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ABSTRACT
In the continuum context, the displacements of atoms induced by a dislocation can
be approximated by a continuum disregistry field. In this work, two phase-field (PF)-
based approaches and their variants are employed to calculate the disregistry fields
of static, extended dislocations of pure edge and pure screw character in two face-
centered cubic metals: Au and Al, which have distinct stable stacking fault energy
and elastic anisotropy. A new truncated Fourier series form is developed to approxi-
mate the generalized stacking fault energy (GSFE) surface, which shows significant
improvement over the previously employed Fourier series form. By measuring the
intrinsic stacking fault (ISF) width and partial dislocation core size in different ways,
the PF-based disregistry fields are quantitatively compared against those predicted
by molecular statics. In particular, two new measures for the ISF widths are pro-
posed and shown to overcome drawbacks of the more commonly used standards in
the literature. Our calculations also show that continuum formulation of the elas-
tic energy and the GSFE for a homogeneous surface can successfully characterize
the core structure. Last, our comparisons highlight the significance of including the
gradient energy in the free energy formulation when an accurate description of the
dislocation core structure is desired.
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1. Introduction

Plastic deformation of crystalline materials, e.g., metals, alloys, semiconductors, ce-
ramics, is controlled by the motion of dislocations [1]. The atomic structures of dislo-
cation cores naturally depend on crystal arrangement of the atoms [2]. For example,
in a face-centered cubic (FCC) lattice, a perfect (a0/2) 〈110〉 dislocation with a0 being
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the lattice constant, is usually split into two Shockley partial dislocations

a0

2
〈110〉 −→ a0

6
〈211〉+

a0

6
〈121〉 , (1)

as a result of the unique energy landscape in FCC metals [3]. Because (a0/6) 〈211〉 is
not a lattice translation vector, an intrinsic stacking fault (ISF) consisting of atoms
in hexagonal close-packed (HCP) local structure is left behind as the first partial dis-
location passes [4]. The atomic structure associated with the ISF is restored to that
in a perfect lattice following the glide of the second partial dislocation. Therefore, a
perfect dislocation in FCC metals is usually “extended”, consisting of two partial dis-
locations bounding, and separated by, an ISF. These extended dislocations distinguish
the plasticity of FCC metals from that in many other crystals and the extent of the
stacking fault plays an important role in processes such as structural transformation,
twinning, dislocation network formation [5, 6], dislocation reactions [7], and cross slip
[8].

While atomistic simulations are desirable in modeling dislocations, they are lim-
ited to nano/submicron length scale even with dedicated high-performance computing
resources [9, 10]. To understand plastic deformation of bulk materials, mesoscopic ap-
proaches are desirable, pointing to the need of mesoscale modeling of dislocation core
structures which are building blocks for more complicated dislocation-mediated prob-
lems [11, 12]. From a computational perspective, it is challenging to model detailed
and heterogeneous atomic-scale morphology of an extended dislocation since it cannot
be treated as a sharp, homogeneous boundary between a slipped and an unslipped
region in a lattice.

Figure 1. MS simulation results for the dissociation of an straight edge dislocation in Al. Atoms are colored
by adaptive common neighbor analysis (a-CNA) [13]: green, red, and white correspond to FCC, HCP, and

disordered local lattice structures, respectively. Each yellow arrow is the displacement vector of the associated

atom with respect to its dislocation-free perfect lattice site. The blue dash-dotted vertical line is the position
of x0; the black dashed horizontal line shows the slip plane; the two layers of atoms immediately above and
below the slip plane are within a red dotted box.

Fundamentally, the dislocation structure can be described by the displacements of
discrete atoms with respect to their dislocation-free perfect lattice sites, as visualized
by the yellow arrows in Fig. 1. In the continuum context, the discrete atomic displace-
ments are instantiated by a continuum disregistry field ζ(x) along the x direction,
which, for any continuum point x0, is

ζ(x0) = uup(x0)− ulo(x0) (2)
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where uup(x0) and ulo(x0) are the continuum displacements at x0 immediately above
and below the slip plane, respectively. In Fig. 1, x0 is located between atoms A and B
in the upper plane and atoms C and D in the lower plane. Take the upper plane as an
example, the displacement at x0 can be linearly interpolated between those of atoms
A and B (uA and uB), i.e.,

uup(x0) = uA +
uB − uA

xB − xA
(x0 − xA) (3)

where xA and xB are the x-coordinates of atoms A and B, respectively. The process
to calculate ulo(x0) is similar. Note that at any point x, the vector ζ(x) can point
to any direction, i.e., the disregistry field is inherently 3D. However, the component
along the y direction is usually not considered in continuum simulations [14].

Eqs. 2 and 3 relate the discrete atomic displacements with a continuum disregistry
field, making it possible for continuum methods, e.g., the generalized Peierls-Nabarro
(GPN) model [15] and the phase-field (PF)-based methods [16, 17], to quantify the dis-
location core structures in a manner consistent with atomistic simulations. GPN- and
PF-based methods have been adapted to mechanics problems and more specifically for
determining the core structures of dislocations [18, 19]. These methods minimize an
energy functional at every point in the system and the order parameters are usually
chosen to identify a slipped phase and unslipped phase. Furthermore, PF framework
can be applied to the complex systems for which no reliable interatomic potential is
available. The input parameters of PF model can be obtained from ab initio and/or
experimental sources in such cases. In addition, the time scale limitation of full atom-
istic simulation prevents investigating diffusion-coupled phenomena. For example, the
PF model can be used to couple displacive-diffusional dislocation models in complex
materials, such as Ni-based superalloys [20]. Consequently, the PF method has the
advantage of simulating the low energy state of a dislocation core, including the ISF
width and two bounding partials.

