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Disclinations, e-cones, and their interactions in
extensible sheets†

Julien Chopin*ab and Arshad Kudrollic

We investigate the nucleation, growth, and spatial organization of topological defects with a ribbon

shaped elastic sheet which is stretched and twisted. Singularities are found to spontaneously arrange in

a triangular lattice in the form of vertices connected by stretched ridges that result in a self-rigidified

structure. The vertices are shown to be negative disclinations or e-cones which occur in sheets with

negative Gaussian curvature, in contrast with d-cones in sheets with zero-Gaussian curvature. We find

the growth of the wrinkled width of the ribbon to be consistent with a far-from-threshold approach

assuming a compression-free base state. The system is found to show a transition from a regime where

the wavelength is given by the ribbon geometry, to where it is given by its elasticity as a function of the

ratio of the applied tension to the elastic modulus and cross-sectional area of the ribbon.

1 Introduction

Localized defects in the form of disclinations, grain boundaries,

voids, and inclusions that mark an otherwise featureless solid

are important to understanding and designing the macroscopic

properties of materials.1 Topological defects such as disclinations

and dislocations are known to control the morphology and

mechanical properties of thin flexible sheets and membranes.2

For example, a disclination appears in a thin disk shaped sheet

when the metric of a surface is modified by adding a wedge. Such

a point-like defect induces in-plane stresses that can be alleviated

by out-of-plane deformations.3 Disclinations can be positive or

negative, depending on the ‘‘charge’’ associated with Gaussian

curvature around the defect. Oppositely signed disclinations can

pair up resulting in what is called a dislocation with zero net

Gaussian charge.2,4,5 Thus, a sheet with a dislocation is isometric

to a plane outside the core of the defect. In the context of elastic

sheets, dislocation and negative disclinations are usually called

d-cones and e-cones, respectively.6,7 Recent studies suggest a deep

connection between topological defects, such as disclinations and

disclocations in crystalline membrane, and e-cones and d-cones

in amorphous membranes based on their Gaussian charge.8

Considerable experimental and theoretical challenges exist

to identify and model the emergence of such defects and their

dynamics under external forcing. Isolated defects in infinite

sheets have been well studied.5–7,9–13 Outside the core of the

defect, the deformations are assumed to be inextensible, i.e.

stress free. While this has been shown to lead to a reasonable

description of the overall shape of the surface,10 the inner

structure of the defect and its interaction with other defects

and surface edges are still not well understood.14 Because inter-

acting defects can be commonly noted as in crumpled paper14–17

and indented shells,18–20 a detailed geometrical characterization

of defect interactions in sheets under well defined loading and

boundary conditions is still needed to build a deeper under-

standing of macroscopic properties of sheets undergoing large

displacement.

Because of its rich phase diagram and well-defined boundary

conditions, the twisted ribbon configuration has been proposed

as a model system to understand the nonlinear and singular

behavior of elastic sheets.21,22 A particularly interesting aspect of

the system is the spontaneous emergence of ridges and point-like

defects organized in a triangular lattice that have been shown to

form at small tension.23 This simplified geometry develops

rigidity due to the formation of ridges and allows investigation

of the formation of interacting singularities under well-defined

loading conditions. Over the last decades, various theoretical

approaches have been proposed to model twisted ribbons includ-

ing anisotropic rod-like theory23–25 and nonlinear plate and shell

theory.26–31 However, none of these approaches have captured or

predicted the spontaneous emergence of the ridges and their fine

structure with the exception of a recent study which has sought to

describe some aspects of the extension of a creased sheet with far

from threshold analysis.22

Here, we address the nucleation of topological defects in

elastic sheets, and examine their growth and detailed structure
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using micro-focus X-ray computed tomography. We find that

the structure of the observed vertex singularities are different

from d-cones which are often assumed while viewing such

defects in thin sheets. In fact, we find these defects correspond

to negatively signed interacting disclinations, i.e. interacting

e-cones. We show that triangles emerge even when stretching is

applied, in contrast with analysis with inextensible sheets by

Korte, et al.23Wemeasure the growth of the width of the wrinkles

and show that it is consistent with a far-from threshold approach

assuming a compression free base state.22 We find that the

wavelength of the wrinkles changes from being given by ribbon

geometry to its elasticity as the tension is increased, and is

proportional to l B W and l B W1/2t1/2T�1/4, respectively, where

W is the width of the ribbon, t the thickness, and T is the

normalized applied tension.

