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We investigate the nucleation, growth, and spatial organization of topological defects with a ribbon
shaped elastic sheet which is stretched and twisted. Singularities are found to spontaneously arrange in
a triangular lattice in the form of vertices connected by stretched ridges that result in a self-rigidified

structure. The vertices are shown to be negative disclinations or e-cones which occur in sheets with

Received 23rd January 2016,
Accepted 16th April 2016

DOI: 10.1039/c6sm00187d

negative Gaussian curvature, in contrast with d-cones in sheets with zero-Gaussian curvature. We find
the growth of the wrinkled width of the ribbon to be consistent with a far-from-threshold approach
assuming a compression-free base state. The system is found to show a transition from a regime where

the wavelength is given by the ribbon geometry, to where it is given by its elasticity as a function of the

www.rsc.org/softmatter

1 Introduction

Localized defects in the form of disclinations, grain boundaries,
voids, and inclusions that mark an otherwise featureless solid
are important to understanding and designing the macroscopic
properties of materials." Topological defects such as disclinations
and dislocations are known to control the morphology and
mechanical properties of thin flexible sheets and membranes.”
For example, a disclination appears in a thin disk shaped sheet
when the metric of a surface is modified by adding a wedge. Such
a point-like defect induces in-plane stresses that can be alleviated
by out-of-plane deformations.? Disclinations can be positive or
negative, depending on the “charge” associated with Gaussian
curvature around the defect. Oppositely signed disclinations can
pair up resulting in what is called a dislocation with zero net
Gaussian charge.*® Thus, a sheet with a dislocation is isometric
to a plane outside the core of the defect. In the context of elastic
sheets, dislocation and negative disclinations are usually called
d-cones and e-cones, respectively.*” Recent studies suggest a deep
connection between topological defects, such as disclinations and
disclocations in crystalline membrane, and e-cones and d-cones
in amorphous membranes based on their Gaussian charge.®
Considerable experimental and theoretical challenges exist
to identify and model the emergence of such defects and their
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ratio of the applied tension to the elastic modulus and cross-sectional area of the ribbon.

dynamics under external forcing. Isolated defects in infinite
sheets have been well studied.>”°"® Outside the core of the
defect, the deformations are assumed to be inextensible, i.e.
stress free. While this has been shown to lead to a reasonable
description of the overall shape of the surface,'® the inner
structure of the defect and its interaction with other defects
and surface edges are still not well understood.'* Because inter-
acting defects can be commonly noted as in crumpled paper'*™"”
and indented shells,"®° a detailed geometrical characterization
of defect interactions in sheets under well defined loading and
boundary conditions is still needed to build a deeper under-
standing of macroscopic properties of sheets undergoing large
displacement.

Because of its rich phase diagram and well-defined boundary
conditions, the twisted ribbon configuration has been proposed
as a model system to understand the nonlinear and singular
behavior of elastic sheets.”’** A particularly interesting aspect of
the system is the spontaneous emergence of ridges and point-like
defects organized in a triangular lattice that have been shown to
form at small tension.”® This simplified geometry develops
rigidity due to the formation of ridges and allows investigation
of the formation of interacting singularities under well-defined
loading conditions. Over the last decades, various theoretical
approaches have been proposed to model twisted ribbons includ-
ing anisotropic rod-like theory>** and nonlinear plate and shell
theory.”* ' However, none of these approaches have captured or
predicted the spontaneous emergence of the ridges and their fine
structure with the exception of a recent study which has sought to
describe some aspects of the extension of a creased sheet with far
from threshold analysis.>*

Here, we address the nucleation of topological defects in
elastic sheets, and examine their growth and detailed structure
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using micro-focus X-ray computed tomography. We find that
the structure of the observed vertex singularities are different
from d-cones which are often assumed while viewing such
defects in thin sheets. In fact, we find these defects correspond
to negatively signed interacting disclinations, i.e. interacting
e-cones. We show that triangles emerge even when stretching is
applied, in contrast with analysis with inextensible sheets by
Korte, et al.>* We measure the growth of the width of the wrinkles
and show that it is consistent with a far-from threshold approach
assuming a compression free base state.”” We find that the
wavelength of the wrinkles changes from being given by ribbon
geometry to its elasticity as the tension is increased, and is
proportional to 4 ~ Wand A ~ W27~ respectively, where
W is the width of the ribbon, ¢ the thickness, and T is the
normalized applied tension.