While using the same basic PF framework, different variants of PF dislocation
models have evolved over the years due to optional modeling choices. In this work,
we examine the capabilities of different PF-based dislocation model variants by com-
paring the calculated disregistry profiles to molecular statics (MS) calculations. We
choose two models, atomistic phase-field microelasticity (APFM) [17] and phase-field
dislocation dynamics (PFDD) [16], which represent diverse modeling choices and thus
find commonalities with others PF-based dislocation models in the literature. Note
that in the special case of a straight dislocation, the PFDD model was found to be
equivalent to the GPN model [21]. To ensure that the findings apply to a wide range of
FCC materials, two metals, Au and Al, are selected since they have distinctly different
stable SFE and elastic anisotropy. Once the disregistry fields are obtained, different
methods are adopted to determine the ISF widths and Shockley partial dislocation
core sizes.

In this paper, 3D Euclidean vectors are represented by lower-case bold italic char-
acters a, b, . . . In particular, let i1, i2, i3 represent the Cartesian basis vectors. Second-
order tensors are represented by upper-case bold italic characters A,B, . . . Third- and
fourth-order Euclidean tensors A,B, . . . are denoted by upper-case slanted sans-serif
characters. The transpose AT of A is defined by ATb ·c = b ·Ac. Additional notation
will be introduced as needed in what follows.
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2. A brief summary of PF-based modeling of dislocations

Following Mianroodi et al. [21], let u represent the displacement field, H = ∇u the
distortion field, E = (H + HT)/2 the strain field, and φ = (φ1, . . . , φn) a set of n
order parameters, with φα ranging between 0 and 1 for one perfect dislocation.

In the absence of an externally applied stress, the free energy density ψ takes the
form

ψ(E,φ,∇φ) = ψela(E,φ) + ψgsf(φ) + ψgra(∇φ). (4)

The elastic part is given by the Khachaturyan-Shalatov microelastic relation [18,
22, 23], i.e.,

ψela(E,φ) =
1

2
(E −ER(φ)) · CE(E −ER(φ)) (5)

where CE is the elastic stiffness and ER = (HR +HT
R)/2 is the residual strain. For

dislocation slip, the residual distortion, HR, takes the form [22, 24, 25]

HR(φ) =

n∑
α=1

ηα(φα)sα ⊗ nα (6)

where n is the total number of order parameters, nα is the slip plane unit normal,
ηα the amount of shear distortion, and sα the slip direction, of the αth order param-
eter. Note that E is associated with ER, and hence HR and φ, following the stress
equilibrium [19].

The generalized SF energy (GSFE) density, ψgsf(φ), represents the energy density
associated with the ISF (the red atoms in Fig. 1). It is related to the GSFE surface
γgsf via a scaling factor lgsf , i.e.,

ψgsf(φ) =
γgsf(φ)

lgsf
(7)

The gradient energy density, ψgra, represents the density of energy storage in the
Shockley partial dislocation cores (the white atoms in Fig. 1). For dislocation glide
with planar cores in a single crystal, ψgra is given by [26]

ψgra(∇φ) = ηg0 | curlHR|2 = ηg0

n∑
α,β=1

∇φα ·Nαβ∇φβ (8)

where

Nαβ =
bα · bβ
d2

111

[(nα · nβ)I − nβ ⊗ nα] (9)

where I is the second-order identity matrix, bα and bβ are the slip vectors, which are

not necessarily the Burgers vector, d111 = a0/
√

3 is the distance between two adjacent
{111} plane in an FCC lattice, and Nαβ is a unitless second-order projection tensor
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which projects ∇φ onto the slip planes. The scaling factor ηg0, which has units of
energy per unit length, is informed by MS simulations following [17]

ηg0 =
g0l0
αg0

(10)

where αg0, g0, and l0 are fit to MS-based extended dislocation configuration. We re-
mark that introducing the MS-informed scaling factor yields a gradient energy density
that better represents the contribution from the Shockley partial dislocation cores. In
particular, l0 is the Shockley partial dislocation core size and will be further discussed
in Section 5.3. Note that with respect to our earlier publications [17, 21] in which κ
was used for two scaling factors, the following relation holds:

αg0 = κG0κH0 (11)

Once the free energy density ψ is calculated, the time-dependent Ginzburg-Landau
(TDGL) equation is employed to recursively minimize ψ with respect to each φα, i.e.,

φ̇α = −m0δφα
ψ (12)

where the superposed dot denotes the time derivative, and the mobility m0 is as-
sumed a non-negative constant for all order parameters for simplicity and to ensure
non-negative dissipation and gradient flow of the system toward thermodynamic equi-
librium.

