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Simple analytic formulas are considered for the energy radiated in low frequency bremsstrahlung
from fully ionized gases. A formula that has been frequently cited over many years turns out to have

only a limited range of validity, more narrow than for a formula derived using the Born approximation.

In an attempt to find a more widely valid simple formula, a soft photon theorem is employed, which in

this context implies that the differential rate of photon emission in an electron-ion collision with definite

initial and final electron momenta is correctly given for sufficiently soft photons by the Born

approximation, to all orders in the Coulomb potential. Corrections to the Born approximation arise
because the upper limit on photon energy for this theorem to apply to a given collision becomes
increasingly stringent as the scattering approaches the forward direction. A general formula is suggested

that takes this into account.

DOI: 10.1103/PhysRevD.99.076018

I. INTRODUCTION

The emission of radio waves from hot ionized
interstellar gas is largely due to soft bremsstrahlung,
the radiation of a low energy photon in the deflection of
a free electron with much larger kinetic energy by the
Coulomb field of an atomic nucleus. It is conventional
to express the rate j(v, v) of energy emission per time,
per photon solid angle, and per photon frequency
interval at frequency v from an electron of velocity v
with |v| = v due to bremsstrahlung in a fully ionized
gas as the approximate classical electrodynamics result
given in 1923 by Kramers [1], times a “free-free Gaunt
factor” gy (v, v) that incorporates quantum and other
corrections:

8wZ%en;
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where n7 is the number density of ions, Ze is the ionic
charge (with e everywhere in unrationalized electro-
static units), and m, is the electron mass. For an ionized
gas in kinetic equilibrium at temperature 7, this gives
the emissivity, the rate of radiation energy emitted per
time, per volume, per photon solid angle, and per
photon frequency interval:
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where n,(v,T)d?v is the number density of free
electrons with velocity in a range d°v at v. Using
the Maxwell-Boltzmann distribution for n,(v,T), this
gives the emissivity
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where n, is the total number density of free electrons;
ks is the Boltzmann constant; and gg(v,T) is the
thermally averaged free-free Gaunt factor (briefly, the
thermal Gaunt factor):

m, [ m,v?
g, T) = e/ v, v)ex <— ¢ >11dv.
Gie ) kg \/Mgff( ) exp 2T

(4)

Astrophysicists today chiefly rely on various numerical
calculations (e.g., Refs. [2-5]) of the Gaunt factor, based on
a set of quite complicated formulas:

2@ (&% + &2 +282¢8%)1,
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Here £ = Ze?/hv and & = Ze?/hv', with v/ the magnitude
of the final electron velocity, given in terms of v and v by
the condition of energy conservation

mov'?/2 = m,v?/2 — hv. (6)

Also, ,F; is a confluent hypergeometric function, with
power series expansion

SFi(a,b;c;x) =

where for any complex z

(), =z(z+1)---(z+n-1) forn=1,2,3...;
1.

These are derived [2] from the summation of a partial wave
expansion [6] of results originally given by Sommerfeld [7]
Still, it would be useful to have a widely valid simple
analytic formula for the Gaunt factor, in order easily to see
trends in how it varies with various parameters, and in order
easily to calculate the thermal Gaunt factor (4). Above all,
from an independent derivation of a simple analytic
formula we can gain a more detailed physical under-
standing of what is going on in the bremsstrahlung process.

A simple formula for the thermal Gaunt factor has been
often given, without providing a derivation, in treatises on
the interstellar medium (e.g., [8—11]).

Slu(n.2)

g (v, T) = ()

z nZe*vml/? 2
where y is the Euler constant, y = 0.577.... Some of these
references indicate that the formula holds for photons that
are soft, in the sense that hv < kgT. (They also note that it
is necessary to assume that the photon frequency is much
larger than the plasma frequency vp, so that Debye screen-
ing can be ignored. This is not a stringent condition, and
will be taken for granted throughout.) But none suggest that
there are more stringent conditions on the frequency and
temperature for the formula to be a valid approximation.

For this formula Spitzer [8] cited an article by Scheuer
[11], who found Eq. (7) by a purely classical calculation of
the emissivity per electron, which gave a result
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As Scheuer found, using this in Eq. (4) gives the widely
quoted thermal Gaunt factor (7) for hv < kgT.

