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ABSTRACT

Common variable star classifiers are built only with the goal of producing the correct class labels,
leaving much of the multi-task capability of deep neural networks unexplored. We present a periodic
light curve classifier that combines a recurrent neural network autoencoder for unsupervised feature
extraction and a dual-purpose estimation network for supervised classification and novelty detection.
The estimation network optimizes a Gaussian mixture model in the reduced-dimension feature space,

where each Gaussian component corresponds to a variable class. An estimation network with a basic
structure of a single hidden layer attains a cross-validation classification accuracy of ∼ 99%, on par with
the conventional workhorses, random forest classifiers. With the addition of photometric features, the

network is capable of detecting previously unseen types of variability with precision 0.90, recall 0.96, and
an F1 score of 0.93. The simultaneous training of the autoencoder and estimation network is found to be
mutually beneficial, resulting in faster autoencoder convergence, and superior classification and novelty

detection performance. The estimation network also delivers adequate results even when optimized
with pre-trained autoencoder features, suggesting that it can readily extend existing classifiers to
provide added novelty detection capabilities.

Keywords: binaries: eclipsing — methods: data analysis — methods: statistical — stars: general —
stars: oscillations — techniques: photometric

1. INTRODUCTION

Efficient classification of the variability of astrophysi-
cal objects is crucial to defining follow-up observations

and analysis. With the advent of the next-generation
surveys such as the Large Synoptic Survey Telescope
(LSST, Ivezić et al. 2008; LSST Science Collaboration
et al. 2009) and the Zwicky Transient Facility (ZTF
Bellm et al. 2019), automatic pipelines are required to
categorize an unprecedented amount of light curves into
known or previously unseen variability classes. To this
end, machine learning has been applied to solve the clas-
sification problem sufficiently. The identification of ob-
jects with novel variability properties, however, still re-

lies heavily on visual inspection by human experts.
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Classifiers are seldom trained using raw light curves
due to their high and non-uniform number of obser-
vational epochs. Instead, ‘features’ of much lower di-
mensions are obtained, a process known as feature ex-
traction. Features typically include the variable period
(Lomb 1976; Scargle 1982; Schwarzenberg-Czerny 1996;
Kovács et al. 2002), amplitudes and ratios of differ-
ent Fourier components (Nun et al. 2015), and sum-
mary statistics of the flux variation (e.g. standard de-
viation and skewness). Random forest (RF) classifiers
trained on features obtained from photometric data have
been the blueprint of most recent classification efforts
(Richards et al. 2011; Dubath et al. 2011; Bloom et al.
2012; Kim et al. 2014; Masci et al. 2014; Kim & Bailer-

Jones 2016; Jayasinghe et al. 2018; Rimoldini et al.
2018). The new probabilistic RF method, which takes
into account uncertainties in both features and labels
(Reis et al. 2019), holds promise in improving RF’s per-
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formance. However, manual selection of features still
requires tremendous human involvement.

Deep artificial neural networks have attracted recent
attention in the physical sciences due to their ability to
acquire meaningful data representations with minimal
human input. In astrophysics alone, galaxy morphol-
ogy classification (Dieleman et al. 2015; Aniyan & Tho-
rat 2017), transient and exo-planet detection (Cabrera-
Vives et al. 2017; Shallue & Vanderburg 2018; Sedaghat
& Mahabal 2018), and, of course, light curve classifica-
tion (Aguirre et al. 2019; Muthukrishna et al. 2019) have
benefited from the success of convolutional neural net-
works (CNNs) in image and sequential data processing.

Autoencoding recurrent neural networks (RNNs),
which preserve the sequential information of input data,
were found to be effective in extracting representative
features from light curves (Naul et al. 2018). The en-
coder component of the network takes light curves as
inputs and generates features of much lower dimension.

The decoder then attempts to reconstruct the light
curves using only the encoder-generated features. By
matching the reconstructed light curves with the orig-
inal inputs, the autoencoder learns to isolate essential

features that characterize the light curves. Unlike the
conventional approach where frequency and statistical
features are hand-selected, the RNNs perform feature

extraction without human intervention.
Most of the previous attempts at light curve classifi-

cation focused only on correctly providing object labels.

