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Machine learning tools such as neural networks and Gaussian process regression are increasingly
being implemented in the development of atomistic potentials. Here, we develop a formalism to lever-
age such non-linear interpolation tools in describing properties dependent on occupation degrees of
freedom in multicomponent solids. Symmetry adapted cluster functions are used to differentiate
distinct local orderings. These local features are used as input to neural networks that reproduce
local properties such as the site energy. We apply the technique to reproduce a synthetic cluster ex-
pansion Hamiltonian with multi-body interactions, as well as the formation energies calculated from
first-principles for the intercalation of lithium into TiS2. The formalism and results presented here
show that complex multi-body interactions may be approximated by non-linear models involving
smaller clusters.

I. INTRODUCTION5

Recent years have seen a dramatic increase in the use of machine learning tools in materials science1. They have6

been combined with large databases and high-throughput computations2–7 in the search of novel materials chemistries7

and to learn global trends8–13. In parallel, machine learning tools are increasingly used to construct interatomic force-8

fields that can represent diverse local environments14–18. A major challenge in the application of machine learning in9

materials science is the identification of suitable structural and chemical descriptors that are invariant to underlying10

symmetries of the problem. Many such descriptors have already been formulated, including local descriptors that use11

distances and angles between atoms or expand local environments in terms of spherical harmonics14–20.12

Alloys, where properties are sensitive to the degree of order or disorder of different chemical species on a parent13

crystal structure, have received less attention as a machine learning problem. Here we address the alloy problem from14

a machine learning perspective and show that suitable and robust descriptors of the degree of configurational order15

can be formulated using mathematical tools that have been developed in the context of lattice model Hamiltonians.16

Lattice model Hamiltonians play a central role in first-principles statistical mechanics schemes to predict thermo-17

dynamic potentials and diffusion coefficients of alloys and off-stoichiometric compounds21 . They were put on a firm18

theoretical footing by Sanchez et al.22 with the rigorous derivation of the cluster expansion, an effective Hamiltonian19

expressed in terms of orthonormal basis functions of configurational occupation variables. The cluster expansion20

formalism sets up a natural mathematical framework with which to represent the properties of a crystal as a func-21

tion of site degrees of freedom22,23. Since it is expressed in terms of a complete and orthonormal basis, it enables22

a systematic tuning of truncation errors when parameterizing expansion coefficients to first-principles training data.23

In this way, complex energy landscapes as a function of configurational degrees of freedom can be reproduced by24

fitting to a relatively small number of first-principles electronic structure calculations. The approach has enabled25

accurate first-principles predictions of temperature-composition phase diagrams23–34, order-disorder phenomena35–45
26

and composition dependent diffusion coefficients in alloys and complex inorganic compounds46–52
27

A cluster expansion is formulated as a linear series of cluster basis functions multiplied by constant expansion28

coefficients that are determined by the underlying chemistry and crystal structure of the multicomponent solid. Cluster29

expansions, while formally exact, must be truncated in practice. Many advanced methods have been developed to30

aid in the accurate and efficient parameterization of a truncated cluster expansion. These include genetic algorithms31

to select a cluster basis set53, schemes to reduce over-fitting using cross-validation26 and regularizers54, and the use32

of Bayesian priors to incorporate physical intuition during model development55. Recently, methods have also been33

developed to determine the ground states of a cluster expansion56 and to impose constraints as part of the regression34

step to ensure that the cluster expansion predicts ground states correctly57.35

Here, we build on the cluster expansion approach, but relax the constraint of linearity and leverage advanced36

machine learning tools such as neural networks and Gaussian process regressions to represent crystal properties that37

depend on alloy configuration in terms of symmetry invariant descriptors of order. As descriptors, we use site-centric38

correlation functions, which are related to the correlation functions introduced by Sanchez and de Fontaine58,59 and39

are at the core of the cluster expansion approach22. We illustrate the method by modeling the formation energies of a40

synthetic multi-body binary Hamiltonian on the FCC crystal and of Li-vacancy disorder in spinel LiTiS2, a compound41

that is crystallographically more complex than most, having two symmetrically non-equivalent sites. We find that42

accurate Hamiltonians can be built with a relatively small number of ab-initio calculations and only a few correlation43

functions as descriptors.44
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II. RESULTS45

A. The cluster expansion formalism re-visited46

FIG. 1. Prototype square lattice with two distinct pair clusters highlighted. The pair marked in red corresponds to the nearest
neighbor pair cluster, while the pair marked in green is the next nearest neighbor pair. Equivalent clusters are marked in the
same color. The orbit of a particular cluster centered around site i consists of all the equivalent clusters.

