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Abstract—End-user programming, particularly trigger-action
programming (TAP), is a popular method of letting users express
their intent for how smart devices and cloud services interact. Un-
fortunately, sometimes it can be challenging for users to correctly
express their desires through TAP. This paper presents AutoTap,
a system that lets novice users easily specify desired properties
for devices and services. AutoTap translates these properties to
linear temporal logic (LTL) and both automatically synthesizes
property-satisfying TAP rules from scratch and repairs existing
TAP rules. We designed AutoTap based on a user study about
properties users wish to express. Through a second user study,
we show that novice users made significantly fewer mistakes
when expressing desired behaviors using AutoTap than using
TAP rules. Our experiments show that AutoTap is a simple and
effective option for expressive end-user programming.

Keywords-End-user programming; trigger-action program-
ming; program synthesis; program repair

I. INTRODUCTION

End-user programming enables users without programming
experience to customize and automate systems. An approach
that is particularly popular for automating IoT smart devices
and online services is trigger-action programming (TAP),
which is supported by IFTTT [1], Mozilla’s Things Gate-
way [2], Samsung SmartThings [3], Microsoft Flow [1],
OpenHab [4], Home Assistant [5], Ripple [6], Zapier [1], and
others. Some of these TAP services are widely used [7], [8].

In TAP, users create event-driven rules of the form “IF
a trigger occurs, THEN perform an action.” For example,
“IF a sad song comes on THEN turn the lights blue.”
Unfortunately, while novice users are able to successfully
express many automation behaviors using TAP interfaces [9],
attempts to express more complex, yet commonly desired,
behaviors often contain bugs [10]-[14]. These bugs encompass
timing errors [10], issues with control flow [15], conflicting
behaviors [12], and incorrect user expectations [14]. As a
result, an important open question is how to help users
with no programming experience, and therefore no debugging
experience, correctly express their wide variety of desired
behaviors in TAP. Otherwise, users will encounter frustration
and experience safety threats [16] from buggy TAP rules.

For example, imagine the simple and sensible desire to keep
the window closed when it is raining. With current interfaces,
a user might create the straightforward TAP rule “IF it begins
to rain THEN close the window” (Figure 1a). Unfortunately,
this rule is insufficient. For example, while it is raining, a
different rule might be triggered and open the window, or an
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(a) A (buggy) TAP rule. (b) A proposed TAP property.

Fig. 1: The TAP rule (a) cannot guarantee the property (b).

oblivious person might open the window manually. To fully
express this desire therefore requires a complex set of rules.

To address this open question, we present AutoTap, a system
that provides easy end-user programming for smart devices
and online services with fewer chances for human mistakes.
AutoTap expands TAP to allow users to specify through
graphical interfaces not only rules, but also properties about
the system that should always be satisfied. For example, from
the running example, one could express the desired property
that “it is currently raining” and “the window is open” should
never occur together (Figure 1b). In other words, instead of
requiring users to explicitly write event-driven rules defining
how devices should behave, we let them simply specify what
properties the system must satisfy.

If no relevant rules are provided, AutoTap automatically
synthesizes property-satisfying TAP rules from scratch. For
example, given the property in Figure 1b, AutoTap will
automatically synthesize two TAP rules to satisfy this property:

o IF it begins to rain WHILE the window is open THEN

close the window

e IF the window opens WHILE it is raining THEN close

the window

If initial rules are provided alongside the desired property,
AutoTap will automatically check these rules and, if necessary,
repair them to prevent the system from violating the property.
AutoTap thus minimizes the opportunity for TAP mistakes.
The following two key components of AutoTap work together
to achieve the above functionality:

1) A novel property-specification interface: The key goal of
TAP is to empower novice users without programming knowl-
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Fig. 2: An overview of AutoTap, which takes user-specified
properties and (optionally) user-specified TAP rules to auto-
matically generate a set of TAP rules that satisfy the properties.
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edge to automate and customize their devices and services. Au-
toTap therefore needs an interface that is both (a) expressive,
allowing users to specify most of their desired properties for
smart-device systems, and (b) easy-to-use, requiring minimal
training for non-technical home users to use correctly.

To this end, we first conducted an online user study in
which 71 current users of smart devices each provided (in
free text) ten properties they would want their devices to
satisfy (Section III). We qualitatively coded their responses,
finding that nearly all the desired properties followed one of
seven templates. Subsequently, we implemented a graphical,
click-only interface that mirrors the design of popular TAP
rule-specification interfaces [1]. This interface enables users
to specify properties following these seven templates without
requiring any text input. AutoTap then directly translates
properties specified in this interface to formulas in linear
temporal logic (LTL) that can be used by AutoTap’s other
components (Section IV). While prior work has proposed
interfaces for property specification [17], no prior efforts fully
satisfy our requirements in the unique context of smart-device
systems (Section VIII).

2) Novel synthesis techniques for TAP rules: We want
all programs synthesized by AutoTap to be (a) property-
compliant, guaranteeing the programmed devices satisfy the
specified properties; (b) accommodating, not disabling any
device behaviors that originally satisfy the properties — cru-
cial for human-centric systems; and (c) valid, following the
syntax of TAP rules and physical constraints of smart devices.
For example, given the property in Figure 1b, generating only
one of the two TAP rules presented earlier is accommodating,
yet non-compliant. Generating TAP rules that prevent the
window from ever opening even in sunny weather is compliant,
yet not accommodating. Generating TAP rules that prevent rain
is impossible, and therefore not valid.

To achieve these goals, AutoTap takes three steps, as shown
in Figure 2. First, it automatically builds a Biichi Automaton to
formally model desired properties and the smart-device system
itself, including any existing TAP rules. At this step, the
novel techniques we introduce simplify models and properly
represent time-related properties (Section V-A).
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Second, AutoTap leverages a unique feature shared by all
LTL safety properties to design a simple algorithm that iden-
tifies Biichi Automaton edges whose removal guarantees the
compliant and accommodating goals of synthesis (Sec. V-B).

