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Simple analytic formulas are considered for the energy radiated in low frequency bremsstrahlung
from fully ionized gases. A formula that has been frequently cited over many years turns out to have
only a limited range of validity, more narrow than for a formula derived using the Born approximation.
In an attempt to find a more widely valid simple formula, a soft photon theorem is employed, which in
this context implies that the differential rate of photon emission in an electron-ion collision with definite
initial and final electron momenta is correctly given for sufficiently soft photons by the Born
approximation, to all orders in the Coulomb potential. Corrections to the Born approximation arise
because the upper limit on photon energy for this theorem to apply to a given collision becomes
increasingly stringent as the scattering approaches the forward direction. A general formula is suggested
that takes this into account.
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I. INTRODUCTION

The emission of radio waves from hot ionized
interstellar gas is largely due to soft bremsstrahlung,
the radiation of a low energy photon in the deflection of
a free electron with much larger kinetic energy by the
Coulomb field of an atomic nucleus. It is conventional
to express the rate jðν; vÞ of energy emission per time,
per photon solid angle, and per photon frequency
interval at frequency ν from an electron of velocity v
with jvj ¼ v due to bremsstrahlung in a fully ionized
gas as the approximate classical electrodynamics result
given in 1923 by Kramers [1], times a “free-free Gaunt
factor” gffðν; vÞ that incorporates quantum and other
corrections:

jðν; vÞ≡ 8πZ2e6nI
3

ffiffiffi
3

p
c3m2

ev
gffðν; vÞ; ð1Þ

where nI is the number density of ions, Ze is the ionic
charge (with e everywhere in unrationalized electro-
static units), and me is the electron mass. For an ionized
gas in kinetic equilibrium at temperature T, this gives
the emissivity, the rate of radiation energy emitted per
time, per volume, per photon solid angle, and per
photon frequency interval:

jνðTÞ ¼
Z
mev2=2>hν

d3vneðv; TÞjðν; jvjÞ ð2Þ

where neðv; TÞd3v is the number density of free
electrons with velocity in a range d3v at v. Using
the Maxwell-Boltzmann distribution for neðv; TÞ, this
gives the emissivity

jνðTÞ ¼
8Z2e6nIne

3c3ðkBTÞ1=2m3=2
e

�
2π

3

�
1=2

ḡffðν; TÞ: ð3Þ

where ne is the total number density of free electrons;
kB is the Boltzmann constant; and ḡffðν; TÞ is the
thermally averaged free-free Gaunt factor (briefly, the
thermal Gaunt factor):

ḡffðν; TÞ ¼
me

kBT

Z
∞ffiffiffiffiffiffiffiffiffiffiffi
2hν=me

p gffðν; vÞ exp
�
−
mev2

2kBT

�
vdv:

ð4Þ

Astrophysicists today chiefly rely on various numerical
calculations (e.g., Refs. [2–5]) of the Gaunt factor, based on
a set of quite complicated formulas:

gffðν; vÞ ¼
2

ffiffiffi
3

p

πξξ0
½ðξ2 þ ξ02 þ 2ξ2ξ02ÞI0

− 2ξξ0ð1þ ξ2Þ1=2ð1þ ξ02Þ1=2I1�I0; ð5Þ

where
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Il¼
1

4

�
4ξξ0

ðξ0−ξÞ2
�

lþ1

eπðξþξ0Þ=2 jΓðlþ1þ iξÞΓðlþ1þ iξ0Þj
Γð2lþ1Þ

�
ξþ ξ0

ξ0−ξ

�
−iξ−iξ0

2F1

�
lþ1− iξ;lþ1− iξ0;2lþ2;−

4ξξ0

ðξ0−ξÞ2
�
:

Here ξ≡ Ze2=ℏv and ξ0 ≡ Ze2=ℏv0, with v0 the magnitude
of the final electron velocity, given in terms of ν and v by
the condition of energy conservation

mev02=2 ¼ mev2=2 − hν: ð6Þ

Also, 2F1 is a confluent hypergeometric function, with
power series expansion

2F1ða; b; c; xÞ ¼
X∞
n¼0

ðaÞnðbÞn
ðcÞn

xn

n!
;

where for any complex z

ðzÞn ≡ zðzþ 1Þ � � � ðzþ n − 1Þ for n ¼ 1; 2; 3…;

ðzÞ0 ≡ 1:

These are derived [2] from the summation of a partial wave
expansion [6] of results originally given by Sommerfeld [7]
Still, it would be useful to have a widely valid simple
analytic formula for the Gaunt factor, in order easily to see
trends in how it varies with various parameters, and in order
easily to calculate the thermal Gaunt factor (4). Above all,
from an independent derivation of a simple analytic
formula we can gain a more detailed physical under-
standing of what is going on in the bremsstrahlung process.
A simple formula for the thermal Gaunt factor has been

often given, without providing a derivation, in treatises on
the interstellar medium (e.g., [8–11]).

