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Chapter 22 1

Sustainability and Life Cycle Product 2

Design 3

Deborah Thurston and Sara Behdad 4

This chapter addresses problems that arise during product design for sustainability 5

and the life cycle. A description of the problem itself is provided from an industrial 6

engineering viewpoint. The first section describes the problem elements, including 7

the need to expand the set of conflicting objectives under consideration, the need to 8

consider the entire product life cycle, the need to employ new data acquisition tools, 9

and the need to investigate the complex role of consumer behavior before, during, 10

and after the point of purchase. Subsequent sections summarize work the authors 11

have done towards solving these problems. A general mathematical programming 12

framework is first presented. This chapter highlights several instances of the benefits 13

of bringing the logic and mathematical rigor of industrial engineering methods 14

to these problems. The authors’ previous contributions to sustainable design are 15

presented and include defining the concept of the product life cycle from a decision- 16

based design point of view, developing different types of decision-making tech- 17

niques for engineering design (both subjective and objective), normative decision 18

analytic methods (e.g., multiattribute utility, constrained optimization), methods 19

for environmentally conscious design to cover new environmental objectives (e.g., 20

connection of design with the end-of-use phase), and immersive computing tech- 21

nologies to address challenges with information-intensive design procedures. The 22

final section presents methods to consider heterogeneous consumer behavior during 23

product selection, use, and disposal. 24
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22.1 Introduction 25

Design for sustainability is more complicated that simply “doing the right thing.” 26

First, one must define which thing(s) should even be considered. Then, informationAQ1 27

about the current and possible future states of those things must be gathered. That 28

information must then be analyzed, or processed in some way. Finally, decisions 29

must be made on the basis of that analysis and action taken. 30

Industrial engineering provides the toolbox needed to tackle such problems. This 31

toolbox includes a broad set of mathematical models that can be used to predict, 32

control, and generally make things better. This chapter presents an overview of 33

research conducted by the authors that employs industrial engineering tools towards 34

the goal of making sustainable design as efficient, profitable, and sustainable as 35

possible. 36

The engineering design process plays a significant role in both causing and 37

solving sustainability problems. In the past, the traditional design process started 38

with a set of technical performance specifications posed in terms of hard constraints. 39

Then, the designer would create a configuration to satisfy these constraints. This step 40

was often considered to be an art, rather than a science. 41

This configuration would then be evaluated, most often on the basis of cost 42

to manufacture. What followed was an iterative configure/evaluate/reconfigure 43

to improve/evaluate loop. Externalities such as environmental impacts were not 44

considered, and the time frame of analysis typically encompassed only the manu- 45

facturing process, from the cost of materials entering the plant to the manufacturing 46

cost of the finished product leaving the plant. 47

More recently, the engineering design process has employed mathematical 48

modeling approaches to make the design process itself more efficient. For example, 49

the axiomatic design and the design structure matrix approach (Suh 1998; Tokunaga 50

and Fujimura 2016) illuminate dependence relationships among physical design 51

parameters and performance metrics, enabling designers to see how they might 52

reconfigure the product to improve performance in one area without degrading 53

performance in another. Also, normative decision analysis has brought mathematical 54

rigor to the design evaluation process by formally modeling the decision-maker’s 55

willingness to make tradeoffs (Thurston 1991), the effect that uncertainty has on 56

overall design utility, and integrating normative decision-making into constrained 57

optimization (Thurston et al. 1994). 58

Design for sustainability poses new challenges that are not trivial. The time 59

frame for analysis has been expanded quite significantly from just the manufacturing 60

process to now include impacts occurring prior to manufacturing (such as those 61

resulting from raw material extraction and processing), as well as during the 62

consumer-use and end-of-life stages. The list of performance metrics has also 63

expanded, from primarily cost (and perhaps quality) to now include environmental 64

impacts before, during, and after the manufacturing process, including air, water, 65

solid waste, and others. The degree, type, and range of uncertainty associated with 66

estimating these impacts is significantly greater than that associated with estimating 67

manufacturing costs. 68
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Design for sustainability needs everything that industrial engineering tools can 69

provide. In this chapter, we provide a summary and overview of work we have done 70

to date towards these problems. The next section describes our general approach, 71

which is decompositional in nature; breaking a difficult, unsolvable problem into 72

smaller, solvable pieces and then reassembling those pieces into a whole. 73

What follows is a description of the mathematical modeling methods we 74

have employed, beginning with those for addressing conflicting objectives. The 75

following section presents methods for addressing the entire life cycle, focusing 76

on disassembly. Then, a method for using new data collection tools is described, 77

followed by more recent work in investigating the role of consumer behavior in 78

design for sustainability. 79

22.2 Mathematical Modeling Approach to Sustainable 80

Design 81

There are several key areas of focus for this chapter, as highlighted in Fig. 22.1. 82

