulty, of course, impedes the

1https://firecracker-microvm.github.io/
2One could, of course, make the argument that this is true for any OS, but commodity
OSes with momentum in the community (with industry and open-source support)
have already by necessity built up an ecosystem of support tools. Take, for example,

Workshop Presentation ROSS’19, June 25, 2019, Phoenix, AZ, USA

3

progress of OS experimentation and can discourage developers

from getting involved in kernel development.

While others have worked toward making the kernels them-

selves easier to build [42], we contrast the current state of affairs

for writing a program for, e.g. a Unikernel, with starting a new

cargo project in Rust (with several simple commands, you can

easily initialize/build/run your project. Package dependencies, com-

pilation dependencies will be automatically handled by the cargo

system)Ðstarting from the outset with ecosystem integration in

mind.

We propose a new development model for SOSes which is rooted

in the idea of building an ecosystem for OS kernels. Much like

the public ecosystems built around container images and virtual

machine images have been a boon to those technologies, we believe

a sound development model paired with a vibrant kernel ecosystem

will not only encourage developers to more actively experiment

with specialized OSes and Unikernels, but will also make them a

more practically useful tool.

A key research challenge for tools which support such an ecosys-

tem, howeverÐespecially for HPCÐis the preservation of perfor-

mance gains given by the SOS.

2 MOTIVATION

While it is easier than it has ever been to build, debug, experiment

with, and deploy specialized OSes (e.g. using IaaS clouds, QEMU,

IPMI, kgdb, etc.), writing programs for them is often very cumber-

some, even when the kernel maintains binary compatibility with

a more popular OS. We are currently involved in development of

an SOS kernel called Nautilus3 which is designed to be paired with

high-performance, parallel-runtime systems [15, 16]. When writ-

ing (or porting) programs or runtime systems for Nautilus, the

developer currently has to add invocation hooks into the kernel’s

initialization code and manually integrate their code into the kernel

build system. This is obviously cumbersome, as it requires devel-

opers to modify a kernel codebase and in some cases deal with the

intricacies of its build system.

Building and running a program for OSv is simpler. OSv has a

convenient tool called Capstan which makes writing and deloying

new applications easier.

$> capstan package init \

--name "java-example"

This command initializes a new Capstan app package in the

current directory. Then the user can start writing code for the new

program. Once finished, the user can run:

$> capstan package compose \

-p java-example

This command fuses the application and kernel into a bootable

OSv QCOW2 image. To run it, we do the following:

$> capstan run java-example \

-p qemu --boot default

In addition to the convenience of developing and deloying new

apps, OSv also provides scripts to help users tailor, generate, or

publish new kernel images to Capstan, Google Cloud Storage, or

the slow evolution of the Multiboot2 standard (very useful for SOSes, but Linux does
not use it).
3https://github.com/hexsa-lab/nautilus

Amazon AWS. However, there is no way to integrate other special-

ized OSes, or to use complicated deployment modes as discussed

in Section 4. Similar inspiration also comes from Rust. Consider

building a program with the Rust4 programming language. The

Rust developers have developed a build tool called cargo which

allows programmers to write code in a way that is amenable to

testing and release. For example, rather than writing a program

and then manually preparing the code for release (e.g. by providing

a configure script and integrating with Autotools and the GNU

Build System), the Cargo system sets the programmer up from the

start for releasing their code and publishing it to an ecosystem of

Rust packages5. The below shows the series of invocations needed

to create, test, and publish a project using this system:

$> cargo new my-program

$> cd my-program

...development...

$> cargo build

$> cargo test

$> cargo package

$> cargo publish

This program could then be run (and performance measured) in

a specialized software environment, for example using containers.

Our vision is to combine these approaches to promote an ecosystem

of specialized OS kernels, where steps above would correspond to

writing an application for a specific OS or a component of that

OS, and subsequently deploying that OS on virtual or physical

hardware. We claim such an ecosystem (and systems to support it)

should ideally meet the following requirements.