We start by reviewing essential ingredients to the cluster expansion approach as applied to a simple binary alloy.47

A particular ordering of the components of a binary crystal of N sites can be represented as an unrolled vector of48

occupation variables, ~σ = {σ1, ..., σi, ..., σN}, where σi is +1 or -1 depending on the occupant of site i. Sanchez et49

al22 showed that any scalar property of a binary crystal that depends on ~σ, such as its fully relaxed formation energy,50

can be expressed as an expansion in terms of polynomials of occupation variables according to51

E(~σ) = NV0 +
∑
α

VαΦα(~σ) (1)

where the sum extends over all clusters of sites α within the crystal (e.g. point clusters, pair clusters, triplet clusters52

etc.) and where53

Φα(~σ) =
∏
i∈α

σi (2)

are cluster functions, defined as the product of occupation variables belonging to the cluster α. Sanchez et al22 showed54

that the cluster functions Φα form a complete and orthonormal basis with respect to a particular scalar product defined55

on the space of configurations ~σ. The expansion coefficients Vα in Eq. 1 are constant and are determined by the56

chemistry and crystal structure of the alloy.57

The symmetry of the undecorated parent crystal structure imposes constraints on the expansion coefficients Vα in58

Eq. 1. Any two cluster functions Φα(~σ) and Φδ(~σ) that can be mapped onto each other by a space group operation59

of the crystal must have the same expansion coefficients (i.e. Vα=Vδ). All cluster functions Φδ(~σ) that are related by60

a symmetry operation of the crystal to a prototype cluster function Φα(~σ) can be grouped together into an orbit of61

cluster functions Ωα = {Φα(~σ), ...,Φδ(~σ), ...}. For example, all cluster functions associated with nearest neighbor pair62

clusters that are related by a symmetry operation to a prototype nearest neighbor pair cluster belong to the same63

orbit. For a binary alloy, there exists an orbit of cluster functions for each symmetrically distinct cluster type. The64

set of all cluster functions can be divided among different orbits Λ = {Ωα,Ωβ , · · · } where α, β etc. correspond to65

symmetrically distinct cluster prototypes.66

Since the expansion coefficients belonging to symmetrically equivalent clusters are all equal to each other, there is67

only one expansion coefficient Vα for each orbit Ωα. This makes it possible to rewrite Eq. 1 as a sum first over orbits68

followed by a sum over cluster functions within each orbit according to69

E(~σ) = NV0 +
∑

Ωα∈Λ

Vα
∑
δ∈Ωα

Φδ(~σ) (3)

Eq. 3 can be normalized by the number of atoms within the crystal and recast as70

E(~σ)

N
= V0 +

∑
Ωα

Vαmα〈Φα(~σ)〉 (4)
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upon introducing correlation functions defined as22,23
71

〈Φα(~σ)〉 =

(∑
δ∈Ωα

Φδ(~σ)
)

Nmα
(5)

where mα is the multiplicity of the cluster per site. A correlation function 〈Φα(~σ)〉 is the average value of the cluster72

function Φα(~σ) over the orbit Ωα for the ordering ~σ.73

For a binary alloy, each symmetrically distinct cluster type (e.g. nearest neighbor pair cluster, second nearest74

neighbor pair cluster, nearest neighbor triplet cluster etc.) has a correlation function 〈Φα(~σ)〉 associated with it. The75

values of all correlation functions, {〈Φα(~σ)〉, 〈Φβ(~σ)〉, ...} for a particular ordering ~σ can serve as a finger print of that76

ordering. Since the correlation functions are averages over all symmetrically equivalent cluster functions, they are77

invariant to an application of any space group operation of the parent crystal applied to the ordering ~σ. Hence the78