These are (1) the need to consider a broader set of conflicting objectives, (2) the 83

need to assess and analyze sustainability-related outcomes across the entire product 84

life span, (3) the need to recognize information-intensive nature of the sustainable 85

design, and employ new data collection tools, and finally (4) the need to consider 86

the complex and understudied role of consumer behavior. 87

Design for sustainability is difficult for the reasons described above. Work 88

presented in this chapter employs mathematical models created to help predict, 89

control, and improve the outcomes of design decisions. Then, results can then be 90

analyzed to provide insight as to how to improve further. We center our discussion 91

around the ideal of a bi-level optimization formulation to simultaneously consider 92

the objectives of both manufacturers and consumers. Each section of this chapter 93

describes work done in one area of the problem, beginning with identifying which 94

objectives to include (or not) from the manufacturer’s perspective, how to best 95

satisfy different customer market segments, employing a designed experiment 96

Need to Consider Broader Set of Conflicting Objectives

Need to Analyze the Entire Product Life Cycle

Need to Employ New Data Collection Tools

Need to Investigate the Complex Role of Consumer Behavior

Fig. 22.1 Difficulties in sustainable engineering design
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to reveal hidden causes of pollution, and using simulation methods to improve 97

disassembly and reassembly operations. 98

The focus of optimization models used in the “design for sustainability” context 99

is on identifying an optimal mix of strategies that result in minimum costs and 100

environmental impacts with maximum customer satisfaction. The advantages of bi- 101

level optimization models are that both the manufacturer’s and customers’ interests 102

are considered. To incorporate the role of uncertainty, we can extend a simple bi- 103

level optimization model to a stochastic optimization framework. 104

Ideas from probability theory and bi-level optimization can be employed to 105

capture, quantify, and apply imperfect information about consumers’ preferences 106

in purchasing, using, and discarding products. The set of optimization models 107

that designers build establishes a framework for evaluating intervention strategies 108

(e.g., design for disassembly, design for longer lasting products) towards both 109

environmental impact prevention and economic gain. 110

The results of simulation-based data generation techniques can also be integrated 111

with optimization models. The integration of data generation tools within the 112

optimization framework can provide designers with accurate estimates of the 113

uncertainty associated with both consumers’ decisions, expected profitability, and 114

environmental impacts. 115

In our stochastic bi-level optimization models, consumers are the decision- 116

makers in the lower level portion of the model, who make product purchase and 117

usage decisions in response to design decisions made by the manufacturers in the 118

upper level. One distinct feature of these models is their ability to find equilibria in 119

the market system by employing a prospective approach. Manufacturers can make 120

decisions about the types of design features that should influence both purchasing 121

and consumer-use behavior. 122

The standard stochastic bi-level optimization is in the following form: 123

min
x∈X

f (x) + E

[
g

(
y
(
x, ω

)]
(22.1)

s.t. y (x, ω) = arg min
y∈Y (x)

h (x, y, ω) (22.2)

where x is the upper-level decision vector describing the manufacturers design inter- 124

ventions, ω is a random vector affecting probabilistic choices made by consumers, 125

and y(x, ω) is the lower level decision vector of consumers given x and ω. 126

To solve the stochastic bi-level optimization problem, a computational approach 127

can be developed that combines a single-level reformulation technique using 128

Karush-Kuhn-Tucker (KKT) conditions for the lower level problems and a Monte 129

Carlo simulation approach with sample average approximation (SAA) for the 130

upper-level problem. The capability of bi-level optimization models has already 131

been demonstrated in the literature and different solution algorithms have been 132

developed. Examples include as reducing a bi-level model to a single-level model 133

(Camacho-Vallejo et al. 2015), two-stage heuristic algorithms (Du and Peeta 2014), 134
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using meta-heuristic techniques such as progressive hedging (Yi et al. 2017), genetic 135

algorithms (Mahmoodjanloo et al. 2016), simulated annealing algorithms (Starita 136

and Scaparra 2018), and stochastic equilibrium constraints algorithms (Faturechi 137

and Miller-Hooks 2014). 138

A look at the above-mentioned mathematical models reveals the importance 139

of considering several points as highlighted in Fig. 22.1: (1) the importance of 140

considering multiple objectives, (2) the need to consider sustainability effects of 141

the entire product life span, (3) the need for collection and utilization of accurate 142

and timely data for mathematical models, and (4) the role of consumer behavior 143

as one of the main stakeholders. In the next several sections, we describe several 144

studies conducted by the authors towards meeting these needs. 145

22.3 The Need to Consider Conflicting Objectives 146

This section presents the progression of our work in developing these models, begin- 147

ning with simply broadening the set of objectives considered to evaluate a set of 148

discrete options and formulating a multiattribute evaluation function, then: (1) using 149

that function as the basis of the objective function in a constrained optimization 150

formulation to (2) identify the best possible option subject to unavoidable cause 151

and effect relations between decisions and attribute outcomes, and (3) finally using 152

statistical manufacturing process control to discover opportunities for pollution 153

prevention that can then be woven into the optimization formulation. 154

In our work, we have most often employed a multiattribute utility function as 155

shown below in Eq. 22.3, where K and ki are scaling constants and yij refers to the 156

level of attribute i for decision j. The constraint functions (not shown) define the 157

correlation between design decisions and each resulting attribute. 158

Despite misconceptions to the contrary, this functional form can be very useful 159