2 Methods

Experiments were performed with mylar and cellulose acetate

sheets which have a linear elastic response for strains less than

2% ESI.† Above the elastic limit, mylar deforms plastically but

does not rupture. Where as, cellulose acetate is a quasi-brittle

material which leaves a contrasting mark when deformed

just above the elastic limit and can then rupture. Young’s

modulus E and Poisson ratio n for Mylar are E C 3.4 GPa

and n = 0.4 � 0.05, and for cellulose acetate E C 2.2 GPa and

n = 0.35 � 0.05. Ribbons with thickness t = 75, 125, and 256 mm,

width W in the range 10–30 mm, and length L = 100–300 mm

are used. The ends of the ribbon are clamped and stretched by

applying a constant force F, and then twisted around its long

axis by a prescribed twist angle y. Therefore, the experimental

control parameters are the normalized tension T = F/Etw and

normalized twist angle Z = yW/L. Accordingly, one can define a

confinement parameter a = Z2/T which is the ratio of a geome-

trical strain over a mechanical strain.32

In order to measure its morphology, the ribbon is scanned as

a function of applied twist and the surface identified by using a

threshold contrast for the absorbed X-rays ESI.† As shown in

Fig. 1, the longitudinal and transverse coordinates along the

ribbon surface normalized by W are denoted by s and r, respec-

tively. The Gaussian curvature K and mean curvature H are then

obtained by locally fitting the surface with a quadratic function.

Comparing the calculated K and H against the ones expected

from a known shape, the measurements are accurate within 5%

ESI.† A reconstructed shape of the ribbon along with K and

H superimposed on a single ridge is shown in Fig. 1(a) and (b),

respectively. One observes that regions with higher K are con-

fined to the vertices, and those with higher H are distributed

along the ridge as well as focused near the vertices. Further, the

peak values of the curvatures do not coincide spatially. Thus,

the actual route toward localization and defect formation can be

quantified by the evolution of H and K using Z, or equivalently

with a, for a fixed T.

3 Stress focusing and nature
of singularities

As is well known, a twisted ribbon has a helicoid shape with

H E 0 and K = �Z2 for small enough a at finite T, and wrinkles

just above a 4 ac E 24 due to the development of compressive

stress around the centerline.21,26,28 Accordingly, the map of

H(r,s) and K(r,s) is shown for a4 ac in Fig. 1(c) and (d), respectively.

We observe a continuous transition from smooth wrinkles to sharp

ridges along with an increase in the overall curvature by an order of

magnitude as a is increased from 55 to 437. Further, while the

Fig. 1 A 3D reconstruction of a twisted ribbon (Mylar, t/W = 8.5 � 10�3, T = 1.2 � 10�3 and a = 437) with measured (a) Gaussian curvature K(r,s), and

(b) mean curvature H(r,s) superimposed on a ridge. K(r,s), and H(r,s) are normalized by 1/W2 and 1/W, respectively. Map of (c) H(r,s) and (d) K(r,s) as a

function of increasing a. Here we show that a symmetry breaking and a triangular lattice develop with non-zero Gaussian curvature. The lattice spacing

appears almost constant with a.
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wrinkles are initially confined to the center of the ribbon, they are

observed to grow in width as a is increased, before a symmetry

breaking occurs when the region with larger H tilts with alternat-

ing angles. In contrast, the regions with larger |K| progressively

reduces in size at the expense of those with smaller |K|. For ac ac,

H is localized along ridges with alternating tilt angles, while K is

localized in small regions which are self-organized in a triangular

lattice with a spacing similar to the wavelength at threshold. As we

discuss next, these localized regions can be thought of as point-like

defects which can be modeled as conical singularities with a

geometry which can be assigned using the measured curvature.

To understand the nature of these singularities, we first

examine a model of conical singularities prescribed at the vertices

of a triangular lattice which are located at a finite distance from

the edge (see Fig. 2). In practice, negative and positive disclina-

tions are obtained by adding or removing a wedge-shaped sector

at the edge of the ribbon, while d-cones are created by forcing a

point on the sheet – corresponding to the vertex – into a small

rim.10 We observe that the buckled shape is qualitatively different

from that of an isolated singularity because of the interaction

between defects. In Fig. 2(a)–(c), we show that a ribbon with

embedded e-cones leads to a triangular faceted helicoid that we

name an e-helicoid. The e-helicoid is reminiscent of the wavy

edges of torn polyethene sheets and leaves induced by plastic flow

and growth,33 except that in our case, the Gaussian curvature is

localized due to the underlying non-planar configuration of the

ribbon. We further found that a helicoid structure could not be

constructed using positive disclinations. However, d-cones organ-

ized in the same triangular lattice (see Fig. 2(d)) lead to a faceted

helicoid upon twisting with very similar triangular facets con-

nected by stretched ridges (see Fig. 2(d)–(f)). This is a significant

result as it is highly non-trivial to find isometric configurations of

elastic sheets theoretically or numerically with given boundary

conditions. These ordered developable shapes, that we call

d-helicoids, offer an intermediate step toward understanding

more complicated, fully disordered crumpled sheets which are

also singular developable shapes with vertices and ridges.