correlation functions will have the same values for all orderings ~σ′ that are related by symmetry to ~σ. They are a79

measure of a particular state of configurational order on a crystal that is invariant to a space group operation of the80

underlying crystal.81

It is instructive to recast the cluster expanded energy as a sum of site energies. To this end, we define Ωi
α as the82

set of all cluster functions, Φδ, related by symmetry to Φα in which one of the sites of the cluster δ is site i. Ωiα is83

a subset of Ωα and consists of cluster functions associated with clusters radiating out of site i. The set of all cluster84

orbits that radiate from site i will be denoted Λi = {Ωiα,Ωiβ , · · · }, where as previously the clusters α, β etc. refer to85

symmetrically distinct cluster prototypes such as the nearest neighbor pair, the second nearest neighbor pair etc. In86

terms of the site orbits, we can rewrite the total energy, Eq. 3, as87

E(~σ) = NV0 +
∑
i

Ei(~σ) (6)

where the site energies are defined as88

Ei(~σ) =
∑

Ωiα∈Λi

Vα
|α|

∑
δ∈Ωiα

Φδ(~σ) (7)

The |α|, which denotes the number of sites in cluster α, appears in Eq. 6 to avoid over counting each cluster function89

Φδ(~σ) when summing Eq. 7 over each site i of the crystal.90

Just as the form of the energy expression in Eq. 3 makes clear that the correlation functions defined by Eq. 5 are91

a measure of the global degree of ordering within the crystal, Eq. 7 for the site energies suggests the importance of92

local site-centric correlation functions defined as93

Giα =
∑
δ∈Ωiα

Φδ(~σ) (8)

in measuring a local degree of ordering relative to site i. Since the sum in Eq. 8 is over all symmetrically equivalent94

clusters having a site i in common, it is invariant to any change in orientation around site i permitted by the space95

group of the parent crystal of the local degree of ordering.96

B. Developing features for neural network alloy Hamiltonians97

The correlation functions defined by Eq. 5 and Eq. 8 form a set of descriptors of the degree of order over the sites of98

a binary crystal that are invariant to the translational and orientational symmetries of the underlying parent crystal99

structure. As first shown by Sanchez et al22, the configurational energy of the crystal can be expressed as a linear100

expansion of the correlation functions as in Eq. 4, which can trivially be recast into the forms of Eq. 6 and Eq. 7.101

However, a linear expansion is only guaranteed to be an exact description of the configurational energy if a correlation102

function is included for every symmetrically distinct cluster type in the crystal. In practice, cluster expansions must103

be truncated beyond some maximal sized cluster, leading to truncation errors.104

Here we relax the restriction of a linear expansion in terms of correlation functions, and instead allow for a non-105

linear dependence of the energy on the correlation functions. Similar to Eq. 6 , we express the energy of the crystal106

as a sum of site energies, but the site energies are now allowed to be a non-linear function of the local correlation107

functions defined by Eq 8 according to108

E(~σ) =
∑
i

Ei(G
i
α, G

i
β , ...) (9)
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To be tractable, the site energies will only depend on a finite set of local correlation functions corresponding to109

short-range and compact clusters. The fact that symmetrically equivalent configurations ~σ have the same correlations110

ensures that Eq 9 is also invariant to the underlying symmetries of the undecorated parent crystal structure and will111

evaluate to the same energy for all orderings that are equivalent by a space group operation of the crystal.112

While the optimal functional dependence of the site energies Ei on a finite set of local correlation function descriptors113

is not a priori clear, it can be learned with a neural network. Neural networks (NN) are powerful machine learning114

tools that can replicate complex functions of multiple input variables, also called features. Figure 2 schematically shows115

a neural net that can describe the site energies Ei relying on inputs corresponding to the different local correlation116

functions {Giα, Giβ , ...}. Function choices at each node include rectified linear units (ReLU), sigmoid and hyperbolic117

tangents60,61.118

The neural nets can be trained using first-principles energies, E(~σ), calculated for a large number of configurations119

~σ within periodic supercells. Training neural networks to reproduce the local energy can be accomplished by using120

conventional backpropogation techniques62 with the following loss function:121

Γ =
1

M

∑
~σ

(E(~σ)− EDFT(~σ))
2

=
1

M

∑
~σ

(∑
i

Ei (~σ;w,b)− EDFT(~σ)