during the design process (Thurston 2001). When properly assessed, it can accu- 160

rately reflect whether utility is linear or nonlinear with respect to performance in 161

any one attribute, the effect of uncertainty, and whether the designers’ willingness 162

to trade off one attribute against another remains constant or varies over the feasible 163

design region. 164

Unlike other multi-objective evaluation methods (such as the weighted average 165

method), this approach requires a rigorous, systematic process for defining the set 166

of attributes that are both relevant and negotiable, their range of negotiability, the 167

decision-maker’s willingness to make tradeoffs (Thurston 1991), and the effect of 168

uncertainty on the utility of design alternatives. This process requires some expertise 169

in decision analysis, but is no more arduous than other analytic tools routinely 170

employed by design engineers. We have also found that going through this process 171

itself focuses the designer’s effort where the payoff is greatest. In addition, defining 172

the attributes and their ranges of negotiability in such a way that the preferential and 173

utility independence conditions required so the Eq. 22.3 is valid has been especially 174

useful. 175
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1 + KU (y1, y2, . . . , yn) =
n∏

i=1

[
KkiUij

(
yij

) + 1
]

(22.3)

22.3.1 Broadening the Set of Conflicting Objectives 176

Consideration of sustainability requires the designer to consider outcomes of the 177

design decisions that were previously “outside the box” bounding their analytic 178

frame. A formal method for design evaluation of multiple conflicting attributes 179

was presented in (Thurston 1991). Material substitution in the automotive industry 180

was investigated. Part of the motivation for this work was that collaborators 181

(designer at several automotive companies) indicated that they wished to compare 182

steel, aluminum, and polymer composite materials, and in particular wished to 183

explicitly consider (and value) the sustainability of their material choices. A 184

normative multiattribute utility function was formulated to help the designers make 185

decisions that reflected their unique willingness to make tradeoffs. The assessment 186

methodology employs a decompositional, “lottery” question and answer approach 187

that measures the extent of decreasing marginal value as one attribute is improved, 188

the subject’s willingness to sacrifice performance in one attribute in order to gain in 189

another, and the effect of uncertainty on their valuation of a design alternative. One 190

interesting outcome of the analysis was that although the subjects all said that they 191

were concerned about the environment and wished to consider sustainable options, 192

their responses to the lottery questions revealed that they, in fact, were not willing 193

to make any tradeoffs to achieve sustainability, and as a result compliance with 194

environmental regulations was then treated as a binary “must comply” constraint in 195

the analysis. 196

22.3.2 Constrained Multiattribute Utility Optimization 197

In Mangun and Thurston (2002), the customer’s willingness to make tradeoffs 198

for sustainability in personal computers was explored. A constrained optimization 199

problem was formulated, maximizing multiattribute utility (cost, reliability, and 200

environmental impact), the structure of which is shown in Fig. 22.2. The binary 201

decision variables reflected whether or not each of 88 components were to be new, 202

reused, remanufactured, or recycled in a second product life cycle. It was determined 203

that the customer was willing the make tradeoffs, and that, compared with all-new 204

components, remanufacturing and recycling certain components for a second life 205

cycle did increase customer utility. Further, the magnitude of this willingness to pay 206

depended on which market segment a customer belonged to; technophile, utilitarian, 207

or “green.” The model structure enabled the identification of an optimal portfolio of 208

products (a distinct product for each market segment) that presented each segment 209
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Elements of Model

Personal Computer

Monitor Mini-tower Keyboard

Cathode Ray Tube

Housing

Base

Cable

Housing

Disk Drive

Fan

CPU

Shell 

Key Caps

Printed Circuit Bd.

Back Plate

Reuse

Remanufacture

Recycle

New

Material Processing Manufacturing Assembly

Collection Disassembly Remanufacturing Recycling Disposal

Cost Reliability Environmental 
Impact

Technophiles Utilitarian Green

Level 

1 Product

88 
Components

4 Design 
Decisions

8 Operations

3 Attributes

3 Market 
Segments in 
Portfolio Maximize Total Product Portfolio Utility

Fig. 22.2 Major elements of constrained optimization model for PC component reuse, remanu-
facturing, or recycling decisions

with the combination of remanufactured or recycled components that resulted in the 210

set of tradeoffs that were best for them. Post-optimality analysis then revealed that 211

if the manufacturer adopted a service-selling (rather than product-selling) approach, 212

further efficiencies could be realized by controlling and fine-tuning the take-back 213

period to each specific market segment. This was explored in (Thurston and De 214

La Torre 2007), which determined that through a leasing program the specified the 215

length of time of consumer-use, both profitability and consumer satisfaction could 216

be improved. 217
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22.3.3 Statistical Manufacturing Process Control to Identify 218