ḡffðν; TÞ ¼
ffiffiffi
3

p

π

�
ln

� ð2kBTÞ3=2
πZe2νm1=2

e

�
−
5γ

2

�
; ð7Þ

where γ is the Euler constant, γ ¼ 0.577…. Some of these
references indicate that the formula holds for photons that
are soft, in the sense that hν ≪ kBT. (They also note that it
is necessary to assume that the photon frequency is much
larger than the plasma frequency νP, so that Debye screen-
ing can be ignored. This is not a stringent condition, and
will be taken for granted throughout.) But none suggest that
there are more stringent conditions on the frequency and
temperature for the formula to be a valid approximation.
For this formula Spitzer [8] cited an article by Scheuer

[11], who found Eq. (7) by a purely classical calculation of
the emissivity per electron, which gave a result

gffðν; vÞ ¼
ffiffiffi
3

p

π

�
ln

�
mev3

πZe2ν

�
− γ

�
; ð8Þ

As Scheuer found, using this in Eq. (4) gives the widely
quoted thermal Gaunt factor (7) for hν ≪ kBT.
It is not possible that Eq. (8) could be a good approxi-

mation for general photon frequencies and electron veloc-
ities with hν ≪ mev2=2. Contrary to Eq. (8), if ξ≡ Ze2=ℏv
is much less than unity (so that the Coulomb potential at an
electron-ion separation equal to the electron de Broglie
wave length is much less than the electron kinetic energy)
one would expect jðν; vÞ to have a finite limit, given by the
Born approximation—that is, keeping in the matrix element
only terms of first order in the Coulomb potential:

gBornff ðν; vÞ ¼
ffiffiffi
3

p

π
ln

�
2mev2

hν

�
: ð9Þ

(The derivation of Eq. (9) for ξ ≪ 1 is given in the next
section.) Since Eq. (8) does not reduce to Eq. (9) for ξ ≪ 1,
where Eq. (9) applies, it cannot be correct for small ξ. It
also cannot be correct when ξ is much larger than the ratio
of electron to photon energies, because there it gives a
negative Gaunt factor. Accordingly, the formula (7) for the
thermal Gaunt factor derived from Eq. (8) cannot be
expected to hold for general photon frequencies and
electron temperatures with hν ≪ kBT.
Recently Albalat and Zimmerman [12] have shown that

Eq. (8) follows from the “exact” formula (5) used in
numerical calculations, for ξ in the range

1 ≪ ξ ≪ mev2=hν: ð10Þ

(They subsequently found that, though it seems to have been
largely forgotten, in 1962 a review article [13] had obtained
the same result.) For instance, for 2hν=mev2 ¼ 10−3, Eq. (8)
is within a few percent of numerical results [5] for ξ between
1 and 10. On the other hand, for 2hν=mev2 ¼ 10−2 the range
in which (8) agrees with numerical results is vanishingly
narrow.
In contrast, the Born approximation (9) agrees very

well with numerical calculations where ξ < 1, and the
Scheuer Gaunt factor (8) does not. For instance, for
hν ¼ 10−3mev2=2, Eq. (9) gives gBornff ðν; vÞ ¼ 4.573, while
numerical calculations [5] give gffðν; vÞ equal to 4.5730 for
ξ ¼ 10−3 and for ξ ¼ 10−2, dropping only to 4.5672 for
ξ ¼ 0.1 and to 4.2093 for ξ ¼ 1. (An electron has ξ < 1 if
its kinetic energy is larger than the binding energy of a 1s
atomic electron.) In contrast, for the same ratio of photon
and electron energies, Eq. (8) gives a Gaunt factor that is
76% too large for ξ ¼ 10−3, and still 21% too large
for ξ ¼ 0.1.
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This leaves us with the task of finding an approximate
analytic formula for the Gaunt factor that is generally valid
for ξ > 1. Section II derives what I think is a new formula
for the matrix element for soft bremsstrahlung, valid for any
ξ to all orders in the Coulomb potential. This formula leads
immediately to the Born approximation (9) in the case
ξ ≪ 1. To deal with more general values of ξ, a general
soft-photon theorem is used in Sec. III to show that the
differential rate of photon emission in an electron-ion
collision with definite initial and final electron momenta
is correctly given for sufficiently soft photons by the Born
approximation, to all orders in the Coulomb potential.
Nevertheless, as explained in Sec. IV, integration over the
final electron direction introduces corrections to the Born
approximation for the Gaunt factor for ξ > 1. Properties of
the general formula for the bremsstrahlung matrix element
derived in Sec. II suggest a framework for a more general
formula.