Discoverability: It should be easy for developers to find ker-

nels which fit their particular needs, for example systems designed

for application sandboxing (e.g. Drawbridge [40]), kernels for the

cloud (OSv [23]), or kernels for HPC (HermitCore [29], Kitten [28],

IHK/McKernel [12], Nautilus [15], mOS [47]). Ideally images would

be tagged and searchable. This would look very similar to exist-

ing ecosystems for VM disk images (VMware’s virtual appliance

marketplace) or container images (Docker Hub).

Ease-of-Use: When using a kernel image, it should not be neces-

sary for the developer to understand kernel internals. Complexities

of the build toolchain and deployment should also be abstracted

away by default when possible. Advanced users, however, and de-

velopers wishing to augment a kernel should be given the option.

Composability: Users should be able to build pipelined work-

flows using different kernels deployed in different ways. This allows

users to build complex functionality out of basic building blocks,

where here the building blocks are app/kernel invocations. This

presents a challenge because (1) it requires a standard communi-

cation substrate and messaging protocol between kernels and (2)

the deployment tool must be able to reconcile workflow structure

with the specific kernel invocations while maximizing parallelism.

For example, one kernel invocation might involve a multi-kernel

approach which uses most physical cores on the machine, while

another might only use a unikernel on a single physical core. The

deployment tool then must play the role of job scheduler. For (1),

once the communication mechanisms are decided uopn (e.g. IPIs

4https://www.rust-lang.org/
5https://crates.io/

Workshop Presentation ROSS’19, June 25, 2019, Phoenix, AZ, USA

4

$> diver init test

$> diver build test

[Net (test) successfully created “test.bin”]

$> diver list nets

[Net 0: Nautilus id=0x98901 …]

[Net 1: OSv id=0x89871 …]

[Net 2: test id=0x1098 …]

$> diver dive -in nautilus -d splitVM

nautilus-shell>

new dev
environment

new app/kernel
fusion

new
deployment

Figure 2: An example workflow using Diver.

as of this complexity as possible by default, but allow advanced

users to customize the deployment. For example, we put in place

a sane default deployment mode (e.g., fully virtualized), but the

user can choose a different mode for each app/kernel invocation.

Users will also be able to customize options for machine configu-

ration. For example, in a virtualized deployment mode, users can

choose attached devices, passthrough configurations, virtual disks,

console options, etc. This will be very similar to libvirt invocations

(e.g. with virsh). With native deployment modes, users will be

able to specify resource partitioning (e.g. physical core distribution,

physical memory map, shared address space layout, etc.).

Figure 1(4) shows three possible modes of deployment. We now

describe these modes and outline how Diver integrates with them.

4.1 Fully Virtualized

This deployment mode (left side of Figure 1(4)) puts the specialized

OS and app combination in its own virtual machine. This is the

most commmon model that many specialized kernels support, es-

pecially Unikernels, which are designed with paravirtualization (i.e.

only virtio device drivers) in mind. Our current Diver prototype

supports this model. Invocations are similar to libvirt tools, and

the backend hypervisor can be configured, e.g. qemu-kvm [5, 22]

or Palacios [28]. To support this deployment mode, the specialized

OS need only support automatic shutdown (i.e., a kernel bootup,

application invocation, kernel shutdown sequence rather than an

always-on mode of operation). This will ensure that several kernel

invocations can be composed properly. Ideally the kernel would

also support debugging stubs for integration with Diver.

 0

 10

 20

 30

 40

 50

fa
nn

ku
ch

-re
du

x

bi
na

ry
-tr

ee
-2

fa
st
a

fa
st
a-

3

nb
od

y

sp
ec

tra
l-n

or
m

m
an

de
lb
ro

t-2

R
u

n
ti
m

e
 (

s
)

Native
Virtual

Multiverse

Figure 3: Language shootout benchmark performance with

Racket runtime running native, in a virtual machine, and a

VM split between two OSes (using Multiverse).