Pollution Prevention Opportunities 219

In Carnahan and Thurston (1998)), concurrent design for sustainability of both the 220

product and the manufacturing process was considered. This work was motivated 221

by a floor tile manufacturing plant that was seeking to expand production. At 222

current production levels, they were in full compliance with air pollution control 223

regulations although they sometimes observed unexplained spikes in emissions. If 224

these spikes continued along with increased production levels, unacceptable levels 225

of air pollution would be emitted. 226

Again, the industrial engineering approach of mathematical modeling was 227

employed to understand, predict, and control this situation. The tradeoffs here 228

were between manufacturing cost, air pollution, and product quality. A constrained 229

multiattribute utility function was employed, and the constraint functions reflected 230

the cause and effect relationships between design decisions (13 raw material choices 231

and 17 manufacturing process parameters) and resulting attributes of cost, pollution, 232

and product quality. The variation in air pollution levels was seen as an opportunity 233

to identify manufacturing process parameters that might be correlated with the 234

variations, and perhaps be controllable. A statistical manufacturing process control 235

experiment was conducted, which identified these correlated parameters, a selected 236

subset of which are shown in Fig. 22.3. Information obtained from the experiment 237

Fig. 22.3 House of quality, DOE and constrained optimization integrated to revealing raw material
and manufacturing process parameters correlated to pollution, quality, and cost
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also helped to fine-tune the ranges over which the designer was truly able and 238

willing to make tradeoffs. An ironic finding was that one of the raw materials that 239

was correlated with higher air pollution levels had been a scrap material that the 240

manufacturer was recycling on-site in order to reduce solid waste. 241

22.4 The Need to Analyze the Entire Product Life Span 242

22.4.1 Maintenance, Repair, Replacement 243

One possible strategy for reducing waste is to increase the product usage life span 244

and promote repair and reuse practices among individual consumers. However, 245

manufacturers currently do not view “design for longer lasting products” as a 246

profitable strategy. In fact, cost-effective assembly processes are often irreversible 247

(replacing screws with snap-fits, for example), and manufacturers’ present strategies 248

are sometimes focused on making products difficult and expensive to repair and 249

reuse (Cooper 2012). 250

However, there are several economic reasons why manufacturers may be inter- 251

ested in design policies that facilitate repairs: (1) design for repairable products 252

reduces the cost of after-sales services and warranty offers (Saccani et al. 2007; 253

Fang and Hsu 2009), (2) repairability might be regarded as marketing and sales 254

strategies (e.g., rated repairability attributes in online product reviews) (Gaiardelli 255

et al. 2008; Stevels 2002), (3) new business models adopted by enterprises based 256

on the concept of a sharing economy, the peer economy (e.g., renting, sharing, 257

exchange) and service-based business models require durable products (Preston 258

2012), (4) design for repairable products is a strategy to secure the future supply 259

of critical materials and rare earth elements (Peck et al. 2015), (5) repairability 260

influences the future reusability of devices, the cost of remanufacturing, and the 261

profitability of remarketing in the second-hand market (Cuthbert et al. 2016), and 262

finally (6) the independent repair businesses and initiatives, e.g., the Digital Right 263

to Repair Coalition, have been forming worldwide campaigns against the short-term 264

profit-driven policies of manufacturers and urging them to produce more repairable 265

electronics, to share the repair guides, and to supply the spare parts to the market 266

(Rosner and Ames 2014). A product’s repairability not only influences its first life 267

cycle, but also it increases its future reusability and the opportunity to generate a 268

new market for used devices. 269

Design for sustainability via facilitating cost-effective maintenance, repair or 270

component replacement, can increase the length of product life cycles, decrease 271

waste, and increase profitability. However, disassembly, repair, and reassembly 272

processes incur costs and sometimes result in damage to one or more components. 273

In Behdad and Thurston (2012), a graph-based integer linear programming and 274

multiattribute utility analysis model is formulated to find the optimal sequence of 275

disassembly operations. Conflicting attributes considered are disassembly time (and 276
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cost) under uncertainty, the probability of not incurring damage during disassembly, 277

reassembly time (and cost), and the probability of not incurring damage during 278

reassembly. A solar heating system example is presented. Analysis of the model and 279

results revealed the auxiliary heater as a target for redesign to improve accessibility 280

and/or longevity due to its need for frequent replacement. 281

22.4.2 Selective Disassembly, Value-Mining, and Sharing 282

Disassembly Operations for Multiple Products 283

Returned end-of-life products arrive at the take-back facility with a great degree 284

of variability and uncertainty in terms of quantity, age, and quality. The value 285

of individual components is sometimes not worth the cost of full disassembly. 286

Towards a solution to this problem, a stochastic chance constrained programming 287

model converted to a mixed integer linear program for waste stream acquisition 288

(as opposed to market-driven systems) is presented in (Behdad et al. 2012). The 289

model treats returned product quantity as an uncertain parameter and determines 290

the optimal degree to which disassembly processes should be performed, as well as 291

the optimal EOL option for each resulting subassembly. A stream of PCs received 292

at a refurbishing company located in Chicago serves as an illustrative example. 293

In addition to uncertainty and variability in returned product quantity, age, and 294

quality, incoming feedstock is often varies widely and includes several different 295

product. This further hampers the profitability of product take-back operations. 296

Two types of decisions are considered for multiple returned product streams in 297