Third, AutoTap designs an algorithm to systematically syn-
thesize valid new TAP rules or rule changes to remove Au-
tomaton edges identified above, while making a best effort to
keep rules simple and thus intelligible for users (Section V-C).

These techniques are general. They are not limited to any
specific patch template. They apply to any LTL safety property,
not just those that can be expressed using AutoTap’s current
property-creation interface. Furthermore, while our interface
design focuses on smart devices, the same techniques apply
to online services, such as the hundreds IFTTT supports [8].

These techniques are also novel. We cannot use previously
proposed synthesizers [18]-[20], which do not satisfy the
requirements discussed above in the unique context of smart-
device systems (Section VIII). A small but quickly growing
literature has begun to apply formal methods to TAP [21]-
[24]. Our techniques move beyond this work in both the
target and the solution. Some of this work only aims to detect
property violations [24], while others only repair existing rules
by editing or adding conditions [21], [22] or triggers [23].
Our techniques are the first to also synthesize new rules from
scratch and to provide the accommodating guarantees, not
disabling any device behaviors that originally satisfy the de-
sired properties — a crucial feature for human-centric systems
that fundamentally cannot be provided using the fixing-by-
counterexample approach of previous work [21], [25].

Our evaluation of AutoTap includes several parts (Sec-
tion VI). We conducted a second user study in which 78
participants were randomly assigned to use either a traditional
TAP rule interface or our AutoTap property interface. They
used their assigned interface to express 7 behaviors randomly
assigned from a larger set of 14. For all 14 behaviors, a larger
fraction of participants using the AutoTap property interface
correctly expressed the behavior than those using the tradi-
tional TAP rule interface. We also benchmarked AutoTap’s
performance, synthesizing TAP rules from scratch using the
sets of correct properties collected in our study. AutoTap
successfully generated patches for 157 of these 158 sets.

To encourage replication and adoption, we are open-
sourcing the code for both AutoTap and our rule- and property-
specification interfaces. We are also releasing the anonymized
data from our two user studies (with the permission of both our
IRB and participants) and our full survey instruments. All of
these are available at https://www.github.com/zlfben/autotap.

II. BACKGROUND
A. Trigger-Action Programming (TAP)

In recent years, TAP has received a great deal of academic
attention in multiple areas: usability [9]-[11], [13]; novel
interfaces [26]-[28]; measurement [7], [8]; deployment [6],
[29]; correctness [12], [21]-[24]; and security [15], [16],
[30]. Furthermore, TAP has been deployed by Microsoft [1],
Mozilla [2], IFTTT [1], Samsung [3], and others.



Systems generally follow one of two TAP rule struc-
tures [14]. The simpler variant connects a single trigger to
a single action: “IF event THEN action.” Each such statement
is a TAP rule, and a collection of rules forms a TAP program.
Events include state changes for devices, services, and sensors
(e.g., “it begins to rain”). Actions are actuations of devices
(e.g., “open the window”) or services (e.g., “send an SMS”).

The more expressive variant differentiates events (actions
or state changes that occur in a moment, such as “it begins to
rain”) and states (conditions that remains true/false over time,
such as “it is raining”). In this variant, triggers are a single
event optionally conditioned on one or more states as follows:
“IF event occurs WHILE devices are in a given state, THEN
fire action,” shortened as “IF event WHILE state(s) THEN
action.” In this paper, we use this more expressive EVENT-
STATE-ACTION variant (also called EVENT-CONDITION-
ACTION), which balances usability and expressiveness. This
variant is used in Samsung SmartRules [3], Stringify [31],
Home Assistant [5], and academic studies [9], [10], [14], [32].

B. Transition Systems and Linear Temporal Logic (LTL)

AutoTap formally models smart devices and TAP programs
as transition systems [33]. Every transition system consists of
a set of states S; a set of events E (typically called actions
in TAP) that change the system from one state to another,
S1 ceh, s2; and a set of atomic propositions AP that reflect
detailed properties of a state, with L(s) denoting the set of
atomic propositions associated with state s. A valid execution
is an infinite sequence of states sgpsi..., sy € S and every
transition from one state to the next is valid, s; ﬂ) Sit1-

LTL formulas can represent a wide variety of execution
properties and are widely used in formal verification [34].
An LTL formula ¢ is constructed from atomic propositions
with some operators: ¢ == true|ap|—¢|p1 A 2| Xp|p1 Uga.
Informally, =, A, X and U represent not, and, neXt, and Until,
respectively. In addition to these basic operators, F, G and
W are common derived operators. Given an execution F =
5081... of a transition system, E' satisfies atomic proposition
ap if and only if the initial state of E is associated with ap
(i.e., ap € L(sp)). A transition system T'S satisfies property
¢ (T'S |= ¢) if all possible executions in 7'S satisfy ¢.

III. USER STUDY 1: MAPPING DESIRED PROPERTIES

To understand what types of properties users commonly
desire for smart devices, we conducted an online user study.

Methodology: We designed a survey asking people who had
experience with IoT smart devices in their own homes to write
free-text properties they would want their devices and home to
satisfy. Specifically, we asked them to write “statements about
internet-connected household devices that you believe should
be effective at all times, with only occasional exceptions, if
any.” To encourage diversity, we asked participants to imagine
their house was filled with 27 smart devices we listed. We
asked for ten statements, preferably five that should always be
true and five that should never be true in their smart home.
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We recruited participants on Amazon’s Mechanical Turk
who reported having an internet-connected household IoT
device and living in the USA. We compensated $5 for the
study, which also included a section on experiences with buggy
behaviors in smart homes that is outside this paper’s scope.

Through qualitative coding, we analyzed and grouped these
free-text desired properties into templates. Members of the
research team read through responses and iteratively proposed
templates. Two coders then independently categorized each
response (x = 0.62) and met to resolve discrepancies.