It is not possible that Eq. (8) could be a good approxi-
mation for general photon frequencies and electron veloc-
ities with hv < m,v?/2. Contrary to Eq. (8), if ¢ = Ze? /v
is much less than unity (so that the Coulomb potential at an
electron-ion separation equal to the electron de Broglie
wave length is much less than the electron kinetic energy)
one would expect j(v, v) to have a finite limit, given by the
Born approximation—that is, keeping in the matrix element
only terms of first order in the Coulomb potential:

GO (v, v) = ?m (2”;; ”2> : 9)

(The derivation of Eq. (9) for £ <« 1 is given in the next
section.) Since Eq. (8) does not reduce to Eq. (9) for £ < 1,
where Eq. (9) applies, it cannot be correct for small &. It
also cannot be correct when £ is much larger than the ratio
of electron to photon energies, because there it gives a
negative Gaunt factor. Accordingly, the formula (7) for the
thermal Gaunt factor derived from Eq. (8) cannot be
expected to hold for general photon frequencies and
electron temperatures with hy < kgT.

Recently Albalat and Zimmerman [12] have shown that
Eq. (8) follows from the “exact” formula (5) used in
numerical calculations, for £ in the range

1 < &< m,v?/h. (10)

(They subsequently found that, though it seems to have been
largely forgotten, in 1962 a review article [13] had obtained
the same result.) For instance, for 2hv/m,v> = 1073, Eq. (8)
is within a few percent of numerical results [5] for £ between
1 and 10. On the other hand, for 2hv/m,v> = 1072 the range
in which (8) agrees with numerical results is vanishingly
narrow.

In contrast, the Born approximation (9) agrees very
well with numerical calculations where & < 1, and the
Scheuer Gaunt factor (8) does not. For instance, for
hv = 1073m,v?/2, Eq. (9) gives g8 (v, v) = 4.573, while
numerical calculations [5] give g (v, v) equal to 4.5730 for
& =103 and for & = 1072, dropping only to 4.5672 for
£ =0.1 and to 4.2093 for £ = 1. (An electron has & < 1 if
its kinetic energy is larger than the binding energy of a 1s
atomic electron.) In contrast, for the same ratio of photon
and electron energies, Eq. (8) gives a Gaunt factor that is
76% too large for &= 1073, and still 21% too large
for £ =0.1.
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This leaves us with the task of finding an approximate
analytic formula for the Gaunt factor that is generally valid
for & > 1. Section II derives what I think is a new formula
for the matrix element for soft bremsstrahlung, valid for any
£ to all orders in the Coulomb potential. This formula leads
immediately to the Born approximation (9) in the case
¢ <« 1. To deal with more general values of &, a general
soft-photon theorem is used in Sec. III to show that the
differential rate of photon emission in an electron-ion
collision with definite initial and final electron momenta
is correctly given for sufficiently soft photons by the Born
approximation, to all orders in the Coulomb potential.
Nevertheless, as explained in Sec. IV, integration over the
final electron direction introduces corrections to the Born
approximation for the Gaunt factor for £ > 1. Properties of
the general formula for the bremsstrahlung matrix element
derived in Sec. II suggest a framework for a more general
formula.

II. A GENERAL FORMULA

To derive the Born approximation result (9) for £ < 1,
and to understand the decrease of the Gaunt factor below
the Born approximation value for £ of order unity and
greater, it will be useful first to provide what I think is a new
formula for the matrix element for bremsstrahlung that is
valid to all orders in the Coulomb potential.

Taking electrons to be nonrelativistic, which also entails
the electric dipole approximation for the interaction of
electrons with the quantized electromagnetic field, the term
in the matrix element (that is, the coefficient of the energy
conservation delta function in the S-matrix) for brems-
strahlung of first order in this interaction and to all orders in
the Coulomb interaction between an electron and an ion is
given in the “distorted wave Born approximation” [14] as

B —2ri

= VZqeun)
Y Anet? / Pry(r)e(a.2) - Vy(r) (1)

me

where e(§, A) is the polarization vector (with e* - e = 1) for
a photon with momentum q and helicity 4, and y and y’ are
respectively “in” and “out” normalized solutions of the
Schrodinger equation for the initial and final electrons. If
we multiply M with gc = m,v*/2 — m,v"?/2 and use the
Schrodinger equations for m,v?y/2 and m,v"y'/2, we
find by an integration by parts that the kinetic energy terms
in the Schrodinger equations cancel, while the potential
terms cancel except where the gradient in Eq. (9) acts on the
electron-ion interaction potential V, so