2 Methods

Experiments were performed with mylar and cellulose acetate
sheets which have a linear elastic response for strains less than
2% ESL.f Above the elastic limit, mylar deforms plastically but
does not rupture. Where as, cellulose acetate is a quasi-brittle
material which leaves a contrasting mark when deformed
just above the elastic limit and can then rupture. Young’s
modulus E and Poisson ratio v for Mylar are £ ~ 3.4 GPa
and v = 0.4 + 0.05, and for cellulose acetate E ~ 2.2 GPa and
v=0.35 4 0.05. Ribbons with thickness ¢ = 75, 125, and 256 pm,
width W in the range 10-30 mm, and length L = 100-300 mm
are used. The ends of the ribbon are clamped and stretched by
applying a constant force F, and then twisted around its long
axis by a prescribed twist angle 0. Therefore, the experimental
control parameters are the normalized tension T = F/Etw and
normalized twist angle n = OW/L. Accordingly, one can define a
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confinement parameter « = °/T which is the ratio of a geome-
trical strain over a mechanical strain.*?

In order to measure its morphology, the ribbon is scanned as
a function of applied twist and the surface identified by using a
threshold contrast for the absorbed X-rays ESL.f As shown in
Fig. 1, the longitudinal and transverse coordinates along the
ribbon surface normalized by W are denoted by s and r, respec-
tively. The Gaussian curvature K and mean curvature H are then
obtained by locally fitting the surface with a quadratic function.
Comparing the calculated K and H against the ones expected
from a known shape, the measurements are accurate within 5%
ESL. A reconstructed shape of the ribbon along with K and
H superimposed on a single ridge is shown in Fig. 1(a) and (b),
respectively. One observes that regions with higher K are con-
fined to the vertices, and those with higher H are distributed
along the ridge as well as focused near the vertices. Further, the
peak values of the curvatures do not coincide spatially. Thus,
the actual route toward localization and defect formation can be
quantified by the evolution of H and K using 7, or equivalently
with «, for a fixed T.

3 Stress focusing and nature
of singularities

As is well known, a twisted ribbon has a helicoid shape with
H =~ 0 and K = —5” for small enough o at finite T, and wrinkles
just above « > o, = 24 due to the development of compressive
stress around the centerline.>***® Accordingly, the map of
H(r,s) and K(r,s) is shown for o > o, in Fig. 1(c) and (d), respectively.
We observe a continuous transition from smooth wrinkles to sharp
ridges along with an increase in the overall curvature by an order of
magnitude as « is increased from 55 to 437. Further, while the

r

Fig. 1 A 3D reconstruction of a twisted ribbon (Mylar, t/W = 8.5 x 1075, T = 1.2 x 10~ and o = 437) with measured (a) Gaussian curvature K(r,s), and
(b) mean curvature H(r,s) superimposed on a ridge. K(r.s), and H(r.s) are normalized by 1/W? and 1/W, respectively. Map of (c) H(r,s) and (d) K(r.s) as a
function of increasing «. Here we show that a symmetry breaking and a triangular lattice develop with non-zero Gaussian curvature. The lattice spacing

appears almost constant with o.
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wrinkles are initially confined to the center of the ribbon, they are
observed to grow in width as o is increased, before a symmetry
breaking occurs when the region with larger H tilts with alternat-
ing angles. In contrast, the regions with larger |K| progressively
reduces in size at the expense of those with smaller |K]|. For o > a,
H is localized along ridges with alternating tilt angles, while X is
localized in small regions which are self-organized in a triangular
lattice with a spacing similar to the wavelength at threshold. As we
discuss next, these localized regions can be thought of as point-like
defects which can be modeled as conical singularities with a
geometry which can be assigned using the measured curvature.
To understand the nature of these singularities, we first
examine a model of conical singularities prescribed at the vertices
of a triangular lattice which are located at a finite distance from
the edge (see Fig. 2). In practice, negative and positive disclina-
tions are obtained by adding or removing a wedge-shaped sector
at the edge of the ribbon, while d-cones are created by forcing a
point on the sheet - corresponding to the vertex — into a small
rim.'® We observe that the buckled shape is qualitatively different
from that of an isolated singularity because of the interaction
between defects. In Fig. 2(a)-(c), we show that a ribbon with
embedded e-cones leads to a triangular faceted helicoid that we
name an e-helicoid. The e-helicoid is reminiscent of the wavy
edges of torn polyethene sheets and leaves induced by plastic flow
and growth,* except that in our case, the Gaussian curvature is
localized due to the underlying non-planar configuration of the
ribbon. We further found that a helicoid structure could not be
constructed using positive disclinations. However, d-cones organ-
ized in the same triangular lattice (see Fig. 2(d)) lead to a faceted
helicoid upon twisting with very similar triangular facets con-
nected by stretched ridges (see Fig. 2(d)—(f)). This is a significant
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result as it is highly non-trivial to find isometric configurations of
elastic sheets theoretically or numerically with given boundary
conditions. These ordered developable shapes, that we call
d-helicoids, offer an intermediate step toward understanding
more complicated, fully disordered crumpled sheets which are
also singular developable shapes with vertices and ridges.