In order to compare to these models, we display the front and

side views of a scar formed on a twisted ribbon due to plastic

deformations located at the core of a singularity in Fig. 3(a) and

(b). Unlike d-cones which form a parabolic scar,10 we observe a

triangle-shaped plastic deformation near the edge. In this region,

we note that the metric of the surface is similar to the paper

model of an e-helicoid shown in Fig. 2(c). Further, these char-

acteristic features can be compared with the measured Gaussian

and mean curvatures shown in Fig. 3(c) and (d), respectively,

where the curvatures are averaged over several ridges to improve

the signal to noise ratio. As shown in Fig. 3(e), the core of the

defects have a strong negative Gaussian curvature which

increases with a as Kmax E K0(a � ac)
1.7, with K0 = 6.7 � 10�4.

We observe that the cores of these singularities are connected

by ridges with large H with alternating signs and relatively small

K which shows stretching between interacting e-cones. Further,

in between ridges, we identify regions with positive K and

alternating H indicating bumps and dimples due to compres-

sion. As noted in the discussion of the model of an e-helicoid in

the previous paragraph and Fig. 3(b), lateral flaps located near

the edges of the ribbon (r E �1/2) are developable (K E 0) but

with small curvature of alternating signs (see Fig. 3(d)). Based

on these measurements and comparisons, we conclude that a

stretched twisted ribbon spontaneously forms e-cones, rather

than d-cones, in the far from threshold regime.

Fig. 2 A paper model of a ribbon with e-cones (a–c) and d-cones (d–f) which is constructed by hand on a triangular lattice. (a) A ribbon with e-cones

(black filled circles) obtained by making cuts (white lines) and inserting p/6 angled wedges in the lateral flaps (pink/gray areas). (b) A close-up of an e-cone

and associated ridges. (c) An e-cone decorated helicoid at equilibrium with flat triangular regions connected by ridges. (d) A ribbon with d-cones (black

open circles) and the two lateral flaps. (e) Close-up of a d-cone with lines defining ridges and the inner edges of the flaps. (f) A twisted helicoid with

d-cones with flat triangular regions connected by stretched ridges.
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4 Spatial organization of e-cones and
interactions

We next focus on the compressed section in the central part of

the ribbon. Taking advantage of the translation invariance

along the s direction, we introduce the characteristic amplitude

AðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

H2h i
s

p

of the wrinkled section averaged along s. With

this definition, A(r) is identically zero for a helicoid and positive

for wrinkled and triangularly faceted states. In Fig. 4(a), we plot

A(r) for increasing a. Because the transition from the wrinkled

section to the stretched flaps appears continuous, the wrinkled

section is defined in practice as the region where A(r) 4 A(0)/10

corresponding to ro rwr. As shown in Fig. 4(b), the evolution of

rwr with a compares well with the prediction from a far from

Fig. 3 (a) Front view and (b) side view of the plastic deformations located

near the vertex in a cellulose acetate sheet (t/W = 7.4 � 10�3, T = 2.1 �
10�4 and a = 3700) indicating that the strain is mainly localized in a small

triangular wedge along the ribbon edges and along the stretched ridges.

The side view shows a change of curvature along the edge when passing

over the defect. Scale bar is 1 mm. (c) Gaussian curvature of a ribbon

(Mylar, t/W = 8.5 � 10�3, T = 1.2� 10�3) for a = 430 shows stretched ridges

with K o 0 connecting e-cones. In-between the ridges, bumps and

dimples (K 4 0) under low compression are observed. Data for K 4 �1

is shown for better visualization. (d) Mean curvature of the same ribbon

as in (c) showing two ridges of positive (red/light gray) and negative

(blue/gray) curvature. (e) The maximum Kmax of the Gaussian curvature

on the defects increases as a power law with a (error bars are smaller than

the symbols). Note that Kmax c �Z2 (dashed black line).

