Chapter 22
Sustainability and Life Cycle Product
Design

Deborah Thurston and Sara Behdad

This chapter addresses problems that arise during product design for sustainability
and the life cycle. A description of the problem itself is provided from an industrial
engineering viewpoint. The first section describes the problem elements, including
the need to expand the set of conflicting objectives under consideration, the need to
consider the entire product life cycle, the need to employ new data acquisition tools,
and the need to investigate the complex role of consumer behavior before, during,
and after the point of purchase. Subsequent sections summarize work the authors
have done towards solving these problems. A general mathematical programming
framework is first presented. This chapter highlights several instances of the benefits
of bringing the logic and mathematical rigor of industrial engineering methods
to these problems. The authors’ previous contributions to sustainable design are
presented and include defining the concept of the product life cycle from a decision-
based design point of view, developing different types of decision-making tech-
niques for engineering design (both subjective and objective), normative decision
analytic methods (e.g., multiattribute utility, constrained optimization), methods
for environmentally conscious design to cover new environmental objectives (e.g.,
connection of design with the end-of-use phase), and immersive computing tech-
nologies to address challenges with information-intensive design procedures. The
final section presents methods to consider heterogeneous consumer behavior during
product selection, use, and disposal.
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22.1 Introduction

Design for sustainability is more complicated that simply “doing the right thing.”
First, one must define which thing(s) should even be considered. Then, information
about the current and possible future states of those things must be gathered. That
information must then be analyzed, or processed in some way. Finally, decisions
must be made on the basis of that analysis and action taken.

Industrial engineering provides the toolbox needed to tackle such problems. This
toolbox includes a broad set of mathematical models that can be used to predict,
control, and generally make things better. This chapter presents an overview of
research conducted by the authors that employs industrial engineering tools towards
the goal of making sustainable design as efficient, profitable, and sustainable as
possible.

The engineering design process plays a significant role in both causing and
solving sustainability problems. In the past, the traditional design process started
with a set of technical performance specifications posed in terms of hard constraints.
Then, the designer would create a configuration to satisfy these constraints. This step
was often considered to be an art, rather than a science.

This configuration would then be evaluated, most often on the basis of cost
to manufacture. What followed was an iterative configure/evaluate/reconfigure
to improve/evaluate loop. Externalities such as environmental impacts were not
considered, and the time frame of analysis typically encompassed only the manu-
facturing process, from the cost of materials entering the plant to the manufacturing
cost of the finished product leaving the plant.

More recently, the engineering design process has employed mathematical
modeling approaches to make the design process itself more efficient. For example,
the axiomatic design and the design structure matrix approach (Suh 1998; Tokunaga
and Fujimura 2016) illuminate dependence relationships among physical design
parameters and performance metrics, enabling designers to see how they might
reconfigure the product to improve performance in one area without degrading
performancein another. Also, normative decision analysis has brought mathematical
rigor to the design evaluation process by formally modeling the decision-maker’s
willingness to-make tradeoffs (Thurston 1991), the effect that uncertainty has on
overall design utility, and integrating normative decision-making into constrained
optimization (Thurston et al. 1994).

Design for sustainability poses new challenges that are not trivial. The time
frame for analysis has been expanded quite significantly from just the manufacturing
process to now include impacts occurring prior to manufacturing (such as those
resulting from raw material extraction and processing), as well as during the
consumer-use and end-of-life stages. The list of performance metrics has also
expanded, from primarily cost (and perhaps quality) to now include environmental
impacts before, during, and after the manufacturing process, including air, water,
solid waste, and others. The degree, type, and range of uncertainty associated with
estimating these impacts is significantly greater than that associated with estimating
manufacturing costs.
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22 Sustainability and Life Cycle Product Design

Design for sustainability needs everything that industrial engineering tools can
provide. In this chapter, we provide a summary and overview of work we have done
to date towards these problems. The next section describes our general approach,
which is decompositional in nature; breaking a difficult, unsolvable problem into
smaller, solvable pieces and then reassembling those pieces into a whole.

What follows is a description of the mathematical modeling methods we
have employed, beginning with those for addressing conflicting objectives. The
following section presents methods for addressing the entire life cycle, focusing
on disassembly. Then, a method for using new data collection tools is described,
followed by more recent work in investigating the role of consumer behavior in
design for sustainability.

22.2 Mathematical Modeling Approach to Sustainable
Design

There are several key areas of focus for this chapter, as highlighted in Fig. 22.1.
These are (1) the need to consider a broader set of conflicting objectives, (2) the
need to assess and analyze sustainability-related outcomes across the entire product
life span, (3) the need to recognize information-intensive nature of the sustainable
design, and employ new data collection tools, and finally (4) the need to consider
the complex and understudied role of consumer behavior.