In order to compare to these models, we display the front and
side views of a scar formed on a twisted ribbon due to plastic
deformations located at the core of a singularity in Fig. 3(a) and
(b). Unlike d-cones which form a parabolic scar,'® we observe a
triangle-shaped plastic deformation near the edge. In this region,
we note that the metric of the surface is similar to the paper
model of an e-helicoid shown in Fig. 2(c). Further, these char-
acteristic features can be compared with the measured Gaussian
and mean curvatures shown in Fig. 3(c) and (d), respectively,
where the curvatures are averaged over several ridges to improve
the signal to noise ratio. As shown in Fig. 3(e), the core of the
defects have a strong negative Gaussian curvature which
increases with « as Knax & Ko(o — )", with Ky = 6.7 x 10~%,
We observe that the cores of these singularities are connected
by ridges with large H with alternating signs and relatively small
K which shows stretching between interacting e-cones. Further,
in between ridges, we identify regions with positive K and
alternating H indicating bumps and dimples due to compres-
sion. As noted in the discussion of the model of an e-helicoid in
the previous paragraph and Fig. 3(b), lateral flaps located near
the edges of the ribbon (r & +1/2) are developable (K ~ 0) but
with small curvature of alternating signs (see Fig. 3(d)). Based
on these measurements and comparisons, we conclude that a
stretched twisted ribbon spontaneously forms e-cones, rather
than d-cones, in the far from threshold regime.

(d)

Fig. 2 A paper model of a ribbon with e-cones (a-c) and d-cones (d—f) which is constructed by hand on a triangular lattice. (a) A ribbon with e-cones
(black filled circles) obtained by making cuts (white lines) and inserting n/6 angled wedges in the lateral flaps (pink/gray areas). (b) A close-up of an e-cone
and associated ridges. (c) An e-cone decorated helicoid at equilibrium with flat triangular regions connected by ridges. (d) A ribbon with d-cones (black
open circles) and the two lateral flaps. (e) Close-up of a d-cone with lines defining ridges and the inner edges of the flaps. (f) A twisted helicoid with

d-cones with flat triangular regions connected by stretched ridges.

This journal is © The Royal Society of Chemistry 2016

Soft Matter



Published on 18 April 2016. Downloaded by WORCESTER POLYTECHNIC INSTITUTE on 26/04/2016 21:17:46.

Paper

H>0 H>0
H<0
H<0
S
Lr
HI
1.0 0

107
10' 10° 10°

Fig. 3 (a) Front view and (b) side view of the plastic deformations located
near the vertex in a cellulose acetate sheet (t/W = 7.4 x 1073, T = 2.1 x
10~* and o = 3700) indicating that the strain is mainly localized in a small
triangular wedge along the ribbon edges and along the stretched ridges.
The side view shows a change of curvature along the edge when passing
over the defect. Scale bar is 1 mm. (c) Gaussian curvature of a ribbon
(Mylar, t/W =85 x 107, T = 1.2 x 10~3) for « = 430 shows stretched ridges
with K < 0 connecting e-cones. In-between the ridges, bumps and
dimples (K > 0) under low compression are observed. Data for K > —1
is shown for better visualization. (d) Mean curvature of the same ribbon
as in (c) showing two ridges of positive (red/light gray) and negative
(blue/gray) curvature. (e) The maximum Kax of the Gaussian curvature
on the defects increases as a power law with « (error bars are smaller than
the symbols). Note that Kmax > —n? (dashed black line).

4 Spatial organization of e-cones and
interactions

We next focus on the compressed section in the central part of
the ribbon. Taking advantage of the translation invariance
along the s direction, we introduce the characteristic amplitude
A(r) = /(H?), of the wrinkled section averaged along s. With
this definition, A(r) is identically zero for a helicoid and positive
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for wrinkled and triangularly faceted states. In Fig. 4(a), we plot
A(r) for increasing «. Because the transition from the wrinkled
section to the stretched flaps appears continuous, the wrinkled
section is defined in practice as the region where A(r) > A(0)/10
corresponding to r < r,,,. As shown in Fig. 4(b), the evolution of
rwr With o compares well with the prediction from a far from

10> 10°

o—a.,

Fig. 4 (a) Profile of mean curvature amplitude A(r) = /{H?), for an
increasing o showing the growth of amplitude and width of the wrinkles.
(b) Evolution of the width of the wrinkles r,,, with o is in agreement with the
form predicted using a far from threshold analysis (solid red line). The
predicted form obtained using a near threshold analysis (dashed black line)
is observed to be systematically lower than the data (see text). (c) Evolution
of the amplitude A(r = 0) with « showing a sub-linear dependence with an
exponent 0.65(~2/3) measured for large a. A line (solid black line) with a
1/2 slope is drawn for comparison.

