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Abstract— Coupling of dual porosity flow and free flow arises
in many important applications, e.g., groundwater system and
industrial filtrations. Existing Stokes-Darcy types of models
cannot accurately describe this type of coupled problem since
they only consider single porosity media. With the support of
lab experiment data we are developing a new coupled multi-
physics, multiscale model and an efficient numerical method
to solve it. Furthermore, both the lab and field data provide
the possibility to improve the accuracy of the model prediction
through data assimilation.
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I

In many real world problems and industrial settings, the
free flow of a liquid and the confined flow in a dual porosity
media are often coupled together and significantly affected
by each other. However, the existing Stokes-Darcy types of
models cannot accurately describe this type of coupled
problem since they only consider single porosity media.
Therefore, with the support of lab experiment data, we
follow the general framework of Stokes-Darcy model and
dual-porosity model to develop a new coupled multi-
physics multi-scale model and the corresponding numerical
methods for accurately describing the coupling of the flow
in dual-porosity media and the free flow. The resulting
coupled dual porosity Navier-Stokes model has higher
fidelity than the Darcy, dual porosity, Navier-Stokes, or
Stokes-Darcy equations on their own. Furthermore, the field
data provides the possibility to improve and demonstrate the
accuracy of the model prediction through data assimilation.

The coupling of porous media flow and free flow arises
in many important applications, e.g., (a) hydrology
problems, carbon sequestration, geothermal systems, and
petroleum extraction in fractured reservoirs/aquifers or
around horizontal wellbores, (b) coupled surface and
subsurface flow, (c) biochemical transport and field-flow
fractionation, (d) blood motion in lungs, solid tumors and
vessels, (e) the mushy zone in alloy solidification, and (6)
topology optimization of fluid flows.
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A traditional model for this type of coupling problems is
the Stokes-Darcy model, which describes the free flow by
the Stokes equation and the porous media flow by the
Darcy’s law, and then couples these two equations through
three interface conditions. While dual-porosity models have
been widely used to describe naturally fractured porous
media for different problems in hydrology, carbon
sequestration, geothermal system, and petroleum extraction
[1-7], this model itself does not consider the free flow in
large conduits nor do existing Stokes-Darcy models
consider a dual-porosity model when they couple the porous
media flow with the free flow. Hence a new dual-porosity-
Navier-Stokes model is needed for a more accurate
description of the coupled dual-porosity flow and free flow.

II.

First consider a simple example of a dual porosity
subdomain Q; and a conduit subdomain (0., where Q =
QU Q. Q4 N Q. = 0, and the interface between the two
subdomains is I, which is represented by the following:
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A traditional dual porosity model is given in ; with
matrix and micro fracture equations [8]:
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where p is the dynamic viscosity, g, is the source/sink
k
term, Q = UTm(pm - pf) measures the mass exchange

between matrix and micro fractures, ¢ is a shape factor
characterizing the morphology dimension of the micro
fractures, k,, /k; represents the intrinsic permeability in the
matrix or fracture, p,,/py represents the pressure in the
matrix or fracture, ¢,,/¢; represents the porosity in the
matrix or fracture, and Cp,./Cs; represents the total
compressibility in the matrix or fracture.

In the conduit Q., the flow is governed by a Navier-
Stokes equation,

Ju,
W+(uc-v)uc—v-'ﬂ"(uc,p) =f,V-u.=0,

3)
where u, is the velocity, p is the kinematic pressure,
T(u,., p) = 2vD(u,) — pl is the stress tensor, D(u,) =
%(Vuc + Vul) is the deformation tensor, I is the identity

matrix, v is the kinematic viscosity of the fluid, and f is a
general body forcing term.

To combine the two separate models into a coupled
system, we need four interface conditions on the interface
I.; based on the following three fundamental properties of
dual-porosity media.

e  The matrix permeability in a dual-porosity media is
critically low compared with the micro-fracture
permeability. For example, in a shale or tight
reservoir, the matrix permeability is usually 10° to
107 times smaller than the micro-fracture
permeability.