3. Formulation and parameterization in APFM and PFDD

Table 1. A summary of the differences among the four PF-based methods that are employed in this
work. n is the total number of order parameters for all possible slip systems; h is the uniform grid

spacing in a structured grid; CE is the elastic stiffness tensor; ηα is the amount of shear of the αth order

parameter; ψgra is the gradient energy density; γgsf is the GSFE surface, and lgsf is the factor between
the GSFE density ψgsf and γgsf in Eq. 7.

n h CE ηα ψgra γgsf lgsf TDGL

APFM 8 a0/
√

3 anisotropic bAαφ
A
α/d111 Yes Look-up table form d111 Eq. 13

APFMng 8 a0/
√

3 anisotropic bAαφ
A
α/d111 No Look-up table form d111 Eq. 14

PFDD 12 a0/
√

2 isotropic bPαδαφ
P
α No Look-up table form bP Eq. 14

PFDDfs 12 a0/
√

2 isotropic bPαδαφ
P
α No Eq. 26 bP Eq. 14

APFM and PFDD differ in many ways in terms of formulation and parametriza-
tion, and we are motivated to understand the impact of these choices on the predicted
disregistry fields of the same dislocation. One major difference between the two meth-
ods is that in APFM, Eq. 4 is fully employed, while in PFDD, the effect of the order
parameter gradient, ∇φ, is not considered, and so ψgra is neglected. To assess the
influence of this difference, ψgra is intentionally omitted in some APFM calculations,
and the corresponding results are termed “APFMng”; otherwise, the APFM-based re-
sults are simply referred to as “APFM”. Another difference concerns the calculation
of γgsf in Eq. 7. Based on ab initio or atomistic GSFE data, γgsf is usually repre-
sented in look-up table form [17] or in 2D truncated Fourier series form [27]. While
both forms are implemented into PFDD, only the look-up table form is employed in
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APFM. To consider this difference, the PFDD-based results based on the look-up table
and Fourier series forms are termed “PFDD” and “PFDDfs”, respectively. As a result,
this paper effectively adopts four variants of PF-based approaches: APFM, APFMng,
PFDD, PFDDfs. It follows that the TDGL equation becomes

φ̇α = m0 [∇ · ∂∇φα
ψ − ∂φα

ψ] (13)

in APFM and

φ̇α = −m0∂φα
ψ (14)

in APFMng, PFDD, and PFDDfs. In all four methods, the embedded-atom method
(EAM) potentials for Au [28] and Al [29] are employed to calculate certain parame-
ters. All differences among these methods are summarized in Tab. 1; more details are
provided in the remainder of this section.

3.1. Order parameter φ

Figure 2. An illustration of the two order parameters (φA
1 , φA

2 ) in APFM and APFMng, and the three (φP
1 ,

φP
2 , φP

3 ) in PFDD and PFDDfs.

Let bα = |bα| be the magnitude of bα. In APFM and APFMng, two order parameters,
one along 〈110〉, and the other along 〈112〉, are employed on each {111} plane [17].
Accordingly, b1 =

√
2a0/2 and b2 =

√
6a0/2. Given that there are four equivalent {111}

planes in an FCC lattice, the total number of order parameters n = 8 in the APFM-
based variants. In PFDD and PFDDfs, three order parameters, each corresponding
to one of the 〈110〉 directions on the slip plane, are used per {111} plane, and so
bα =

√
2a0/2 for all order parameters and n = 12 to account for all possible slip

systems. On one {111} plane, the two sets of order parameters can be related following
two steps: first, due to the crystallographic symmetry, any φP

α with α being 1, 2, or 3 can
be assumed along φA

1 ; second, if φA
2 is in the clockwise/counterclockwise direction of

φA
1 , the remaining two φP

α must also be sequentially in the clockwise/counterclockwise
direction of the first φP

α. In this work, as illustrated in Fig. 2, the relations are

φA
1 =

bP

bA1
(φP

1 − φP
2 cos 60◦ − φP

3 cos 60◦) = φP
1 −

1

2
(φP

2 + φP
3 ) (15)

φA
2 =

bP

bA2
(φP

2 sin 60◦ − φP
3 sin 60◦) =

1

2
(φP

2 − φP
3 ) (16)

where superscripts A and P stand for APFM-based and PFDD-based variants, respec-
tively. In what follows, we let bP =

√
2a0/2.
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3.2. Elastic energy density ψela

Table 2. Lattice parameter a0 (in units

of Å) and elastic constants C11, C12, C44

(in units of GPa) are calculated from the
EAM potentials for Au [28] and Al [29].

a0 C11 C12 C44

Au 4.08 201.65 169.53 45.97
Al 4.05 113.80 61.55 31.60

In Eq. 6, ηα(φA
α ) = bAαφ

A
α/d111 in APFM-based variants, and ηα(φP

α) = bPαδαφ
P
α in

PFDD-based variants, with δα being the glide-plane Dirac measure. In practice, δα
equals the reciprocal of the grid spacing along the nα direction. In all methods, lattice
parameter a0 is needed to determine bα. In Eq. 5, the elastic stiffness tensor CE —
for cubic systems, the three elastic constants C11, C12, C44 — are required. The four
parameters are summarized in Tab. 2. In APFM-based variants, the anisotropic elastic
stiffness tensor CE is built directly from the three elastic constants. In PFDD-based
variants, the medium is assumed elastically isotropic, and so two independent elastic
parameters — Lamé constants µ and λ — are calculated by Voigt average [30], i.e.,

µ =
3C44 + C11 − C12

5
(17)

λ =
4C12 + C11 − 2C44

5
(18)

which are then used to form CE.