In a realistic workflow, however, an indispensable task
is to uncover objects with previously unseen types of
variability, so called novelty detection, among a large
number of objects of known classes. Zong et al. (2018)

have recently proposed a framework that combines au-
toencoding feature extraction with a Gaussian Mixture
Model (GMM)-based unsupervised anomaly detection

scheme.
In this letter, we present a neural network architecture

that combines the efforts of Naul et al. (2018) and Zong
et al. (2018). Namely, we jointly optimize an autoen-
coding RNN for feature extraction from variable light
curves and an estimation network for classification and
novelty detection. The motivation for this work is to
promote the application of multi-task neural networks
in variability analysis.

2. METHODS

2.1. Data and data pre-processing

The network is trained using the light curves from
the All-Sky Automated Survey for Supernovae (ASAS-
SN) Variable Stars Database I and II (Shappee et al.
2014; Jayasinghe et al. 2018). The light curves, obtained

from the online database1, typically have hundreds of
epochs in V and g bands. From the vast database, only
light curves of types listed in Table 1 were selected for
classification purposes. These variability types will be
referred to as the variable superclasses.

The data selection and pre-processing procedure
closely resembles that of Naul et al. (2018). To minimize
confusion, we selected sources based on information
from the ASAS-SN variable star catalog. Classifica-
tions in the catalog, generated using their RF classifier,
are treated as the true labels of the sources. We note
that these labels may not be completely genuine. Only
variables with classification probabilities above 90% and
at least 200 epochs were used. Light curves with Su-
perSmoother residuals greater than 0.7 were omitted
to ensure only true periodic sources were included. Fol-
lowing Jayasinghe et al. (2018), we further filtered out

saturated and faint sources with V < 11 and V > 17.
In the ASAS-SN variable star database, sources that

do not meet any of the classification criteria are referred

to as ‘variable stars of unspecified type’ (VAR). This in-
homogeneous category contains objects with variability
types that are principally different from the superclasses.

Since their light curves are by selection unlike any of the
known classes, the VAR objects are ideal for assessing
the ability of the networks in detecting unseen samples.
Similarly, only VAR sources with at least 200 observa-

tional epochs were selected. No classification probabil-
ity nor supersmoother residual cuts were applied to the
light curve sequences in the VAR class.

Pre-processing began with the partitioning of light
curves into sequences of equal lengths, n = 200, as the
autoencoder is optimized to process input sequences of
fixed dimensions. The above pre-processing resulted in a

reduced dataset of ∼48,000 light curve sequences in the
superclasses and ∼5,300 in the VAR class. Using peri-
ods from the ASAS-SN catalog, the sequences were then

phase-folded. The phase for each observation epoch, t,
was then replaced by the relative phase between the cur-
rent and the previous epoch ∆t. In particular, for the
j-th measurement, ∆tj = tj − tj−1; whereas ∆t0 = 0
is assumed for the first epoch. The observed magni-
tudes in each light curve sequence x were normalized to
have a mean of zero and a standard deviation of one,
x → (x − 〈x〉)/s, where 〈x〉 and s are the mean and
standard deviation of the sequence. The measurement
errors were normalized by the same factor, σ → σ/s.

2.2. Network Architecture

1 https://asas-sn.osu.edu/variables

https://github.com/jakevdp/supersmoother
https://github.com/jakevdp/supersmoother
https://asas-sn.osu.edu/variables
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Figure 1. Schematic diagram of the neural network architecture. The structure of the RNN autoencoder follows Naul et al.
(2018). The estimation network is similar to that used in Zong et al. (2018) except for the added one-hot conversion for the
classification task.

