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Abstract: Even though little is known about the quantum entropy cone for N ≥ 4 subsystems,
holographic techniques allow one to get a handle on the subspace of entropy vectors corresponding to
states with gravity duals. For static spacetimes and N boundary subsystems, this space is a convex
polyhedral cone known as the holographic entropy cone CN for N regions. While an explicit description
of CN was accomplished for all N ≤ 4 in the initial study, the information given about larger N was
only partial already for C5. This paper provides a complete construction of C5 by exhibiting graph
models for every extreme ray orbit generating the cone defined by all proven holographic entropy
inequalities for N = 5. The question of whether there exist additional inequalities for 5 parties is
thus settled with a negative answer. The conjecture that C5 coincides with the analogous cone for
dynamical spacetimes is supported by demonstrating that the information quantities defining its facets
are primitive.
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1 Introduction

The most broadly studied limit of the AdS/CFT correspondence conjectures a holographic duality
between certain strongly coupled gauge theories and classical gravity [1, 2]. More explicitly, for a pair
of gauge-gravity dual theories, the AdS/CFT dictionary poses a specific spacetime geometry as the
gravitational counterpart of a given state in the Hilbert space of the quantum theory. On grounds of
such a duality, it is of interest to determine which quantum states are dual to classical bulk geometries.
A remarkable finding from the study of holographic entanglement is that, regardless of the theory,
quantum states with particular patterns of correlations do not admit smooth geometric duals [3, 4].

At the heart of this result lies the Ryu-Takayanagi (RT) proposal, which states that for static bulk
geometries the entanglement entropy SA of a spatial region A of the boundary conformal field theory
is given by [5–7]

SA = min
A

area A
4GN

, (1.1)

where the minimization is performed over all bulk codimension-2 surfaces homologous to A and such that
∂A = ∂A. The Hubeny-Rangamani-Takayanagi (HRT) prescription gives the covariant generalization
of RT that applies to arbitrary dynamical spacetimes [7, 8]. That the RT formula should reproduce the
results of the von Neumann entropy for arbitrary partitions of a quantum state establishes a necessary
condition for the existence of a smooth bulk dual. The discovery that there exist valid holographic
entropy inequalities which are not true in quantum theory means that this necessary condition is not
met by arbitrary quantum states. In particular, this is the case for the inequality known as monogamy
of mutual information (MMI) [3],

I2(A:BC) ≥ I2(A:B) + I2(A:C), (1.2)

defined here in terms of the mutual information I2(A:B) = SA + SB − SAB, and where A, B and C
stand for three disjoint regions. This inequality has been proven true holographically for arbitrary
dynamical spacetimes [3, 9], yet is easily violated quantum mechanically (e.g. by the GHZ state).
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It follows that characterizing entanglement properties via entropy inequalities provides a powerful
criterion to determine whether a quantum state can possibly be geometric (i.e. whether it can be
holographically dual to a classical geometry). The formalization of this idea was carried out in [10],
which introduced what is known as the holographic entropy cone to parametrize the space of allowed
entropies for geometric states. The purpose of this work is to continue the systematic study and
enumeration of holographic entropy inequalities. The picture for 4 and fewer regions was completed
in [10], where partial results were also found for 5 regions. Building on this previous work, the complete
construction of the holographic entropy cone for 5 regions is produced here. A direct corollary is that
no additional entropy inequalities are needed for the completion of the 5-party cone.

2 Framework and Approach

Let Σ be a spacelike slice of the spacetime manifold of a quantum field theory in a state which admits
a holographic description in terms of a smooth bulk geometry. Consider N ∈ Z+ arbitrary nonempty
codimension-1 disjoint subsets Xi ⊂ Σ, where i ∈ [N ] ≡ {1, . . . , N}. Any such Xi will be referred to as
a monochromatic region of colour i. One also defines the set of polychromatic indices ℘N as the power
set of [N ] with the empty set removed. The latter has cardinality D = 2N − 1 and its elements I ∈ ℘N

are used to label polychromatic regions XI ≡
⋃

i∈I Xi. Denoting the entanglement entropy of each
region XI by SI , one may construct a D-tuple S ≡ {SI | I ∈ ℘N}. Canonically ordering its entries by
increasing cardinality of I and then lexicographically, S ∈ RD defines an entropy vector.