Behdad et al. (2010); how to efficiently perform selective disassembly operations, 298

and how best to “mine” the value still embedded in components. An example 299

using two cell phones illustrates the integration of a transition matrix with a 300

mixed integer linear programming model for disassembly operations for multiple 301

products. The solution simultaneously identifies the degree to which each product 302

should be disassembled, and also the optimal end-of-life decision (disposal, reuse, 303

recycle) for each component or subassembly. The example results indicated that 304

sharing disassembly operations between different products can increase the cost- 305

effectiveness of disassembly operations. 306

22.5 The Need to Use New Data Collection Tools 307

So far, we have discussed mathematical models for including new, conflicting 308

objectives and for the considering sustainability issues throughout the entire life 309

span of a product. This section discusses the role of data collection tools in 310

gathering the information that these expanded models require. The focus of our 311

discussion is on the role of Immersive Computing Technology (ICT) and virtual 312
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reality environments employed during the design process. ICT provides a relatively 313

inexpensive technology (compared with multiple iterations of physical prototype 314

testing) that allows designers to create virtual prototypes of design concepts, 315

generate new ideas, test design concepts, evaluate them, and collect data. ICT has 316

also has been used as a means of sharing information and experience among users. 317

Research on ICT first was mainly focused on developing the technology, but more 318

recently applications of the technology have also generated interest (Ong and Nee 319

2013), broadly ranging from engineering design through education, gaming, and 320

other entertainments. 321

While the technology has advanced to the point that it offers many capabilities 322

for data collection, product-user experiences, and visualization of artifacts, there is 323

still much to be done towards improvements in the cognitive aspects of knowledge 324

representation and processing. Advances in ICT need to be expanded to include 325

mental models that designers employ, including how information provided by the 326

ICT is perceived, processed, and acted upon. 327

Considering the example of design for disassembly, often the collection of the 328

required information about the disassembly process is very challenging and time- 329

consuming. Disassembly is an integral part of remanufacturing, repair and reuse 330

activities, and disassembly times, cost and possible damage can vary from one 331

operation to another based on component and subassembly geometry, fastening 332

methods, component condition, operator motions required, operator experience, 333

and other factors. Designers most often do not have data on the probability 334

distributions of disassembly times, costs, and possible damage to components 335

during the disassembly process. Having access to such information during the early 336

stages of product design can help designers create alternatives (e.g., the type of 337

fasters, the number of joint parts) that facilitate particular disassembly sequences. 338

To identify the best disassembly sequence (e.g., minimizing disassembly time 339

and/or component damage), designers need to know the probability distribution of 340

disassembly time and/or component damage during disassembly as a function of 341

design and disassembly specifications. 342

Such data can be made available through the use of an ICT system, in which 343

designers have the opportunity to create a virtual prototype of the product, disassem- 344

ble the prototype, and collect the required data. In one study (Behdad et al. 2014a), 345

we formulated a mixed integer nonlinear program equipped with data collected 346

using ICT to determine an optimum disassembly sequence for a burr puzzle. 347

The six-component burr puzzle employed is shown in Fig. 22.4 has properties 348

making it ideal for analyzing assembly and disassembly processes. Not all compo- 349

nents can be moved at all times, and there are precedence relationships. Also, many 350

movements are orthogonal to others. Each component is labelled according to its 351

color in the ICT: (T)eal, (B)lue, (G)reen, (Y)ellow, (P)urple, and (R)ed. 352

The first step was to determine all feasible disassembly sequences and present 353

them in the form of a disassembly graph. The next step was to supplement 354

the disassembly graph with some sort of cost structure (e.g., disassembly time, 355

component damage for each disassembly operation). The third step was to obtain 356

the data required by simulating the disassembly operations in the ICT environment, 357
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Fig. 22.4 A burr puzzle with six interlocking pieces

0
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Pr(damage) = Pr(N ≥ C)
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Fig. 22.5 The distribution of the number of collisions between parts

and the final stage was to use the data collected in a mathematical model in order to 358

determine the optimum disassembly sequence. 359

We simulated feasible disassembly operations for the burr puzzle and conducted 360

30 trials of each feasible disassembly transition manually to collect 30 data points 361

for each disassembly operation. The number of collisions between components 362

was recorded, as a representative of component damage. This data enabled us to 363

draw statistical distributions of the number of collisions between parts (N) for each 364

disassembly operation, shown in Fig. 22.5. 365
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Fig. 22.6 The disassembly
graph and the optimum
sequence derived from the
mathematical model (from
Behdad et al. (2014a)) BGPRTY*(2)
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The mathematical model developed in this study was a chance constrained 366

program with the single objective of minimizing the number of collisions between 367

different components during disassembly. The mean and standard deviation of the 368

distribution of the number of collisions collected in the ICT was used to estimate 369

the probability of damage. The distribution of the number of collisions was used 370

to estimate the probability of damage directly. For example, if a threshold (C) is 371

defined for the acceptable number of collisions between parts, using the distribution 372

of the number of collisions and the defined threshold, the probability of components 373

damage can be quantified as follows: 374

Pr (damage) = Pr (N ≥ C)