A schematic diagram of the neural network in this
work is shown in Figure 1. It comprises of two sub-
networks:
Autoencoder network:
Feature extraction is performed using the autoencod-
ing RNN in Naul et al. (2018). The encoder and de-
coder each consist of two layers of Gated Recurrent
Units (GRUs). A dropout layer2 is included between
the two recurrent layers to avoid overfitting (Srivastava
et al. 2014). Given a batch of N normalized, phase-

2 A dropout layer randomly ignores a fraction of units and their
connections in a layer during training. It improves robustness by
preventing the network from overfitting with sets of co-dependent
weights. The reduction in network size also reduces training time.

folded input light curve sequences (∆ti,xi,σi), where i
denotes the i-th light curve, the encoder converts them
into reduced-dimension embedding vectors, ze,i ∈ Rm.
The dimension of the embedding vector, m, is a user-
defined parameter called the embedding size. The em-
bedding vectors are then used to reconstruct the input
light curves x̂i by the decoder. Following Naul et al.
(2018), the loss function to be minimized is the weighted
mean square error,

LAE =
1

n N

N∑
i=1

(xi − x̂i)
2 ·wi, (1)

where wi = 1/σi is the sample weight for each epoch,

and the (·)2 is an element-wise operation. This loss
function is advantageous over the conventional mean
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Table 1. Variable superclasses and their constituent subclasses.

Variable Type Superclass Abbreviation ASAS-SN Subclassa Number of Light Curve Sequencesb

Cepheids CEPH CWA, CWB, DECP, DCEPS, RVA 536

Delta Scuti Variables DSCT DSCT, HADS 720

Eclipsing Binaries ECL EA, EB, EW 25,713

Mira Variables M M 1,020

Rotational Variables ROT ROT 805

RR Lyrae of Type A and B RRAB RRAB 7,809

RR Lyrae of Type C and D RRCD RRC, RRD 3,014

Semi-Regular Variables SR SR 8,156

aReaders are referred to Jayasinghe et al. (2018) and the ASAS-SN Variable Stars online database for the detailed descriptions
of the subclasses.

bNumber of light curve sequences after data pre-processing.

square error in that it explicitly includes measurement
errors from irregularly sampled observations. Through
minimization of the deviation between the input and re-

constructed light curves, quantified by LAE , the encoder
is directed to produce embedding vectors that contain
representative information of the original light curves.

Estimation network:
Classification and novelty detection are simultaneously
accomplished by the estimation network. The input fea-

ture vector to the estimation network is constructed by
combining the autoencoder embedding ze,i, two addi-
tional reconstruction error features zr,i, and three auxil-

iary features za,i. Following Zong et al. (2018), the two
reconstruction error features are the Euclidean distance
and the cosine similarity,

zr,i =

[
‖xi − x̂i‖2
‖xi‖2

,
xi · x̂i

‖xi‖2 ‖x̂i‖2

]
, (2)

where | · |2 denotes the L2 norm. The mean and stan-
dard deviation of each light curve sequence are com-
bined with the variable’s period to form the auxiliary
features, za,i = (〈xi〉, si, log10(Pi)). The input fea-
ture vector to the estimation network takes the form
zi = (ze,i, zr,i, za,i), with dimension, l = m+ 5.

The estimation network connects the input feature
vector to an output layer through a single densely con-
nected hidden layer. The dimension of the output layer,
K, is a pre-specified number of variable classes, which
also corresponds to the number of Gaussian mixture

components. A dropout layer is added after the hid-
den layer to minimize overfitting. The output layer
ends with a softmax activation function, producing a
K-dimensional, normalized vector, γi, whose elements

can be interpreted as the probabilities of belonging to
each variable class/Gaussian component.

The classification functionality is trained by minimiz-

ing the categorical cross-entropy loss,

LCE = − 1

N

N∑
i=1

yi · log (γi) , (3)

where yi is the true label of the i-th light curve expressed

as a K-dimensional one-hot vector3, and the log is an
element-wise natural logarithm on γi. To generate the
classification label predictions, the softmax outputs, γi,
are converted into one-hot vectors, ŷi.

The feature vectors, zi, and the estimation network
outputs, γi, are used to compute the GMM parameters
using Equation (5) of Zong et al. (2018). Following their

notation, µk is the mean location, Σk is the covariance
matrix, and φk is the me an membership probability
of the k-th Gaussian component in the feature space.