Design for sustainability is difficult for the reasons described above. Work
presented in this chapter employs mathematical models created to help predict,
control, and improve the outcomes of design decisions. Then, results can then be
analyzed to provide insight as to how to improve further. We center our discussion
around the ideal of a bi-level optimization formulation to simultaneously consider
the objectives of both manufacturers and consumers. Each section of this chapter
describes work done in one area of the problem, beginning with identifying which
objectives to include (or not) from the manufacturer’s perspective, how to best
satisfy different customer market segments, employing a designed experiment

Need to Consider Broader Set of Conflicting Objectives
Need to Analyze the Entire Product Life Cycle

Need to Employ New Data Collection Tools

Need to Investigate the Complex Role of Consumer Behavior

Fig. 22.1 Difficulties in sustainable engineering design
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D. Thurston and S. Behdad

to reveal hidden causes of pollution, and using simulation methods to improve
disassembly and reassembly operations.

The focus of optimization models used in the “design for sustainability” context
is on identifying an optimal mix of strategies that result in minimum costs and
environmental impacts with maximum customer satisfaction. The advantages of bi-
level optimization models are that both the manufacturer’s and customers’ interests
are considered. To incorporate the role of uncertainty, we can extend a simple bi-
level optimization model to a stochastic optimization framework.

Ideas from probability theory and bi-level optimization can be employed to
capture, quantify, and apply imperfect information about consumers’ preferences
in purchasing, using, and discarding products. The set of optimization models
that designers build establishes a framework for evaluating intervention strategies
(e.g., design for disassembly, design for longer lasting products) towards both
environmental impact prevention and economic gain.

The results of simulation-based data generation techniques can also be integrated
with optimization models. The integration of data generation tools within the
optimization framework can provide designers with ‘accurate estimates of the
uncertainty associated with both consumers’ decisions, expected profitability, and
environmental impacts.

In our stochastic bi-level optimization models, consumers are the decision-
makers in the lower level portion of the model, who make product purchase and
usage decisions in response to design decisions made by the manufacturers in the
upper level. One distinct feature of these models is their ability to find equilibria in
the market system by employing a prospective approach. Manufacturers can make
decisions about the types of design features that should influence both purchasing
and consumer-use behavior.

The standard stochastic bi-level optimization is in the following form:

min f (x) —HE[g (y(xw)] 22.1)
s.t.  y(x,w) =argminh (x, y, ®) 22.2)
yeY(x)

where x is the upper-level decision vector describing the manufacturers design inter-
ventions, w is a random vector affecting probabilistic choices made by consumers,
and y(x, w) is the lower level decision vector of consumers given x and .

To solve the stochastic bi-level optimization problem, a computational approach
can be developed that combines a single-level reformulation technique using
Karush-Kuhn-Tucker (KKT) conditions for the lower level problems and a Monte
Carlo simulation approach with sample average approximation (SAA) for the
upper-level problem. The capability of bi-level optimization models has already
been demonstrated in the literature and different solution algorithms have been
developed. Examples include as reducing a bi-level model to a single-level model
(Camacho-Vallejo et al. 2015), two-stage heuristic algorithms (Du and Peeta 2014),
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22 Sustainability and Life Cycle Product Design

using meta-heuristic techniques such as progressive hedging (Yi et al. 2017), genetic
algorithms (Mahmoodjanloo et al. 2016), simulated annealing algorithms (Starita
and Scaparra 2018), and stochastic equilibrium constraints algorithms (Faturechi
and Miller-Hooks 2014).

A look at the above-mentioned mathematical models reveals the importance
of considering several points as highlighted in Fig. 22.1: (1) the importance of
considering multiple objectives, (2) the need to consider sustainability effects of
the entire product life span, (3) the need for collection and utilization of accurate
and timely data for mathematical models, and (4) the role of consumer behavior
as one of the main stakeholders. In the next several sections, we describe several
studies conducted by the authors towards meeting these needs.

22.3 The Need to Consider Conflicting Objectives

This section presents the progression of our work in developing these models, begin-
ning with simply broadening the set of objectives considered to evaluate a set of
discrete options and formulating a multiattribute evaluation function, then: (1) using
that function as the basis of the objective function in a constrained optimization
formulation to (2) identify the best possible option subject to unavoidable cause
and effect relations between decisions and attribute outcomes, and (3) finally using
statistical manufacturing process control to. discover opportunities for pollution
prevention that can then be woven into the optimization formulation.

In our work, we have most often employed a multiattribute utility function as
shown below in Eq. 22.3, where K and k; are scaling constants and y;; refers to the
level of attribute i for decision j. The constraint functions (not shown) define the
correlation between design decisions and each resulting attribute.

Despite misconceptions.to the contrary, this functional form can be very useful
during the design process (Thurston 2001). When properly assessed, it can accu-
rately reflect whether utility is linear or nonlinear with respect to performance in
any one attribute, the effect of uncertainty, and whether the designers’ willingness
to trade off one attribute against another remains constant or varies over the feasible
design region.