4.2 Partitioned VMs

In this mode (middle portion of Figure 1(4)), a virtual machine is

space-partitioned between two operating systems. One is a general-

purpose OS (GPOS in the figure) such as Linux. This OS serves the

role of fielding forwarded requests for functionality not supported

by the specialized OS. For example, a Unikernel with no filesystem

support might forward syscalls to the GPOS to be serviced. This

also gives the specialized kernel a way to use devices while relying

on the device drivers of the GPOS (much like a Dom0 VM in Xen).

Libra [1] first used this mode for a JVM-specific kernel. Unlike a

Dom0 setup, however, the virtual cores and memory of the VM are

space-shared between the OSes. This gives an opportunity for more

efficient communication and interesting superpositions of OS state.

We previously explored this mode using Hybrid Virtual Machines

(HVM), which allowed us to share portions of the virtual address

space between kernels and run a user program in a split execution

environment between the kernels [16]. Namely, the "high-half" (ker-

nel) of the address space are distinct, and the "low-half" (user) of the

address space is shared. A runtime system called Multiverse [17]

paired with an HVM allows legacy parallel programs (for Linux) to

be automatically transformed to work with this model.

This type of deployment mode requires paravirtual support (hy-

percalls) for communication between kernels, and if state superpo-

sitions are to be supported, special handling for them.

As we pointed out in Section 2, underlying deployment modes

should not introduce significant overheads for systems booted with

Diver. Figure 3 shows a performance comparison for the The Lan-

guage Benchmarks Game for the Racket language on an 8-core

AMD system. Here we compare the performance of the bench-

marks running on Linux, running on a Linux VM, and a running

on a version of the Racket runtime system that has automatically

been ported to the partitioned VM mode using Multiverse. There

is little overhead (on the order of a few thousand cycles), and this

Workshop Presentation ROSS’19, June 25, 2019, Phoenix, AZ, USA

6

Jitsu [30] is a system for securely managing multi-tenant net-

worked applications on embedded infrastructure. It utilizes fast

shared-memory channels to provide services that launch MirageOS

unikernels in VMs in response to network traffic. Jitsu is designed

for Xen/ARM and it modifies the Xen toolstack to lower resource

overheads of manipulating virtual machines. Jitsu is similar to Diver

in that they both help to run and manage unikernels in VMs, but

they do not consider disparate kernels or complex deployment

modes.

7 CONCLUSIONS

Both pressing needs for rethinking the software stack and the wide-

spread availability of virtual, on-demand infrastructure have led to

a resurgence of specialized operating systems. We argue that now is

the time to begin building ecosystems for these SOSes to encourage

experimentation and design iteration. We discussed requirements

that we believe tools to support this ecosystem should meet, and

we presented a prototype of such a tool called Diver which we hope

will be a step towards a specialized OS ecosystem. While Diver cur-

rently supports deploying SOSes on virtual infrastructure, we plan

to extend the toolchain to support more non-traditional deployment

modes including physically partitioned hardware and partitioned

virtual machine environments. We further plan to explore coordina-

tion between kernel invocations which utilize different deployment

modes.

REFERENCES
[1] G. Ammons, J. Appavoo, M. Butrico, D. Da Silva, D. Grove, K. Kawachiya,

O. Krieger, B. Rosenburg, E. Van Hensbergen, and R. W. Wisniewski. Libra:
A library operating system for a JVM in a virtualized execution environment. In

Proceedings of the 3rd International Conference on Virtual Execution Environments,
VEE ’07, pages 44ś54, June 2007.

[2] T. E. Anderson. The case for application-specific operating systems. In Proceedings

of the 3rd Workshop on Workstation Operating Systems, Apr. 1992.
[3] A. Baumann, P. Barham, P. E. Dagand, T. Harris, R. Isaacs, S. Peter, T. Roscoe,

A. Schüpbach, and A. Singhania. The Multikernel: A new OS architecture for

scalable multicore systems. In Proceedings of the 22nd ACM Symposium on
Operating Systems Principles, SOSP ’09, pages 29ś44, Oct. 2009.

[4] P. Beckman. Argo: An exascale operating system. http://www.mcs.anl.gov/
project/argo-exascale-operating-system.