II. A GENERAL FORMULA

To derive the Born approximation result (9) for ξ ≪ 1,
and to understand the decrease of the Gaunt factor below
the Born approximation value for ξ of order unity and
greater, it will be useful first to provide what I think is a new
formula for the matrix element for bremsstrahlung that is
valid to all orders in the Coulomb potential.
Taking electrons to be nonrelativistic, which also entails

the electric dipole approximation for the interaction of
electrons with the quantized electromagnetic field, the term
in the matrix element (that is, the coefficient of the energy
conservation delta function in the S-matrix) for brems-
strahlung of first order in this interaction and to all orders in
the Coulomb interaction between an electron and an ion is
given in the “distorted wave Born approximation” [14] as

M ¼ −2πiffiffiffiffiffiffiffiffi
2qc

p ð2πℏÞ3=2

×
−

ffiffiffiffiffiffi
4π

p
eℏ2

me

Z
d3rψ 0�ðrÞe�ðq̂; λÞ · ∇ψðrÞ ð11Þ

where eðq̂; λÞ is the polarization vector (with e� · e ¼ 1) for
a photon with momentum q and helicity λ, and ψ and ψ 0 are
respectively “in” and “out” normalized solutions of the
Schrödinger equation for the initial and final electrons. If
we multiply M with qc ¼ mev2=2 −mev02=2 and use the
Schrödinger equations for mev2ψ=2 and mev02ψ 0=2, we
find by an integration by parts that the kinetic energy terms
in the Schrödinger equations cancel, while the potential
terms cancel except where the gradient in Eq. (9) acts on the
electron-ion interaction potential V, so

M ¼ −ie
ffiffiffi
ℏ

p

ðqcÞ3=2me

Z
d3rψ 0�ðrÞe�ðq̂; λÞ · ½∇VðrÞ�ψðrÞ: ð12Þ

Using the general rules for calculating rates in quantum
mechanics, and setting qc ¼ hν, the rate of emission of
radiation energy per time, per photon solid angle, per
photon frequency interval, and per final electron solid angle
when an electron is scattered from initial velocity v to final
velocity v0 is then

jðν; v → v0Þ ¼ hν ×
h5ν2nIm3

e

4πc3

Z
d2q̂

Z
∞

0

v02dv0

×
X
λ

jMj2δ
�
mev2

2
−
mev02

2
− hν

�
: ð13Þ

Equations (12) and (13) apply for a general potential V.
For a Coulomb potential VðrÞ ¼ −Ze2=r. the exact wave
functions are well known:

ψðrÞ¼Γð1− iξÞeξπ=2
ð2πℏÞ3=2 eik·r1F1ðiξ;1;ðikjrj− ik · rÞÞ;

ψ 0ðrÞ¼Γð1þ iξ0Þeξ0π=2
ð2πℏÞ3=2 eik

0·r
1F1ð−iξ0;1;ð−ik0jrj− ik0 · rÞÞ;

ð14Þ
where k≡ vme=ℏ and k0 ≡ v0me=ℏ; v and v0 are the initial
and final electron velocities; ξ≡ Ze2=ℏv; ξ0 ≡ Ze2=ℏv0;
and 1F1 is another confluent hypergeometric function.
So far, this is valid for nonrelativistic electrons to all

orders in the Coulomb potential VðrÞ. If we now take ξ ≪ 1
(so that for soft photons also ξ0 ≪ 1) then the functions 1F1

in the wave functions (11) take the form 1þOðξÞ and
1þOðξ0Þ and the matrix element (10) is then given by just
the term of first order in V [15]:

M ¼ 4πZe3ℏ3=2

ðhνÞ3=2ð2πℏÞ3m2
e

ðv − v0Þ · e�ðq̂; λÞ
ðv − v0Þ2 ð15Þ

Using this in Eq. (11), we find the emission rate per
electron:

jBornðν; v → v0Þ ¼ 4Z2e6nIv0

3πc3m2
e

1

jv − v0j2 : ð16Þ

(with v0 given by the energy conservation condition
mev02=2 ¼ mev2=2 − hν). Integrating over the final elec-
tron direction gives, for soft photons,

jBornðν;vÞ¼
Z

d2v̂0jBornðν;v→v0Þ

¼8Z2e6nI
3c3m2

ev
ln

�
vþv0

v−v0

�
→

8Z2e6nI
3c3m2

ev
ln

�
2mev2

hν

�

ð17Þ

corresponding to the Gaunt factor (9), in disagreement with
Scheuer’s formula (8). It has recently been shown [16] that
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Eq. (9) also follows in the limit ξ → 0 from the formula (5)
used in Refs. [2–5].

Using Eq. (9) in Eq. (4) gives a thermal Gaunt factor

ḡffðν; TÞ ¼
ffiffiffi
3

p

π
½lnð4kBT=hνÞ − γ�; ð18Þ

which we expect to be valid if 2hν=mev2T ≪ 1 and
Ze2=ℏvT ≪ 1, where vT ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kBT=me

p
is a typical thermal

velocity. There is a possible problem in this thermal
averaging: no matter how small 2hν=mev2T and Ze2=ℏvT
may be, there will always be some electrons with v ≪ vT
for which 2hν=mev2 and/or Ze2=ℏv are not small. But the
effect of these slow electrons is suppressed by d3v=v ¼
4πvdv in the velocity integration (4). In any case, Scheuer’s
Eq. (8) already disagrees with the Born approximation
result (9) before thermal averaging, under circumstances in
which the Born approximation is valid.

III. THE SOFT PHOTON THEOREM

We need to go further, and understand the changes in the
Gaunt factor when ξ≡ Ze2=ℏv is of order unity or greater.
At first sight, it might seem that the Born approximation
should continue to apply for soft photons whatever the
value of ξ. This is because the emission per electron
jðν; v → v0Þ for fixed electron directions is correctly given
in the soft photon limit v0 → v by the Born approximation
result (16), to all orders in the Coulomb potential, whether
or not ξ is small.
This conclusion is based on a very general low energy

theorem [17] of quantum electrodynamics. According to
this theorem, which is valid to all orders in perturbation
theory, the differential rate for a general process α → β with
emission of any number of soft photons with total energy
less than some amount E is given in the soft photon limit
E → 0 by

dΓα→βð< EÞ → ðE=ΛÞAbðAÞdΓ0
α→β: ð19Þ

Here

A ¼ −
1

8π2ℏc

X
n;m

4πηnηmenem
βnm

ln

�
1þ βnm
1 − βnm

�
; ð20Þ

where the sums run over all particles participating in the
reaction α → β; en is the charge of the nth particle; ηn
equals þ1 or −1 for particles in the initial state α or final
state β; and cβnm is the velocity of either of particles n orm
in the rest frame of the other particle:

βnm ≡
�
1 −

m2
nm2

mc4

ðpn · pmÞ2
�
1=2

: ð21Þ

Also, bðAÞ is the function

bðAÞ≡ 1

π

Z þ∞

−∞

sin σdσ
σ

exp

�
A
Z

1

0

dω
ω

ðeiωσ − 1Þ
�

¼ 1 −
π2A2

12
þ � � � ; ð22Þ

and dΓ0
α→β is the differential rate for the same process

without soft photon emission and without radiative
corrections from virtual infrared photons, where Λ is a
more-or-less arbitrary upper limit on virtual photon
four-momenta that is used to define what we mean by
“infrared.” (As we shall see, Λ will not appear in the
nonrelativistic limit relevant to this paper.) The differential
rates dΓα→βð< EÞ and dΓ0

