Chapter 22 Sustainability and Life Cycle Product Design

2

3

24

Deborah Thurston and Sara Behdad

This chapter addresses problems that arise during product design for sustainability 5 and the life cycle. A description of the problem itself is provided from an industrial 6 engineering viewpoint. The first section describes the problem elements, including 7 the need to expand the set of conflicting objectives under consideration, the need to 8 consider the entire product life cycle, the need to employ new data acquisition tools, 9 and the need to investigate the complex role of consumer behavior before, during, 10 and after the point of purchase. Subsequent sections summarize work the authors 11 have done towards solving these problems. A general mathematical programming 12 framework is first presented. This chapter highlights several instances of the benefits 13 of bringing the logic and mathematical rigor of industrial engineering methods 14 to these problems. The authors' previous contributions to sustainable design are 15 presented and include defining the concept of the product life cycle from a decision- 16 based design point of view, developing different types of decision-making tech- 17 niques for engineering design (both subjective and objective), normative decision 18 analytic methods (e.g., multiattribute utility, constrained optimization), methods 19 for environmentally conscious design to cover new environmental objectives (e.g., 20 connection of design with the end-of-use phase), and immersive computing tech- 21 nologies to address challenges with information-intensive design procedures. The 22 final section presents methods to consider heterogeneous consumer behavior during 23 product selection, use, and disposal.

D. Thurston

Industrial and Enterprise Systems Engineering, University of Illinois, Urbana-Champaign, Champaign, IL, USA

e-mail: thurston@illinois.edu

S. Behdad (\subseteq)

Industrial and Systems Engineering, Mechanical and Aerospace Engineering,

University at Buffalo, Buffalo, NY, USA

e-mail: sarabehd@buffalo.edu

© Springer Nature Switzerland AG 2019

A. E. Smith (ed.), Women in Industrial and Systems Engineering, Women in Engineering and Science, https://doi.org/10.1007/978-3-030-11866-2_22

36

22.1 Introduction

Design for sustainability is more complicated that simply "doing the right thing." First, one must define which thing(s) should even be considered. Then, information 27 about the current and possible future states of those things must be gathered. That 28 information must then be analyzed, or processed in some way. Finally, decisions 29 must be made on the basis of that analysis and action taken.

Industrial engineering provides the toolbox needed to tackle such problems. This 31 toolbox includes a broad set of mathematical models that can be used to predict, control, and generally make things better. This chapter presents an overview of 33 research conducted by the authors that employs industrial engineering tools towards 34 the goal of making sustainable design as efficient, profitable, and sustainable as possible.

The engineering design process plays a significant role in both causing and 37 solving sustainability problems. In the past, the traditional design process started 38 with a set of technical performance specifications posed in terms of hard constraints. 39 Then, the designer would create a configuration to satisfy these constraints. This step 40 was often considered to be an art, rather than a science.

This configuration would then be evaluated, most often on the basis of cost 42 to manufacture. What followed was an iterative configure/evaluate/reconfigure 43 to improve/evaluate loop. Externalities such as environmental impacts were not 44 considered, and the time frame of analysis typically encompassed only the manufacturing process, from the cost of materials entering the plant to the manufacturing 46 cost of the finished product leaving the plant.

More recently, the engineering design process has employed mathematical 48 modeling approaches to make the design process itself more efficient. For example, 49 the axiomatic design and the design structure matrix approach (Suh 1998; Tokunaga 50 and Fujimura 2016) illuminate dependence relationships among physical design 51 parameters and performance metrics, enabling designers to see how they might 52 reconfigure the product to improve performance in one area without degrading 53 performance in another. Also, normative decision analysis has brought mathematical 54 rigor to the design evaluation process by formally modeling the decision-maker's 55 willingness to make tradeoffs (Thurston 1991), the effect that uncertainty has on 56 overall design utility, and integrating normative decision-making into constrained 57 optimization (Thurston et al. 1994).

Design for sustainability poses new challenges that are not trivial. The time 59 frame for analysis has been expanded quite significantly from just the manufacturing 60 process to now include impacts occurring prior to manufacturing (such as those 61 resulting from raw material extraction and processing), as well as during the 62 consumer-use and end-of-life stages. The list of performance metrics has also 63 expanded, from primarily cost (and perhaps quality) to now include environmental 64 impacts before, during, and after the manufacturing process, including air, water, 65 solid waste, and others. The degree, type, and range of uncertainty associated with 66 estimating these impacts is significantly greater than that associated with estimating 67 manufacturing costs.

AO₁

Design for sustainability needs everything that industrial engineering tools can 69 provide. In this chapter, we provide a summary and overview of work we have done 70 to date towards these problems. The next section describes our general approach, 71 which is decompositional in nature; breaking a difficult, unsolvable problem into 72 smaller, solvable pieces and then reassembling those pieces into a whole. 73

What follows is a description of the mathematical modeling methods we 74 have employed, beginning with those for addressing conflicting objectives. The 75 following section presents methods for addressing the entire life cycle, focusing 76 on disassembly. Then, a method for using new data collection tools is described, 77 followed by more recent work in investigating the role of consumer behavior în 78 design for sustainability.

22.2 Mathematical Modeling Approach to Sustainable Design

There are several key areas of focus for this chapter, as highlighted in Fig. 22.1. 82 These are (1) the need to consider a broader set of conflicting objectives, (2) the 83 need to assess and analyze sustainability-related outcomes across the entire product 84 life span, (3) the need to recognize information-intensive nature of the sustainable 85 design, and employ new data collection tools, and finally (4) the need to consider 86 the complex and understudied role of consumer behavior. 87

80

81

Design for sustainability is difficult for the reasons described above. Work 88 presented in this chapter employs mathematical models created to help predict, 89 control, and improve the outcomes of design decisions. Then, results can then be 90 analyzed to provide insight as to how to improve further. We center our discussion 91 around the ideal of a bi-level optimization formulation to simultaneously consider 92 the objectives of both manufacturers and consumers. Each section of this chapter 93 describes work done in one area of the problem, beginning with identifying which 94 objectives to include (or not) from the manufacturer's perspective, how to best 95 satisfy different customer market segments, employing a designed experiment 96

Fig. 22.1 Difficulties in sustainable engineering design

110

115

122

123

to reveal hidden causes of pollution, and using simulation methods to improve 97 disassembly and reassembly operations.

The focus of optimization models used in the "design for sustainability" context 99 is on identifying an optimal mix of strategies that result in minimum costs and 100 environmental impacts with maximum customer satisfaction. The advantages of bilevel optimization models are that both the manufacturer's and customers' interests 102 are considered. To incorporate the role of uncertainty, we can extend a simple bi- 103 level optimization model to a stochastic optimization framework.