—ie\/ﬁ

M=——""_
(ge)**m,

Fry(r)e*(q.2) - [VV(r)y(r). (12)

Using the general rules for calculating rates in quantum
mechanics, and setting gc = hv, the rate of emission of
radiation energy per time, per photon solid angle, per
photon frequency interval, and per final electron solid angle
when an electron is scattered from initial velocity v to final
velocity V' is then

Jjw,v—->v)=hvx v nIm /dZA/ v dv
(e

Equations (12) and (13) apply for a general potential V.
For a Coulomb potential V(r) = —Ze?/r. the exact wave
functions are well known:

[(1—if)es™?

—hu). (13)

()= e i e k).
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(14)

where k = vm,/f and k' = v/m, /h; v and V' are the initial
and final electron velocities; & = Ze?/hv; & = Ze? /',
and | F, is another confluent hypergeometric function.

So far, this is valid for nonrelativistic electrons to all
orders in the Coulomb potential V(r). If we now take £ < 1
(so that for soft photons also ¢’ < 1) then the functions | F
in the wave functions (11) take the form 14 O(¢) and
1 + O(¢&) and the matrix element (10) is then given by just
the term of first order in V [15]:

(v=v)-e(3.4)
(v=v)?

- 4rnZe3h3/?
~ (h)’2(27h)3 m?

(15)

Using this in Eq. (11), we find the emission rate per
electron:

47%env 1

v=v*

‘Born (

J (16)

v,voV)=
3ncim?

(with o' given by the energy conservation condition

m,v'? /2 = m,v*/2 — hv). Integrating over the final elec-
tron direction gives, for soft photons,

Bom I/ 1} /dzv/ Bom I/V—)V/)

8Z%e%n; . [v+7
= 3,,2 In /
3cPmsv vV—0

8Z%e%n;  (2m, v?
- In
33m2v hv
(17)

corresponding to the Gaunt factor (9), in disagreement with
Scheuer’s formula (8). It has recently been shown [16] that
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Eq. (9) also follows in the limit £ — O from the formula (5)
used in Refs. [2-5].
Using Eq. (9) in Eq. (4) gives a thermal Gaunt factor

v3 (In(4ksT/hv) = 7], (18)

T

(v, T) =

which we expect to be valid if 2hv/m,v3 <1 and
Ze?/hvyp < 1, where vy = +/2kgT/m, is a typical thermal
velocity. There is a possible problem in this thermal
averaging: no matter how small 2hv/m,v3 and Ze*/hvy
may be, there will always be some electrons with v < vy
for which 2hv/m,v* and/or Ze*/hv are not small. But the
effect of these slow electrons is suppressed by d*v/v =
4zvdv in the velocity integration (4). In any case, Scheuer’s
Eq. (8) already disagrees with the Born approximation
result (9) before thermal averaging, under circumstances in
which the Born approximation is valid.

III. THE SOFT PHOTON THEOREM

We need to go further, and understand the changes in the
Gaunt factor when & = Ze? /v is of order unity or greater.
At first sight, it might seem that the Born approximation
should continue to apply for soft photons whatever the
value of &. This is because the emission per electron
Jj(v,v = V') for fixed electron directions is correctly given
in the soft photon limit »" — » by the Born approximation
result (16), to all orders in the Coulomb potential, whether
or not £ is small.

This conclusion is based on a very general low energy
theorem [17] of quantum electrodynamics. According to
this theorem, which is valid to all orders in perturbation
theory, the differential rate for a general process a — f with
emission of any number of soft photons with total energy
less than some amount E is given in the soft photon limit
E — 0 by

dT,p(< E) — (E/A)Y*b(A)dT"_,. (19)

Here

1 4 1
A= — > Z T m€n€m In +ﬂnm ) (20)
8 hc o ﬂnm 1 _ﬁnm

where the sums run over all particles participating in the
reaction a — f; e, is the charge of the nth particle; 7,
equals +1 or —1 for particles in the initial state @ or final
state f3; and cf3,,, is the velocity of either of particles n or m
in the rest frame of the other particle:

2 c? } 12
2

P = [1 (PaPw)

(21)