Every entropy SI of a collection of regions can be computed holographically to leading order in the
central charge of the boundary theory using the HRT prescription [8]. For static bulk geometries for
which this construct reduces to the RT formula (1.1) [5], the space CN ⊂ RD of all physically realizable
holographic entropy vectors S ∈ RD is known as the holographic entropy cone CN for N regions. It
was shown in [10] that this space is indeed a convex cone which is closed, rational and polyhedral. The
Farkas-Minkowski-Weyl theorem recasts polyhedrality into the existence of two dual representations of
such convex cones [11]:

• Facet representation: CN can be constructed as the intersection of a finite number of half-spaces
specified by entropy inequalities of the form S ·Qj ≥ 0, where Qj ∈ RD. The minimal collection
{Qj ∈ RD} of such vectors is unique and geometrically defines the support hyperplanes or facets
of the cone.

• Extreme ray representation: CN can be finitely generated as the conical hull of a set of vectors.
The minimal collection of such vectors is unique and consists of the extreme rays {ek ∈ CN} of
the cone, i.e. the vectors in CN which cannot be conically spanned by other vectors in CN .

Importantly, since CN is closed, for every extreme ray ek ∈ CN there exists a bulk geometry and a
choice of boundary regions such that their corresponding entropy vector S ∝ ek [10]. Also, by virtue of
being rational, the facet vectors and extreme rays of CN can be written with integer coordinates. In
particular, by the non-negativity of entanglement entropy, every ek has non-negative integer entries, as
will be seen.

Constructing the holographic entropy cone CN for N regions amounts to finding a representation
of it. A collection of proven entropy inequalities for N parties does not necessarily provide a complete
representation of CN . More specifically, supposing that such collection of inequalities represents a cone
C̃N , that they are true entropy inequalities only guarantees that CN ⊆ C̃N . Proving that the facets
of the two cones in fact coincide is better done in the dual description in terms of extreme rays. In

– 2 –



particular, if for every extreme ray of C̃N one is able to find a geometry whose entropy vector lies on it,
then convexity immediately implies that CN = C̃N .

This strategy was implemented in [10] to construct the holographic entropy cones for N ≤ 4. For
N = 5, the authors successfully found and proved by contraction five new entropy inequalities, but left
as an open question whether this set was complete. A thorough understanding of C5 has thus been
lacking. In this work, the complete representation of the holographic entropy cone C5 for 5 regions is
provided by explicit construction of its extreme rays. One of the outcomes is that there are no new
holographic inequalities for 5 parties, so that the facets of C5 are precisely certain upliftings of known
inequalities for N ≤ 3 and the five new ones proven in [10].

The construction of the extreme rays of C5 is given here in terms of graph models as introduced in
[10]. The key theorem behind this combinatorial approach is that S ∈ CN if and only if there exists a
graph model that realizes S. In other words, the holographic entropy cone and the analogously defined
graph-model entropy cone are identical. A graph model for N parties is an undirected graph (V, E)
with V vertices and E edges, where a subset ∂V ⊆ V is coloured by a map c : ∂V → [N ]. As the
nomenclature suggests, a vertex coloured by i stands as the graph representative of the monochromatic
region Xi in the boundary theory. The elements of ∂V are thus called boundary vertices, while
those in the complement V r ∂V are called bulk vertices. Edges are assigned non-negative edge
capacities by a weight map E → R≥0. Then, the entropy SI of a polychromatic subset of boundary
vertices ∂VI ≡ c−1[I] ⊂ ∂V is given by the maximum flow between multisources VI and multitargets
∂V r ∂VI which respects the edge capacities. By the max-flow min-cut theorem, this is equivalent to
the prescription that defines SI as the total weight in the minimum cut which disconnects source from
sink. Physically, the latter is equivalent to the RT prescription, while the former corresponds to the
bit-thread formulation of entanglement [12].