The sample energy of each light curve sequence can be
computed by

E(zi) = − log

(
K∑

k=1

φk ξk(zi)

)
, (4)

where ξk is the normalized probability density in the
k-th Gaussian component,

ξk(zi) =
exp(− 1

2 (zi − µk)TΣ−1
k (zi − µk))√

(2π)l|Σk|
, (5)

log is the natural logarithm, and | · | denotes the ma-
trix determinant. During network training, the GMM

3 A one-hot vector is an integer vector with all but one element
set to zero, with the non-zero element having a value of unity at
the location denoting its membership among one of the K classes.
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Figure 2. Left: The normalized confusion matrix from the jointly trained autoencoder-estimation network. Right: Time

evolution of the autoencoder loss LAE computed from the validation dataset during network training. The solid lines show the

linearly smoothed trends. The lines with lighter colors shows the actual unsmoothed variations.

parameters are determined and the associated loss is

minimized using

LGMM =
1

N

N

i=1

E(zi) (6)

Optimizing the estimation network by minimizing

LGMM is equivalent to tting the GMM parameters

by maximizing the log-likelihood. After training, the

GMM parameters should adequately describe the dis-

tribution of variable types in the feature space. New

forms of variability can then be detected as outliers far

away from the Gaussian components.

The overall estimation network architecture follows

Zong et al. (2018) closely, but there are two main di er-

ences. First, the network is tasked with the additional

problem of classi cation. Second, with the addition of

the classi cation loss, the GMM is not susceptible to the

singularity problem. The covariance loss is therefore un-

necessary and omitted.

2.3. Training Strategies

The dual-network architecture was implemented us-

ing the Keras python package (Chollet et al. 2015) with

a Tensor ow backend (Abadi et al. 2015). It was built

on the GitHub implementation provided by Naul et al.

(2018). The source code and a subset of the ASAS-SN

data are available at https://github.com/bthtsang/Deep

Classi erNoveltyDetection.

Weights and biases in both networks are initialized

with the glorot uniform initializer (Glorot & Ben-

gio 2010), and the loss function is minimized using the

Adam optimizer (Kingma & Ba 2014). We chose the

same eight variable superclasses as used in Jayasinghe

et al. (2018, Figure 29) so that direct comparisons can be

made between classi cation performance. The variable

subclasses that make up each superclass are summarized

in Table 1.

To demonstrate the versatility of the dual-network,

two training approaches have been carried out, namely,

the joint and sequential training. In joint training, both

the autoencoder and estimation network are optimized

simultaneously by minimizing the total loss,

Ltot = LAE + ( LGMM + LCE) (7)

where the pre-factor controls the relative importance

of the GMM component. Di erent values of have

been tested and a ducial value of 10 3 works well for

the current application. For sequential training, the au-

toencoder is rst trained utilizing only the LAE loss, i.e.

the exact training approach used in Naul et al. (2018).

The estimation network is trained afterwards, minimiz-

ing the parenthesized loss terms of Equation (7). The

motivation for including the sequentially trained models

is twofold: it produces an independently trained autoen-

coder with which we can benchmark our classi cation

accuracy, it also provides an opportunity to assess the

possibility of attaching novelty detection functionality

on pre-trained feature extraction approaches.

An 80/20 split is used to divide the light curve se-

quences into training and validation datasets. To pre-

serve the percentages of sequences in each variable class,

the partition is performed using the StratifiedKFold

function of the python sklearn package. The valida-

tion dataset is withheld from the network during the

entire training stage, and is used to determine the clas-

si cation accuracy of the networks.

The following parameters are used in both training

approaches. A total of 96 GRUs were used in both

https://github.com/bthtsang/DeepClassifierNoveltyDetection
https://github.com/bthtsang/DeepClassifierNoveltyDetection
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html
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Table 2. Classification accuracy and novelty detection performance for the fiducial network
with an embedding size of 16. Numbers in parentheses correspond to results from networks
trained using the additional photometric features.