Ideas from probability theory and bi-level optimization can be employed to 105 capture, quantify, and apply imperfect information about consumers' preferences 106 in purchasing, using, and discarding products. The set of optimization models that designers build establishes a framework for evaluating intervention strategies 108 (e.g., design for disassembly, design for longer lasting products) towards both 109 environmental impact prevention and economic gain.

The results of simulation-based data generation techniques can also be integrated 111 with optimization models. The integration of data generation tools within the 112 optimization framework can provide designers with accurate estimates of the 113 uncertainty associated with both consumers' decisions, expected profitability, and 114 environmental impacts.

In our stochastic bi-level optimization models, consumers are the decision- 116 makers in the lower level portion of the model, who make product purchase and 117 usage decisions in response to design decisions made by the manufacturers in the 118 upper level. One distinct feature of these models is their ability to find equilibria in 119 the market system by employing a prospective approach. Manufacturers can make 120 decisions about the types of design features that should influence both purchasing 121 and consumer-use behavior.

The standard stochastic bi-level optimization is in the following form:

$$\min_{x \in X} f(x) + \mathbb{E}\left[g\left(y\left(x,\omega\right)\right)\right] \tag{22.1}$$

s.t.
$$y(x, \omega) = \underset{y \in Y(x)}{\operatorname{arg\,min}} h(x, y, \omega)$$
 (22.2)

where x is the upper-level decision vector describing the manufacturers design interventions, ω is a random vector affecting probabilistic choices made by consumers, 125 and $y(x, \omega)$ is the lower level decision vector of consumers given x and ω .

To solve the stochastic bi-level optimization problem, a computational approach 127 can be developed that combines a single-level reformulation technique using 128 Karush-Kuhn-Tucker (KKT) conditions for the lower level problems and a Monte 129 Carlo simulation approach with sample average approximation (SAA) for the 130 upper-level problem. The capability of bi-level optimization models has already 131 been demonstrated in the literature and different solution algorithms have been 132 developed. Examples include as reducing a bi-level model to a single-level model 133 (Camacho-Vallejo et al. 2015), two-stage heuristic algorithms (Du and Peeta 2014), 134 using meta-heuristic techniques such as progressive hedging (Yi et al. 2017), genetic 135 algorithms (Mahmoodjanloo et al. 2016), simulated annealing algorithms (Starita 136 and Scaparra 2018), and stochastic equilibrium constraints algorithms (Faturechi 137 and Miller-Hooks 2014).

138

145

146

154

164

A look at the above-mentioned mathematical models reveals the importance 139 of considering several points as highlighted in Fig. 22.1: (1) the importance of 140 considering multiple objectives, (2) the need to consider sustainability effects of 141 the entire product life span, (3) the need for collection and utilization of accurate 142 and timely data for mathematical models, and (4) the role of consumer behavior 143 as one of the main stakeholders. In the next several sections, we describe several studies conducted by the authors towards meeting these needs.

The Need to Consider Conflicting Objectives 22.3

This section presents the progression of our work in developing these models, beginning with simply broadening the set of objectives considered to evaluate a set of 148 discrete options and formulating a multiattribute evaluation function, then: (1) using 149 that function as the basis of the objective function in a constrained optimization 150 formulation to (2) identify the best possible option subject to unavoidable cause 151 and effect relations between decisions and attribute outcomes, and (3) finally using 152 statistical manufacturing process control to discover opportunities for pollution 153 prevention that can then be woven into the optimization formulation.

In our work, we have most often employed a multiattribute utility function as 155 shown below in Eq. 22.3, where K and k_i are scaling constants and y_{ij} refers to the level of attribute i for decision j. The constraint functions (not shown) define the 157 correlation between design decisions and each resulting attribute.

Despite misconceptions to the contrary, this functional form can be very useful 159 during the design process (Thurston 2001). When properly assessed, it can accurately reflect whether utility is linear or nonlinear with respect to performance in 161 any one attribute, the effect of uncertainty, and whether the designers' willingness 162 to trade off one attribute against another remains constant or varies over the feasible 163 design region.

Unlike other multi-objective evaluation methods (such as the weighted average 165 method), this approach requires a rigorous, systematic process for defining the set 166 of attributes that are both relevant and negotiable, their range of negotiability, the 167 decision-maker's willingness to make tradeoffs (Thurston 1991), and the effect of 168 uncertainty on the utility of design alternatives. This process requires some expertise 169 in decision analysis, but is no more arduous than other analytic tools routinely 170 employed by design engineers. We have also found that going through this process 171 itself focuses the designer's effort where the payoff is greatest. In addition, defining 172 the attributes and their ranges of negotiability in such a way that the preferential and 173 utility independence conditions required so the Eq. 22.3 is valid has been especially 174 useful.

196

197

$$1 + KU(y_1, y_2, ..., y_n) = \prod_{i=1}^{n} \left[Kk_i U_{ij} (y_{ij}) + 1 \right]$$
 (22.3)

Broadening the Set of Conflicting Objectives 22.3.1

Consideration of sustainability requires the designer to consider outcomes of the 177 design decisions that were previously "outside the box" bounding their analytic 178 frame. A formal method for design evaluation of multiple conflicting attributes 179 was presented in (Thurston 1991). Material substitution in the automotive industry 180 was investigated. Part of the motivation for this work was that collaborators 181 (designer at several automotive companies) indicated that they wished to compare 182 steel, aluminum, and polymer composite materials, and in particular wished to 183 explicitly consider (and value) the sustainability of their material choices. A 184 normative multiattribute utility function was formulated to help the designers make 185 decisions that reflected their unique willingness to make tradeoffs. The assessment 186 methodology employs a decompositional, "lottery" question and answer approach 187 that measures the extent of decreasing marginal value as one attribute is improved, 188 the subject's willingness to sacrifice performance in one attribute in order to gain in 189 another, and the effect of uncertainty on their valuation of a design alternative. One 190 interesting outcome of the analysis was that although the subjects all said that they 191 were concerned about the environment and wished to consider sustainable options, 192 their responses to the lottery questions revealed that they, in fact, were not willing 193 to make any tradeoffs to achieve sustainability, and as a result compliance with 194 environmental regulations was then treated as a binary "must comply" constraint in 195 the analysis.