3 The Holographic Entropy Cone for Five Regions

The action of the symmetric group SN which relabels the regions Xi clearly leaves CN invariant. This
symmetry extends to an SN+1 symmetry which implements the exchange of any Xi with the purifier
O ≡ Σ r

⋃
i∈[N ] Xi. Henceforth, statements about symmetries refer to the extended symmetry group

SN+1. The following subsections detail the description of C5 in its two representations.

3.1 Facets

The starting point of the strategy described above is a set of true inequalities for N = 5 which is to
be proven complete. This set consists of 372 inequalities, which reduce to just 8 when quotiented by
symmetry. Table 1 shows a representative inequality for each symmetry orbit1. The first three are
upliftings of well-known inequalities for N ≤ 3, whereas the last five are new to N = 5. Inequality
1 is the trivial uplifting of subadditivity, whose orbit includes instances of the Araki-Lieb inequality
too. Inequalities 2 and 3 are two different upliftings of MMI, which can be more compactly written in
terms of the tripartite information as I3(A:B:C) ≤ 0 and I3(A:BC:DE) ≤ 0, respectively. Inequality 4
is the 5-party instance of an infinite family of cyclic entropy inequalities2 [10]. Like inequality 4, the
remaining four were proven by contraction for the RT case in [10]. This set of inequalities defines a
cone in entropy space which will be shown to be precisely the holographic entropy cone C5 for 5 regions

1For the explicit construction of N = 5 objects, monochromatic indices are assigned alphabetic values rather than
positive integers, and polychromatic indices are written by juxtaposition of letters rather than tuples.

2In the literature, this inequality is often quoted with manifest cyclicity of the subsystem labels. For consistency
with the notation used for the other inequalities, symbols and their labels are ordered lexicographically here.
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Table 1: Representatives for each of the 8 inequality orbits of the holographic entropy cone C5 for 5 regions. Respectively,
their orbit lengths are 15, 20, 45, 72, 10, 60, 60 and 90, thus defining 372 facets for C5 in a 31-dimensional entropy space.

1. SA + SB ≥ SAB 2. SAB + SAC + SBC ≥ SA + SB + SC + SABC

3. SABC + SADE + SBCDE ≥ SA + SBC + SDE +
SABCDE

4. SABC +SABD +SACE +SBDE +SCDE ≥ SAB +
SAC + SBD + SCE + SDE + SABCDE

5. SABC +SABD +SABE +SACD +SACE +SADE +
SBCE+SBDE+SCDE ≥ SAB+SAC+SAD+SBE+
SCE + SDE + SBCD + SABCE + SABDE + SACDE

6. 3SABC + 3SABD + SABE + SACD + 3SACE +
SADE + SBCD + SBCE + SBDE + SCDE ≥ 2SAB +
2SAC +SAD +SAE +SBC +2SBD +2SCE +SDE +
2SABCD + 2SABCE + SABDE + SACDE

7. 2SABC+SABD+SABE+SACD+SADE+SBCE+
SBDE ≥ SAB + SAC + SAD + SBC + SBE + SDE +
SABCD + SABCE + SABDE

8. SAD + SBC + SABE + SACE + SADE + SBDE +
SCDE ≥ SA+SB+SC+SD+SAE+SDE+SBCE+
SABDE + SACDE

in the next section. A natural question, however, is how to arrive at these inequalities, in particular the
last five, in the first place. As for now, only [13] succeeded in algebraically deriving these as candidate
inequalities using the formalism of the holographic entropy arrangement [13, 14].