Joint Training Sequential Training

Classification Accuracy
Estimation Network 98.8% (99.1%) 96.7% (96.6%)

Random Forest 99.2% (99.4%) 99.2% (99.2%)

Novelty Detection Scores
95th Percentile Cutoff

Precision 0.885 (0.898) 0.875 (0.896)

Recall 0.815 (0.957) 0.778 (0.933)

F1 score 0.848 (0.927) 0.824 (0.914)

Novelty Detection Scores
80th Percentile Cutoff

Precision 0.686 (0.700) 0.683 (0.696)

Recall 0.941 (0.991) 0.935 (0.986)

F1 score 0.793 (0.821) 0.789 (0.816)

layers of the RNN autoencoder network. Training is
done with a constant batch size of 2000 and learn-
ing rate of 2 × 10−4 for 2000 epochs. Dropout rates
are fixed at 0.25 and 0.5 for the autoencoder and es-

timation network, respectively. We varied the embed-
ding sizes between 8, 16, 32, and 64. The size of
the hidden layer in the estimation network is fixed

at the embedding size. As a benchmark, a separate
grid of RF classifiers are trained using the encoder-
generated features after network training. We adopted

a grid of n estimators ∈ {50, 100, 250}, criterion

∈ {gini, entropy}, max features ∈ {0.05, 0.1, 0.2, 0.3},
and min samples leaf ∈ {1, 2, 3} with the SKLEARN
RandomForestClassifier implementation.

3. RESULTS AND DISCUSSIONS

3.1. Classification Accuracy

As embedding sizes of 8, 32 and 64 only offer

marginally different performance in both classification
and novelty detection, in this Letter, we will focus on the
results from the fiducial models with an embedding size
of 16. The normalized confusion matrix from the joint
network training is shown on the left panel of Figure 2.
The overall classification accuracy of the validation data
is 98.8%. In particular, the classification performance
on classes with copious amounts of light curves, namely
ECL, RR Lyrae, and SR, is near-perfect. With sequen-
tial training, the classification accuracy falls slightly to
96.7%, primarily due to misclassifications in the less
populated superclasses.

As a comparison, the best-performing RF classifier

gives an accuracy of 99.2%, regardless of whether the
network is trained jointly or sequentially. The higher
accuracy of RF is expected given its complexity rela-
tive to the basic estimation network. In fact, the best-
performing RF classifiers in the grid typically contain

∼ 102 decision trees, each consists of ∼ 102 nodes. A RF

classifier therefore contains ∼ 104 trainable parameters,
whereas the densely-connected layers of the estimation
network have ∼ 200 − 5000, depending on the embed-

ding size. The classification accuracy and novelty de-
tection performance scores for both training approaches
are summarized in Table 2.

The right panel of Figure 2 shows the validation au-

toencoder loss over time during network training. The
joint training approach offers more efficient training of
the autoencoder, completing most of its learning early

on after 104 s, or just ∼200 epochs. Even though sequen-
tial training reaches slightly lower autoencoder loss by
the end of the training, classification accuracy is lower

nevertheless. It suggests that by simultaneously opti-
mizing both networks, the autoencoder is able to better
retain class-specific information for a more effective fea-
ture extraction. Across all embedding sizes (8, 16, 32,

and 64), the joint training appeared to reduce stochastic
fluctuations in the autoencoder loss, allowing superior,
consistent training.

3.2. Novelty Detection Performance

After the network training, the GMM parameters are
computed and fixed using the entire training set. The
VAR light curve sequences are mixed with the validation
dataset to form the test dataset for novelty detection,
which contains objects both from the superclasses and
of the VAR type. Light curve sequences from the test
dataset were then passed into the encoder to generate
the embedding vectors. Together with the reconstruc-
tion error and auxiliary features, the sample energy of

individual sequences can then be computed using Equa-
tion (4). Light curves with sample energies above a pre-
selected percentile cutoff in the training set, e.g. at 80%
or 95%, are flagged as novel samples.