To encourage complex and diverse properties, we randomly
assigned half of participants to see four example properties
(e.g., “The temperature in my bedroom should never be below
65 degrees”), while the other half did not see any examples.
While both participants who did and did not see examples
wrote properties following six of the seven templates, the
proportion of properties matching a given template differed
significantly between these two groups (x2, p = .003). Thus,
we always first report the percentage among properties written
by participants who did not see examples, followed by the
percentage from those who did.

Results: We received 75 responses, discarding four who
gave off-topic responses or reported having no smart devices.
Of the resultant 71 participants, 64 % identified as male and
36 % as female. The median age range was 25-34 (53 %),
and 9 % were age 45+. Among participants, 24 % reported a
degree or job in CS or technology. Participants most frequently
reported having internet-connected cameras (55 % of partic-
ipants), lights (54 %), thermostats (52 %), cooking devices
(18 %), door locks (15 %), and outdoor devices (8 %).

We found that seven templates captured the vast majority
of desired properties participants expressed. We differentiate
them based on whether they are conditional (i.e., conditioned
on at least one other clause), whether they rely on a duration
(i.e. expressing temporal bounds), and whether they are de-
scribed based on states and/or events. The small number of
remaining properties were either out of scope (e.g., requesting
new features) or too ambiguous to analyze reliably.

Below are the seven templates, each with the proportion of
responses that fit that template from participants who did not
see examples and those who did, respectively. We also provide
a sample response from participants for each template.

a) One-State Unconditional (40.6%, 14.7%): “Smart refrig-
erator should always be on.”

b) One-Event Unconditional (24.1%, 14.5%): ‘“My thermo-
stat should never go above 75 degrees.”

¢) One-State Duration (0.9%, 7.5%): “My smart lights
should stay on for at least 30 seconds each time.”

d) Multi-State Unconditional (0.3%, 0.2%): “Never run the
washing machine and the dish washer at the same time.”

e) State-State Conditional (1.6%, 7.5%): “The stove should
always be off if no one is home.”

f) Event-State Conditional (26.3%, 40.7%): ‘“My smart win-
dow should never be opened while the AC is on.”

g) Event-Event Conditional (5.3%, 13.8%): “My smart door
lock should always lock after I come in.”



TABLE I: AutoTap’s property templates. G, F, X, and W are “always Globally”, “eventually in the Future”, “neXt”, and
“Weakly until” LTL operators. state is a user-specified atomic proposition or its negation. # and x* relate to timing (Sec. V-A).

Property Type Input Template LTL Formula
. - state] should [always] be active G (state)

One-State Unconditional state] should [never] be active —-F(state)

One-Event Unconditional event] should [never] happen —F(Qevent)

One-State Duration

state] should [always] be active for more than [time]
state] should [never] be active for more than [time]

G(state — (stateWtime x* state))
—F(time * state)

statey, ..., statey] should [always] occur together
statei, ..., statey| should [never| occur together

—F(!(state; > ... <> statey))
—F(statei A ... A\ stater)

State-State Conditional

state] should [always] be active while [stater, ..., staten]
state] should [never] be active while [stateq, ..., statey]

G((stater A ... A staten) — state)
—F(statey A ... A\ statey, A state)

Event-State Conditional

event] should [only] happen when [statey, ..., staten]
event] should [never| happen when [state, ..., staten]

G(X@event — (stater A ... A stater))
—F(state A ... A\ staten, A XQevent)

[
[
[
[
[
Multi-State Unconditional %
[
[
[
[
Event-Event Conditional %

eventi] should [always] happen within [time] after [eventa]
eventy| should [never| happen within [time] after [events]

G(Qevent2 — (time#event2W Qeventl))
—F (time#eventa A XQevent)

Interface Entry Property Type

and o Multi-state Unconditional
should /
occur together
e One-State Unconditional
should X
/ be active e One-State Duration
o State-State Conditional
should e One-Event Unconditional

A happen

Event-State Conditional
Event-Event Conditional

Fig. 3: Templates in AutoTap’s property-specification UL

IV. AUTOTAP PROPERTY-SPECIFICATION INTERFACE

AutoTap aims to synthesize TAP programs satisfying user-
specified properties. This section discusses our design of a
property-specification user interface that aims to be expressive,
easy to use, and also compatible with LTL, allowing an easy
translation from every specified property into an LTL formula.

Property types: Table I summarizes the seven property
types we commonly observed in our first user study. They
differ along three dimensions: whether the subject was a state
or an event; whether something should or should not happen;
and whether the desire was conditional or unconditional.

We note that any state-state conditional property can be
written as an equivalent multi-state unconditional property.
Further, some one-state duration properties have equivalent
event-event conditional properties. However, to better match
users’ mental models, we chose not to merge these types.

Every type of property in our interface has a straightforward
translation to an LTL formula, as shown in Table I. The
example in Figure la corresponds to a state-state conditional
property: “The [window] should always be closed when
[weather] is raining”. It corresponds to an LTL formula
G (weather.raining — window.closed).

Interfaces for property specification: To not overwhelm
users, AutoTap lets them first pick from three template cate-
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gories, as shown in Figure 3, and then customize that template
by selecting items from drop-down lists of devices, states, or
events. Users also select whether they desire certain situation
to always occur or never occur. This interface provides users
with the same vocabulary about devices, states, and events as
traditional TAP rule interfaces, as in Figure 1.

AutoTap’s user interface design focuses on common user
desires. It does not aim to cover all possible properties a
user might think of, or all properties AutoTap synthesis can
handle. As an alternative, AutoTap also allows expert users to
specify safety properties directly in LTL. For example, imagine
someone has a smart light bulb and wants the “red” color to
always be followed by “green” or “yellow.” This desire is not
supported by the user interface above, yet can be described in
LTL as G(color.red — X(color.green V color.yellow)) and
thus can be handled by AutoTap.