Figure 22.6 shows the optimum sequence (1–2–3–5–7–8) derived from the 375

mathematical model for the example of burr puzzle. 376

In addition to data collection, we also employed ICT capabilities to explore intu- 377

itive disassembly sequences and compare the results with the optimum disassembly 378

sequence obtained above. The goal was to determine if there could be some synergy 379

between the mathematical model and intuitive human expertise. 380

An experiment was conducted in the ICT environment as shown in Fig. 22.7 to 381

determine what disassembly process a human might employ while “seeing” both 382

the burr puzzle and its disassembly graph. The result of the experiment indicated 383

that the user intuitively followed a disassembly path (1–2–3–5–8) that was different 384

from the optimal path identified by the model. 385

For example, considering State 3 in the disassembly graph presented in Fig. 22.5. 386

There are two options: remove Part B or remove Part P. In practice, the disassembly 387

processes for these two parts are not the same. While Part P can be removed using 388

one single horizontal manipulation, Part B requires manipulation across two axes, 389
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Fig. 22.7 An ICR experiment where a user disassembles a burr puzzle. The experiment has been
simulated using the VR facility in Mechanical Engineering department at Iowa State University
(courtesy of Dr. Judy Vance and Leif Berg)

however, this is not visible to the operator. If the optimum path is followed, then 390

Part P is separated. From State 5, removing Part B appears to be a simple and 391

intuitive one-piece removal operation; however, the optimal sequence suggests an 392

intermediate operation in which Part P is reoriented to be visible to the operator 393

and reveals the physical constraint for removing Part B to the operator. Thus, 394

the fact that the intuitive path differs from the optimal path provides insights for 395

redesign. Realigning the R component could provide a better operator perspective 396

of B’s interconnectedness. When the operator then removes B and is aware of the 397

interconnectedness, greater care may be taken and damage minimized. 398

In a related study (Behdad et al. 2014b), we extended our data collection 399

efforts in the ICT environment to collect not only the number of collisions as a 400

representative of the probability of damage, but also the distance movement of 401

parts to estimate the disassembly cost. We also developed a new multi-objective 402

mathematical model using a multiattribute utility function as the objective function 403

of a dynamic programming model. The probability of damage vs. disassembly time 404

(or cost) are the two conflicting objectives. The faster is the pace of disassembly, the 405

lower is the disassembly time (or cost) but the higher is the probability of damage 406

and vice versa. 407

22.6 The Need to Investigate the Complex Role of Consumer 408

Behavior 409

Consumer behavior plays a critical but understudied role in design for sustainability. 410

Traditional views of the sustainable design, including many of those in the design for 411

X domain, largely focus on improvement of end-of-life remanufacturing activities 412

such as disassembly (Harjula et al. 1996) refurbishment (Nee 2015) and recycling 413
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End-of-use time 
decision

Consumer purchase 
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Consumer usage and repair behavior Consumer product-storing behavior

Time

End-of-storage 
time decision

Fig. 22.8 The consumer decisions during the product life span (e.g., purchase, usage, repair,
disposal)

(Gaustad et al. 2010), but fail to comprehensively consider the role of consumer 414

behavior during product usage and end-of-use. The effectiveness of sustainable 415

design policies depends on consumers’ attitude and behavior, which are critical and 416

are uncertain in nature. 417

Overall, there is a linkage between the product life cycle, design features, and 418

consumer decisions to repair, reuse, or disposed of a product. Figure 22.8 illustrates 419

the overall process of consumer decision-making during the product life span and 420

the impact of consumers’ behavior on usage and storage times. 421

It is important to develop analytical models that quantify the heterogeneity of 422

consumer behavior and the deterioration of product-critical components, as well as 423

integrate consumers’ usage and disposal behaviors into design decisions. 424

Despite recent efforts to consider consumer marketing preferences, less attention 425

has been paid to modeling the usage behavior of the consumers. Most of the 426

previous studies have strived to address purchase or adoption behavior (Ma and 427

Nakamori 2009; Miller et al. 2013; Davis et al. 2009; Haghnevis et al. 2016). 428

Therefore, one research gap in the current engineering design literature is the 429

lack of scientific methods for considering the heterogeneity and variability of 430

consumers’ usage behavior during product design, or accurately quantifying the 431

resulting environmental impacts. Future methods should make designers capable 432

of calculating the total emissions of a system based on the aggregation of the micro- 433

decisions made by individual consumers for individual products. 434

In this section, we discuss the importance of consumer behavior in reducing the 435

sustainability-related issues during the entire product life cycle. The focus will be on 436

four types of behavior based on several previous studies conducted by the authors: 437

(1) consumer’s product storing behavior at the end-of-use phase of the products, (2) 438

usage behavior, (3) repair behavior and consumers decisions in extending product 439

life cycle, and (4) return behavior and consumers decisions about timing, disposal, 440

and waste removal channel for used products. 441

22.6.1 Consumer’s Product Storing Behavior 442

Consumers often have a tendency to keep old products in storage before returning 443

them back to waste removal chains. This behavior results to further technological 444
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obsolescence of used products where in many cases products that are finally returned 445

are not resaleable in the second-hand market and must be shredded and sent to 446

recycling and material recovery operations. 447

In one study (Sabbaghi et al. 2015a), data from about 10,000 used computers 448

and laptops returned during 2011 and 2013 to an e-waste collection site located in 449