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
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Figure 3. The energy histograms of the jointly trained network, without (left) and with (right) the inclusion of photometric

features. An energy cap of 200 is imposed when creating the histograms for better visualization. The vertical dashed lines

denote the 80th and 95th percentiles of the training set. The secondary peaks at E 50 in the case with included photometric

features are the result of missing magnitudes/colors, where a lling value of 99 is used.

The left panel of Figure 3 shows the energy histogram

of the light curve sequences in the training/validation

dataset and of the VAR type. Although there is a

slight amount of overlap below E 0, the majority

of the VAR objects have higher energy and are visually

distinct. Using a 95th percentile cuto , the precision,

recall, and F1 score are 0.885, 0.815, and 0.848, respec-

tively. With sequential training, the performance scores

are slight lower, at 0.875, 0.778, and 0.824 respectively.

The reduction in recall implies that there are more VAR

samples mixed into samples with low energies and went

undetected, suggesting that the GMM components are

not as well- tted. The performance scores are also sum-

marized in Table 2. Despite the lower accuracy and

novelty detection scores, the performance of sequential

training is satisfactory. It suggests that the estimation

network can be readily integrated with existing classi -

cation pipelines with pre-computed features, e.g. from

Fourier analysis, to deliver additional novelty detection

functionality.

3.3. Inclusion of Photometric Information

The majority of mis-classi cation in the confusion ma-

trix (Figure 2) appears among classes CEPH, M, and

ROT, whose light curves are scarce and intrinsically sim-

ilar to one another. Though all classes bene ted from

explicitly including the auxiliary features (mean mag-

nitude, standard deviation, variable period), the three

classes above require them for satisfactory classi cation

accuracy. Since the estimation network is responsible

for classi cation and novelty detection, it is expected

that improved classi cation accuracy will allow GMM

components to be better optimized for enhanced nov-

elty detection.

Photometric quantities from external catalogs are ap-

pended as additional features in an attempt to re ne

classi cation accuracies and thus improve novelty de-

tection. The photometric values were retrieved from the

ASAS-SN Variable Stars Database and concatenated as

part of the input features to the estimation network.

As our current intention is to examine the feasibility

of incorporating additional photometric features, only

three catalog quantities are selected, namely, the Gaia

DR2 MG magnitude, the GBP GRP color, and the We-

senheit Gaia GRP band magnitude WRP. The three

confused classes are distinctly separated in this color-

magnitude space (Jayasinghe et al. 2018, Figure 22). All

parameters of the network were held xed while training

with photometric features so a direct comparison can be

made.

With the addition of the photometric information, the

normalized accuracy in the CEPH, M, and ROT classes

are boosted up to 84%, 93%, 93% respectively. The

overall classi cation accuracy increases up to 99.1%.

Most importantly, the novelty detection performance

improved to reach an F1 score of 0.93. This exercise

demonstrates that embedded light curve features can be

trivially integrated with photometric features for better

multi-task performance.

4. CONCLUSIONS

We present a dual-network architecture that allows

simultaneous training for feature extraction, classi ca-

tion, and novel sample detection of variable star light

curves. We have combined the recurrent neural net-

work autoencoder for time series data proposed by Naul

et al. (2018) with the Gaussian mixture anomaly de-

tection network proposed by Zong et al. (2018). Ap-

plied to light curves from the ASAS-SN variable star
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database, the networks achieve a classification accuracy
of ∼99% and are able to detect previously unseen types
of variability with a precision, recall, and F1 score of
≥ 0.8− 0.9.

Joint training of the autoencoder and the classifica-
tion/novelty detection network is found to be mutu-
ally beneficial, resulting in more efficient autoencoder
training and better overall performance. When trained
on pre-extracted features, the network nevertheless pro-
duces satisfactory results. It suggests that the Gaussian
mixture-based network can be readily integrated with
existing classification pipelines for the added function-
ality of novelty detection. Photometric features from ex-
ternal catalogs are found to be readily compatible with
light curve features to deliver enhanced results.

This work demonstrates the flexibility and extensibil-
ity of unsupervised feature extraction of time series data
for and beyond variable classification. The dual-network

architecture also highlights the fidelity of deep neural
networks in accomplishing multiple important tasks.
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