Unlike other multi-objective evaluation methods (such as the weighted average
method), this approach requires a rigorous, systematic process for defining the set
of attributes that are both relevant and negotiable, their range of negotiability, the
decision-maker’s willingness to make tradeoffs (Thurston 1991), and the effect of
uncertainty on the utility of design alternatives. This process requires some expertise
in decision analysis, but is no more arduous than other analytic tools routinely
employed by design engineers. We have also found that going through this process
itself focuses the designer’s effort where the payoff is greatest. In addition, defining
the attributes and their ranges of negotiability in such a way that the preferential and
utility independence conditions required so the Eq. 22.3 is valid has been especially
useful.
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D. Thurston and S. Behdad

n

L+ KU (1, y2, - oyn) = [ [ [KkiUsj (vij) + 1] (22.3)

i=1

22.3.1 Broadening the Set of Conflicting Objectives

Consideration of sustainability requires the designer to consider outcomes of the
design decisions that were previously “outside the box” bounding their analytic
frame. A formal method for design evaluation of multiple conflicting attributes
was presented in (Thurston 1991). Material substitution in the automotive industry
was investigated. Part of the motivation for this work was that collaborators
(designer at several automotive companies) indicated that they wished to compare
steel, aluminum, and polymer composite materials, and in_particular' wished to
explicitly consider (and value) the sustainability of their material choices. A
normative multiattribute utility function was formulated to help the designers make
decisions that reflected their unique willingness to make tradeoffs. The assessment
methodology employs a decompositional, “lottery”” question and answer approach
that measures the extent of decreasing marginal value as one attribute is improved,
the subject’s willingness to sacrifice performance in one attribute in order to gain in
another, and the effect of uncertainty on their valuation of a design alternative. One
interesting outcome of the analysis was that although the subjects all said that they
were concerned about the environment and wished to consider sustainable options,
their responses to the lottery questions revealed that they, in fact, were not willing
to make any tradeoffs to achieve sustainability, and as a result compliance with
environmental regulations was then treated as a binary “must comply” constraint in
the analysis.

22.3.2 Constrained Multiattribute Utility Optimization

In Mangun and Thurston (2002), the customer’s willingness to make tradeoffs
for sustainability in personal computers was explored. A constrained optimization
problem was formulated, maximizing multiattribute utility (cost, reliability, and
environmental impact), the structure of which is shown in Fig. 22.2. The binary
decision variables reflected whether or not each of 88 components were to be new,
reused, remanufactured, or recycled in a second product life cycle. It was determined
that the customer was willing the make tradeoffs, and that, compared with all-new
components, remanufacturing and recycling certain components for a second life
cycle did increase customer utility. Further, the magnitude of this willingness to pay
depended on which market segment a customer belonged to; technophile, utilitarian,
or “green.” The model structure enabled the identification of an optimal portfolio of
products (a distinct product for each market segment) that presented each segment
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22 Sustainability and Life Cycle Product Design

Level Elements of Model
1 Product Personal Computer
I
I I |
88 Monitor Mini-tower Keyboard
Components
Cathode Ray Tube Housing —— Shell
Housing Disk Drive Key Caps
Base Fan Printed Circuit Bd.
Cable CPU ~ Back Plate
4 Design Remanufacture
Decisions
8 Operations | Material Processing | | Manufacturing Assembly |
Collection Disassembly Remanufacturing Recycling Disposal

Environmental
Impact

3 Attributes ‘ @

Segments in
Portfolio Maximize Total Product Portfolio Utility

\ Max UCX) = ZZK kiU (%) + D = 1]
=1 p=1

Fig. 22.2. Major elements of constrained optimization model for PC component reuse, remanu-
facturing, or recycling decisions

with the combination of remanufactured or recycled components that resulted in the
set of tradeoffs that were best for them. Post-optimality analysis then revealed that
if the manufacturer adopted a service-selling (rather than product-selling) approach,
further efficiencies could be realized by controlling and fine-tuning the take-back
period to each specific market segment. This was explored in (Thurston and De
La Torre 2007), which determined that through a leasing program the specified the
length of time of consumer-use, both profitability and consumer satisfaction could
be improved.
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D. Thurston and S. Behdad

22.3.3 Statistical Manufacturing Process Control to ldentify
Pollution Prevention Opportunities

In Carnahan and Thurston (1998)), concurrent design for sustainability of both the
product and the manufacturing process was considered. This work was motivated
by a floor tile manufacturing plant that was seeking to expand production. At
current production levels, they were in full compliance with air pollution control
regulations although they sometimes observed unexplained spikes in emissions. If
these spikes continued along with increased production levels, unacceptable levels
of air pollution would be emitted.