Also, b(A) is the function

1 [+ sinod ldw
b(A)E—/ IO oxp [A/ T2 (e — 1)}
—0 o 0o

2A2
:1_”1_2+..., (22)

and dI’ 2_45 is the differential rate for the same process
without soft photon emission and without radiative
corrections from virtual infrared photons, where A is a
more-or-less arbitrary upper limit on virtual photon
four-momenta that is used to define what we mean by
“infrared.” (As we shall see, A will not appear in the
nonrelativistic limit relevant to this paper.) The differential
rates dl',_5(< E) and dTg_,ﬂ are rates for producing the
particles in the final state # in some infinitesimal element of
their momentum spaces, the same for both rates. (The
formula given in Ref. [17] has been modified here by
inserting a factor 4z in Eq. (20) to account for the use here
of unrationalized units for electric charge, and inserting a
factor 1/%c to make A dimensionless in cgs units.)

This is no place to rederive this old result, but it may be
useful here to remark that it applies because the insertion of
a soft-photon external line of momentum q in any external
line for a charged particle in the process @ — f produces an
internal line connecting this vertex to the rest of the
diagram; the propagator for this line contributes a 1/¢
singularity for ¢ — 0, whose residue is proportional to the
matrix element for the process without the soft photon. This
accounts for a factor 1/¢q in Eq. (12), which multiplies the
kinematic factor 1/,/g already present in Eq. (11). (For
photon absorption, the corresponding 1/¢%? factor in the
matrix element accounts for a factor (kgT)™® in the
Kramers opacity for free-free transitions.) These diagrams
dominate the matrix element for ¢ — 0, because insertion
of the soft photon line in an internal line of the process
a — f does not produce this pole.

Formula (19) for the soft photon emission rate
applies for relativistic or nonrelativistic processes involving
particles of arbitrary spin, whatever the interactions
may be that produce the reaction @ — f. It is considerably
simplified if we specialize to the nonrelativistic case,
for which in some reference frame all velocities of the
particles in the states a and f are much less than c. In this
case all $,,, are much less than one, and we can use the
expansion

1 (145 2
In(—2 ) —2 4 2432 23
ﬂnm n<1 _ﬂnm> +3ﬁnm * ( )

The first term does not contribute in Eq. (20), because the
conservation of electric charge gives »_,7,¢, = 0. Hence
in the nonrelativistic case, Eq. (20) becomes

1
A= Zﬂnﬂmenemﬁﬁm» (24)
n.m

" 3rhc
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This is at most of order v?/c?, so in the nonrelativistic limit
b(A) = 1, and Eq. (19) becomes

ATy p(< E) > [1 +Aln<i>}dl“g_,ﬂ. (25)

The rate of energy radiation per frequency interval is then
simply

d
hy—dUep(< h) = hAdTS,

ap- (26)

If we now specialize to the case of a nonrelativistic
electron of velocity v scattered by a Coulomb potential into
a final velocity v/, the sum in Eq. (26) will be dominated by
terms in which particles n and m are respectively the initial
and final electron, or vice versa. This gives

A=——=v-V[. (27)

If needed we could use this in Eq. (24) with any assumption
about the differential rate dI'0_, for electron scattering
without photon emission, taking account of complications
like screening or finite ion size in scattering by atoms, but
the calculation of dI'?_ , beyond low orders of perturbation
theory would then be complicated. Fortunately, as is well
known, if we limit ourselves to the scattering of electrons
by the Coulomb field of an unscreened heavy point ion of
charge Ze, then the differential Coulomb scattering rate per
electron df’g_w, is correctly given to all orders in the
Coulomb potential by the Born approximation result:

47%e*nsv

0
dr /|4

v—ov T

P, (28)

m2|v —v

where v = |v|, and d?#' is the solid angle into which the
electron is scattered. Using Eqgs. (27) and (28) in Eq. (26),
the differential rate of energy radiation in soft bremsstrah-
lung per photon frequency interval, per photon solid angle,
and per electron is

jlw,v—v)d*

hv d 47%enzv
e (< 2, (29
drdy " (<hv) = 3ncdmiv — v v ®)

just as in the Born approximation result (14). Unfor-
tunately, as we shall see, although the soft photon theorem
tells us that Eq. (29) holds for any £ and any fixed initial
and final electron velocities and sufficiently small photon
frequency, for £ > 1 the upper bound on the photon
frequency for its validity becomes increasingly stringent
as the final electron direction approaches the initial
direction.