V. AUTOTAP TAP SYNTHESIS

Problem statement: Informally speaking, smart devices
continuously interact with unpredictable human users and
environments. Naturally, some interactions (sequences) might
cause undesirable device states or state sequences. AutoTap
aims to automatically synthesize TAP programs or program
patches so that all desirable situations remain intact (i.e.,
being accommodating) and all undesirable situations become
disabled or transient (i.e., being property-compliant).

Straw-man: One potential solution is to repeatedly attempt-
ing the following two steps, as illustrated by the dashed lines
in Figure 4: (1) propose a TAP program (patch); (2) try to
prove that this program guarantees satisfaction of the desired
properties, returning to Step 1 if not.

The second step can be done through model checking [21],
which typically uses a finite Biichi Automaton to represent
all possible executions of the system, checking if all these
executions satisfy a property ¢ by analyzing the automaton
graph. Unfortunately, given the large search space of potential
TAP programs, particularly when we synthesize programs
from scratch, how to conduct the first step is unclear.
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Fig. 4: AutoTap approach vs. straw-man approach

AutoTap approach: AutoTap takes a unique approach to
solving this problem in a general and systematic way. As
illustrated in Figure 4, it does not require iterative retries.

Step 1: Turn the given smart-device system, TAP rules (if
any), and the desired property ¢ into a Biichi Automaton A
accepting ¢-violating executions, like what traditional model
checkers do internally.

Step 2: Figure out how to modify A so that all ¢-satisfying
executions are kept, which guarantees being accommodating,
and all originally accepted (i.e., ¢-violating) executions disap-
pear, which guarantees being property-compliant.

Step 3: Find valid TAP program(s) that can make the
automaton changes suggested at Step 2.

The first step is largely straightforward, but we need to care-
fully model timing-related properties and avoid unnecessarily
large automata. Section V-A explains how we do so.

The second step is very challenging at first glance. There
are innumerable ways to change an automaton A. It is hard to
know which changes are compliant, accommodating, and valid
(e.g., changes that require modifying property ¢ and device
specifications are invalid). Section V-B will present a simple
algorithm that identifies such compliant, accommodating, and
valid changes (i.e., a set of edges to cut in A), leveraging
a unique property of LTL safety properties. As Section IV
explained, the desired properties we commonly observed in
our first user study all map directly to LTL safety properties.

The third step, finding valid program changes' that cor-
respond to a given automaton change, is challenging for
general programming languages. However, as we will explain
in Section V-C, it can be done in a systematic way for TAP.

A. Step 1: Model Construction

AutoTap’s inputs are: (1) safety properties ¢ in LTL, ob-
tained through the user interface presented in Section IV;
(2) TAP rules, if any; (3) specifications for every smart device
in the form of a transition system, as defined in Section II-B.
We expect device specifications to be provided once by device
manufacturers or tool developers like us, yet used by all device
users. Our experiments used the specifications from Samsung
SmartThings [35].

AutoTap’s baseline model construction follows traditional
model-checking techniques [36]. First, a transition system is
built for a set of devices together with their TAP rules, if
any (e.g., Figure 5). Some events in the transition system are

! AutoTap does not differentiate program synthesis from patch synthesis, as
the former is a special case of the latter when the original program is null.
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Fig. 5: Transition system for RAIN and a Window. Statements
in parentheses are Atomic Propositions held in each state.

controllable (e.g. “turn on the light”), while others are not
(e.g. “stop raining”). This distinction is kept by AutoTap for
its synthesis phase.? Then, this transition system is turned into
a Biichi Automaton A; that accepts all executions allowed
in the smart-device system (e.g., Figure 6b). Next, AutoTap
applies Spot [37] to the LTL formula representing —¢ to get
a Biichi Automaton A4 that accepts all executions violating
¢ (e.g., Figure 6a). Finally, A, and A, are combined into a
Biichi Automaton A that accepts all ¢-violating executions in
the smart-device system (e.g., Figure 7).

Our discussion below focuses on two techniques we devel-
oped for AutoTap beyond typical baseline modeling.

Device selection: To avoid unnecessary complexity, Auto-
Tap selects devices D related to the given property ¢ to model.
To do so, AutoTap first initializes D with all the devices that
appear in ¢. AutoTap then iteratively expands D with devices
that can affect any device already in D until reaching a fixed
point. Here, AutoTap considers one device to affect another
device if these two both appear in a TAP rule r, with the
former in the trigger and the latter in the action.

Model timing information: AutoTap extends baseline
models to support timing-related propositions like “event e
happened within the past ¢ (seconds)”, denoted as t#e, and
“ap has been true for at least ¢ (seconds)”, denoted as ¢ x ap.
AutoTap’s property-specification interface supports both.

AutoTap first adds a count-down timer attribute timer(¢#e)
or timer(t*ap) into the transition system. The countdown
starts at ¢, when e has just occurred, or when a system state
associated with ap has just appeared. It ends at 0, indicating
e has occurred or ap has been true for at least ¢ seconds.
When the system reaches a state no longer associated with
ap, the t x ap timer immediately flips to —1. Consequently, a
state is associated with a t#e proposition if the corresponding
timer is positive. It is associated with t*ap if the corresponding
timer is 0. Then, AutoTap introduces an environmental event
tick that counts down every positive timer uniformly. When
tick is applied to a state s, AutoTap finds the smallest value
of all the positive timers associated with s and counts down
every positive timer by that value. For example, if a state is
associated with three timers with values {0, 30, 100}, one tick
will direct the system to a state with these timers being {0,
0, 70}, and another tick will set all three timers to 0. This
count-down scheme helps AutoTap avoid unnecessary state-

2The device specification we used [35] contains such information: capabil-
ities with “commands” are controllable, while others can only be sensed.
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Fig. 6: Biichi Automata of our running example.

space explosions without losing accuracy, as counting down
timers by smaller values will not change any timing related
propositions (e.g., {0, 30, 100} and {0, 25, 95} will have the
same set of time-related propositions).