Chicago, IL have been analyzed to determine the average storage times for used 450

products and whether there are any connections between different design features 451

and how long consumers kept their used electronics in storage. With the help 452

of SMART software, we were able to retrieve data identifying the last time the 453

operating system was used on each device, and since we also had information on 454

the manufacturing date and return date, we were able to calculate the storage time 455

(Storage time = Return date − Last time the OS was used), the upper bound of 456

usage time (Usage time = Last time the OS was used − Manufacturing date), 457

and the product age (Age = Return date − Manufacturing date). We also had 458

information about the size of the hard disk drive, the brand, and the consumer type. 459

We had information about two groups of consumers: individual households and 460

commercial consumers (corporate) organizations who returned their used computers 461

for recycling. Various statistical analyses were performed on the dataset and various 462

insights have been derived. 463

It was found that the average product age and the average storage time was 464

6.9 years and 1.1 years, respectively. There was no statistically significant difference 465

between different brands and sizes of the hard disk drives, but commercial users 466

stored used electronics longer than households. Data security concerns and admin- 467

istrative processes might be the cause of this. Figure 22.9 shows the histograms of 468

storage time, usage time, and product age for two groups of consumers. 469

Fig. 22.9 The statistical distributions of the upper bound of usage time, storage time, and product
age for two different groups of consumers (data from Sabbaghi et al. (2015a))
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Fig. 22.10 The reusability of batteries based on their age and the number of potential used cycled
(data from Sabbaghi et al. (2015b))

22.6.2 Consumer’s Product Usage Behavior 470

Another important consumer behavior is their usage behavior. The way that 471

consumers use their products can influence sustainability outcomes such as energy 472

consumption and future reusability. For example, the way that consumers charge and 473

discharge their laptop batteries impacts the future reusability of used laptops, and 474

this behavior varies significantly from customer to customer. This uncertainty must 475

be considered. To shed light on the impact of consumer usage behavior, in one study 476

(Sabbaghi et al. 2015b), about 500 same-brand laptop batteries used by students in 477

a high school in Burbank, IL were studied over 3 years of usage to monitor the 478

number of used cycles for each battery. The purpose of the study was to predict the 479

future reusability of batteries based on age, battery type, number of used cycles, and 480

consumer groups (e.g., students of the class of 2012, 2014, 2015, and 2016). For 481

example, Fig. 22.10 illustrates the future reusability of batteries based on their age 482

and the number of used cycles. Finally, we have determined what would be the most 483

profitable end-of-use option (e.g., reuse, recycle, refurbish) for each battery based 484

on their profile of usage. 485

22.6.3 Consumer’s Repair Behavior 486

The shortcomings of traditional design policies adopted by manufacturers are 487

especially acute in the design for repairability domain (Cairns 2005). While different 488

design concepts ranging from design for disassembly (Boothroyd and Alting 1992), 489
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reliability (Crowe and Feinberg 2001), reuse (Cowan and Lucena 1995), and 490

recycling (Kriwet et al. 1995) have recently become better integrated with design 491

efforts, the concept of “design for repair” has been overlooked. Manufactures in 492

general do not consider “design for longer lasting products” a profitable strategy. 493

In fact, manufacturers’ policies are sometimes focused on making products difficult 494

and expensive to repair and reuse with the aim of creating more market share for 495

newly developed products (Cooper 2012). 496

In one study (Sabbaghi et al. 2016), an industry dataset was analyzed to extract 497

consumer viewpoints towards product repairability, and the factors that make it 498

difficult for consumers to repair products themselves under three main categories 499

of product, economic, and consumer-related factors. The final objective was to 500

test whether and how product repairability might influence consumers’ future 501

purchase choices and recommendations to family and friends. An online survey 502

was conducted in collaboration with iFixit.com. iFixit has provided an initial 503

dataset of around 11,500 respondents being surveyed from three different subject 504

groups, including individual consumers (about 8000 respondents), employees of 505

repair shops, and employers of repair businesses. This comprehensive iFixit survey 506

includes a total 27 questions. 507

Among all 27 questions included in the iFixit survey, two directly inquire 508

about the importance of product repairability, its associated cost, and the effect 509

on future purchase decisions. Measured in an ordinal scale, two questions were 510

asked of iFixit survey respondents: “If you successfully repaired a product, are 511

you more likely to buy new products from the same company in the future?” 512

(CLL: Consumer Loyalty Level: low, medium, high), “Have your experiences fixing 513

your own products impacted the purchasing recommendations you give to your 514

friends? (PRL: Product Recommendation Level)”. Assuming there is a significant 515

correlation between these two questions, a bivariate ordered probit model was 516

employed to estimate the probability that an observation (a consumer) with specific 517

characteristics (repair experience) will come under one of the ordered categories 518