IV. DEPARTURES FROM THE BORN
APPROXIMATION

Departures from the Born approximation for soft pho-
tons arise because to calculate the emission per electron we
need to integrate over the final electron direction. In the
strict soft photon limit, in which v = O and v = ¢/, there is a
logarithmic divergence in the integral, arising from the
configuration in which ' is parallel to ?. In the Born
approximation, for v small but nonzero the integral is cut
off by the inequality of v and ¢/, yielding Eq. (17), from
which the Gaunt factor (9) follows as before. But beyond
the Born approximation, does Eq. (15) correctly describe
the behavior of the emission rate when v/ # v, where the
soft photon theorem does not apply?

To answer this, we note that the singularity in the photon
emission rate when v/ — v arises entirely from the slow
decrease of the Coulomb potential at large r. To evaluate
this singularity, we use the well-known asymptotic behav-
ior of the Coulomb wave functions: for r — oo

w(r) = (2zh)732e® T kr — k - 1|7,

W' (r) = (22h) 32X T | r + K x|, (30)
where k = vm, /A and k' = v'm,/#h. Using these asymp-
totic forms in Eq. (12), we see that when |v' — v|/v =~

hv/m,v* and the angle @ between v and v are both very
small, the singularity in the matrix element, is of the form
—iZe3\h (m

e/h)_[g_if/ / e -r
d3
- (hw)3*m,  (2zh)? "R

xexp(ir- (v=v')(m,/h))[or = v-r["E[v'r+v x| 7.

(31)

This can be straightforwardly calculated to leading order in
hv/m,v? and @ in two limiting cases:
First, if hv/m,v*> < 6 < 1 we encounter a singularity:

4nZe3n3? v HE(v—V) e
g -
(hv)¥22zh)’mZ v —V/[>7%¢
(1 —2i&)0( + i€) cosh én
Val(1 + i&)

This is not the same as in the Born approximation matrix
element (15), which is no surprise, because the Coulomb
scattering amplitude itself is affected by higher orders in the
Coulomb potential. But here as in Coulomb scattering the
higher-order corrections in Eq. (32) are just phases, which
do not appear in |M|?, so the singularity in the integrand of
the emission per electron is of the form

(32)

IM[? = | Mo |*. (33)
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The soft photon theorem tells us that this is also true for
hv/m,v* < 1 even where the angle @ between electron
directions is not small and the integral (10) is not dominated
by large r.

Second, moving away from the case covered by the soft
photon theorem, if 8 < hv/m,v*> < 1, we find a singu-
larity

AnZe? v (v — V) - e |
M - (hl/)3/2(2ﬂ;h)3mg |V _ V/|2_2i§ F(l — 2[5)
coshérn

1
=+ )I(1—i . 34
x <2+t§) (1—i) NG (34)
Here the corrections to the Born approximation are not just
phases. Instead,

71.2 52

M|? > |Mgom|* x :
| | _)l Born| sinh2 ﬂ'f

(35)

For a rough approximation to the Gaunt factor when ¢ is
not small, we introduce a critical angle .., and tentatively
suppose that Eq. (33) holds for > . and Eq. (35) holds
for 0 < 6. Then the emission rate per electron is

w.0) 47%e%ns0’ / a*v' N & d*v

v, V)= . ’

/ 3ncPm2 | Joso, [V=V'*  sinh’zé Joog [V=V'|?
(36)

corresponding to a Gaunt factor

B V3 2m,v? &
gur(wsv) === [ln< e >+sinh2m§1n4’ (37)
where
= (14202 Chu/m? ) ()

For £ < 1 the factor 72£2/sinh? z& is close to unity,
the dependence of the Gaunt factor on the unknown
function ¢ drops out, and we recover the Born approxi-
mation (9). For & > 1 the factor 7°£%/ sinh? z¢& is exponen-
tially small, and this Gaunt factor reduces to the form (9) of
the Born approximation, except for the factor 1/{ in
the argument of the logarithm. Since { > 1, the Gaunt
factor for £ > 1 is always less than the Born approximation
value. In the limited range (10) where Eq. (8) is valid, we
have {~&e” > 1, and so here the critical angle is
0, ~ Ee"\/2hv/m,v*. More generally, the decrease in the
Gaunt factor found in numerical calculations for & > 1 is
evidently due to a depletion of photon radiation from nearly
forward electron scattering.
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