Again, the industrial engineering approach of mathematical modeling was
employed to understand, predict, and control this situation. The tradeoffs here
were between manufacturing cost, air pollution, and product quality. A constrained
multiattribute utility function was employed, and the constraint functions reflected
the cause and effect relationships between design decisions (13 raw material choices
and 17 manufacturing process parameters) and resulting attributes of cost, pollution,
and product quality. The variation in air pollution levels was seen as an opportunity
to identify manufacturing process parameters that might be correlated with the
variations, and perhaps be controllable. A statistical manufacturing process control
experiment was conducted, which identified these correlated parameters, a selected
subset of which are shown in Fig. 22.3. Information obtained from the experiment

: Define
Hepf_acel with Engineering
Multiattribute Design Decision
Utility Analysis Variables
Relationships
g
g . /] @ Strong positive
£ 59
- g E % J Medium posilive
Define 5 2s ® -
Design = C = % ¢ Medium negative
Attributes g == < 3 ® ;
- g © Strong negative
® T g o~
c a o =
Utility A @ £ 3
Attributks o | = O =
Pollution @ y ) 3
Quality - Scrar.\fiate @ »
,\ Quantify
Cost ® & Functional
Constraints

Fig. 22.3 House of quality, DOE and constrained optimization integrated to revealing raw material
and manufacturing process parameters correlated to pollution, quality, and cost
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22 Sustainability and Life Cycle Product Design

also helped to fine-tune the ranges over which the designer was truly able and
willing to make tradeoffs. An ironic finding was that one of the raw materials that
was correlated with higher air pollution levels had been a scrap material that the
manufacturer was recycling on-site in order to reduce solid waste.

22.4 The Need to Analyze the Entire Product Life Span

22.4.1 Maintenance, Repair, Replacement

One possible strategy for reducing waste is to increase the product usage life span
and promote repair and reuse practices among individual consumers. However,
manufacturers currently do not view “design for longer lasting products” as a
profitable strategy. In fact, cost-effective assembly processes are often irreversible
(replacing screws with snap-fits, for example), and manufacturers’ present strategies
are sometimes focused on making products difficult and expensive to repair and
reuse (Cooper 2012).

However, there are several economic reasons:why manufacturers may be inter-
ested in design policies that facilitate repairs: (1) design for repairable products
reduces the cost of after-sales services and warranty offers (Saccani et al. 2007;
Fang and Hsu 2009), (2) repairability might be regarded as marketing and sales
strategies (e.g., rated repairability attributes in online product reviews) (Gaiardelli
et al. 2008; Stevels 2002), (3) new business models adopted by enterprises based
on the concept of a sharing economy, the peer economy (e.g., renting, sharing,
exchange) and service-based business models require durable products (Preston
2012), (4) design for repairable products is a strategy to secure the future supply
of critical materials and rare earth elements (Peck et al. 2015), (5) repairability
influences the future reusability of devices, the cost of remanufacturing, and the
profitability of remarketing in the second-hand market (Cuthbert et al. 2016), and
finally (6) the independent repair businesses and initiatives, e.g., the Digital Right
to Repair Coalition, have been forming worldwide campaigns against the short-term
profit-driven policies of manufacturers and urging them to produce more repairable
electronics, to share the repair guides, and to supply the spare parts to the market
(Rosner and Ames 2014). A product’s repairability not only influences its first life
cycle, but also it increases its future reusability and the opportunity to generate a
new market for used devices.

Design for sustainability via facilitating cost-effective maintenance, repair or
component replacement, can increase the length of product life cycles, decrease
waste, and increase profitability. However, disassembly, repair, and reassembly
processes incur costs and sometimes result in damage to one or more components.
In Behdad and Thurston (2012), a graph-based integer linear programming and
multiattribute utility analysis model is formulated to find the optimal sequence of
disassembly operations. Conflicting attributes considered are disassembly time (and
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D. Thurston and S. Behdad

cost) under uncertainty, the probability of not incurring damage during disassembly,
reassembly time (and cost), and the probability of not incurring damage during
reassembly. A solar heating system example is presented. Analysis of the model and
results revealed the auxiliary heater as a target for redesign to improve accessibility
and/or longevity due to its need for frequent replacement.

22.4.2 Selective Disassembly, Value-Mining, and Sharing
Disassembly Operations for Multiple Products

Returned end-of-life products arrive at the take-back facility with a great degree
of variability and uncertainty in terms of quantity, age, and quality. The value
of individual components is sometimes not worth the cost of full disassembly.
Towards a solution to this problem, a stochastic chance constrained programming
model converted to a mixed integer linear program for waste stream acquisition
(as opposed to market-driven systems) is presented in (Behdad et al. 2012). The
model treats returned product quantity as an uncertain parameter and determines
the optimal degree to which disassembly processes should be performed, as well as
the optimal EOL option for each resulting subassembly. A stream of PCs received
at a refurbishing company located in Chicago serves as an illustrative example.