)2 (10)

where w, and b are the weight and bias parameters within the neural network. In this study we used a fully-122

connected neural network with three layers consisting of 4, 4, and 2 nodes respectively. The weights for each network123

are initialized with values drawn from a uniform distribution as described by Glorot et al.63. We use advanced gradient124

descent techniques such as ADAM64 that adaptively change the learning rates for each weight parameter with an initial125

decay rate of 0.001. Further, we use mini-batch training, where the gradients are calculated over a subset of the126

training data before updating the weights. We then run several epochs (at least 2000) of batch training across our127

training data set.128

...

G i
α

G i
β

Ei ( )

FIG. 2. Schematic of neural network architecture and features ({Giα, Giβ , · · · }) that are fed into the model for the site energy
(Ei(~σ)).

... E ( )

G i
α

G j
β

Ei ( )

Ej( )

FIG. 3. Schematic picture illustrating how the total energy of a configuration may be estimated by summing the local energy
contributions across all sites in the crystal.

C. Generalization to multi-component arbitrarily complex crystals129

The treatment so far relies on a particular functional form for the cluster basis functions, Eq. 2, and is valid for130

the simplest binary crystals consisting of only one type of site for alloying. There is some flexibility in the choice of131
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cluster basis functions, which, for a binary system can be expressed more generally as132

Φα(~σ) =
∏
i∈α

φ (σi) (11)

where φ (σi) represents a function of the occupation variable σi. For example, the commonly used lattice-gas Hamil-133

tonian emerges when φ (σi) = 1
2 (1 + σi)

65. Sanchez66 has shown how to construct a family of functions φ (σi) that are134

orthogonal under a particular definition of a scalar product in the discrete occupation variable space. For a ternary135

system, the occupation variables σi assume one of three discrete values (e.g. -1, 0 and +1). Furthermore, for a ternary136

system multiple cluster basis functions exist for each crystallographic cluster of sites α, and take the form137

Φα,~n(~σ) =
∏
i∈α

φni (σi) (12)

where the φni (σi) refer to one of two site basis functions φ1 or φ2 and where ~n is a vector collecting the indices138

ni specifing the particular site basis function for site i that is to appear in the cluster basis function. As before,139

symmetry can be applied to a prototype cluster basis function Φα,~n to generate all symmetrically equivalent cluster140

basis functions forming the orbit Ωα,~n. Site centric orbits of cluster functions, Ωi
α,~n, can be collected in a similar way141

as was described for a simple binary system.142

Another complexity is that many crystal structures have more than one symmetrically distinct site that can be143

alloyed. For these crystals, a separate neural network needs to be trained for each symmetrically distinct site.144

D. Case studies145

We explore the ability of neural networks to predict configurational formation energies of multi-component crystals.146

In a first example we use a neural network to model the formation energies generated with a synthetic cluster expansion147

Hamiltonian on a face centered cubic lattice. In a second example, we train a neural network to predict the formation148

energies of Li-vacancy disorder over the interstitial sites of spinel LixTiS2, which contains two symmetrically distinct149

types of sites that can host Li ions or vacancies.150
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FIG. 4. Effective cluster interaction (ECI) values for the linear model were generated randomly by considering multi-body
interactions up to four point clusters.

We generated a synthetic cluster expansion Hamiltonian for the FCC lattice that includes multi-body interactions151

up to four point clusters. We used a lattice-gas type expansion for the synthetic Hamiltonian (i.e. φ (σi) = 1
2 (1 + σi)152

in Eq .11). The expansion coefficients were generated randomly for each cluster and are shown in fig. 4. These153

interactions were used to generate a training data set of energies for 1000 randomly generated but symmetrically154

distinct configurations. This encompasses orderings on supercells up to 10 multiples of the primitive FCC crystal.155