Constrained Multiattribute Utility Optimization

In Mangun and Thurston (2002), the customer's willingness to make tradeoffs 198 for sustainability in personal computers was explored. A constrained optimization 199 problem was formulated, maximizing multiattribute utility (cost, reliability, and 200 environmental impact), the structure of which is shown in Fig. 22.2. The binary 201 decision variables reflected whether or not each of 88 components were to be new, 202 reused, remanufactured, or recycled in a second product life cycle. It was determined 203 that the customer was willing the make tradeoffs, and that, compared with all-new 204 components, remanufacturing and recycling certain components for a second life 205 cycle did increase customer utility. Further, the magnitude of this willingness to pay 206 depended on which market segment a customer belonged to; technophile, utilitarian, 207 or "green." The model structure enabled the identification of an optimal portfolio of 208 products (a distinct product for each market segment) that presented each segment 209

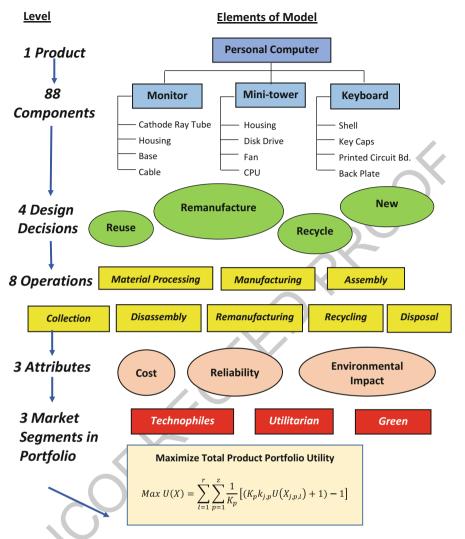


Fig. 22.2 Major elements of constrained optimization model for PC component reuse, remanufacturing, or recycling decisions

with the combination of remanufactured or recycled components that resulted in the 210 set of tradeoffs that were best for them. Post-optimality analysis then revealed that 211 if the manufacturer adopted a service-selling (rather than product-selling) approach, 212 further efficiencies could be realized by controlling and fine-tuning the take-back 213 period to each specific market segment. This was explored in (Thurston and De 214 La Torre 2007), which determined that through a leasing program the specified the 215 length of time of consumer-use, both profitability and consumer satisfaction could 216 be improved.

217

219

22.3.3 Statistical Manufacturing Process Control to Identify Pollution Prevention Opportunities

In Carnahan and Thurston (1998)), concurrent design for sustainability of both the product and the manufacturing process was considered. This work was motivated by a floor tile manufacturing plant that was seeking to expand production. At current production levels, they were in full compliance with air pollution control regulations although they sometimes observed unexplained spikes in emissions. If these spikes continued along with increased production levels, unacceptable levels of air pollution would be emitted.

Again, the industrial engineering approach of mathematical modeling was 227 employed to understand, predict, and control this situation. The tradeoffs here 228 were between manufacturing cost, air pollution, and product quality. A constrained 229 multiattribute utility function was employed, and the constraint functions reflected 230 the cause and effect relationships between design decisions (13 raw material choices 231 and 17 manufacturing process parameters) and resulting attributes of cost, pollution, 232 and product quality. The variation in air pollution levels was seen as an opportunity 233 to identify manufacturing process parameters that might be correlated with the 234 variations, and perhaps be controllable. A statistical manufacturing process control 235 experiment was conducted, which identified these correlated parameters, a selected 236 subset of which are shown in Fig. 22.3. Information obtained from the experiment

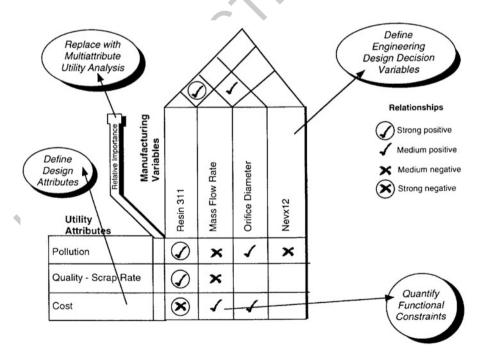


Fig. 22.3 House of quality, DOE and constrained optimization integrated to revealing raw material and manufacturing process parameters correlated to pollution, quality, and cost

242

243

250

269

22.4 The Need to Analyze the Entire Product Life Span

Maintenance, Repair, Replacement

One possible strategy for reducing waste is to increase the product usage life span 244 and promote repair and reuse practices among individual consumers. However, 245 manufacturers currently do not view "design for longer lasting products" as a 246 profitable strategy. In fact, cost-effective assembly processes are often irreversible 247 (replacing screws with snap-fits, for example), and manufacturers' present strategies 248 are sometimes focused on making products difficult and expensive to repair and 249 reuse (Cooper 2012).

However, there are several economic reasons why manufacturers may be inter- 251 ested in design policies that facilitate repairs: (1) design for repairable products 252 reduces the cost of after-sales services and warranty offers (Saccani et al. 2007; 253 Fang and Hsu 2009), (2) repairability might be regarded as marketing and sales 254 strategies (e.g., rated repairability attributes in online product reviews) (Gaiardelli 255 et al. 2008; Stevels 2002), (3) new business models adopted by enterprises based 256 on the concept of a sharing economy, the peer economy (e.g., renting, sharing, exchange) and service-based business models require durable products (Preston 258 2012), (4) design for repairable products is a strategy to secure the future supply 259 of critical materials and rare earth elements (Peck et al. 2015), (5) repairability 260 influences the future reusability of devices, the cost of remanufacturing, and the 261 profitability of remarketing in the second-hand market (Cuthbert et al. 2016), and 262 finally (6) the independent repair businesses and initiatives, e.g., the Digital Right 263 to Repair Coalition, have been forming worldwide campaigns against the short-term 264 profit-driven policies of manufacturers and urging them to produce more repairable 265 electronics, to share the repair guides, and to supply the spare parts to the market 266 (Rosner and Ames 2014). A product's repairability not only influences its first life 267 cycle, but also it increases its future reusability and the opportunity to generate a 268 new market for used devices.

Design for sustainability via facilitating cost-effective maintenance, repair or 270 component replacement, can increase the length of product life cycles, decrease 271 waste, and increase profitability. However, disassembly, repair, and reassembly 272 processes incur costs and sometimes result in damage to one or more components. 273 In Behdad and Thurston (2012), a graph-based integer linear programming and 274 multiattribute utility analysis model is formulated to find the optimal sequence of 275 disassembly operations. Conflicting attributes considered are disassembly time (and 276

282

283

306

307

cost) under uncertainty, the probability of not incurring damage during disassembly, 277 reassembly time (and cost), and the probability of not incurring damage during 278 reassembly. A solar heating system example is presented. Analysis of the model and 279 results revealed the auxiliary heater as a target for redesign to improve accessibility 280 and/or longevity due to its need for frequent replacement.

22.4.2 Selective Disassembly, Value-Mining, and Sharing Disassembly Operations for Multiple Products

Returned end-of-life products arrive at the take-back facility with a great degree 284 of variability and uncertainty in terms of quantity, age, and quality. The value 285 of individual components is sometimes not worth the cost of full disassembly. Towards a solution to this problem, a stochastic chance constrained programming 287 model converted to a mixed integer linear program for waste stream acquisition 288 (as opposed to market-driven systems) is presented in (Behdad et al. 2012). The 289 model treats returned product quantity as an uncertain parameter and determines 290 the optimal degree to which disassembly processes should be performed, as well as 291 the optimal EOL option for each resulting subassembly. A stream of PCs received 292 at a refurbishing company located in Chicago serves as an illustrative example.