In addition to uncertainty and variability in returned product quantity, age, and
quality, incoming feedstock is oftenvaries widely and includes several different
product. This further hampers the profitability of product take-back operations.
Two types of decisions are considered for multiple returned product streams in
Behdad et al. (2010); how to efficiently perform selective disassembly operations,
and how best to “mine” the value still embedded in components. An example
using two cell phones illustrates the integration of a transition matrix with a
mixed integer linear programming model for disassembly operations for multiple
products. The solution simultaneously identifies the degree to which each product
should be disassembled, and also the optimal end-of-life decision (disposal, reuse,
recycle) for each component or subassembly. The example results indicated that
sharing disassembly operations between different products can increase the cost-
effectiveness of disassembly operations.

22.5 The Need to Use New Data Collection Tools

So far, we have discussed mathematical models for including new, conflicting
objectives and for the considering sustainability issues throughout the entire life
span of a product. This section discusses the role of data collection tools in
gathering the information that these expanded models require. The focus of our
discussion is on the role of Immersive Computing Technology (ICT) and virtual
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22 Sustainability and Life Cycle Product Design

reality environments employed during the design process. ICT provides a relatively
inexpensive technology (compared with multiple iterations of physical prototype
testing) that allows designers to create virtual prototypes of design concepts,
generate new ideas, test design concepts, evaluate them, and collect data. ICT has
also has been used as a means of sharing information and experience among users.
Research on ICT first was mainly focused on developing the technology, but more
recently applications of the technology have also generated interest (Ong and Nee
2013), broadly ranging from engineering design through education, gaming, and
other entertainments.

While the technology has advanced to the point that it offers many capabilities
for data collection, product-user experiences, and visualization of artifacts, there is
still much to be done towards improvements in the cognitive aspects of knowledge
representation and processing. Advances in ICT need to be expanded to include
mental models that designers employ, including how information provided by the
ICT is perceived, processed, and acted upon.

Considering the example of design for disassembly, often the collection of the
required information about the disassembly process is very challenging and time-
consuming. Disassembly is an integral part of remanufacturing, repair and reuse
activities, and disassembly times, cost and possible damage can vary from one
operation to another based on component and subassembly geometry, fastening
methods, component condition, operator motions_ required, operator experience,
and other factors. Designers most often do not have data on the probability
distributions of disassembly times, costs, and possible damage to components
during the disassembly process. Having access to such information during the early
stages of product design can help designers create alternatives (e.g., the type of
fasters, the number of joint parts) that facilitate particular disassembly sequences.
To identify the best disassembly sequence (e.g., minimizing disassembly time
and/or component damage), designers need to know the probability distribution of
disassembly time and/or component damage during disassembly as a function of
design and disassembly specifications.

Such data can be made available through the use of an ICT system, in which
designers have the opportunity to create a virtual prototype of the product, disassem-
ble the prototype, and collect the required data. In one study (Behdad et al. 2014a),
we formulated a mixed integer nonlinear program equipped with data collected
using ICT to determine an optimum disassembly sequence for a burr puzzle.

The six-component burr puzzle employed is shown in Fig. 22.4 has properties
making it ideal for analyzing assembly and disassembly processes. Not all compo-
nents can be moved at all times, and there are precedence relationships. Also, many
movements are orthogonal to others. Each component is labelled according to its
color in the ICT: (T)eal, (B)lue, (G)reen, (Y)ellow, (P)urple, and (R)ed.

The first step was to determine all feasible disassembly sequences and present
them in the form of a disassembly graph. The next step was to supplement
the disassembly graph with some sort of cost structure (e.g., disassembly time,
component damage for each disassembly operation). The third step was to obtain
the data required by simulating the disassembly operations in the ICT environment,
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P

Fig. 22.4 A burr puzzle with six interlocking pieces

25
20
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Pr(damage) = Pr(N > C)

[1563,793] (793, 1433] (1433, 2073] (2073, 2713] (2713, 3353] (3353,3993]

Fig. 22.5 The distribution of the number of collisions between parts

and the final stage was to use the data collected in a mathematical model in order to
determine the optimum disassembly sequence.

We simulated feasible disassembly operations for the burr puzzle and conducted
30 trials of each feasible disassembly transition manually to collect 30 data points
for each disassembly operation. The number of collisions between components
was recorded, as a representative of component damage. This data enabled us to
draw statistical distributions of the number of collisions between parts (V) for each
disassembly operation, shown in Fig. 22.5.
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22 Sustainability and Life Cycle Product Design

Fig. 22.6 The disassembly
graph and the optimum BGPRTY (1)
sequence derived from the v 1
mathematical model (from N
Behdad et al. (2014a)) BGPRTY*(2)
v 2
BGPRY,T (3)
J = 3 ........ \t
PR
BGRY,P,T (5) B,GPRY,T (4)
6
| 2
BGRY,P,T*(7) B,GPRY,T*(6)

B,GRY,P,T(8)

The mathematical model developed in this study was a chance constrained
program with the single objective of minimizing the number of collisions between
different components during disassembly. The mean and standard deviation of the
distribution of the number of collisions collected in the ICT was used to estimate
the probability of damage. The distribution of the number of collisions was used
to estimate the probability of damage directly. For example, if a threshold (C) is
defined for the acceptable number of collisions between parts, using the distribution
of the number of collisions and the defined threshold, the probability of components
damage can be quantified as follows:

Pr (damage) = Pr (N > C)

Figure 22.6 shows the optimum sequence (1-2-3-5-7-8) derived from the
mathematical model for the example of burr puzzle.