It is worth remarking that, as defined, CN is the space of holographic entropy vectors for states
with time-reflection symmetry to which the RT prescription applies. In principle, lifting this restriction
to the fully covariant HRT case could allow for a larger space of entropy vectors, the HRT holographic
entropy cone CHRT

N ⊇ CN . While the original RT-based proof of strong subadditivity [15] was extended
to dynamical setups and proofs of MMI [3, 9], it has been argued that the same methods may not be
generalizable to non-static proofs for the 5-party inequalities [16]. Alternative bit-thread-based proofs
of MMI [17, 18] may lend themselves to generalizations to larger-N inequalities and covariance, but this
is yet to be explored. The validity of inequalities 4−8 for dynamical spacetimes thus remains an open

Table 2: Representatives for each of the 8 proto-entropic configurations which generate the information quantities
associated to each respective inequality orbit as a primitive of the holographic entropy cone C5 for 5 regions. For
inequalities 3−8, the necessary canonical building blocks required to reach rank D − 1 can be straightforwardly obtained
by completing the span of the orthogonal complement of the associated information quantity and are thus omitted for
clarity. Here, k ≡ [5] r {k} for k ∈ [5] and I ≡ [5] r I for I ⊂ [5]. The notation for building blocks is adapted from [13]:
C◦[I] denotes the canonical building block with a connected surface computing the entropy of I, whereas C∗[I(J)] and
C~[I(J)] refer to the non-canonical building blocks constructed in Sec. 6 of [13] with and without connected surface for
J , respectively (see Figs. 5(a), 5(c) and 5(d) in [13] for respective examples of C◦, C∗ and C~).

1.
⊔

I∈℘Nr{AB}

C◦[I] 2.
⊔

I∈℘Nr{ABC}

C◦[I]

3.
⊔

k∈{B,C,D,E}

C~
5 [k(k)]t C∗4[B(BE)]t C∗4[B(BD)] 4.

⊔
k∈[5]

C~
5 [k(k)] t C∗4[A(AE)] t C∗4[A(AD)] t C∗4[B(BC)]

5.
⊔

k∈{A,B,C,D}

C~
5 [k(k)] t C∗4[B(BD)] 6.

⊔
k∈[5]

C~
5 [k(k)] t C∗4[B(BE)] t C∗4[C(CD)]

7.
⊔

k∈[5]

C~
5 [k(k)] t C∗4[A(AE)] 8. C~

5 [E(E)] t C∗4[B(BC)] t C∗4[C(BC)]
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Table 3: Representatives for each of the 19 extreme ray orbits of the holographic entropy cone C5 for 5 regions.

1. (10000; 1111000000; 1111110000; 11110; 1) 2. (11100; 2211211110; 1222212211; 11222; 1)

3. (11110; 2221221211; 3323223222; 23333; 2) 4. (11111; 2222222222; 3333333333; 22222; 1)

5. (11111; 2222222222; 3333333333; 44444; 3) 6. (11112; 2223223233; 3343443444; 43333; 2)

7. (11122; 2233233334; 3444454455; 55444; 3) 8. (11111; 2222222222; 3333333331; 22222; 1)

9. (11112; 2223223233; 3343443442; 43333; 2) 10. (11111; 2222222222; 2333332332; 22222; 1)

11. (11222; 2333333444; 4445535354; 44433; 2) 12. (11111; 2222222222; 3323323232; 22222; 1)

13. (11111; 2222222222; 3233333232; 22222; 1) 14. (22223; 4445445455; 6476776575; 65555; 3)

15. (33333; 6666666666; 7759779999; 66666; 3) 16. (11111; 2222222222; 3322332233; 22222; 1)

17. (22223; 4445445455; 4656756777; 65555; 3) 18. (33333; 6666666666; 5979977997; 66666; 3)

19. (33333; 6666666666; 7957979997; 66666; 3)

question which has only been verified in specific setups3 [20–22]. However, a suggestive indication that
CHRT

N is no larger than CN is precisely the algebraic derivation of these from the holographic entropy
arrangement, which is defined for arbitrary spacetimes. More importantly, all facets of C5 can be shown
to be primitive quantities as defined in [13, 14], thus corresponding to phase transitions of entangling
surfaces for arbitrary geometric states. Explicitly, using the proto-entropic formalism and notation for
building blocks established in [13], Table 2 provides a set of configurations which suffice to generate
the information quantities associated to inequalities 1−8 as primitive, respectively. It is remarkable
that, besides canonical building blocks, only the non-adjoining configurations C∗4 and C~

5 are needed to
generate all facets of the polyhedron for N = 5 up to symmetries (see Table 2 for notation). Note also
the necessity of considering non-simply connected boundary topologies with enveloping, for otherwise
the In theorem would preclude the construction of these quantities as primitive [14]. The configurations
in Table 2 strongly support the conjecture in [13] that the holographic entropy cone and polyhedron
are indeed the same object.