Here, AutoTap uses its own design to handle timing-related
propositions for simplicity reasons: since AutoTap only cares
about two simple timed propositions t#e and t*ap, using more
complicated timing logic like MTL [38] and more complicated
timed automata [39] will only add unnecessary complexity to
AutoTap property checking and rule synthesis.

B. Step 2: Patching the Automaton

The first step builds a Biichi Automaton A that accepts
all ¢-violating executions on smart devices. If no execution
can be accepted by A, users’ desire ¢ is already guaranteed.
Otherwise, this second step figures out how to change A.

Task: We first clarify AutoTap’s task at this step by re-
viewing some related background on Biichi Automata. By
definition [36], an execution is accepted by a Biichi Automaton
if and only if its corresponding path on the automaton visits
every accepting-node set an infinite number of times. For
example, the automaton in Figure 6a has one accepting set
that consists of exactly one node, the double-circled one.
It accepts every execution with a prefix ending in a state
where RAIN.on and !Win.closed are true, which guarantees
visiting the double-circled node an infinite number of times.

Consequently, AutoTap must figure out how to change A
so that all (and only those) paths that infinitely visit A’s
accepting-node set disappear. There are several challenges.
First, the change has to be valid, doable through possible
additions or revisions of TAP rules. Naming accepting nodes as
un-accepting is invalid. Deleting an edge in A is usually valid,
as discussed in the next sub-section. Second, for arbitrary ¢, it
is difficult to tell which edges we should cut. This edge-cutting
must not only eliminate every path that visits the accepting-
node set infinitely (i.e., property-compliant), but also keeps
intact every path that originally does not visit the accepting-
node set infinitely (i.e., accommodating).

Observation: AutoTap’s algorithm is based on a key ob-
servation: as long as ¢ is an LTL safety property, A has no
edge connecting an accepting node to an un-accepting node.
This observation holds because, as long as ¢ is an LTL safety
property, we can always find an A_4 whose only accepting
node has a single edge pointing to itself with condition 1.
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(The top is the original. The bottom is after adding a rule.)

Once a path reaches this node, it will be stuck in this node
infinitely,® just like the double-circled node in Figure 6a.

This property of A_4 then leads to the above observation
of A. The reason is that, by combining the smart-device
automaton A, and the property automaton A4, every node in
A is a cartesian product of two nodes, 15 in A, and ng in A 4.
The accepting-node set of A consists of every node whose
corresponding node in A4 is an accepting node. Furthermore,
if there exists an edge from n1 to n2 in A, there must exist an
edge from nl_y to n2-4 in A_,. Consequently, since there
is no edge connecting the accepting node back to any un-
accepting nodes in A4, there must be no edge connecting
accepting nodes back to un-accepting nodes in A either.

Algorithm: AutoTap identifies all the edges that connect
an un-accepting node to an accepting node in A, informally
referred to as bridge edges, and suggests cutting all of them,
like the two edges in the middle of Figure 7.

This algorithm is simple, with complexity linear in the
number of edges in A.

This algorithm is compliant, preventing any property viola-
tions. The reason is that, after cutting all bridges, no execution
can ever touch accepting nodes, not to mention infinitely.
Consequently, all ¢-violating executions are eliminated.

This algorithm is also accommodating, preserving all the
system behaviors that do not violate ¢. Recalling Section V-B,
¢-satisfying executions will not go through any bridges. Since
our algorithm only removes or redirects bridges, yet not other
edges, those executions are untouched.

C. Step 3: TAP Synthesis

At this third step, AutoTap needs to identify additions of,
or revisions to, TAP rules that can delete the bridges in A
identified in Step 2. Mapping a Biichi Automaton change to
a program-code change is challenging for most imperative
programming languages, but is fortunately tractable for TAP.

Task: We first clarify AutoTap’s task by reviewing some
background on Biichi Automata.

In A, which is combined by the smart-device automaton
A and the property-negation automaton A4, every edge e :

3Due to space constraints, we cannot include a complete formal proof.
Informally, given a Biichi Automaton of an LTL safety property, all nodes
corresponding to the last state of a violating prefix of the property can be
replaced with an accepting node with an edge 1 pointing to itself. Those
nodes can be combined, giving us the Biichi Automaton A_ 4 we desire.
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Fig. 8: Device automaton (a) changed to (b) by adding a rule.

nl 2 n2 is combined by an edge es : nl; RZAN n2g in
A, and an edge ey : nl-g hialN n2-¢ in A_4. ap is an
atomic proposition (AP) set describing what is accepted by
e, and e only accepts what is accepted by both e, and e_4.
If ap, conflicts with ap-4, edge e would disappear from A.
To ease the discussion, we will informally refer to ap as the
post-condition of n1 and the pre-condition of n2.

Since the property ¢ and the corresponding A-_4 cannot
be changed, AutoTap changes every bridge e’s corresponding
edge e, in A, which we also refer to as a bridge, removing
es or changing its ap, so that e can disappear from A.

Example: Before presenting AutoTap’s general algorithm,
we use a concrete example to demonstrate how adding a
TAP rule can change the smart-device automaton A and
correspondingly make some edges disappear in A.

Figure 8a is part of the automaton A; in Figure 6b that
models the weather (RAIN) and a smart window (Win) with
no TAP rules. We can focus on node (D). Its preceding edge

indicates a pre-condition when it was not raining and the
@RAIN:ON

{RAIN.on, Win.open}
indicates that the rain starts (QRAIN:ON) with the post-

condition being raining and window staying open. Note that
this post-condition AP-set is the same as that of the bridge
in Ay, illustrated in Figure 6a. Consequently, D—@) is a
bridge in A, that contributes to the red bridge edge in the
combined automaton A in Figure 7.