In addition to data collection, we also employed ICT capabilities to explore intu-
itive disassembly sequences and compare the results with the optimum disassembly
sequence obtained above. The goal was to determine if there could be some synergy
between the mathematical model and intuitive human expertise.

An experiment was conducted in the ICT environment as shown in Fig. 22.7 to
determine what disassembly process a human might employ while “seeing” both
the burr puzzle and its disassembly graph. The result of the experiment indicated
that the user intuitively followed a disassembly path (1-2—-3-5-8) that was different
from the optimal path identified by the model.

For example, considering State 3 in the disassembly graph presented in Fig. 22.5.
There are two options: remove Part B or remove Part P. In practice, the disassembly
processes for these two parts are not the same. While Part P can be removed using
one single horizontal manipulation, Part B requires manipulation across two axes,

366
367
368
369
370
371
372
373
374

375
376
377
378
379
380
381
382
383
384
385
386
387
388
389



D. Thurston and S. Behdad

Fig. 22.7 An ICR experiment where a user disassembles a burr puzzle. The experiment has been
simulated using the VR facility in Mechanical Engineering department at Iowa State University
(courtesy of Dr. Judy Vance and Leif Berg)

however, this is not visible to the operator. If the optimum path is followed, then
Part P is separated. From State 5, removing Part B appears to be a simple and
intuitive one-piece removal operation; however, the optimal sequence suggests an
intermediate operation in which Part P is reoriented to be visible to the operator
and reveals the physical constraint for removing Part B to the operator. Thus,
the fact that the intuitive path differs from the optimal path provides insights for
redesign. Realigning the R component could provide a better operator perspective
of B’s interconnectedness. When the operator then removes B and is aware of the
interconnectedness, greater -care may be taken and damage minimized.

In a related study (Behdad et al. 2014b), we extended our data collection
efforts in the ICT environment to collect not only the number of collisions as a
representative of the probability of damage, but also the distance movement of
parts to estimate the disassembly cost. We also developed a new multi-objective
mathematical model using a multiattribute utility function as the objective function
of a dynamic programming model. The probability of damage vs. disassembly time
(or cost)are the two conflicting objectives. The faster is the pace of disassembly, the
lower is-the disassembly time (or cost) but the higher is the probability of damage
and vice versa.

22.6 The Need to Investigate the Complex Role of Consumer
Behavior

Consumer behavior plays a critical but understudied role in design for sustainability.
Traditional views of the sustainable design, including many of those in the design for
X domain, largely focus on improvement of end-of-life remanufacturing activities
such as disassembly (Harjula et al. 1996) refurbishment (Nee 2015) and recycling
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Consumer usage and repair behavior Consumer product-storing behavior
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Fig. 22.8 The consumer decisions during the product life span (e.g., purchase, usage, repair,
disposal)

(Gaustad et al. 2010), but fail to comprehensively consider the role of consumer
behavior during product usage and end-of-use. The effectiveness of sustainable
design policies depends on consumers’ attitude and behavior, which are critical and
are uncertain in nature.

Overall, there is a linkage between the product life cycle, design features, and
consumer decisions to repair, reuse, or disposed of a product. Figure 22.8 illustrates
the overall process of consumer decision-making during the product life span and
the impact of consumers’ behavior on usage and storage times.

It is important to develop analytical models that quantify the heterogeneity of
consumer behavior and the deterioration of product-critical components, as well as
integrate consumers’ usage and disposal behaviors into design decisions.

Despite recent efforts to consider consumer marketing preferences, less attention
has been paid to modeling the usage behavior of the consumers. Most of the
previous studies have strived to address purchase or adoption behavior (Ma and
Nakamori 2009; Miller et al. 2013; Davis et al. 2009; Haghnevis et al. 2016).
Therefore, one research gap in the current engineering design literature is the
lack of scientific methods for considering the heterogeneity and variability of
consumers’ usage behavior during product design, or accurately quantifying the
resulting environmental impacts. Future methods should make designers capable
of calculating the total emissions of a system based on the aggregation of the micro-
decisions made by individual consumers for individual products.