The energies were input into the ADAM optimizer to estimate parameters for different neural networks having varying156

number of local correlation functions as input features. We validated our model against the energies of the 1346157

symmetrically distinct configurations with up to 10 volumes of the primitive FCC cell. A comparison of the training,158

testing and maximum errors across the linear cluster expansion model and the neural network model is shown in159
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FIG. 5. The errors on the testing and training data from a synthetic cluster expansion are compared across a neural network
model and a linear model with the same number of features. (a) Training and testing errors while varying the number of input
features to the neural network and regular least squares fit (b) Maximum errors across the training and testing datasets while
varying the number of input features

fig. 5. The neural network consistently performs better in terms of the root mean square error as compared to the160

linear model, with the two methods converging when all the features of the synthetic cluster expansion are included.161

The neural network predicts the overall energy of the test dataset to within an error of 0.006 eV/atom with six local162

features (one point feature, and five pair descriptors) as shown in fig. 6. The linear regression model with the same163

number of features has an error of 0.01 eV/atom. Remarkably, the neural network also predicts the overall shape of164

the convex hull in agreement with that of the synthetic dataset.165

We also investigate the ability of a neural network to predict DFT formation energies of lithium-vacancy orderings166

within a spinel TiS2 crystal which contains two distinct Li sites. The spinel primitive cell contains four octahedral167

interstitial sites and two tetrahedral interstitial sites that can be occupied by Li. The formation energies calculated168

with density functional theory on 129 symmetrically distinct orderings are shown in fig. 767. Since there are two169

crystallographically distinct sites that can host Li-vacancy disorder, two independent neural networks are necessary170

(one for the tetrahedral sites and one for the octahedral sites) to describe the local energy contributions to the total171

energy of the crystal.172

The DFT formation energies of 66 configurations were used as training data while the energies of the remaining 63173

orderings were used to test the models. The predictions of the neural network and linear regression for this system174

are shown in fig. 7. Both models were only trained with local pair cluster correlations having lengths less than 10Å.175

The root mean square error over the training data set is 7 meV/f.u for the neural network, while a regression model176

with the same clusters had an error of 65 meV/f.u. The models were tested on a hold out set of 63 formation energies,177

resulting in a 36 meV/f.u. error for the neural network and a 89 meV/f.u. error for the linear regression model.178

The maximum training (testing) errors for the neural network and regression are 82 (553) and 331 (570) meV/f.u179

respectively. Remarkably, as seen in fig. 7b the shape of the convex hull reproduced with the neural network model180

is almost identical to that predicted with the DFT calculations, while the linear regression model shown in fig. 7a181

struggles to reproduce the groundstates. The errors of the neural network are a tenth that of an equivalent cluster182

expansion model with only pair interactions. This is especially remarkable since the neural net input feature vector183

only has information about pair cluster correlations. The linear regression model can be greatly improved by adding184
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FIG. 6. The figure shows the predicted values for the formation energies of a test data set based on models that are fit using a
neural network. The model is fit with features consisting of five pair correlations and one point feature. The full data set from
the synthetic cluster expansion is plotted as circles while predicted test data is plotted as green crosses. The orange circles
represent configurations on the convex hull of the synthetic cluster expansion while the orange crosses represent configurations
on the predicted convex hull.

additional multi-body clusters. The high quality of the neural network fit using only pair interactions likely stems185

from the fact that the contributions from the multi-body interactions can be approximated within the neural network186

through nonlinearities in the activation function and the dense connectivity of the layers.187

III. DISCUSSION188

We have shown how neural networks can be implemented to describe the formation energy of a multi-component189

crystal. Similar to cluster expansion Hamiltonians, it can be generalized to describe any scalar property of a multi-190

component crystal, such as its formation energy or volume, as a function of configurational degrees of freedom. The191

approach relies on local variants of the alloy correlation functions introduced by Sanchez and de Fontaine58,59, which192

are expressed in terms of site occupation variables that track the chemical occupants at each crystal site. The site-193

centric correlation functions serve as elements of the input feature vector of the neural network assigned to each194

symmetrically distinct site within the parent crystal. They are defined in a way to ensure their invariance to any195

symmetry operation of the undecorated parent crystal structure. The local features are, therefore, guaranteed to have196

the same value across all local orderings that are related by a symmetry of the underlying crystal.197