3.3. Generalized stacking fault energy density ψgsf

In Eq. 7, lgsf = d111 and bP in APFM-based and PFDD-based variants, respectively.
In terms of the determination of the GSFE surface, γgsf , the first way is the look-up
table form. To this end, a simulation box containing 2700 atoms that initially sit at
their perfect lattice sites is subject to 199 and 598 displacement steps in the [1̄10] and
[1̄1̄2] directions, respectively. Following each displacement, the system is relaxed using
a conjugate gradient algorithm with the atoms allowed to move along the (111) slip
plane normal direction. For each displacement set [φ1̄10, φ1̄1̄2], the excess energy per
unit ISF area relative to the ideal FCC lattice is taken as γgsf . To calculate the GSFE
part of ∂φα

ψ in Eqs. 13 and 14, i.e., ∂φα
ψgsf = ∂φα

γgsf/lgsf , for each [φ1̄10, φ1̄1̄2], we
take advantage of the following Fourier transform property,

∂φα
γgsf(φ1̄10, φ1̄1̄2) = R

(
F−1 [qαγ̂gsf(k1̄10, k1̄1̄2)]

)
(19)

where the superposed hat denotes a 2D discrete Fourier transform from physical space
(φ1̄10, φ1̄1̄2) to Fourier space (k1̄10, k1̄1̄2), F−1 conducts the inverse 2D discrete Fourier
transform, and qα is given by [31]

qα = iNα sin(kα/Nα) (20)
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where Nα = 199 and 598 are the numbers of discrete GSFE data in the [1̄10] and [1̄1̄2]
directions, respectively, and the wave numbers kα are

kα = 2π

{
0, 1, ...,

⌊
Nα

2

⌋
,

⌈
1−Nα

2

⌉
...,−1

}
(21)

In the meantime, a given set of φA
1 and φA

2 — either directly obtained in APFM
and APFMng or transformed from φP using Eqs. 15 and 16 in PFDD and PFDDfs —
should be mapped into [0,1], by

φA
α = φA

α −
⌊
φA
α

⌋
(22)

if φA
α < 0 or φA

α > 1, which may occur in the presence of dislocations with negative
signs or multiple dislocations in the same slip plane. This mapping is needed because
the look-up table form only considers one period within the GSFE landscape, since it
reflects atomic periodicity of the crystal. Note that the mapping is only carried out lo-
cally in calculating ψgsf , but not ψela or ψgra. For the Fourier series-based γgsf , however,
this mapping is not necessary since its periodicity is guaranteed by the trigonometric
functions fi (Eq. 26).

Once the 2D discrete ∂φα
γgsf(φ1̄10, φ1̄1̄2) surface is obtained, a bilinear interpolation

is conducted for each order parameter α to calculate ∂φA
α
γgsf(φ

A
1 , φ

A
2 ) in a look-up-table

fashion. In APFM and APFMng, the interpolated ∂φA
α
γgsf is used directly in Eq. 13.

However, in PFDD, it is ∂φP
α
γgsf that is used in Eq. 14. Thus, with the help of Eqs. 15

and 16, adopting the chain rule yields

∂φP
1
γgsf = ∂φA

1
γgsf · ∂φP

1
φA

1 + ∂φA
2
γgsf · ∂φP

1
φA

2 = ∂φA
1
γgsf (23)

∂φP
2
γgsf = ∂φA

1
γgsf · ∂φP

2
φA

1 + ∂φA
2
γgsf · ∂φP

2
φA

2 = −1

2
∂φA

1
γgsf +

1

2
∂φA

2
γgsf (24)

∂φP
3
γgsf = ∂φA

1
γgsf · ∂φP

3
φA

1 + ∂φA
2
γgsf · ∂φP

3
φA

2 = −1

2
∂φA

1
γgsf −

1

2
∂φA

2
γgsf (25)

The second way to obtain γgsf is via a truncated Fourier series. In PFDDfs, γgsf

takes the form [32]

γgsf =

Nfs∑
i=1

cifi (26)

where Nfs is the number of terms in the truncated Fourier series, fi are trigonometric
functions of all order parameters on the same slip plane, and coefficients ci are related
to Nfs selected γgsf values taken from the GSFE surface. In the literature, Nfs = 3 [34],
6 [15], 7 [27, 32], 8 [35], 12 [36], or 16 [37]. In particular, the 7-term Fourier series is by
far the most popular choice for pure FCC metals [16, 38, 39] and has been employed
in all previous PFDD simulations. The seven points on the GSFE surface, A, G, G1,
G2, G3, T , and T1, are illustrated in Fig. 3(a–b). In terms of (φ1̄10, φ1̄1̄2), A lies at the
origin; T and G are located at (0.5, 0) and (0.5, 0.5/3), respectively; T1 lies half-way
between A and T ; and G1, G2, and G3 are evenly spaced between A and G. The choice
of these seven points is justified by the fact that half of the actual extended edge and
screw dislocation paths lie within the triangle AGT .