In this section, we discuss the importance of consumer behavior in reducing the
sustainability-related issues during the entire product life cycle. The focus will be on
four types of behavior based on several previous studies conducted by the authors:
(1) .consumer’s product storing behavior at the end-of-use phase of the products, (2)
usage behavior, (3) repair behavior and consumers decisions in extending product
life cycle, and (4) return behavior and consumers decisions about timing, disposal,
and waste removal channel for used products.

22.6.1 Consumer’s Product Storing Behavior

Consumers often have a tendency to keep old products in storage before returning
them back to waste removal chains. This behavior results to further technological
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obsolescence of used products where in many cases products that are finally returned
are not resaleable in the second-hand market and must be shredded and sent to
recycling and material recovery operations.

In one study (Sabbaghi et al. 2015a), data from about 10,000 used computers
and laptops returned during 2011 and 2013 to an e-waste collection site located in
Chicago, IL have been analyzed to determine the average storage times for used
products and whether there are any connections between different design features
and how long consumers kept their used electronics in storage. With the help
of SMART software, we were able to retrieve data identifying the last time the
operating system was used on each device, and since we also had information on
the manufacturing date and return date, we were able to calculate the storage time
(Storage time = Return date — Last time the OS was used), the upper bound of
usage time (Usage time = Last time the OS was used — Manufacturing date),
and the product age (Age = Return date — Manufacturing date). We also had
information about the size of the hard disk drive, the brand, and the consumer type.
We had information about two groups of consumers: individual households and
commercial consumers (corporate) organizations who returned their used computers
for recycling. Various statistical analyses were performed on the dataset and various
insights have been derived.

It was found that the average product age and the average storage time was
6.9 years and 1.1 years, respectively. There was no statistically significant difference
between different brands and sizes of the hard disk drives, but commercial users
stored used electronics longer than households. Data security concerns and admin-
istrative processes might be the cause of this. Figure 22.9 shows the histograms of
storage time, usage time, and product age for two groups of consumers.
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Fig. 22.9 The statistical distributions of the upper bound of usage time, storage time, and product
age for two different groups of consumers (data from Sabbaghi et al. (2015a))
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Fig. 22.10 The reusability of batteries based on their age and the number of potential used cycled
(data from Sabbaghi et al. (2015b))

22.6.2 Consumer’s Product Usage Behavior

Another important consumer behavior is their usage behavior. The way that
consumers use their products can influence sustainability outcomes such as energy
consumption and future reusability. For example, the way that consumers charge and
discharge their laptop batteries impacts the future reusability of used laptops, and
this behavior varies significantly from customer to customer. This uncertainty must
be considered. To shed light on the impact of consumer usage behavior, in one study
(Sabbaghi et al. 2015b), about 500 same-brand laptop batteries used by students in
a high school in Burbank, IL were studied over 3 years of usage to monitor the
number of used cycles for each battery. The purpose of the study was to predict the
future reusability of batteries based on age, battery type, number of used cycles, and
consumer groups (e.g., students of the class of 2012, 2014, 2015, and 2016). For
example, Fig. 22.10 illustrates the future reusability of batteries based on their age
and the number of used cycles. Finally, we have determined what would be the most
profitable end-of-use option (e.g., reuse, recycle, refurbish) for each battery based
on their profile of usage.

22.6.3 Consumer’s Repair Behavior

The shortcomings of traditional design policies adopted by manufacturers are
especially acute in the design for repairability domain (Cairns 2005). While different
design concepts ranging from design for disassembly (Boothroyd and Alting 1992),
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reliability (Crowe and Feinberg 2001), reuse (Cowan and Lucena 1995), and
recycling (Kriwet et al. 1995) have recently become better integrated with design
efforts, the concept of “design for repair” has been overlooked. Manufactures in
general do not consider “design for longer lasting products” a profitable strategy.
In fact, manufacturers’ policies are sometimes focused on making products difficult
and expensive to repair and reuse with the aim of creating more market share for
newly developed products (Cooper 2012).

In one study (Sabbaghi et al. 2016), an industry dataset was analyzed to extract
consumer viewpoints towards product repairability, and the factors that make it
difficult for consumers to repair products themselves under three main categories
of product, economic, and consumer-related factors. The final objective was to
test whether and how product repairability might influence consumers’ future
purchase choices and recommendations to family and friends. An online survey
was conducted in collaboration with iFixit.com. iFixit has provided an initial
dataset of around 11,500 respondents being surveyed from three different subject
groups, including individual consumers (about 8000 respondents), employees of
repair shops, and employers of repair businesses. This comprehensive iFixit survey
includes a total 27 questions.