10!
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threshold analysis which assumes that the formation of the
wrinkles relaxes the stresses leading to a compression free
central part and tensile flaps.****

By contrast, a linear perturbation analysis does not capture
the evolution of r,, (dashed black line). This form is derived by
considering the longitudinal component of the stress field
given by o/T = 1 — /24 + wr?/2, where r is the transverse
coordinate along the ribbon surface.>®**® For o > 24, the
compressive zone around the center line extends to r = r. where
o(r=r.) = 0. Thus, r. = 1/2(a/24 — 1) /o. Now, re ~ /o/24 — 1
for 2 24 (near threshold). But, the compressive zone saturates
and r, =~ /1/12 for o >» 24 (far from threshold). From a linear
stability analysis,*! the wrinkled zone width 21, corresponds to
the width of the compressive zone 2r, provided o« — 24 « 1.
Thus, extending this linear stability analysis for « > 24 yields
an underestimated wrinkled zone width as shown in Fig. 4(b).
This occurs because the assumption that the wrinkles do not
relax the stress leads to large compressive stresses that are
unphysical as o is increased well above o..

We also examine the evolution of the wrinkling amplitude
A(0) evaluated at r = 0 in Fig. 4(c). This amplitude is observed to
increase sub-linearly for large o, consistent with A(0) ~ (ot — o).
However, the origin of this scaling remains unclear.

Finally, we analyze the lattice spacing between defects 4. As
shown in Fig. 5(a) and (b), we find that A decreases with T and
that there is little dependence with «. We verified that the
defects are not trapped in one location due to plasticity by
decreasing T under fixed twist angle. Two regimes for the defect
spacing are identified (see Fig. 5(c)). At relatively large tension
(T > 10~?) corresponding to the elastic regime, / is observed to
clearly decrease with tension. Because the scaling for 4 is not
available in the far from threshold regime, we compare the
experimental data with the prediction®® from a linear stability

10° 10"
T (x107)
Fig. 5 Twisted ribbons (cellulose acetate) with T = 2.5 x 107> (a) and
T =21 x 107 (b) showing plastics deformations at the edges with a
spacing which decreases with tension. The dashed lines represent location
of the ridges which connect the e-cone singularities to guide the eye.
(c) Normalized spacing between defects 2/v/1W decreasing with the tension
(for T > 107%) using Mylar (blue circles) and cellulose acetate (red squares).
The prediction near threshold Cinr/viW (black dashed line) provides a
reasonable fit to the data using the adjusting parameter C = 0.9. The
wavelength is observed to saturate at /W ~ 2 for T < 10~ (see inset).

This journal is © The Royal Society of Chemistry 2016
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analysis which gives At = 1.71(1 — 1/2)_1 t/WT-'/* We find
that the data can be well described by Ag. = C X Anr, Where
C = 0.9 is an adjustable non-dimensional prefactor close to one.
This indicates that the scaling of 4 does not change significantly
far from threshold, as opposed to the scaling of r,, shown in
Fig. 4(b) which is not described by near threshold analysis. Similar
distinction has been noted recently as well in the wrinkling of
an elastic sheet floating on a liquid drop.** However, at lower
tension, a plateau is observed for A ~ 2W, with no observable
dependence on T (Fig. 5(c), inset) indicating a lattice spacing
essentially controlled by the geometry.

5 Conclusions

In conclusion, we find that a thin extensible ribbon upon twisting
exhibits a continuous transition from smooth wrinkles to sharp
ridges. We show with physical models that faceted helicoids can be
constructed using ridges that connect either d-cones or negatively
signed disclinations ie. e-cones that are located in a periodic
triangular lattice near the edges of the ribbon. Our measurements
clearly demonstrate that the singularities in extensible ribbons are
e-cones, and we thus call the resulting structure an e-helicoid. The
longitudinal stretch of the ribbon is found to control the growth of
the e-cones and their spatial organization with a lattice spacing
depending on ribbon geometry and elasticity. Hence, we demon-
strate that the stretched twisted ribbon has a dual nature as it
shows properties intermediate between a torn polyethene sheet
where strain induced plasticity leads to edges with negative
Gaussian curvature and a crumpled paper where the inextensibility
condition produces shapes with flat facets and localized defects.
Finally, we suggest that the characteristic features of interacting
e-cones found here may be applied to other thin film systems.
They may help understand extensible sheets under other condi-
tions which result in changes to the metric, examples of which
include torn thin films, shells with cracks, film growth, and even
crumpled sheets.
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