8



0

0.2

0.4

0.6

0.8

1

[1̄10]

0

0.1

0.2

0.3

0.4

0.5

[1̄1̄2]

0
0.1
0.2
0.3
0.4

γ
g
sf
(J
/m

2
)

(a)

0 0.2 0.4 0.6 0.8 1

[1̄10]

0

0.1

0.2

0.3

0.4

0.5

[1̄
1̄
2]

0

0.1

0.2

0.3

0.4

0.5

A T1 T

G1

G2

G3

G

(b)

0 0.2 0.4 0.6 0.8 1

[1̄10]

0

0.1

0.2

0.3

0.4

0.5

[1̄
1̄
2]

0

0.1

0.2

0.3

0.4

0.5

(c)

0 0.2 0.4 0.6 0.8 1

[1̄10]

0

0.1

0.2

0.3

0.4

0.5

[1̄
1̄2
]

−0.1

−0.08

−0.06

−0.04

−0.02

0

(d)

Figure 3. (a) 3D relaxed GSFE surface in a look-up table form on a (111) plane along both [1̄1̄2] and [1̄10]

directions. (b) is the projection of (a) onto the (111) plane. The seven points selected to fit the 7-term Fourier
series [32] are highlighted in (a) and (b). (c) GSFE surface based on the 7-term Fourier series and (d) its

difference with respect to the look-up table form. In (b–d), the solid and dashed black curves illustrate the

actual paths for extended edge and screw dislocations, respectively [33]. All results are based by an EAM
potential for Au [28], with γgsf in units of J/m2. The solid and dashed green arrows represent the paths of

Shockley partial dislocations and perfect dislocations, respectively.

With respect to the look-up table form, the 7-term Fourier series-based GSFE sur-
face has two main drawbacks: (i) local energy minima are predicted in some regions
that should be an energy maximum, as shown in Fig. 3(c), and (ii) the three points
(G1, G2, and G3) between A and G may not be sufficient to describe a complex GSFE
curve along the 〈112〉 direction. To overcome these drawbacks, which are especially
pronounced in Au, we propose an 11-term Fourier series. First, we identify four addi-
tional points on the GSFE surface: M , M1, G4, and G5, which are shown in Fig. 4(a).
In terms of (φ1̄10, φ1̄1̄2), M is at the previous artificial local minimum (0,1/3); M1 is
in the middle of A and M ; G4 is in the middle of G1 and G2; and G5 is in the middle
of G2 and G3. Since, with respect to the origin A, all four new points are along the
mirror-symmetric 〈112〉 direction, four additional cosines [37], associated with four
coefficients c7, c8, c9, and c10, are added to the original 7-term Fourier series [32], i.e.,

γgsf = c0 + c1[cos(2py) + cos(py + qz) + cos(py − qz)]

+c2[cos(2qz) + cos(3py + qz) + cos(3py − qz)]

+c3[cos(4py) + cos(2py + 2qz) + cos(2py − 2qz)]

+c4[cos(py + 3qz) + cos(py − 3qz) + cos(4py + 2qz)

+ cos(4py − 2qz) + cos(5py + qz) + cos(5py − qz)]
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Figure 4. (a) GSFE surface based on the 11-term Fourier series and (b) its difference with respect to the

look-up table form in Fig. 3(b). In (a), the four additional points with respect to the 7-term Fourier series are

highlighted in green. Results are based on an EAM potential for Au [28], with the energies in units of J/m2.
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Figure 5. The GSFE curve along the [1̄1̄2] direction given by the look-up table form, the 7-term Fourier
series form, and the 11-term Fourier series form for (a) Au and (b) Al.

+c5[sin(2py)− sin(py + qz)− sin(py − qz)]

+c6[sin(4py)− sin(2py + 2qz)− sin(2py − 2qz)]

+c7[cos(6py) + cos(3py + 3qz) + cos(3py − 3qz)]

+c8[cos(8py) + cos(4py + 4qz) + cos(4py − 4qz)]

+c9[cos(4qz) + cos(6py + 2qz) + cos(6py − 2qz)]

+c10[cos(6qz) + cos(9py + 3qz) + cos(9py − 3qz)] (27)

where p = 2π/(
√

3bP) and q = 2π/bP are magnitudes of the reciprocal lattice vectors
[32], y = φA

2 b
A
2 , and z = φA

1 b
A
1 . In Au, with respect to the look-up table form, the

errors in the Fourier series-based GSFE surface are significantly smaller for the 11-
term Fourier series form than the original 7-term one, as shown in Figs. 3(d) and 4(b).
In particular, the GSFE curve along the [1̄1̄2] direction given by the 11-term Fourier
series form is more accurate, as shown in Fig. 5(a). With the help of Eqs. 15 and 16,
Eq. 27 can be written as a function of the three order parameters in PFDDfs, i.e.,

γgsf = c0 + c1[cos 2π(φP
2 − φP

3 ) + cos 2π(φP
3 − φP

1 ) + cos 2π(φP
1 − φP

2 )]

+c2[cos 2π(2φP
1 − φP

2 − φP
3 ) + cos 2π(2φP

3 − φP
1 − φP

2 ) + cos 2π(2φP
2 − φP

1 − φP
3 )]
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+c3[cos 4π(φP
2 − φP

3 ) + cos 4π(φP
3 − φP

1 ) + cos 4π(φP
1 − φP

2 )]

+c4[cos 2π(3φP
1 − φP

2 − 2φP
3 ) + cos 2π(3φP

1 − 2φP
2 − φP

3 ) + cos 2π(2φP
1 + φP

2 − 3φP
3 )