Figure 8b shows the effect of adding a TAP rule. As high-
lighted in the figure, this rule’s triggering state Rain.off
AND Win.open exactly matches the pre-condition of
node (D. Its triggering event QRAIN.ON and rule action
@Win.OFF exactly match the events associated with edge (D
—@ and edge @—@®), respectively. Consequently, immedi-
ately after H—@ takes place, this rule would automatically
push the system through the @—@) edge, essentially making
the H—@ edge transient, marked by “T” in Figure 8. By
changing the nature of (D—@), its AP-set no longer matches
with that of the bridge edge in Figure 6a. Consequently, the
corresponding bridge edge in A (i.e., the red edge in Figure
7) will disappear.

1) AutoTap fixing algorithm: We first consider a simple
case where the bridge edge e, in A, has only one predecessor
and one successor, as in Figure 9a. To cut its corresponding
bridge e in the combined automaton A, we simply need to add
a TAP rule “IF e; WHILE AP; THEN ey”, where e is the
event associated with the bridge, AP; is the pre-condition of

window was open. Its succeeding edge (D
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Fig. 9: Generalization of adding TAP rules.

the bridge, and es is the event associated with the succeeding
edge. Like the example in Figure 8, this new rule will make
states associated with e, transient, no longer able to combine
into e. That is, bridge e in A will be successfully cut.

Refine trigger state: The baseline algorithm uses AP, the
bridge’s pre-condition, as the trigger state of the synthesized
rule. In fact, it does not have to be. We want the new rule
to be triggered (1) at an original bridge edge, but (2) not at
any non-bridge situations. The former implies that the rule’s
trigger-state condition should be weaker than the bridge’s
pre-condition. For example, since the bridge’s pre-condition
in Figure 8 is RAIN.off AND Win.on, the trigger state
can be RAIN.off, or Win.on, or TRUE. The latter implies
that, in other places where the trigger event could happen,
the pre-conditions should conflict with the rule’s trigger state,
preventing the rule from being unnecessarily triggered.

To achieve this goal, AutoTap processes not only the
bridge’s pre-condition AP, but also pre-conditions AP/ as-
sociated with all other cases where the trigger event could
occur. When there are multiple expressions satisfying the
above requirements, we turn this into a hitting set problem.
We use a greedy algorithm to find the smallest one.

Refine the triggered action: The baseline algorithm uses
ey as the action of the synthesized rule because the bridge
edge only has a single successor and hence ey is the only
possible action taken in Figure 9. When the bridge has multiple
successors with multiple possible succeeding actions, AutoTap
filters out two types of actions: (1) actions that cannot be
initiated by smart devices (i.e., non-controllable events like
“stop raining” discussed in Section V-A), and (2) actions
causing other property violations. If multiple actions pass the
above filtering, the only ranking AutoTap does currently is
to downgrade an action that reverts the trigger event. For
example, if the trigger event is turning on the air conditioner
(AC), AutoTap will not suggest a rule that turns off the AC
unless there are no other choices.

Revise existing rule: When the bridge edge e is associated
with an event that is automatically triggered by an existing
TAP rule r, the baseline patch would immediately trigger one
TAP rule after another. A better solution is to revise r so
that r is no longer triggered in this bridge situation, yet is
still triggered in other situations. To achieve that, we split the
general rule  into many edge-specific TAP rules by narrowing
r’s triggering state to only accept the pre-condition of every
specific edge. Then, we simply delete the edge-specific rule
associated with the bridge edge and keep the remaining ones,



assuring minimum impact to the system’s behavior.

Rule merging: AutoTap can merge TAP rules with the same
trigger event and rule action, or even similar trigger states,
to make the program easier to understand without changing
system behaviors. We omit the details due to space constraints.

VI. EVALUATION

A. User Study 2: Specifying Rules vs. Specifying Properties

To evaluate usability questions regarding whether AutoTap’s
property-driven approach enables novice users to express their
intent correctly and easily, we conducted a second online
user study. In this study, we compared participants’ ability
to express a series of reference tasks as TAP rules (using
a traditional rule-based interface) and participants’ ability to
express the same series of tasks as properties (using AutoTap’s
interface). We chose a rule-based TAP interface as our point
of comparison because such interfaces are widely used [8] and
prior usability studies have shown that even novice users can
create TAP rules successfully [9], [13], [28], [40].

Methodology: We again recruited participants from the
USA on Mechanical Turk, though for this study we did not
require that they had previously used a smart device. We
randomly assigned each participant to one of the following
interfaces, which they used for the duration of the study:

o Rules: Participants created TAP rules using a web inter-

face modeled closely after IFTTT (see Figure 1a).

« Properties: Participants created properties using Auto-

Tap’s interface (see Figure 1b)*.
The interfaces used identical events and states. In other words,
if the rule interface had an “it begins to rain” event grouped
under “weather,” so did the property interface.

Participants began the study by completing a short tuto-
rial on their assigned interface. The tutorial explained key
concepts (e.g., the difference between events and states) and
included attention-check questions. These questions automat-
ically pointed out the right answer for anything participants
answered incorrectly. We designed the two tutorials to have
parallel structure and share examples as much as possible.

Participants then used their assigned interface to complete 7
tasks randomly selected (and randomly ordered) from a larger
set of 14. We developed each of the 14 tasks based on desired
properties expressed in Study 1. However, we rewrote the tasks
so that the wording of the task would not make obvious which
property template should be used. An example task follows:

You have a Roomba robotic vacuum cleaner in your home, and
you’ve given it a schedule for when it should clean the floor.
However, when the curtains in your home are open, the drawstring
lays on the floor and often causes the Roomba to get stuck on
the string. You want to make sure this does not happen again.

4 At the time of the study, our interface let users specify positive Event-State
Conditional properties through an “event E should always happen while state
S is true” template. Afterwards, we replaced “always” with “only” to avoid
ambiguity, as shown in Table I and Figure 3. For participant answers using
this “always” template, we interpret them as “E should be triggered while S
becomes true,” in this way judging three participants’ answers to be correct.
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Fig. 10: Correctness of properties and rules by task. P-values
are from Holm-corrected x? tests comparing the proportion of
statements correct when written using rules versus properties.