In addition to uncertainty and variability in returned product quantity, age, and 294 quality, incoming feedstock is often varies widely and includes several different 295 product. This further hampers the profitability of product take-back operations. 296 Two types of decisions are considered for multiple returned product streams in 297 Behdad et al. (2010); how to efficiently perform selective disassembly operations, 298 and how best to "mine" the value still embedded in components. An example 299 using two cell phones illustrates the integration of a transition matrix with a 300 mixed integer linear programming model for disassembly operations for multiple 301 products. The solution simultaneously identifies the degree to which each product 302 should be disassembled, and also the optimal end-of-life decision (disposal, reuse, 303 recycle) for each component or subassembly. The example results indicated that 304 sharing disassembly operations between different products can increase the costeffectiveness of disassembly operations.

The Need to Use New Data Collection Tools

So far, we have discussed mathematical models for including new, conflicting 308 objectives and for the considering sustainability issues throughout the entire life 309 span of a product. This section discusses the role of data collection tools in 310 gathering the information that these expanded models require. The focus of our 311 discussion is on the role of Immersive Computing Technology (ICT) and virtual 312 reality environments employed during the design process. ICT provides a relatively 313 inexpensive technology (compared with multiple iterations of physical prototype 314 testing) that allows designers to create virtual prototypes of design concepts, 315 generate new ideas, test design concepts, evaluate them, and collect data. ICT has 316 also has been used as a means of sharing information and experience among users. 317 Research on ICT first was mainly focused on developing the technology, but more 318 recently applications of the technology have also generated interest (Ong and Nee 319 2013), broadly ranging from engineering design through education, gaming, and 320 other entertainments.

While the technology has advanced to the point that it offers many capabilities 322 for data collection, product-user experiences, and visualization of artifacts, there is 323 still much to be done towards improvements in the cognitive aspects of knowledge 324 representation and processing. Advances in ICT need to be expanded to include 325 mental models that designers employ, including how information provided by the 326 ICT is perceived, processed, and acted upon.

321

342

352

Considering the example of design for disassembly, often the collection of the 328 required information about the disassembly process is very challenging and timeconsuming. Disassembly is an integral part of remanufacturing, repair and reuse 330 activities, and disassembly times, cost and possible damage can vary from one 331 operation to another based on component and subassembly geometry, fastening 332 methods, component condition, operator motions required, operator experience, 333 and other factors. Designers most often do not have data on the probability 334 distributions of disassembly times, costs, and possible damage to components 335 during the disassembly process. Having access to such information during the early 336 stages of product design can help designers create alternatives (e.g., the type of 337 fasters, the number of joint parts) that facilitate particular disassembly sequences. 338 To identify the best disassembly sequence (e.g., minimizing disassembly time 339 and/or component damage), designers need to know the probability distribution of 340 disassembly time and/or component damage during disassembly as a function of 341 design and disassembly specifications.

Such data can be made available through the use of an ICT system, in which 343 designers have the opportunity to create a virtual prototype of the product, disassemble the prototype, and collect the required data. In one study (Behdad et al. 2014a), 345 we formulated a mixed integer nonlinear program equipped with data collected 346 using ICT to determine an optimum disassembly sequence for a burr puzzle.

The six-component burr puzzle employed is shown in Fig. 22.4 has properties 348 making it ideal for analyzing assembly and disassembly processes. Not all components can be moved at all times, and there are precedence relationships. Also, many 350 movements are orthogonal to others. Each component is labelled according to its 351 color in the ICT: (T)eal, (B)lue, (G)reen, (Y)ellow, (P)urple, and (R)ed.

The first step was to determine all feasible disassembly sequences and present 353 them in the form of a disassembly graph. The next step was to supplement 354 the disassembly graph with some sort of cost structure (e.g., disassembly time, 355 component damage for each disassembly operation). The third step was to obtain 356 the data required by simulating the disassembly operations in the ICT environment, 357

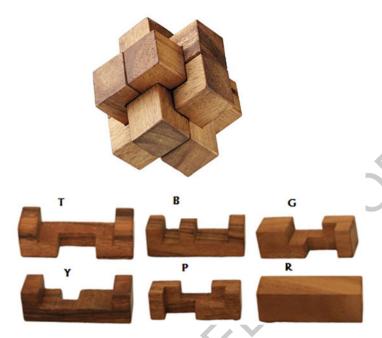


Fig. 22.4 A burr puzzle with six interlocking pieces

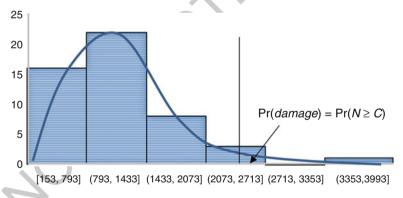
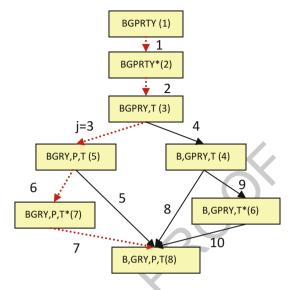


Fig. 22.5 The distribution of the number of collisions between parts

and the final stage was to use the data collected in a mathematical model in order to 358 determine the optimum disassembly sequence.

We simulated feasible disassembly operations for the burr puzzle and conducted 360 30 trials of each feasible disassembly transition manually to collect 30 data points 361 for each disassembly operation. The number of collisions between components 362 was recorded, as a representative of component damage. This data enabled us to 363 draw statistical distributions of the number of collisions between parts (N) for each 364 disassembly operation, shown in Fig. 22.5.

Fig. 22.6 The disassembly graph and the optimum sequence derived from the mathematical model (from Behdad et al. (2014a))



385

The mathematical model developed in this study was a chance constrained 366 program with the single objective of minimizing the number of collisions between 367 different components during disassembly. The mean and standard deviation of the 368 distribution of the number of collisions collected in the ICT was used to estimate 369 the probability of damage. The distribution of the number of collisions was used 370 to estimate the probability of damage directly. For example, if a threshold (C) is 371 defined for the acceptable number of collisions between parts, using the distribution 372 of the number of collisions and the defined threshold, the probability of components 373 damage can be quantified as follows:

$$Pr(damage) = Pr(N \ge C)$$

Figure 22.6 shows the optimum sequence (1-2-3-5-7-8) derived from the 375 mathematical model for the example of burr puzzle.

In addition to data collection, we also employed ICT capabilities to explore intuitive disassembly sequences and compare the results with the optimum disassembly sequence obtained above. The goal was to determine if there could be some synergy 379 between the mathematical model and intuitive human expertise.