(low, medium, and high loyalty and recommendation levels). Table 22.1 shows the 519

relation between consumer loyalty and recommendation level for consumers with 520

prior repair experiences. 521

Access to repair information, positive attitudes towards repairing electronics, 522

product type, availability of spare parts, and unsuccessful repair experience (time- 523

Table 22.1 The relation between CLL and PRL given the prior repair experiences (data gotten
from Sabbaghi et al. (2016))

CLL: Consumer Loyalty Level
Low 379 (5%) Medium 4039 (48%) High 3985 (47%)

t3.1PRL: Purchase
recommendation
level

Low1086 (13%) 163(2%) 613(7.3%) 310(3.7%)

Medium4874 (58%) 179(2.1%) 2688(32%) 2007(23.9%)
High2418 (29%) 37(0.4%) 738(8.8%) 1668(19.8%)

http://ifixit.com


UNCORRECTED
PROOF

22 Sustainability and Life Cycle Product Design

consuming repair and broken parts during repair) have been identified as important 524

factors that influence future product choice and recommendation. 525

22.6.4 Consumer’s Product Return Behavior 526

Another important consumer behavior is their decision about the type of disposal 527

channel to employ, including storage, reselling, the trash bin, a formal collection 528

site, trade-in programs, recycling centers, etc. It is important to estimate which 529

portion of used products are returned back to each of these channels. Thus, in 530

one study (Mashhadi et al. 2016), we developed a simulation framework to model 531

consumer’s behavior in returning used products in which consumers have four 532

options: storage, resell, recycle, or discard. An agent-based simulation (ABS) frame- 533

work integrated with a Discrete Choice Analysis (DCA) method was developed to 534

predict consumer’s disposal decisions. Consumers socio-demographic information 535

and product design features were included in the model as possible predictive 536

factors. 537

To identify the role of product design features on the consumer participation, an 538

agent-based simulation model was created. The diverse set of decision-makers in 539

the take-back systems (consumers, products, OEMs) were represented as “agents.” 540

There is a mathematical model behind each agent. All agents have their own set of 541

features, objectives, behavioral patterns, and decision-making rules. 542

The main objective of the simulation was to evaluate design alternatives in terms 543

of consumers’ participation in different take-back channels. Each individual con- 544

sumer has been modeled as an agent. Consumer decisions on the selection (if any) 545

of take-back systems (trade-in programs, store, trash bin) has been modeled using 546

discrete choice analysis techniques and has been connected with product design 547

strategies controllable by original manufacturers. DCA is commonly employed to 548

study the individual decision-making process. The underlying assumption behind 549

DCA is that individuals seek to maximize their utility considering two sets of 550

attributes, their socio-demographic characteristics, and the features of alternatives 551

available to them (Wassenaar and Chen 2003). 552

Through the DCA techniques, the choice probability for each decision (e.g., 553

trade-in programs, trash bin, store) was determined based on product design 554

attributes, take-back program features, and consumers’ socio-demographic informa- 555

tion. The capabilities of agent-based simulation also helped us consider the impact 556

of other dynamic factors such as peer pressure, and consumer awareness of the 557

decision made by each individual consumer. The interaction between agents has 558

been modeled employing the capabilities of agent-based simulation. Figure 22.11 559

illustrates one example of the simulation results including the number of products 560

stored, returned, sold, and thrown away over time with consideration of interactions 561

between consumers. 562

Building such simulation tools paves the way for achieving a more comprehen- 563

sive understanding of consumer behavior and its impact on the used products’ return 564



UNCORRECTED
PROOF

D. Thurston and S. Behdad

Fig. 22.11 The ratio of
products stored, returned,
sold, and thrown away over
time with consideration of
interactions between
consumers (data from
Mashhadi et al. 2016)

paths. The final outcome of the study was to estimate the number of products stored, 565

returned, sold, and disposed of over time. 566

22.7 Summary and Closure 567

This chapter has summarized a body of work that employs industrial engineering 568

approaches to the problem of design for sustainability. These approaches began 569

with normative multiattribute utility analysis to broaden the set of objectives 570

under consideration and evaluate design alternatives, proceeded through constrained 571

optimization to identify the best alternative, statistical process control to create new 572

alternatives and immersive computing technology to gather data required for the 573

optimization model, and conclude with studies of consumer behavior before, during, 574

and after the use phase of the product life cycle. 575

This mathematical modeling approach requires designers to employ a decompo- 576

sitional strategy, which not only aids in solving previously intractable problems, 577

but also facilitates gaining better insight to the problem as one analyzes the 578

results and the structure of the model in detail. Lessons learned include that facts 579

that although designers might be genuinely concerned about sustainability, their 580

actual willingness to pay for it might be limited, that selling a service (through 581

leasing) rather than selling a product can improve both profitability and customer 582

satisfaction, that statistical manufacturing process control can reveal unexpected 583

opportunities for pollution prevention, that virtual reality design environments can 584

be used to quickly and efficiently gather some of the large amount of data needed to 585

build comprehensive models, and that the customer also plays a significant role. 586
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