Fig. 4 (a) Profile of mean curvature amplitude AðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

H2h i
s

p

for an

increasing a showing the growth of amplitude and width of the wrinkles.

(b) Evolution of the width of the wrinkles rwr with a is in agreement with the

form predicted using a far from threshold analysis (solid red line). The

predicted form obtained using a near threshold analysis (dashed black line)

is observed to be systematically lower than the data (see text). (c) Evolution

of the amplitude A(r = 0) with a showing a sub-linear dependence with an

exponent 0.65(E2/3) measured for large a. A line (solid black line) with a

1/2 slope is drawn for comparison.
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threshold analysis which assumes that the formation of the

wrinkles relaxes the stresses leading to a compression free

central part and tensile flaps.22,31

By contrast, a linear perturbation analysis does not capture

the evolution of rwr (dashed black line). This form is derived by

considering the longitudinal component of the stress field

given by s/T = 1 � a/24 + ar2/2, where r is the transverse

coordinate along the ribbon surface.26,28 For a 4 24, the

compressive zone around the center line extends to r = rc where

s(r = rc) = 0. Thus, rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ða=24� 1Þ=a
p

. Now, rc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a=24� 1
p

for a\ 24 (near threshold). But, the compressive zone saturates

and rc �
ffiffiffiffiffiffiffiffiffiffi

1=12
p

for a c 24 (far from threshold). From a linear

stability analysis,21 the wrinkled zone width 2rwr corresponds to

the width of the compressive zone 2rc provided a � 24 { 1.

Thus, extending this linear stability analysis for a c 24 yields

an underestimated wrinkled zone width as shown in Fig. 4(b).

This occurs because the assumption that the wrinkles do not

relax the stress leads to large compressive stresses that are

unphysical as a is increased well above ac.

We also examine the evolution of the wrinkling amplitude

A(0) evaluated at r = 0 in Fig. 4(c). This amplitude is observed to

increase sub-linearly for large a, consistent with A(0)B (a � ac)
2/3.

However, the origin of this scaling remains unclear.

Finally, we analyze the lattice spacing between defects l. As

shown in Fig. 5(a) and (b), we find that l decreases with T and

that there is little dependence with a. We verified that the

defects are not trapped in one location due to plasticity by

decreasing T under fixed twist angle. Two regimes for the defect

spacing are identified (see Fig. 5(c)). At relatively large tension

(T 4 10�3) corresponding to the elastic regime, l is observed to

clearly decrease with tension. Because the scaling for l is not

available in the far from threshold regime, we compare the

experimental data with the prediction28 from a linear stability

analysis which gives lNT ¼ 1:71 1� n
2

� ��1
ffiffiffiffiffiffiffiffiffiffi

t=W
p

T
�1=4. We find

that the data can be well described by lfit = C � lNT, where

C = 0.9 is an adjustable non-dimensional prefactor close to one.

This indicates that the scaling of l does not change significantly

far from threshold, as opposed to the scaling of rwr shown in

Fig. 4(b) which is not described by near threshold analysis. Similar

distinction has been noted recently as well in the wrinkling of

an elastic sheet floating on a liquid drop.32 However, at lower

tension, a plateau is observed for l B 2W, with no observable

dependence on T (Fig. 5(c), inset) indicating a lattice spacing

essentially controlled by the geometry.

5 Conclusions

In conclusion, we find that a thin extensible ribbon upon twisting

exhibits a continuous transition from smooth wrinkles to sharp

ridges. We show with physical models that faceted helicoids can be

constructed using ridges that connect either d-cones or negatively

signed disclinations i.e. e-cones that are located in a periodic

triangular lattice near the edges of the ribbon. Our measurements

clearly demonstrate that the singularities in extensible ribbons are

e-cones, and we thus call the resulting structure an e-helicoid. The

longitudinal stretch of the ribbon is found to control the growth of

the e-cones and their spatial organization with a lattice spacing

depending on ribbon geometry and elasticity. Hence, we demon-

strate that the stretched twisted ribbon has a dual nature as it

shows properties intermediate between a torn polyethene sheet

where strain induced plasticity leads to edges with negative

Gaussian curvature and a crumpled paper where the inextensibility

condition produces shapes with flat facets and localized defects.

Finally, we suggest that the characteristic features of interacting

e-cones found here may be applied to other thin film systems.

They may help understand extensible sheets under other condi-

tions which result in changes to the metric, examples of which

include torn thin films, shells with cracks, film growth, and even

crumpled sheets.
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