α→β are rates for producing the
particles in the final state β in some infinitesimal element of
their momentum spaces, the same for both rates. (The
formula given in Ref. [17] has been modified here by
inserting a factor 4π in Eq. (20) to account for the use here
of unrationalized units for electric charge, and inserting a
factor 1=ℏc to make A dimensionless in cgs units.)
This is no place to rederive this old result, but it may be

useful here to remark that it applies because the insertion of
a soft-photon external line of momentum q in any external
line for a charged particle in the process α → β produces an
internal line connecting this vertex to the rest of the
diagram; the propagator for this line contributes a 1=q
singularity for q → 0, whose residue is proportional to the
matrix element for the process without the soft photon. This
accounts for a factor 1=q in Eq. (12), which multiplies the
kinematic factor 1=

ffiffiffi
q

p
already present in Eq. (11). (For

photon absorption, the corresponding 1=q3=2 factor in the
matrix element accounts for a factor ðkBTÞ−3 in the
Kramers opacity for free-free transitions.) These diagrams
dominate the matrix element for q → 0, because insertion
of the soft photon line in an internal line of the process
α → β does not produce this pole.
Formula (19) for the soft photon emission rate

applies for relativistic or nonrelativistic processes involving
particles of arbitrary spin, whatever the interactions
may be that produce the reaction α → β. It is considerably
simplified if we specialize to the nonrelativistic case,
for which in some reference frame all velocities of the
particles in the states α and β are much less than c. In this
case all βnm are much less than one, and we can use the
expansion

1

βnm
ln

�
1þ βnm
1 − βnm

�
¼ 2þ 2

3
β2nm þ � � � : ð23Þ

The first term does not contribute in Eq. (20), because the
conservation of electric charge gives

P
nηnen ¼ 0. Hence

in the nonrelativistic case, Eq. (20) becomes

A ¼ −
1

3πℏc

X
n;m

ηnηmenemβ2nm; ð24Þ
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This is at most of order v2=c2, so in the nonrelativistic limit
bðAÞ ¼ 1, and Eq. (19) becomes

dΓα→βð< EÞ →
�
1þ A ln

�
E
Λ

��
dΓ0

α→β: ð25Þ

The rate of energy radiation per frequency interval is then
simply

hν
d
dν

dΓα→βð< hνÞ → hAdΓ0
α→β: ð26Þ

If we now specialize to the case of a nonrelativistic
electron of velocity v scattered by a Coulomb potential into
a final velocity v0, the sum in Eq. (26) will be dominated by
terms in which particles n and m are respectively the initial
and final electron, or vice versa. This gives

A ¼ 2e2

3πℏc3
jv − v0j2: ð27Þ

If needed we could use this in Eq. (24) with any assumption
about the differential rate dΓ0

v→v0 for electron scattering
without photon emission, taking account of complications
like screening or finite ion size in scattering by atoms, but
the calculation of dΓ0

v→v0 beyond low orders of perturbation
theory would then be complicated. Fortunately, as is well
known, if we limit ourselves to the scattering of electrons
by the Coulomb field of an unscreened heavy point ion of
charge Ze, then the differential Coulomb scattering rate per
electron dΓ0

v→v0 is correctly given to all orders in the
Coulomb potential by the Born approximation result:

dΓ0
v→v0 ¼

4Z2e4nIv
m2

ejv − v0j4 d
2v̂0; ð28Þ

where v≡ jvj, and d2v̂0 is the solid angle into which the
electron is scattered. Using Eqs. (27) and (28) in Eq. (26),
the differential rate of energy radiation in soft bremsstrah-
lung per photon frequency interval, per photon solid angle,
and per electron is

jðν; v → v0Þd2v̂0

≡ hν
4π

d
dν

dΓv→v0 ð< hνÞ → 4Z2e6nIv
3πc3m2

ejv − v0j2 d
2v̂0; ð29Þ

just as in the Born approximation result (14). Unfor-
tunately, as we shall see, although the soft photon theorem
tells us that Eq. (29) holds for any ξ and any fixed initial
and final electron velocities and sufficiently small photon
frequency, for ξ > 1 the upper bound on the photon
frequency for its validity becomes increasingly stringent
as the final electron direction approaches the initial
direction.

IV. DEPARTURES FROM THE BORN
APPROXIMATION

Departures from the Born approximation for soft pho-
tons arise because to calculate the emission per electron we
need to integrate over the final electron direction. In the
strict soft photon limit, in which ν ¼ 0 and v ¼ v0, there is a
logarithmic divergence in the integral, arising from the
configuration in which v̂0 is parallel to v̂. In the Born
approximation, for ν small but nonzero the integral is cut
off by the inequality of v and v0, yielding Eq. (17), from
which the Gaunt factor (9) follows as before. But beyond
the Born approximation, does Eq. (15) correctly describe
the behavior of the emission rate when v0 ≠ v, where the
soft photon theorem does not apply?
To answer this, we note that the singularity in the photon

emission rate when v0 → v arises entirely from the slow
decrease of the Coulomb potential at large r. To evaluate
this singularity, we use the well-known asymptotic behav-
ior of the Coulomb wave functions: for r → ∞