+ cos 2π(2φP
1 − 3φP

2 + φP
3 ) + cos 2π(φP

1 + 2φP
2 − 3φP

3 ) + cos 2π(φP
1 − 3φP

2 + 2φP
3 )]

+c5[sin 2π(φP
2 − φP

3 ) + sin 2π(φP
3 − φP

1 ) + sin 2π(φP
1 − φP

2 )]

+c6[sin 4π(φP
2 − φP

3 ) + sin 4π(φP
3 − φP

1 ) + sin 4π(φP
1 − φP

2 )]

+c7[cos 6π(φP
2 − φP

3 ) + cos 6π(φP
3 − φP

1 ) + cos 6π(φP
1 − φP

2 )]

+c8[cos 8π(φP
2 − φP

3 ) + cos 8π(φP
3 − φP

1 ) + cos 8π(φP
1 − φP

2 )]

+c9[cos 4π(2φP
1 − φP

2 − φP
3 ) + cos 4π(φP

1 + φP
2 − 2φP

3 ) + cos 4π(φP
1 − 2φP

2 + φP
3 )]

+c10[cos 6π(2φP
1 − φP

2 − φP
3 ) + cos 6π(φP

1 + φP
2 − 2φP

3 ) + cos 6π(φP
1 − 2φP

2 + φP
3 )]
(28)

Table 3. Locations and values of γgsf

(in mJ/m2) for the eleven selected points

(Fig. 4(a)) on the GSFE surface calculated from
the EAM potentials for Au [28] and Al [29].

φ1̄10 φ1̄1̄2 γgsf (Au) γgsf (Al)

A 0 0 0 0
T1 1/4 0 184.2 212.7
T 1/2 0 323.3 395.1
G1 1/8 1/24 51.3 65.3
G4 3/16 1/16 64.3 112.5
G2 1/4 1/12 77.2 144.2
G5 5/16 5/48 86.8 161.9
G3 3/8 1/8 89.4 167.1
G 1/2 1/6 40.6 145.4
M1 0 1/6 314.1 392.9
M 0 1/3 493.5 576.4

Fitting Eq. 27 or Eq. 28 to the positions of the eleven points yields

c0 = 0.106G+ 0.719G1 − 0.108G2 − 0.344G3 − 0.758G4 + 0.758G5 + 0.202T

+ 0.375T1 + 0.108M + 0.094M1 (29)

c1 = −0.043G− 0.092G1 + 0.083G2 + 0.092G3 + 0.320G4 − 0.32G5 − 0.112T

− 0.083M + 0.028M1 (30)

c2 = −0.059G− 0.035G1 + 0.142G2 + 0.461G3 + 0.175G4 − 0.528G5 − 0.071T

− 0.25T1 + 0.072M + 0.017M1 (31)

c3 = 0.044G+ 0.24G1 − 0.083G2 − 0.24G3 − 0.253G4 + 0.253G5 + 0.171T

− 0.028M − 0.088M1 (32)

c4 = −0.02G+ 0.046G1 − 0.046G3 − 0.16G4 + 0.16G5 − 0.028T + 0.028M1 (33)

c5 = 0.144G+ 0.144G2 − 0.144M − 0.144M1 (34)

c6 = −0.048G+ 0.144G2 + 0.048M − 0.144M1 (35)

c7 = 0.115G+ 0.092G1 − 0.011G2 − 0.342G3 − 0.32G4 + 0.32G5 − 0.013T

+ 0.25T1 + 0.011M − 0.1M1 (36)

c8 = −0.072G− 0.24G1 + 0.24G3 + 0.253G4 − 0.253G5 − 0.005T + 0.005M1 (37)

c9 = −0.008G− 0.24G1 + 0.119G2 + 0.115G3 + 0.253G4 − 0.253G5 + 0.016T

− 0.125T1 − 0.008M + 0.052M1 (38)
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c10 = 0.028G− 0.058G1 − 0.214G2 − 0.119G3 + 0.145G4 + 0.208G5 + 0.001T (39)

Note that these equations only apply to the 11-term Fourier series form, not the 7-
term Fourier series one, for which the coefficients were presented in Ref. [16]. Locations
and values of γgsf for the eleven selected points on the GSFE surface are summarized
in Tab. 3. It follows that ∂φα

γgsf is calculated by taking the partial derivative of γgsf

with respect to each order parameter φP
α in Eq. 28. In this paper, both 7-term and 11-

term Fourier series forms are applied to investigate disregistry profiles of dislocations
in PFDDfs.

3.4. Gradient energy density ψgra

Table 4. Values of the three parame-
ters in Eq. 10 for Au and Al determined

from the MS simulations of an extended

edge monopole as discussed in the text.
Note that αg0 is unitless.

g0/(µd111) l0/d111 αg0

Au 0.0547 9.62 0.8264
Al 0.0626 6.17 0.8294

The gradient energy density is included only in APFM. The values of the three
parameters in Eq. 10 are presented in Tab. 4. These were fit from MS simulations of
an extended edge monopole.