[5] F. Bellard. QEMU, a fast and portable dynamic translator. In Proceedings of 2005
USENIX Annual Technical Conference, USENIX ATC’05, pages 41ś46, Apr. 2005.

[6] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski, D. Becker,
C. Chambers, and S. Eggers. Extensibility, safety and performance in the SPIN

operating system. In Proceedings of the 15th ACM Symposium on Operating
Systems Principles, SOSP ’95, pages 267ś283, Dec. 1995.

[7] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek, R. Morris, A. Pesterev,
L. Stein, M. Wu, Y. Dai, Y. Zhang, and Z. Zhang. Corey: An operating system for

many cores. In Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation, OSDI’08, pages 43ś57, Dec. 2008.

[8] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exokernel: An operating system
architecture for application-level resource management. In Proceedings of the

15th ACM Symposium on Operating Systems Principles, SOSP ’95, pages 251ś266,
Dec. 1995.

[9] N. Evans, K. Pedretti, B. Kocoloski, J. Lange, M. Lang, and P. G. Bridges. A
cross-enclave composition mechanism for exascale system software. In Proceed-

ings of the 6th International Workshop on Runtime and Operating Systems for
Supercomputers, ROSS ’16, June 2016.

[10] K. B. Ferreira, P. Bridges, and R. Brightwell. Characterizing application sensi-
tivity to OS interference using kernel-level noise injection. In Proceedings of
Supercomputing, SC ’08, Nov. 2008.

[11] A. Gara, M. A. Blumrich, D. Chen, G. L.-T. Chiu, P. Coteus, M. E. Giampapa, R. A.
Haring, P. Heidelberger, D. Hoenicke, G. V. Kopcsay, T. A. Liebsch, M. Ohmacht,
B. D. Steinmacher-Burow, T. Takken, and P. Vranas. Overview of the Blue Gene/L
system architecture. IBM Journal of Research and Development, 49(2):195ś212,
Mar. 2005.

[12] B. Gerofi, M. Takagi, A. Hori, G. Nakamura, T. Shirasawa, and Y. Ishikawa. On the
scalability, performance isolation and device driver transparency of the IHK/M-

cKernel hybrid lightweight kernel. In Proceedings of the 30th IEEE International
Parallel and Distributed Processing Symposium, IPDPS ’16, pages 1041ś1050, May
2016.

[13] M. Giampapa, T. Gooding, T. Inglett, and R. W. Wisniewski. Experiences with a
lightweight supercomputer kernel: Lessons learned from Blue Gene’s CNK. In
Proceedings of Supercomputing, SC ’10, Nov. 2010.

[14] R. Gioiosa, R. W. Wisniewski, R. Murty, and T. Inglett. Analyzing system calls

in multi-OS hierarchical environments. In Proceedings of the 5th International
Workshop on Runtime and Operating Systems for Supercomputers, ROSS ’15, June
2015.

[15] K. C. Hale and P. A. Dinda. A case for transforming parallel runtimes into

operating system kernels. In Proceedings of the 24th ACM Symposium on High-
performance Parallel and Distributed Computing, HPDC ’15, June 2015.

[16] K. C. Hale and P. A. Dinda. Enabling hybrid parallel runtimes through kernel

and virtualization support. In Proceedings of the 12th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, VEE’16, pages 161ś
175, Apr. 2016.

[17] K. C. Hale, C. Hetland, and P. A. Dinda. Multiverse: Easy conversion of runtime

systems into os kernels via automatic hybridization. In Proceedings of the 14th

IEEE International Conference on Autonomic Computing, ICAC’17, July 2017.
[18] T. Hoefler, T. Schneider, and A. Lumsdaine. Characterizing the influence of system

noise on large-scale applications by simulation. In Proceedings of Supercomputing,
SC ’10, Nov. 2010.

[19] G. C. Hunt and J. R. Larus. Singularity: Rethinking the software stack. SIGOPS
Operating Systems Review, 41(2):37ś49, Apr. 2007.