This task could be completed successfully with the rules “IF
Roomba becomes on WHILE the curtain is open, THEN close
the curtain; IF curtain becomes open WHILE Roomba is on,
THEN turn off Roomba” or the property “Roomba is on should
NEVER be active WHILE curtain is open”. We constructed the
set of tasks so that at least two tasks could be completed with
each of the 7 property templates. Since many properties can
be expressed in multiple ways, though, most templates could
be used for more than two tasks.

After each task, participants rated their confidence in their
submission and perception of how difficult it was to complete
the task on five-point scales. They also had the opportunity to
explain, in free text, any corner cases they had considered.
After completing all 7 tasks, they filled out demographics
questions and the standardized System Usability Scale.

We analyzed our data as follows. Since many tasks could
be completed in multiple ways, two researchers indepen-
dently coded each response as “correct,” “partially correct,”
or “completely incorrect,” meeting to resolve discrepancies.
The “partially correct” category was used when a response did
not address a corner case. To compare categorical data (e.g.,
the distribution of correct/incorrect responses), we used the x?2
test. To compare ordinal data (e.g., confidence) we used the
Mann-Whitney U test. To correct p-values for multiple testing,
we used the Holm method within each family of tests.

A key limitation is that the 14 tasks were not intended to
be a representative sample of all desired behaviors in TAP
systems. Because the tasks were based in part on Study 1,
they likely over-represent behaviors that can be expressed as
properties. While our study can show whether some tasks are
easier to express as rules or safety properties, the proportion
of tasks for which this is the case is not generalizable.

Results: A total of 81 Mechanical Turk workers participated
in Study 2. Three gave nonsensical free-response answers,
leaving 78 valid participants.

For all 14 tasks, the percentage of correct responses was
higher for AutoTap’s property-creation interface than for the



TAP rule interface. This difference was statistically significant
for five of these tasks (the bolded p-values in Figure 10). The
tasks for which we observed significant differences gener-
ally required multiple rules to capture all corner cases. For
example, in the aforementioned Roomba task (Task 11 in
Figure 10), only one property is needed: “the window curtains
are open SHOULD NEVER BE ACTIVE WHILE the Roomba
is on.” AutoTap automatically generates rules to satisfy this
property in all situations. However, two rules are required. One
possibility is a rule closing the curtains whenever the Roomba
turns on, and another turning off the Roomba whenever
the curtain is opened. Under 5% of participants wrote both
of these rules. While over 55% of participants who used
the property interface solved this task, one particular error
appeared commonly. The property “the curtain is open AND
the Roomba is on SHOULD ALWAYS OCCUR TOGETHER”
inadvertently binds the two states, causing the Roomba to start
anytime the curtain is opened, misinterpreting the intent.

Participants often performed similarly with the rule and
property interfaces when both a single rule and a single
property sufficed. For example, Task 3 (preventing a room
from getting too hot) required only one of each. Participants
performed similarly with either interface. AutoTap’s prop-
erty interface was more successful when multiple rules were
needed to capture corner cases. Two tasks caused participants
great difficulty, even for properties. Task 7 required either two
properties or six rules. All participants missed corner cases.
Task 13 dealt with delaying vacuuming when guests were over,
requiring either two properties or two rules. Most participants
neglected to start the vacuuming after a delay.

We compared the System Usability Scale scores provided
by users to the rule interface and AutoTap property interface.
We found both interfaces to be “usable”, with mean scores of
70.4 and 63.2 respectively. This difference was not statistically
significant (Mann-Whitney U = 590.5, p = .052).

B. TAP Program Synthesis

We further check if AutoTap can synthesize TAP rules from
scratch to accomplish all 14 tasks in this user study. In a less
challenging version, one of the authors (representing an expert
user) wrote properties for every task, and AutoTap successfully
synthesized TAP rules for all tasks.

In a more challenging version, we used all the correct prop-
erties written by user-study participants (158 sets of properties
in total, with each from one participant targeting one task).
Sets contain 1.83 properties on average. These properties were
transformed into LTL formulas following Table I. AutoTap
successfully generated TAP programs for 157 out of the 158
property sets, and all are guaranteed to satisfy corresponding
properties. The only set that AutoTap failed to synthesize is
for “When Bobbie is in the kitchen, the oven door should
be closed” and “When Bobbie is in the kitchen, the oven
door should be locked.” If Bobbie enters the kitchen when
the oven door is open, the system needs to trigger two actions
immediately, both closing and locking the oven door. AutoTap
fails to find a solution because it currently only considers
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TABLE II: How AutoTap fixes buggy TAP programs. Sub-
scripts are the # of cases AutoTap patches revert the mutation.

Source #buggy TAP sets  Successful Fixing
mutation: change trigger event 5 44
mutation: add condition 7 T7
mutation: change condition 5 51
mutation: change action 4 30
mutation: delete rule 4 44

Total 25 2313

using a single action to redirect each bridge edge in the Biichi
Automaton. Future work can extend AutoTap to consider using
multiple actions to redirect a bridge, addressing this limitation.

We also checked how many TAP program candidates Au-
toTap generates for one property set. On average, AutoTap
generates 2.13 candidates for one set, with a median of 1. The
largest set contains 27 candidates. This is a special case as the
program consists of three rules. For every rule, the potential
action could be opening any one of three windows in a house.
Even in this case, end users will not face 27 candidates at
once. They will only need to make a one-out-of-three choice
three times. As all candidates satisfy users’ desires, AutoTap
can also randomly pick one candidate.

C. TAP Program Fixing

We randomly take 10 correct TAP program written by user-
study participants and apply a wide variety of mutations to
them, as shown in Table II. AutoTap successfully fixes the
buggy TAP program to satisfy the given property in 23 out
of 25 cases, showing its generality across different types of
TAP bugs. The two cases where AutoTap fails are like the
following. The task is “the thermostat should never be above
80°F”, and the rule is “IF thermostat goes above 80°F, THEN
set thermostat to 81°F”, with the action randomly mutated
from “set thermostat to 75°F”. Since the buggy rule triggers
itself recursively and AutoTap does not regard intermediate
triggering states as violating properties, AutoTap could not
identify the bridge edges and hence did not repair the program.