An experiment was conducted in the ICT environment as shown in Fig. 22.7 to 381 determine what disassembly process a human might employ while "seeing" both the burr puzzle and its disassembly graph. The result of the experiment indicated 383 that the user intuitively followed a disassembly path (1-2-3-5-8) that was different from the optimal path identified by the model.

For example, considering State 3 in the disassembly graph presented in Fig. 22.5. 386 There are two options: remove Part B or remove Part P. In practice, the disassembly 387 processes for these two parts are not the same. While Part P can be removed using 388 one single horizontal manipulation, Part B requires manipulation across two axes, 389

408

409

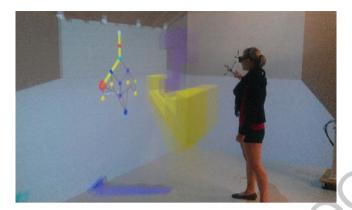


Fig. 22.7 An ICR experiment where a user disassembles a burr puzzle. The experiment has been simulated using the VR facility in Mechanical Engineering department at Iowa State University (courtesy of Dr. Judy Vance and Leif Berg)

however, this is not visible to the operator. If the optimum path is followed, then 390 Part P is separated. From State 5, removing Part B appears to be a simple and 391 intuitive one-piece removal operation; however, the optimal sequence suggests an 392 intermediate operation in which Part P is reoriented to be visible to the operator 393 and reveals the physical constraint for removing Part B to the operator. Thus, 394 the fact that the intuitive path differs from the optimal path provides insights for 395 redesign. Realigning the R component could provide a better operator perspective 396 of B's interconnectedness. When the operator then removes B and is aware of the 397 interconnectedness, greater care may be taken and damage minimized.

In a related study (Behdad et al. 2014b), we extended our data collection 399 efforts in the ICT environment to collect not only the number of collisions as a 400 representative of the probability of damage, but also the distance movement of 401 parts to estimate the disassembly cost. We also developed a new multi-objective 402 mathematical model using a multiattribute utility function as the objective function 403 of a dynamic programming model. The probability of damage vs. disassembly time 404 (or cost) are the two conflicting objectives. The faster is the pace of disassembly, the 405 lower is the disassembly time (or cost) but the higher is the probability of damage 406 and vice versa.

22.6 The Need to Investigate the Complex Role of Consumer **Behavior**

Consumer behavior plays a critical but understudied role in design for sustainability. 410 Traditional views of the sustainable design, including many of those in the design for 411 X domain, largely focus on improvement of end-of-life remanufacturing activities 412 such as disassembly (Harjula et al. 1996) refurbishment (Nee 2015) and recycling 413

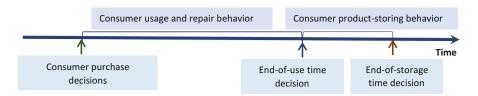


Fig. 22.8 The consumer decisions during the product life span (e.g., purchase, usage, repair, disposal)

(Gaustad et al. 2010), but fail to comprehensively consider the role of consumer 414 behavior during product usage and end-of-use. The effectiveness of sustainable 415 design policies depends on consumers' attitude and behavior, which are critical and 416 are uncertain in nature.

Overall, there is a linkage between the product life cycle, design features, and 418 consumer decisions to repair, reuse, or disposed of a product. Figure 22.8 illustrates 419 the overall process of consumer decision-making during the product life span and 420 the impact of consumers' behavior on usage and storage times.

421

424

441

442

It is important to develop analytical models that quantify the heterogeneity of 422 consumer behavior and the deterioration of product-critical components, as well as 423 integrate consumers' usage and disposal behaviors into design decisions.

Despite recent efforts to consider consumer marketing preferences, less attention 425 has been paid to modeling the usage behavior of the consumers. Most of the 426 previous studies have strived to address purchase or adoption behavior (Ma and 427 Nakamori 2009; Miller et al. 2013; Davis et al. 2009; Haghnevis et al. 2016). 428 Therefore, one research gap in the current engineering design literature is the 429 lack of scientific methods for considering the heterogeneity and variability of 430 consumers' usage behavior during product design, or accurately quantifying the 431 resulting environmental impacts. Future methods should make designers capable 432 of calculating the total emissions of a system based on the aggregation of the microdecisions made by individual consumers for individual products.

In this section, we discuss the importance of consumer behavior in reducing the 435 sustainability-related issues during the entire product life cycle. The focus will be on 436 four types of behavior based on several previous studies conducted by the authors: 437 (1) consumer's product storing behavior at the end-of-use phase of the products, (2) 438 usage behavior, (3) repair behavior and consumers decisions in extending product 439 life cycle, and (4) return behavior and consumers decisions about timing, disposal, 440 and waste removal channel for used products.

22.6.1 Consumer's Product Storing Behavior

Consumers often have a tendency to keep old products in storage before returning 443 them back to waste removal chains. This behavior results to further technological 444

469

obsolescence of used products where in many cases products that are finally returned 445 are not resaleable in the second-hand market and must be shredded and sent to 446 recycling and material recovery operations.

In one study (Sabbaghi et al. 2015a), data from about 10,000 used computers 448 and laptops returned during 2011 and 2013 to an e-waste collection site located in 449 Chicago, IL have been analyzed to determine the average storage times for used 450 products and whether there are any connections between different design features 451 and how long consumers kept their used electronics in storage. With the help 452 of SMART software, we were able to retrieve data identifying the last time the 453 operating system was used on each device, and since we also had information on 454 the manufacturing date and return date, we were able to calculate the storage time 455 (Storage time = Return date - Last time the OS was used), the upper bound of 456 usage time (Usage time = Last time the OS was used - Manufacturing date), 457 and the product age (Age = Return date - Manufacturing date). We also had 458 information about the size of the hard disk drive, the brand, and the consumer type. 459 We had information about two groups of consumers: individual households and 460 commercial consumers (corporate) organizations who returned their used computers 461 for recycling. Various statistical analyses were performed on the dataset and various 462 insights have been derived.

It was found that the average product age and the average storage time was 464 6.9 years and 1.1 years, respectively. There was no statistically significant difference 465 between different brands and sizes of the hard disk drives, but commercial users 466 stored used electronics longer than households. Data security concerns and admin- 467 istrative processes might be the cause of this. Figure 22.9 shows the histograms of 468 storage time, usage time, and product age for two groups of consumers.