[20] K. Keahey, P. Riteau, D. Stanzione, T. Cockerill, J. Mambretti, P. Rad, and P. Ruth.
Chameleon: a scalable production testbed for computer science research. In J. Vet-
ter, editor, Contemporary High Performance Computing: From Petascale toward
Exascale, volume 3 of Chapman & Hall/CRC Computational Science, chapter 5.
CRC Press, 1 edition, 2018.

[21] S. M. Kelly and R. Brightwell. Software architecture of the light weight kernel,
Catamount. In Proceedings of the 2005 Cray User Group Meeting, CUG’05, May
2005.

[22] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. kvm: the Linux virtual
machine monitor. In Proceedings of the Linux Symposium, pages 225ś230, June
2007.

[23] A. Kivity, D. Laor, G. Costa, P. Enberg, N. Har’El, D. Marti, and V. Zolotarov.
OSvÐoptimizing the operating system for virtual machines. In Proceedings of the
2014 USENIX Annual Technical Conference, USENIX ATC’14, June 2014.

[24] B. Kocoloski and J. Lange. Better than native: Using virtualization to improve

compute node performance. In Proceedings of the 2nd International Workshop on
Runtime and Operating Systems for Supercomputers, ROSS ’12, June 2012.

[25] B. Kocoloski and J. Lange. XEMEM: Efficient shared memory for composed appli-

cations on multi-os/r exascale systems. In Proceedings of the 24th International
Symposium on High-Performance Parallel and Distributed Computing, HPDC ’15,
pages 89ś100, June 2015.

[26] B. Kocoloski, J. Lange, H. Abbasi, D. E. Bernholdt, T. R. Jones, J. Dayal, N. Evans,
M. Lang, J. Lofstead, K. Pedretti, and P. G. Bridges. System-level support for

composition of applications. In Proceedings of the 5th International Workshop on
Runtime and Operating Systems for Supercomputers, ROSS ’15, June 2015.

[27] R. Koller and D. Williams. Will serverless end the dominance of linux in the

cloud? In Proceedings of the 16th Workshop on Hot Topics in Operating Systems,
HotOS ’17, pages 169ś173, May 2017.

[28] J. Lange, K. Pedretti, T. Hudson, P. Dinda, Z. Cui, L. Xia, P. Bridges, A. Gocke,
S. Jaconette, M. Levenhagen, and R. Brightwell. Palacios and kitten: New high
performance operating systems for scalable virtualized and native supercom-

puting. In Proceedings of the 24th IEEE International Parallel and Distributed
Processing Symposium, IPDPS’10, Apr. 2010.

[29] S. Lankes, S. Pickartz, and J. Breitbart. HermitCore: A unikernel for extreme

scale computing. In Proceedings of the 6th International Workshop on Runtime
and Operating Systems for Supercomputers, ROSS’16, June 2016.

[30] A. Madhavapeddy, T. Leonard, M. Skjegstad, T. Gazagnaire, D. Sheets, D. Scott,
R. Mortier, A. Chaudhry, B. Singh, J. Ludlam, J. Crowcroft, and I. Leslie. Jitsu:
Just-in-time summoning of unikernels. In 12th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 15), pages 559ś573, Oakland, CA, 2015.

[31] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T. Gazagnaire, S. Smith,
S. Hand, and J. Crowcroft. Unikernels: Library operating systems for the cloud.

In Proceedings of the 18th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS’13, pages 461ś472, Mar.
2013.

[32] K. S. McKinley. The yin and yang of hardware heterogeneity: Can software
survive? In Proceedings of the Companion Publication for the ACM SIGPLAN
Conference on Systems, Programming, Languages, and Applications: Software for
Humanity (Keynote), SPLASH ’13, pages 1ś2, Oct. 2013.

Workshop Presentation ROSS’19, June 25, 2019, Phoenix, AZ, USA

8

[33] A. B. Montz, D. Mosberger, S. W. O’Malley, L. L. Peterson, and T. A. Proebsting.

Scout: A communications-oriented operating system. In Proceedings of the 5th

Workshop on Hot Topics in Operating Systems, HotOS ’95, pages 58ś61, May 1995.
[34] A. Morari, R. Gioiosa, R. W. Wisniewski, F. J. Cazorla, and M. Valero. A quantita-

tive analysis of os noise. In Proceedings of the 25th IEEE International Parallel
and Distributed Processing Symposium, IPDPS ’11, pages 852ś863, May 2011.