As also shown in Table II, AutoTap often generates a
patch to revert the add-condition mutation or the delete-rule
mutation, but not for all types of mutations. The reason is that
AutoTap only fixes the part of a TAP program that violates
the safety property. If a rule becomes a non-violating different
rule after mutation, AutoTap will not revert the mutation back.

D. Handling Multiple Properties

Properties that share the same capabilities of devices some-
times interfere with each other. We evaluated AutoTap on
7 scenarios where such things happened, with each scenario
combining different property sets in our user study together.
For example, one scenario could contain two properties “the
living room window, the bedroom window and the bathroom
window should never be closed together (¢)” and “the living
room window should always be closed while it is raining (/).

AutoTap simply combines different properties ¢ and
together as ¢ A 1. It successfully handles all scenarios by



generating TAP programs to satisfy every multi-property sce-
nario unless the properties conflict with each other. In the latter
case, AutoTap correctly reports that no TAP rules can possi-
bly guarantee all the properties. One example of conflicting
properties is “the window should always be open” and “the
window should never be open when the air conditioner is on.”

VII. THREATS TO AUTOTAP’S VALIDITY

AutoTap is not guaranteed to generate patches for every LTL
safety property. Patches are generated by the current prototype
of AutoTap when (1) bridge edges are found, and (2) the
bridge can be cut with a single TAP rule. The 1 out of 158
cases where AutoTap fails to synthesize a TAP program in
Section VI-B violates the second assumption. The 2 out of 25
cases where AutoTap fails to fix a TAP program in Section
VI-C violates the first assumption. Both limitations can be
fixed by future extensions to AutoTap. Furthermore, the first
assumption does not hold if every state is accepting, meaning
that no matter what actions we take in the system, we cannot
prevent it from triggering a violation. The second assumption
does not hold when there are no controllable actions to escape
from a property violation. That is, only events out of our
control (e.g, changing the weather) help. These scenarios occur
when the system lacks critical functionality or the property
itself is conflicting, which is out of scope for AutoTap.

We focus on TAP instead of other smart-device languages
mainly because TAP is widely used [8] and easy for end-
users to understand [9]. AutoTap is not limited to TAP.
Cutting bridge edges that cause property violations can be
accomplished in other automation languages, too. In fact, we
feel that some bridges might be better fixed by ‘“disabling
rules” that can conditionally disable actions.

AutoTap currently does not consider issues like actions
failing to complete or not taking effect immediately [14].
Handling these issues requires device manufacturers to provide
a more accurate model of the system. Furthermore, users
can still make mistakes in writing properties. Their properties
might not reflect their real intent. Properties could even conflict
with each other, which AutoTap does not currently resolve.

VIII. RELATED WORK

TAP program bug-detection and fixing: AutoTap is in-
spired by previous work [21], [22] that applied formal methods
to detect violations to LTL or CTL policies in TAP programs.
Previous work searches potential TAP patches by changing
trigger-states of existing TAP rules in three ways: (1) deleting
a conjunction clause; (2) adding a conjunction clause that
appears in the LTL/CTL policy; or (3) modifying numerical
parameters. Consequently, they cannot synthesize patches that
change TAP rules’ trigger events or rule actions, not to mention
creating new TAP rules from scratch. The end-user property-
specification interface of previous work [22] only accepts
“[states] shall not happen”, missing many common desires.

TrigGen [23] detects a specific type of bug in OpenHAB
TAP programs [4] — missing triggers. It works by checking
what events not included in the trigger could possibly affect the
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rule conditions. Researchers have also developed techniques
for either crowdsourcing TAP rules [28] or synthesizing TAP
rules from natural language [26], [27]. Our synthesis and repair
techniques are complementary to those techniques.

Program synthesis using formal methods: Synthesizing
a program from a formal specification, or LTL synthesis,
has been an open problem [34]. Most work in this area
synthesizes reactive systems based on formal specifications
[18]-[20], [34]. AutoTap is related to, but also fundamentally
different from, such work. AutoTap needs to synthesize TAP
rules, not just finite state models, and needs to accommodate
for an existing finite state model (i.e., the smart-device sys-
tem model). Degiovanni et al. proposed an algorithm that
synthesizes control-operation programs, which have similar
syntax as TAPs, to satisfy formal requirements [25]. Due to
the different usage contexts, their algorithm, which uses SAT
solvers to iteratively resolve counter-examples by changing
existing rules’ trigger states, cannot add new rules or preserve
existing property-compliant behaviors.

Property-specification interfaces: Past work in require-
ments engineering investigated how to let engineers specify
desired software properties. KAOS provided guidelines that
helped engineers gradually summarize or break down vague
requirements into deployable specifications [41]. PSPWizard
provided an interface where developers could choose from a
comprehensive list of templates, fill in the blanks of the chosen
template, and then have their inputs translated into formal
specifications [17]. In contrast with those efforts, we employed
a user study to identify commonly desired properties in smart-
home scenarios. We then designed property-specification tem-
plates for expressing those properties through a compact
graphical interface. AutoTap users specify properties through
only mouse clicks, which is suitable for non-technical users.

IX. CONCLUSIONS

With the wide adoption of smart devices, helping users
correctly express their intent for how these devices should
interact is crucial. AutoTap helps users by allowing them
to directly specify properties they wish to hold, rather than
writing rules for exactly how devices should behave in order
to satisfy those properties. To achieve this goal, we first
conducted a user study to map the properties users commonly
desire. We then designed an easy-to-use interface for property
specification and a technique supported by formal methods to
automatically synthesize TAP programs or program patches
that guarantee the system satisfies the specified properties.
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