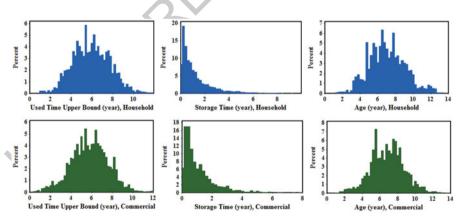


Fig. 22.9 The statistical distributions of the upper bound of usage time, storage time, and product age for two different groups of consumers (data from Sabbaghi et al. (2015a))

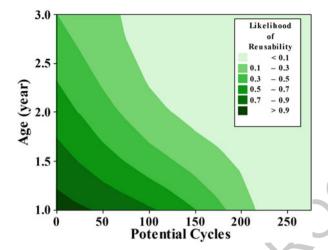


Fig. 22.10 The reusability of batteries based on their age and the number of potential used cycled (data from Sabbaghi et al. (2015b))

486

22.6.2 Consumer's Product Usage Behavior

Another important consumer behavior is their usage behavior. The way that 471 consumers use their products can influence sustainability outcomes such as energy 472 consumption and future reusability. For example, the way that consumers charge and 473 discharge their laptop batteries impacts the future reusability of used laptops, and 474 this behavior varies significantly from customer to customer. This uncertainty must 475 be considered. To shed light on the impact of consumer usage behavior, in one study 476 (Sabbaghi et al. 2015b), about 500 same-brand laptop batteries used by students in 477 a high school in Burbank, IL were studied over 3 years of usage to monitor the 478 number of used cycles for each battery. The purpose of the study was to predict the 479 future reusability of batteries based on age, battery type, number of used cycles, and 480 consumer groups (e.g., students of the class of 2012, 2014, 2015, and 2016). For 481 example, Fig. 22.10 illustrates the future reusability of batteries based on their age 482 and the number of used cycles. Finally, we have determined what would be the most 483 profitable end-of-use option (e.g., reuse, recycle, refurbish) for each battery based 484 on their profile of usage. 485

22.6.3 Consumer's Repair Behavior

The shortcomings of traditional design policies adopted by manufacturers are 487 especially acute in the design for repairability domain (Cairns 2005). While different 488 design concepts ranging from design for disassembly (Boothroyd and Alting 1992), 489

reliability (Crowe and Feinberg 2001), reuse (Cowan and Lucena 1995), and 490 recycling (Kriwet et al. 1995) have recently become better integrated with design 491 efforts, the concept of "design for repair" has been overlooked. Manufactures in 492 general do not consider "design for longer lasting products" a profitable strategy. 493 In fact, manufacturers' policies are sometimes focused on making products difficult 494 and expensive to repair and reuse with the aim of creating more market share for 495 newly developed products (Cooper 2012).

In one study (Sabbaghi et al. 2016), an industry dataset was analyzed to extract 497 consumer viewpoints towards product repairability, and the factors that make it 498 difficult for consumers to repair products themselves under three main categories 499 of product, economic, and consumer-related factors. The final objective was to 500 test whether and how product repairability might influence consumers' future 501 purchase choices and recommendations to family and friends. An online survey 502 was conducted in collaboration with iFixit.com. iFixit has provided an initial 503 dataset of around 11,500 respondents being surveyed from three different subject 504 groups, including individual consumers (about 8000 respondents), employees of 505 repair shops, and employers of repair businesses. This comprehensive iFixit survey 506 includes a total 27 questions.

Among all 27 questions included in the iFixit survey, two directly inquire 508 about the importance of product repairability, its associated cost, and the effect 509 on future purchase decisions. Measured in an ordinal scale, two questions were 510 asked of iFixit survey respondents: "If you successfully repaired a product, are 511 you more likely to buy new products from the same company in the future?" 512 (CLL: Consumer Loyalty Level: low, medium, high), "Have your experiences fixing 513 your own products impacted the purchasing recommendations you give to your 514 friends? (PRL: Product Recommendation Level)". Assuming there is a significant 515 correlation between these two questions, a bivariate ordered probit model was 516 employed to estimate the probability that an observation (a consumer) with specific 517 characteristics (repair experience) will come under one of the ordered categories 518 (low, medium, and high loyalty and recommendation levels). Table 22.1 shows the 519 relation between consumer loyalty and recommendation level for consumers with 520 prior repair experiences.

Access to repair information, positive attitudes towards repairing electronics, 522 product type, availability of spare parts, and unsuccessful repair experience (time- 523

Table 22.1 The relation between CLL and PRL given the prior repair experiences (data gotten from Sabbaghi et al. (2016))

	CLL: Consumer Loyalty Level			
	Low 379 (5%)	Medium 4039 (48%)	High 3985 (47%)	
Low1086 (13%)	163(2%)	613(7.3%)	310(3.7%)	t3.1
Medium4874 (58%)	179(2.1%)	2688(32%)	2007(23.9%)	
High2418 (29%)	37(0.4%)	738(8.8%)	1668(19.8%)	
	Medium4874 (58%)	Low 379 (5%) Low 1086 (13%) Medium4874 (58%) 179(2.1%)	Low 379 (5%) Medium 4039 (48%) Low1086 (13%) 163(2%) 613(7.3%) Medium4874 (58%) 179(2.1%) 2688(32%)	Low 379 (5%) Medium 4039 (48%) High 3985 (47%) Low1086 (13%) 163(2%) 613(7.3%) 310(3.7%) Medium4874 (58%) 179(2.1%) 2688(32%) 2007(23.9%)

consuming repair and broken parts during repair) have been identified as important 524 factors that influence future product choice and recommendation.

525

526

537

22.6.4 Consumer's Product Return Behavior

Another important consumer behavior is their decision about the type of disposal 527 channel to employ, including storage, reselling, the trash bin, a formal collection 528 site, trade-in programs, recycling centers, etc. It is important to estimate which 529 portion of used products are returned back to each of these channels. Thus, in 530 one study (Mashhadi et al. 2016), we developed a simulation framework to model 531 consumer's behavior in returning used products in which consumers have four 532 options: storage, resell, recycle, or discard. An agent-based simulation (ABS) frame- 533 work integrated with a Discrete Choice Analysis (DCA) method was developed to 534 predict consumer's disposal decisions. Consumers socio-demographic information 535 and product design features were included in the model as possible predictive 536 factors.

To identify the role of product design features on the consumer participation, an 538 agent-based simulation model was created. The diverse set of decision-makers in 539 the take-back systems (consumers, products, OEMs) were represented as "agents." There is a mathematical model behind each agent. All agents have their own set of 541 features, objectives, behavioral patterns, and decision-making rules.

The main objective of the simulation was to evaluate design alternatives in terms 543 of consumers' participation in different take-back channels. Each individual con- 544 sumer has been modeled as an agent. Consumer decisions on the selection (if any) 545 of take-back systems (trade-in programs, store, trash bin) has been modeled using 546 discrete choice analysis techniques and has been connected with product design 547 strategies controllable by original manufacturers. DCA is commonly employed to 548 study the individual decision-making process. The underlying assumption behind 549 DCA is that individuals seek to maximize their utility considering two sets of 550 attributes, their socio-demographic characteristics, and the features of alternatives 551 available to them (Wassenaar and Chen 2003).