[35] T. Nowatzki, V. Gangadhan, K. Sankaralingam, and G. Wright. Pushing the limits
of accelerator efficiency while retaining programmability. In Proceedings of the

22nd IEEE International Symposium on High Performance Computer Architecture,
HPCA ’16, pages 27ś39, Mar. 2016.

[36] K. Ousterhout, C. Canel, M. Wolffe, S. Ratnasamy, and S. Shenker. Performance

clarity as a first-class design principle. In Proceedings of the 16th Workshop on
Hot Topics in Operating Systems, HotOS ’17, pages 1ś6, May 2017.

[37] K. Ousterhout, A. Panda, J. Rosen, S. Venkataraman, R. Xin, S. Ratnasamy,
S. Shenker, and I. Stoica. The case for tiny tasks in compute clusters. In Proceed-

ings of the 14th Workshop on Hot Topics in Operating Systems, HotOS ’13, May
2013.

[38] J. Ouyang, B. Kocoloski, J. R. Lange, and K. Pedretti. Achieving performance

isolation with lightweight co-kernels. In Proceedings of the 24th International
Symposium on High-Performance Parallel and Distributed Computing, HPDC ’15,
pages 149ś160, June 2015.

[39] S. Peter and T. Anderson. Arrakis: A case for the end of the empire. In Proceedings

of the 14th Workshop on Hot Topics in Operating Systems, HotOS ’13, May 2013.
[40] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and G. C. Hunt. Rethinking

the library OS from the top down. In Proceedings of the 16th International
Conference on Architectural Support for Programming Languages and Operating

Systems, ASPLOS’11, pages 291ś304, Mar. 2011.
[41] G. Prekas, M. Kogias, and E. Bugnion. ZygOS: Achieving low tail latency for

microsecond-scale networked tasks. In Proceedings of the 26th Symposium on
Operating Systems Principles, SOSP ’17, pages 325ś341, Oct. 2017.

[42] D. Schatzberg, J. Cadden, H. Dong, O. Krieger, and J. Appavoo. EbbRT: A frame-
work for building per-application library operating systems. In Proceedings of

the 12th USENIX Symposium on Operating Systems Design and Implementation,
OSDI ’16, pages 671ś688, Oct. 2016.

[43] R. Sun, D. E. Porter, D. Oliveira, and M. Bishop. The case for less predictable

operating system behavior. In Proceedings of the 15th Workshop on Hot Topics in
Operating Systems, HotOS ’15, May 2015.

[44] N. Vasilakis, B. Karel, and J. M. Smith. From lone dwarfs to giant superclusters:
Rethinking operating system abstractions for the cloud. In Proceedings of the

15th Workshop on Hot Topics in Operating Systems, HotOS ’15, May 2015.
[45] A. Venkat and D.M. Tullsen. Harnessing ISA diversity: Design of a heterogeneous-

ISA chip multiprocessor. In Proceedings of the 41st Annual International Sympo-
sium on Computer Architecuture, ISCA ’14, pages 121ś132, June 2014.

[46] M. Wilde, I. Foster, K. Iskra, P. Beckman, Z. Zhang, A. Espinosa, M. Hategan,
B. Clifford, and I. Raicu. Parallel scripting for applications at the petascale and
beyond. IEEE Computer, 42(11):50ś60, Nov. 2009.

[47] R. W. Wisniewski, T. Inglett, P. Keppel, R. Murty, and R. Riesen. mOS: An

architecture for extreme-scale operating systems. In Proceedings of the 4th

International Workshop on Runtime and Operating Systems for Supercomputers
(ROSS 2014), pages 2:1ś2:8, June 2014.

[48] M. Zahran. Heterogeneous computing: Here to stay. ACM Queue, 14(6), Dec.
2016.

Workshop Presentation ROSS’19, June 25, 2019, Phoenix, AZ, USA

9