The matrix porosity is usually much larger than the
micro-fracture porosity. For example, in a shale or
tight reservoir, the matrix porosity is usually 10? to
103 times larger than the micro-fracture porosity.
The shape factor a, which ranges from 0 to 1, can
be determined according to the morphology and
dimension of the micro fractures by using different
types of formulas.

See [9-13].

In the dual-porosity media with the above properties, the
matrix system serves as the main storage space and the
micro fracture system serves as the preferential fluid
movement channel. Due to the critically low permeability in
the matrix and the much faster flow in the micro fractures,
the dual porosity model neglects the flows between the
matrix and the conduits/macro fractures. That is, the dual
porosity model assumes that the fluid drains from the matrix
block into the adjacent micro fractures and then into the
conduits/macro fractures. Since the matrix is assumed to
only feed the micro fractures, the conduits/macro fractures
do not directly communicate with the matrix, but only
communicate with the micro fractures [14-18].

Following the idea in [19], the four interface conditions
are given below.

1. A no exchange condition between the matrix and

the conduits/macro-fractures:

k
- vapm ' (_ncd) =0,
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where n.,4 is the unit normal vector on the interface
edges pointing from Q. to Q.

2. Conservation of mass:
ky
U Neg = — vaf ‘Mg (5)
3. Balance of forces:
p
e T(tte, PGy =~ ©)
4. Beavers-Joseph condition [20]:
—P; (T(uc: p)ncd) =
6vVD @)

P ( 1y )
u - f
Jtrace(I) T\ Pr

where P, is the projection onto the local tangent
plane on T4, 6 is the Beavers-Joseph coefficient,
Il = kI is the intrinsic permeability of fracture
medium, and D is the number of spatial
dimensions.
The interface conditions play a key role and usually cause
the major difficulty for interface problems.

Finally, we need boundary and initial conditions in order
to have a well posed system. Either Dirichlet or Neumann
conditions are needed for the variables p; and py, on Iy, u,
on I, pm(x, 0), pr(x, 0), and u.(x, 0).

Usually it is extremely difficult and expensive to
measure the fluid flow velocity to obtain the velocity data
[21]. It is easier to obtain the flow rate data for the following
defective boundary conditions on portions of the domain
boundary S;,i = 0,1, -, m [22]:

J

Going back to the example at the beginning of this
section, for m=2, we could have

U, 'ncdds = Q[, i= O,---,m. (8)
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The solutions of a dual porosity Navier-Stokes model with

these conditions are not unique and utilizing Lagrange

multipliers for the defective boundary conditions leads to a

saddle point problem. This boundary condition is difficult
to use in the solvers we are developing.
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III.  TRANSMISSION CONDITIONS FOR A MULTI PHYSICS

DOMAIN DECOMPOSITION

A noniterative multiphysics domain decomposition
method (MPDDM) has been developed [23-26] for solving
the interface problem and is used at each time step of the
data assimilation process described in Section IV. We
avoid using an explicit scheme while using the information
in the preceding time steps efficiently. At each time step,
our method only needs a single multi-phase Navier-Stokes
solve and a single multi-phase Darcy solve in parallel,
which is optimal.

We reorganize all the components in the physical
interface conditions into Robin type boundary conditions
on the interface with relaxation parameters specifically
designed for the different scales of Darcy and Stokes flows
in order to decompose different physical subdomains
according to relevant physics in the multiphysics setting.
Based on the normal interface conditions (4)-(7), the mixed
transmission conditions on the interface are

ko
——Vpm (—Nneq) =0, )
u
k
7 Pr
—Vprn z+—=¢&, (10)
Ya u Py Neq D ¢a
nng(uC! p)ncd T YU Mg = fc' (1 1)
ovVD
~P(T (e, PYca) = T Prtte = §r on Lo, (12)