Through the DCA techniques, the choice probability for each decision (e.g., 553 trade-in programs, trash bin, store) was determined based on product design 554 attributes, take-back program features, and consumers' socio-demographic information. The capabilities of agent-based simulation also helped us consider the impact 556 of other dynamic factors such as peer pressure, and consumer awareness of the 557 decision made by each individual consumer. The interaction between agents has 558 been modeled employing the capabilities of agent-based simulation. Figure 22.11 559 illustrates one example of the simulation results including the number of products 560 stored, returned, sold, and thrown away over time with consideration of interactions 561 between consumers.

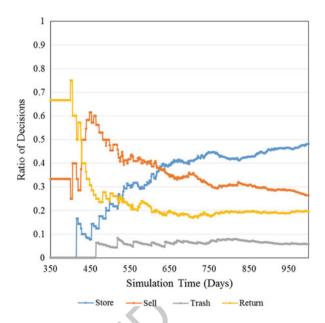
Building such simulation tools paves the way for achieving a more comprehensive understanding of consumer behavior and its impact on the used products' return 564

567

575

586

Fig. 22.11 The ratio of products stored, returned, sold, and thrown away over time with consideration of interactions between consumers (data from Mashhadi et al. 2016)



paths. The final outcome of the study was to estimate the number of products stored, 565 returned, sold, and disposed of over time.

22.7 **Summary and Closure**

This chapter has summarized a body of work that employs industrial engineering 568 approaches to the problem of design for sustainability. These approaches began 569 with normative multiattribute utility analysis to broaden the set of objectives 570 under consideration and evaluate design alternatives, proceeded through constrained 571 optimization to identify the best alternative, statistical process control to create new 572 alternatives and immersive computing technology to gather data required for the 573 optimization model, and conclude with studies of consumer behavior before, during, 574 and after the use phase of the product life cycle.

This mathematical modeling approach requires designers to employ a decompositional strategy, which not only aids in solving previously intractable problems, 577 but also facilitates gaining better insight to the problem as one analyzes the 578 results and the structure of the model in detail. Lessons learned include that facts 579 that although designers might be genuinely concerned about sustainability, their 580 actual willingness to pay for it might be limited, that selling a service (through 581 leasing) rather than selling a product can improve both profitability and customer 582 satisfaction, that statistical manufacturing process control can reveal unexpected 583 opportunities for pollution prevention, that virtual reality design environments can 584 be used to quickly and efficiently gather some of the large amount of data needed to 585 build comprehensive models, and that the customer also plays a significant role.

Acknowledgement This material is based upon work supported by the National Science 587 Foundation—USA under grants DMI-9528627, DMI-9908406, DMI-0726934, CMMI-1100177, 588 CMMI-1068926, CMMI-1435908, CMMI-1727190, and CBET-1705621. Any opinions, findings, 589 and conclusions or recommendations expressed in this material are those of the authors and do not 590 necessarily reflect the views of the National Science Foundation. 591

References 592

Behdad S, Thurston D (2012) Disassembly and reassembly sequence planning tradeoffs under	593
uncertainty for product maintenance. ASME J Mech Des 134(4):41011	594
Behdad S, Kwak M, Kim H, Thurston D (2010) Simultaneous selective disassembly and end-of-	595
life decision making for multiple products that share disassembly operations. ASME J Mech	596
Des 132(4):41002	597
Behdad S, Williams AS, Thurston D (2012) End-of-life decision making with uncertain product	598
return quantity. ASME J Mech Des 134(10):100902	599
Behdad S, Berg LP, Thurston D, Vance J (2014a) Leveraging virtual reality experiences with	600
mixed-integer nonlinear programming visualization of disassembly sequence planning under	601
uncertainty. ASME J Mech Des 136(4):41005	602
Behdad S, Berg L, Vance J, Thurston D (2014b) Immersive computing technology to inves-	603
tigate tradeoffs under uncertainty in disassembly sequence planning. ASME J Mech Des	604
136(7):71001	605
Boothroyd G, Alting L (1992) Design for assembly and disassembly. CIRP Ann Manuf Technol	606
41(2):625–636	607
Cairns CN (2005) E-waste and the consumer: improving options to reduce, reuse and recycle.	608
Electronics and the environment, 2005. In: Proceedings of the 2005 IEEE international	609
symposium on, pp 237–242	610
Camacho-Vallejo J-F, González-Rodríguez E, Almaguer F-J, González-Ramírez RG (2015) A bi-	611
level optimization model for aid distribution after the occurrence of a disaster. J Clean Prod	612
105:134–145	613
Carnahan JV, Thurston DL (1998) Trade-off modeling for product and manufacturing process	614
design for the environment. J Ind Ecol 2(1):79–92	615
Cooper T (2012) Longer lasting products: alternatives to the throwaway society. Gower Publishing,	616
Farnham	617
Cowan DD, Lucena CJP (1995) Abstract data views: an Interface specification concept to enhance	618
design for reuse. IEEE Trans Softw Eng 21(3):229–243	619
Crowe D, Feinberg A (2001) Design for reliability. CRC Press, Boca Raton	620
Cuthbert R, Giannikas V, McFarlane D, Srinivasan R (2016) Repair services for domestic	621
appliances, Springer, New York, pp 31–39	622
Davis C, Nikolić I, Dijkema GPJ (2009) Integration of life cycle assessment into agent-based	623
modeling. J Ind Ecol 13(2):306–325	624
Du L, Peeta S (2014) A stochastic optimization model to reduce expected post-disaster response	625
time through pre-disaster investment decisions. Netw Spat Econ 14(2):271–295	626
Fang C-C, Hsu C-C (2009) A study of making optimal marketing and warranty decisions for	627
repairable products. In: 2009 IEEE international conference on industrial engineering and	628
engineering management. IEEE, Piscatawa, pp 905–909	629
Faturechi R, Miller-Hooks E (2014) Travel time resilience of roadway networks under disaster.	630
Transp Res B Methodol 70:47–64	631
Gaiardelli P, Cavalieri S, Saccani N (2008) Exploring the relationship between after-sales service	632
strategies and design for X methodologies. Int J Prod Lifecycle Manag 3(4):261–278	633
Gaustad G. Olivetti E. Kirchain R (2010) Design for recycling. LInd Ecol 14(2):286–308	634