ψðrÞ → ð2πℏÞ−3=2eik·rjkr − k · rj−iξ;
ψ 0ðrÞ → ð2πℏÞ−3=2eik0·rjk0rþ k0 · rjiξ0 ; ð30Þ

where k ¼ vme=ℏ and k0 ¼ v0me=ℏ. Using these asymp-
totic forms in Eq. (12), we see that when jv0 − vj=v ≃
hν=mev2 and the angle θ between v and v0 are both very
small, the singularity in the matrix element, is of the form

M→
−iZe3

ffiffiffi
h

p

ðhνÞ3=2me

ðme=ℏÞ−iξ−iξ0
ð2πℏÞ3

Z
d3r

�
e� · r
r3

�

×expðir · ðv−v0Þðme=ℏÞÞjvr−v · rj−iξjv0rþv0 · rj−iξ0 :
ð31Þ

This can be straightforwardly calculated to leading order in
hν=mev2 and θ in two limiting cases:
First, if hν=mev2 ≪ θ ≪ 1 we encounter a singularity:

M →
4πZe3ℏ3=2

ðhνÞ3=2ð2πℏÞ3m2
e

v−2iξðv − v0Þ · e�
jv − v0j2−2iξ

×
Γð1 − 2iξÞΓð1

2
þ iξÞ cosh ξπffiffiffi

π
p

Γð1þ iξÞ : ð32Þ

This is not the same as in the Born approximation matrix
element (15), which is no surprise, because the Coulomb
scattering amplitude itself is affected by higher orders in the
Coulomb potential. But here as in Coulomb scattering the
higher-order corrections in Eq. (32) are just phases, which
do not appear in jMj2, so the singularity in the integrand of
the emission per electron is of the form

jMj2 → jMBornj2: ð33Þ
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The soft photon theorem tells us that this is also true for
hν=mev2 ≪ 1 even where the angle θ between electron
directions is not small and the integral (10) is not dominated
by large r.
Second, moving away from the case covered by the soft

photon theorem, if θ ≪ hν=mev2 ≪ 1, we find a singu-
larity

M →
4πZe3ℏ3=2

ðhνÞ3=2ð2πℏÞ3m2
e

v−2iξðv − v0Þ · e�
jv − v0j2−2iξ Γð1 − 2iξÞ

× Γ
�
1

2
þ iξ

�
Γð1 − iξÞ cosh ξπffiffiffi

π
p : ð34Þ

Here the corrections to the Born approximation are not just
phases. Instead,

jMj2 → jMBornj2 ×
π2ξ2

sinh2 πξ
: ð35Þ

For a rough approximation to the Gaunt factor when ξ is
not small, we introduce a critical angle θc, and tentatively
suppose that Eq. (33) holds for θ > θc and Eq. (35) holds
for θ < θc. Then the emission rate per electron is

jðν;vÞ¼4Z2e6nIv0

3πc3m2
e

�Z
θ>θc

d2v̂0

jv−v0j2þ
π2ξ2

sinh2πξ

Z
θ<θc

d2v̂0

jv−v0j2
�
;

ð36Þ
corresponding to a Gaunt factor

gffðν; vÞ ¼
ffiffiffi
3

p

π

�
ln

�
2mev2

hνζ

�
þ π2ξ2

sinh2πξ
ln ζ

�
; ð37Þ

where

ζ ≡ ð1þ 2ðθ2c=ð2hν=mev2Þ2Þ1=2: ð38Þ
For ξ ≪ 1 the factor π2ξ2= sinh2 πξ is close to unity,
the dependence of the Gaunt factor on the unknown
function ζ drops out, and we recover the Born approxi-
mation (9). For ξ > 1 the factor π2ξ2= sinh2 πξ is exponen-
tially small, and this Gaunt factor reduces to the form (9) of
the Born approximation, except for the factor 1=ζ in
the argument of the logarithm. Since ζ > 1, the Gaunt
factor for ξ > 1 is always less than the Born approximation
value. In the limited range (10) where Eq. (8) is valid, we
have ζ ≃ ξeγ ≫ 1, and so here the critical angle is
θc ≃ ξeγ

ffiffiffi
2

p
hν=mev2. More generally, the decrease in the

Gaunt factor found in numerical calculations for ξ > 1 is
evidently due to a depletion of photon radiation from nearly
forward electron scattering.
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