where &;, &, and é;p denote three auxiliary functions on
I'. Each component on the left sides of these mixed
conditions directly comes from the three interface
conditions. These four conditions enable us to decompose
the original coupled system into two subproblems, the dual-
porosity equation and the Navier-Stokes equation.
Therefore, the auxiliary functions &;, &, and & play a
key role in the decomposition and the construction of the
non-iterative algorithm, especially & since it is
responsible for the additional term from the Beavers-
Joseph condition. One advantage of these natural Robin
type conditions is that it is not complicated to obtain the
equivalence between the decoupled system and the original
one. These equivalence conditions provide convenient
tools to directly predict &, &., and & on the interface at
each time step based on the results from the previous time
steps [27,28]. Then we can solve the decoupled dual-
porosity and Navier-Stokes equations independently at
each time step based on the predicted &4, &, and &r.

IV. DATA ASSIMILATION

In order to fully make use of the field data to improve
the prediction of the proposed model, we plan to develop a
variational data assimilation method. For the variational
data assimilation method, we can consider the following
general evolution problem to illustrate the basic idea [29]:

09
% = T((p)rt € (OrT)r(p|t=0 =y (13)
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where ¢ = @(t) is the unknown function belonging for any
t to a Hilbert space H,u € H, and F: H — H is a nonlinear
operator determined by the model. Let Y = L,([0,T], H)

and ||-|ly = (-,-),1,/2. Define the cost functional by

T
¢4
16 =3l + [ lce - plide (14)
0

where «a ER*, @ €Y,,s €Y is the observation, and
C:Y - Y, is a linear operator. Then the variational data
assimilation problem is to find the optimal control u that
minimizes the cost functional J(u) = ;Ielf J(v) subject to

equation (13). Following [29], the necessary optimality
condition reduces the problem (13) to the system, where *
represents the adjoint and ' represents the Frechet
derivative:

=F(p),t€(O,T),

9
at
{—aa_(p: —(F'(@)) 9" = —C*(Cop —p),t € (0,T), (13

Ole=o = U @"|¢=r = 0,au — @[ = 0.

A new cost function will be defined for solving the
interface problem to the prescribed accuracy and cost
effectively. The adjoint problem will be derived similarly.

We use a sensor-grid method [30-32] that is essentially
a model reduction method that significantly reduces the
computational cost. The basic idea to decrease the cost
function as defined over the whole problem domain to a
discrete cost function defined over the set of sensor
locations. We briefly describe the basic procedure of this
method by using the general evolution equation (13).

. N
Assume we have Ny sensor locations {X j}jil and y;(t)

is the measurement of ¢ at the location X; and time t. Given
N basis functions u;,i = 1,--+, N, assume ¢; is the solution
of equation (13) with initial function u;. Then the sensor-
grid method is to find the initial data function

N
u= Z a;u;
i=1

to minimize the discrete cost function

F(a) = Zj’; (Zilai oi(X;t) — Yj(t))z +
ZL’Q (@i = B)?

(16)

where k = (k;,+, ky)T contains penalty coefficients for
B = (B, By)T, which is an a priori vector that is
updated during the simulation to achieve the desired
accuracy. Define the sensor-grid to be a grid using all the
sensor locations as the vertices of the elements in the grid.
Then a multi-scale interpolation technique [31-32] is
utilized over the sensor-grid for solving the equation during
the time evolution iteration.

Applying the sensor-grid method and multiscale
interpolation method to the dual porosity Navier-Stokes



model entails difficulties that have not been experienced in
past Navier-Stokes applications. The constrained
optimization components and the interface have a
significant impact on the size of the sensor-grid in order to
prove stability of the data assimilation process, which
requires the analysis for the much more complex system.

V.

We have presented a new dual porosity Navier-Stokes,
multiphysics model combined with free flow and data
assimilation that can be applied to wide variety of real world
applications and is more accurate than single porosity
models.

CONCLUSIONS
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