Among all 27 questions included in the iFixit survey, two directly inquire
about the importance of product repairability, its associated cost, and the effect
on future purchase decisions. Measured in an ordinal scale, two questions were
asked of iFixit survey respondents: “If 'you successfully repaired a product, are
you more likely to buy new products from the same company in the future?”
(CLL: Consumer Loyalty Level: low, medium, high), “Have your experiences fixing
your own products impacted the purchasing recommendations you give to your
friends? (PRL: Product Recommendation Level)”. Assuming there is a significant
correlation between these two questions, a bivariate ordered probit model was
employed to estimate the probability that an observation (a consumer) with specific
characteristics (repair experience) will come under one of the ordered categories
(low, medium, and high loyalty and recommendation levels). Table 22.1 shows the
relation between consumer loyalty and recommendation level for consumers with
prior repair experiences.

Access to repair information, positive attitudes towards repairing electronics,
product type, availability of spare parts, and unsuccessful repair experience (time-

Table 22.1 The relation between CLL and PRL given the prior repair experiences (data gotten
from Sabbaghi et al. (2016))

CLL: Consumer Loyalty Level
Low 379 (5%) | Medium 4039 (48%)| High 3985 (47%)

PRL: Purchase | Low1086 (13%) 163(2%) 613(7.3%) 310(3.7%)
recommendation
level

Medium4874 (58%)| 179(2.1%) 2688(32%) 2007(23.9%)

High2418 (29%) | 37(0.4%) 738(8.8%) 1668(19.8%)
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consuming repair and broken parts during repair) have been identified as important
factors that influence future product choice and recommendation.

22.6.4 Consumer’s Product Return Behavior

Another important consumer behavior is their decision about the type of disposal
channel to employ, including storage, reselling, the trash bin, a formal collection
site, trade-in programs, recycling centers, etc. It is important to estimate ‘which
portion of used products are returned back to each of these channels. Thus, in
one study (Mashhadi et al. 2016), we developed a simulation framework to model
consumer’s behavior in returning used products in which consumers have four
options: storage, resell, recycle, or discard. An agent-based simulation (ABS) frame-
work integrated with a Discrete Choice Analysis (DCA) method was developed to
predict consumer’s disposal decisions. Consumers socio-demographic information
and product design features were included in the model as possible predictive
factors.

To identify the role of product design features on the consumer participation, an
agent-based simulation model was created. The diverse set of decision-makers in
the take-back systems (consumers, products, OEMs) were represented as “agents.”
There is a mathematical model behind each agent. All agents have their own set of
features, objectives, behavioral patterns, and decision-making rules.

The main objective of the simulation was to evaluate design alternatives in terms
of consumers’ participation in different take-back channels. Each individual con-
sumer has been modeled as an agent. Consumer decisions on the selection (if any)
of take-back systems (trade-in programs, store, trash bin) has been modeled using
discrete choice analysis techniques and has been connected with product design
strategies controllable by-original manufacturers. DCA is commonly employed to
study the individual decision-making process. The underlying assumption behind
DCA is that individuals seek to maximize their utility considering two sets of
attributes, their socio-demographic characteristics, and the features of alternatives
available to them (Wassenaar and Chen 2003).

Through the DCA techniques, the choice probability for each decision (e.g.,
trade-in programs, trash bin, store) was determined based on product design
attributes, take-back program features, and consumers’ socio-demographic informa-
tion. The capabilities of agent-based simulation also helped us consider the impact
of other dynamic factors such as peer pressure, and consumer awareness of the
decision made by each individual consumer. The interaction between agents has
been modeled employing the capabilities of agent-based simulation. Figure 22.11
illustrates one example of the simulation results including the number of products
stored, returned, sold, and thrown away over time with consideration of interactions
between consumers.

Building such simulation tools paves the way for achieving a more comprehen-
sive understanding of consumer behavior and its impact on the used products’ return
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Fig. 22.11 The ratio of 1
products stored, returned,

sold, and thrown away over 0.9
time with consideration of
interactions between
consumers (data from 07
Mashhadi et al. 2016)
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paths. The final outcome of the study was to estimate the number of products stored,
returned, sold, and disposed of over time.

22.7 Summary and Closure

This chapter has summarized a body of work that employs industrial engineering
approaches to the problem of design for sustainability. These approaches began
with normative multiattribute utility analysis to broaden the set of objectives
under consideration and evaluate design alternatives, proceeded through constrained
optimization-to identify the best alternative, statistical process control to create new
alternatives and immersive computing technology to gather data required for the
optimization-model, and conclude with studies of consumer behavior before, during,
and after the use phase of the product life cycle.

This mathematical modeling approach requires designers to employ a decompo-
sitional strategy, which not only aids in solving previously intractable problems,
but also facilitates gaining better insight to the problem as one analyzes the
results and the structure of the model in detail. Lessons learned include that facts
that although designers might be genuinely concerned about sustainability, their
actual willingness to pay for it might be limited, that selling a service (through
leasing) rather than selling a product can improve both profitability and customer
satisfaction, that statistical manufacturing process control can reveal unexpected
opportunities for pollution prevention, that virtual reality design environments can
be used to quickly and efficiently gather some of the large amount of data needed to
build comprehensive models, and that the customer also plays a significant role.
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