4. Simulation set-up

In this section, we present the set-up used in both the MS and PF-based simulations
for static extended dislocations of pure edge or pure screw type. A dislocation dipole
consisting of two dislocations of the same type but with opposite Burgers vector is
built into a 3D periodic simulation box, which has lattice orientations

(ix, iy, iz) =

(√
2

2
[1̄10],

√
3

3
[111],

√
6

6
[112̄]

)
(40)

for the edge dislocation dipole, and

(ix, iy, iz) =

(√
6

6
[1̄1̄2],

√
3

3
[111],

√
2

2
[1̄10]

)
(41)

for the screw dislocation dipole. Let Lx, Ly, and Lz be the edge length of the simu-
lation box along the x, y, and z directions, respectively. Within each dipole, the two
dislocation lines are along the z axis, lie on the x-z plane, and are separated by Lx/2
along the x direction. In all simulations, larger Lx, Ly, and Lz were tested and the
results were unchanged. The calculated 2D disregistry fields of one dislocation, which
is referred to as a monopole in what follows, will be compared in Section 5.1.
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4.1. MS simulations

All MS simulations in this work are carried out with LAMMPS [40]. The simulation
box sizes, in units of d111, are as follows: Lx = 120

√
6, Ly = 180, and Lz = 9

√
2/2 for

the edge dislocation dipole, and Lx = 180
√

2, Ly = 180, and Lz = 3
√

6 for the screw
dislocation dipole. The two types of boxes contain the same number of 259200 atoms.
In order to quantitatively compare the simulation results, in MS calculations, we use
the same EAM potentials [28, 29] as used for all material properties needed in the PF
free energy model.

In each simulation, the energy of the dislocation-free system is first minimized via
conjugate gradient relaxation. Then an undissociated perfect dislocation dipole is cre-
ated by applying the corresponding isotropic elastic displacement fields to all atoms
[25]. Under zero stress, we apply two types of relaxation methods in sequence, the
first being the fast inertial relaxation engine (FIRE) [41] and the second the conjugate
gradient method, during which each perfect dislocation monopole extends on its glide
plane. The FIRE relaxation is conducted by 2500 steps. The conjugate gradient-based
minimization iterations are terminated when one of the following two criteria is sat-
isfied: (i) the energy change between successive iterations divided by the most recent
energy magnitude is less than or equal to 10−15 and (ii) the length of the global force
vector for all atoms is less than or equal to 10−15.

4.2. PF-based simulations

A structured grid with uniform grid spacing h is employed, where h = d111 = a0/
√

3
in APFM and APFMng while h = bP = a0/

√
2 in PFDD and PFDDfs. The numbers of

grid points along the x, y, and z directions are 294, 180, and 7, respectively, in APFM
and APFMng, and 128 in all three directions in PFDD and PFDDfs. The elastic energy
density ψela is calculated by the 3D fast Fourier transform method with the help of
Green’s functions. Following the MS simulations, an undissociated perfect dislocation
dipole is inserted by assigning non-zero φα to the grid points needed to achieve a
given dislocation character. During recursively running the TDGL equation, in which
the time step and mobility m0 are 0.5 and 1, respectively, each dislocation monopole
becomes extended. Iterations are terminated when the change in the Euclidean norm
of global vector of each order parameter between successive iterations is smaller than
10−3. Parallel simulations starting from fully dissociated dislocations are also run and
the results are almost identical, suggesting that the final relaxed dislocation structures
are likely independent of the initial configuration and energy minimization path. Note
that in APFM, the three parameters in Tab. 4 are determined from the MS-based
Shockley partial dislocation core structures of a dissociated edge dislocation are used
for both edge and screw dislocation dipoles. Note that in the current case of only one
slip plane, b1 · b2 = 0 in APFM, and so N12 = 0 according to Eq. 9, suggesting that
the interactions between different order parameters are not considered in calculating
the gradient energy density.
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APFM
APFMng

PFDD
PFDDfs (7-term)

PFDDfs (11-term)
PN model

MS

(a)

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

−40 −20 0 20 40

ζ 2
/b

P

x (Å)
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Figure 6. Disregistry fields of an edge monopole in Au (a) along and (b) normal to the perfect dislocation

Burgers vector direction.
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Figure 7. Disregistry fields of a screw monopole in Au (a) along and (b) normal to the perfect dislocation

Burgers vector direction.

5. Results and discussions

5.1. Comparison of the disregistry fields

In this section, the disregistry profiles both along and normal to the perfect dislo-
cation Burgers vector direction based on MS and different PF-based simulations are
compared. In what follows, these two disregistry fields are denoted as ζ1 and ζ2, re-
spectively. In MS, the disregistry vector ζ (Eq. 2) is projected onto the two directions.
In PF-based methods [16], for a given slip plane,

ζβ =

nsp∑
α=1

φαbα · sβ (42)

where nsp is the total number of order parameters on the slip plane within which
the αth order parameter and β direction lie. For edge monopoles, the results are also
compared against the classical PN model, which was the first analytic model of the
1D disregistry field of a perfect dislocation along the Burgers vector direction x, i.e.,
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Figure 8. Disregistry fields of an edge monopole in Al (a) along and (b) normal to the perfect dislocation

Burgers vector direction.

0

0.2

0.4

0.6

0.8

1

−40 −20 0 20 40

ζ 1
/b

P

x (Å)
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Figure 9. Disregistry fields of a screw monopole in Al (a) along and (b) normal to the perfect dislocation

Burgers vector direction.