	Haghnevis M, Askin RG, Armbruster D (2016) An agent-based modeling optimization approach	635
	for understanding behavior of engineered complex adaptive systems. Socio Econ Plan Sci 56:67	636
	Harjula T, Rapoza B, Knight WA, Boothroyd G (1996) Design for disassembly and the environ-	637
	ment. CIRP Ann Manuf Technol 45(1):109–114	638
	Kriwet A, Zussman E, Seliger G (1995) Systematic integration of design-for-recycling into product	639
	design. Int J Prod Econ 38(1):15–22	640
	Ma T, Nakamori Y (2009) Modeling technological change in energy systems—from optimization	641
	to agent-based modeling. Energy 34(7):873–879	642
	Mahmoodjanloo M, Parvasi SP, Ramezanian R (2016) A tri-level covering fortification model	643
	for facility protection against disturbance in R-interdiction median problem. Comput Ind Eng	644
	102:219–232	645
	Mangun D, Thurston DL (2002) Incorporating component reuse, remanufacture, and recycle into	646
	product portfolio design. IEEE Trans Eng Manag 49(4):479–490	647
	Mashhadi AR, Esmaeilian B, Behdad S (2016) Simulation modeling of consumers' participation	648
	in product take-back systems. ASME J Mech Des 138(5):51403	649
	Miller SA, Moysey S, Sharp B, Alfaro J (2013) A stochastic approach to model dynamic systems	650
	in life cycle assessment. J Ind Ecol 17(3):352–362	651
	Nee AYC (ed) (2015) Handbook of manufacturing engineering and technology. Springer, London	652
	Ong SK, Nee AYC (2013) Virtual and augmented reality applications in manufacturing. Springer	653
	Science & Business Media, New York	654
	Peck D, Kandachar P, Tempelman E (2015) Critical materials from a product design perspective.	655
	Mater Des (1980–2015) 65:147–159	656
	Preston F (2012) A global redesign? Shaping the circular economy. Energy Environ Res Gov 2:1–	
	20	658
	Rosner DK, Ames M (2014) Designing for repair? In: Proceedings of the 17th ACM conference	659
	on computer supported cooperative work & social computing—CSCW'14. ACM Press, New	660
	York, pp 319–331	661
	Sabbaghi M, Esmaeilian B, Raihanian Mashhadi A, Behdad S, Cade W (2015a) An investigation of	
	used electronics return flows: a data-driven approach to capture and predict consumers storage	663
	and utilization behavior. Waste Manag (New York, N.Y.) 36:305–315	664
	Sabbaghi M, Esmaeilian B, Mashhadi AR, Cade W, Behdad S (2015b) Reusability assessment	
	of lithium-ion laptop batteries based on consumers actual usage behavior. ASME J Mech Des	666
	137(12):124501	667
	Sabbaghi M, Esmaeilian B, Cade W, Wiens K, Behdad S (2016) Business outcomes of product	
	repairability: a survey-based study of consumer repair experiences. Resour Conserv Recycl	
	109:114–122	670
	Saccani N, Johansson P, Perona M (2007) Configuring the after-sales service supply chain: a	
	multiple case study. Int J Prod Econ 110(1):52–69	672
	Starita S, Scaparra MP (2018) Passenger railway network protection: a model with variable post-	673
	disruption demand service. J Oper Res Soc 69(4):603–618	674
	Stevels A (2002) Integration of ecodesign into business. In: Hundal MS (ed) Mechanical life cycle	
	handbook. Good environmental design and manufacturing. Marcel Deker, New York, pp 583–	676
d	604	677
	Suh NP (1998) Axiomatic design theory for systems. Res Eng Des 10(4):189–209	678
	Thurston DL (1991) A formal method for subjective design evaluation with multiple attributes.	
	Res Eng Des 3(2):105–122	680
	Thurston DL (2001) Real and misconceived limitations to decision based design with utility	681
	analysis. ASME J Mech Des 123(2):176	682
	Thurston DL, De La Torre JP (2007) Leasing and extended producer responsibility for personal	
	computer component reuse. Int J Environ Pollut 29(1–3):104–126	684
	Thurston DL, Carnahan JV, Liu T (1994) Optimization of design utility. ASME J Mech Des	685
	116(3):801–808	686
	Tokunaga T, Fujimura S (2016) A unified theory of design structure matrix and axiomatic design	
	for product architecture. J Mod Project Manag 3(3):114–122	687 688
	101 product diciniccture, 3 iviou i roject ividiag 3(3), 114-122	000

723

742

Wassenaar HJ, Chen W (2003) An approach to decision-based design with discrete choice analysis 689 for demand modeling. ASME J Mech Des 125(3):490

Yi W, Nozick L, Davidson R, Blanton B, Colle B (2017) Optimization of the issuance of evacuation 691 orders under evolving Hurricane conditions. Transp Res B Methodol 95:285-304

Deborah Thurston first learned about engineering as a possible 695 career choice at a seminar for high school senior girls that she signed up for mainly to get out of a day of school. There, she heard from a practicing woman engineer about how fun and satisfying it was to really understand something that you wanted 699 to understand, but at first found difficult. She had already been 700 accepted to college with a different major, but switched to engineering. She is now a Gutsgell Professor of Industrial and 702 Enterprise Systems Engineering at the University of Illinois. 703 She serves as design node leader in the Institute for Reducing EMbodied-Energy And Decreasing Emissions (REMADE), 705 Director of the Decision Systems Laboratory, and Co-Director 706 of the Hoeft Technology and Management Program. She earned 707 the M.S. and Ph.D. from MIT. At Illinois, Professor Thurston 708 was instrumental in developing a new interdisciplinary Ph.D. program in Systems and Entrepreneurial Engineering, and also 710 managed the transfer of the Industrial Engineering program 711 during a college reorganization. She has also served as CESUN 712 Chair. As one of the first researchers in engineering design 713 theory and methodology, she brought mathematical rigor to 714 complex design decision problems by formalizing methods for 715 making rational tradeoffs under uncertainty. Her research has 716 been funded by NSF, EPA, and a number of industries. Professor Thurston received the NSF Presidential Young Investigator 718 Award, two Xerox Awards for research excellence, four awards 719 for undergraduate advising, and five best paper awards. She has served as area editor for the ASME: Journal of Mechanical 721 Design and The Engineering Economist. She is a registered 722 professional engineer and ASME Fellow.

Sara Behdad is Assistant Professor of Mechanical and 726 Aerospace Engineering, and Industrial and Systems Engineering at the University at Buffalo (UB). She received her Ph.D. in Industrial and Systems Engineering from the University of 729 Illinois at Urbana-Champaign in 2013 under the supervision of 730 Dr. Deborah Thurston. She is the founding director of Green Engineering Technologies for the Community of Tomorrow 732 (GETCOT) research lab at UB. Her recent research focuses on 733 data-driven life cycle engineering, design for remanufacturing, design for additive manufacturing, and modeling the impacts of design policies on complex socio-economic systems. Her work 736 has been covered in media in outlets such as PBS, Daily Mail, 737 The Chicago Tribune, and Motherboard. She is the recipient of the 2017 International Life Cycle Academy Award for her contribution to sustainable consumption field. She is also an active member of the ASME International Design Engineering 741 Technical Conferences (IDETC 2018).

AO₂

AUTHOR QUERIES

AQ1. Please check and confirm if the affiliations are presented correctly.

AQ2. Please check and confirm if the retained biography for the author "Sara Behdad" is fine. Kindly correct if necessary.