3.2 Extreme Rays

The cone specified above by its 372 facets admits a dual description in terms of 2267 extreme rays.
The latter can be grouped into 19 distinct symmetry orbits, such that one may focus on a single
representative ray per orbit. Table 3 shows one such choice of representatives4, while Fig. 1 provides
every graph model needed to construct the holographic entropy cone C5 for 5 regions5. The first seven
rays continue the pattern of being realizable by star graphs, which prove sufficient to generate all
extreme rays for N ≤ 4. However, the other twelve exhibit much richer structure, both in terms of
reduced symmetry and non-planarity.

3In 2 + 1 bulk dimensions, [19] has recently proven that any inequality for which a contraction map exists is not only
valid for RT, but also for HRT. In particular, this implies CHRT

N = CN for N ≤ 5 in 2 + 1 bulk dimensions.
4Semicolons separate entropy entries corresponding to polychromatic indices of different cardinality. The ordering is

given by: ( A, B, C, D, E ; AB, AC, AD, AE, BC, BD, BE, CD, CE, DE ; ABC, ABD, ABE, ACD, ACE, ADE, BCD,
BCE, BDE, CDE ; ABCD, ABCE, ABDE, ACDE, BCDE ; ABCDE ).

5In producing these graphs, the choice has been to fix the number of boundary vertices to 5 + 1, such that the
colouring map is bijective for the 5 regions and their purifier O. An explicit construction of an associated wormhole
geometry can be accomplished by operations that bring the graph to a suitable form without changing its entropies, as
explained in [10].
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Figure 1: Graph models realizing the ray representatives in Table 3, corresponding to each of the 19 extreme ray orbits
of the holographic entropy cone C5 for 5 regions. Graphs are numbered according to the extreme ray they generate, and
captioned by the length `k of their orbit. Boundary vertices are labelled by their monochromatic index, bulk vertices by
σn, with n ∈ Z+ enumerating them, and edges by their capacity. Boundary vertices of pure regions are omitted.

4 Conclusion

The holographic entropy cone CN is now known for all N ≤ 5. Besides the infinite family of cyclic
inequalities, an understanding of the general N case remains elusive. Early explorations of N = 6
reveal that C6 consists of at least 19 valid (i.e. proven by contraction), linearly independent orbits of
holographic entropy inequalities. The following is an example of one such 6-party inequality6:
SAB + SABC + SACD + SADE + SBCD + SBDE + SCDE + SCDF + SDEF + SABCE ≥ SA + SB + SAC +
SBC + SCD + 2SDE + SDF + SABE + SABCD + SCDEF + SABCDE.

Any constructive approach to exploring CN for larger N must overcome the difficulty of dealing
with an entropy space of 2N − 1 dimensions. Already the dual description problem, for which no
efficient algorithm is known, can only be feasibly solved up to symmetry [23]. Moreover, most aspects

6This inequality has been proven using the contraction-map method introduced in [10]. It can also be generated as a
primitive quantity using the building blocks from [13], thus demonstrating that it is a facet of C6. The full construction
of C6 is work in progress.
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of the problem suffer a combinatorial explosion which is doubly exponential in N and any hope to
proceed constructively must be accompanied by a strategy to tame the combinatorics. In particular, it
is indispensable to turn the tables regarding the large degree of redundancy in the structure of CN and
use its symmetry to one’s advantage. Nevertheless, it would ultimately be desirable to understand CN

for arbitrary N . This will most likely require reducing the problem to an algebraic question rather
than a combinatorial one, potentially along the lines of the formalism in [13, 14].
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