Neural networks as a function of the local correlation functions can be viewed as non-linear extensions of the cluster198

expansion formalized by Sanchez et al22. As such, they should enable a more rapid convergence than traditional199

cluster expansions, with contributions from multi-body interactions approximated to some degree with non-linear200

dependencies on correlations belonging to smaller subclusters (e.g. point and pair clusters). While linear cluster201

expansions have been augmented by non linear functions in the past36,68, the non linear terms have predefined202

functional forms and usually only depend on a global property, such as the concentration of the solid. The present203

approach relaxes linearity on all local correlation functions and does not presuppose a functional form.204

The approach presented here is not limited to neural network based tools. Alternative machine learning models205

such as Gaussian process regression can also be used to estimate site-based energies. In this method, the site-based206

energy can be interpolated using the similarity of an arbitrary local ordering to the points in the training data set.207

The similarity is estimated using the kernel trick, while comparing the values of the local symmetry-adapted cluster208

functions. The method is similar in spirit to the Gaussian approximation potentials17.209

A cluster expansion has a local spatial dependence when it is truncated. Similarly, a neural-network model of210

alloy properties will also have a local spatial dependence if the feature vector of site-centric correlation functions211

is restricted to short-ranged and compact clusters. The scalar properties of some materials, however, may have212

contributions from long-range interactions that cannot be neglected. These include strain effects, which are especially213

important in spatially inhomogeneous crystals68,69, and electrostatic interactions in ionic crystals. Neural-network214

alloy Hamiltonians can be adapted to account for long-range interactions by adding additional long-range descriptors215

in addition to local features. These could include the overall alloy composition and long wave-length Fourier modes216

of the composition profile.217
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FIG. 7. Formation energies predicted with (a) least squares regression and (b) neural network potential for Lithium-vacancy
orderings on the tetrahedral and octahedral sites of spinel TiS2. Local features around each site are generated from only pair
correlations for the neural network, while the least squares model uses the average correlations for the same clusters. The
figure shows DFT calculated formation energies as circles, while the predictions from the model are shown as green crosses.
Configurations on the DFT convex hull are shown as orange circles and the configurations on the predicted convex hull are
shown as orange crosses. The figure on top shows the full composition range, while the figure below spans a smaller composition
range up to x = 2

3
.

While a model of the configurational energy should be quantitatively accurate, it must also reproduce important218

qualitative features including the first-principles predicted ground states. Quadratic programming methods were219

recently introduced by Huang et al.57 to enforce ground state constraints as part of the regression scheme to determine220

cluster expansion interaction coefficients. These included constraints that enforce a positive distance from the convex221

hull for metastable configurations and negative values for configurations on the hull. Similar constraints can be222

imposed as part of the construction of neural network models of the configurational energy.223

As described by Huang et al.57, both the metastability constraint, and the constraints for stable configurations can224

be summarized as:225

c(~σ) ≥ 0 (13)

where c(σ) has the form:226

E(~σ)−
∑
h∈H

xhE(~σh) ≥ 0 (14)

for metastable configurations, with the sum being over all the convex hull points H, and for stable configurations:227

−

E(~σ)−
∑

h∈H\~σ

xhE(~σh)

 ≥ 0 (15)
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where the sum extends over all the configurations on the hull, except the configuration, ~σ. The loss function of eq. (10)228

subject to the ground state constraints, eq. (13), eq. (14) and eq. (15), can be achieved with the help of Lagrange229

multipliers:230

Γ =
1

M

∑
~σ

(∑
i

Ei(~σi;w,b)− EDFT(~σ)

)2

−
∑
~σ

λ~σc(σ) (16)

where the Lagrange multipliers, λ~σ, are required to be positive. Neural networks can then be constructed using stan-231

dard backpropagation techniques, with the updates of the Lagrange multipliers performed with projected gradients.232

IV. METHODS233

Local cluster functions around each site were calculated with CASM: A clusters approach to Statistical Mechanics234

software package30,70–72. All graphs were made with the matplotlib73 library. The machine learning tools were235

implemented with TensorFlow74. The neural network fitting code and cluster expansion parameterization will be236

released in a future version of CASM70.237

V. DATA AVAILABILITY238

The data for the synthetic FCC cluster expansion, and Li-TiS2 are provided as CASM projects in the supplementary239

information. The data points of figure 5 are also provided within the same file.240
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