[42, 43],

ζPN(x) =
bP

π
arctan

2x(1− ν)

d111
+
bP

2
(43)

where ν = λ/[2(λ + µ)] is the isotropic Poisson’s ratio of the material, with µ and λ
determined by Eqs. 17 and 18. Figs. 6–9 show that the PF-based disregistry fields are
systematically closer to the MS-based ones than the 1D PN model prediction. However,
note that there are a few aphysical local extrema on the PFDDfs-based disregistry
profiles in Au. Specifically, this is the case in all four profiles when the 7-term Fourier
series form is used to approximate γgsf , except ζ1 of the screw monopole. On the other
hand, only one disregistry profile, i.e., ζ2 of the edge monopole, contains the aphysical
local extrema if the 11-term Fourier series form is adopted for γgsf . Therefore, the
aphysical PFDDfs-based results are likely attributed to the failure of the Fourier series
forms to correctly reproduce the GSFE surface. Note that the aphysical local extrema
do not exist in any disregistry profile in Al in this work, nor in previous PFDDfs results
when the 7-term Fourier series form was fit to ab initio calculation-informed GSFE
data [30].
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In the next two subsections, all results are compared in terms of two characteristics:
the ISF width and the Shockley partial dislocation core size.

5.2. Intrinsic stacking fault width
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Figure 10. Different measurements dξ with ξ = 1, 2, pd of the ISF width based on MS diregistry fields for a
screw monopole in Au.

The ISF width is a key parameter in quantifying the ISF structure associated with
an extended dislocation and is directly comparable with experiments [44], which some-
times use the ISF width to determine the stable SFE of the material [45, 46]. Here, we
discuss different methods to determine the ISF width, dξ, with ξ denoting a specific
method.

In the continuum context, a dislocation can be represented as a continuous dis-
location array with infinitesimal Burgers vectors. Accordingly, the derivative of the
disregistry along the Burgers vector direction with respect to the coordinates, i.e.,
∂xζ1, is the Burgers vector density [47]. The classical PN model (Eq. 43) does not
consider dislocation dissociation and so the corresponding ∂xζ1 profile only has one
peak. Later, the 1D PN model was advanced to treat extended dislocations [48] and
when employed, two peaks emerge in the disregistry density profile. Particularly in
FCC metals, analogous to the single peak in the classical PN model for the perfect
dislocation center, the two peaks of ∂xζ1 in the extended PN model are assumed to
correspond to the centers of the two Shockley partial dislocations and their separation
distance is the ISF width d1, as illustrated in Fig. 10(a). If the disregistry fields are
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2D [27], two similar peaks exist for ∂xζ2, between which is d2, as shown in Fig. 10(b).
All derivatives here are approximated by the central difference method. For an edge
monopole, d1 and d2 represent the distances between the edge and screw components,
respectively and vice versa for a screw monopole.
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Figure 11. Partial derivative of the disregistry fields ζ1 with respect to the coordinates x for an edge or a
screw monopole in Au calculated by APFM and APFMng. APFMng results show that (i) the screw monopole

has only one maximum ∂xζ1 in total and (ii) there are two local maxima ∂xζ1 on each side of the perfect

dislocation center for an edge monopole. In the first case, the dislocation is “undissociated” and so dscr
1 = 0.

In the second case, the center of the Shockley partial dislocation core, and hence the ISF width dedg
1 , is not

unique.

The determination of d1 and d2 is based on an assumption that there are two local
maxima ∂xζβ in total, each on different sides of the perfect dislocation center. How-
ever, in some cases, e.g., those shown in Fig. 11, either there is only one maximum
∂xζβ in total or there are more than one local maximum ∂xζβ on the same side of
the perfect dislocation center. In the first case, the dislocation may be considered as
“undissociated” and thus d = 0. In the second case, the location of the partial disloca-
tion core center, and hence the ISF width, are not unique. This ambiguity originates
from the physical and/or numerical noise in the calculations of the disregistry fields
ζβ . The noise is then amplified in ∂xζβ during the numerical differentiation process.
We found that the noise in ∂xζβ is much greater in molecular dynamics simulations at
25 K than that in MS. Moreover, due to the combined effect of the elastic anisotropy
of the material and that in the same monopole the edge and screw components of
the two partial dislocations interact with each other differently, d1 and d2 are usually
different, which adds to the uncertainty in determining the ISF widths.

For these reasons, we resort to two new methods that (i) only use the disregistry
fields without taking derivatives and (ii) combine ζ1 and ζ2 into a single functional
form. The first method projects ζ1 and ζ2 along the directions of the two partial
dislocations, i.e.,

ζpd1 = ζ1 cos 30◦ + ζ2 sin 30◦ (44)

ζpd2 = ζ1 cos 30◦ − ζ2 sin 30◦ (45)

each of which ranges between 0 and (
√

3/2)bP, as shown in Fig. 10(c). Taking ζ1 =
0.5bP as the perfect dislocation center, the two points with ζpd = (

√
3/4)bP are assumed

to correspond to the centers of the two Shockley partial dislocations, between which
the ISF width is measured as dpd.

The second approach is based on the ISF width in MS simulations identified by
CNA [13], i.e., the width of the region with red atoms in Fig. 1. First, we build an ISF
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Figure 12. (a) fisf (ζ1, ζ2) with ε = 15. (b) Calculation of dcn for a dissociated screw monopole in Au in an

MS simulation based on fisf [ζ1(x), ζ2(x)] and fcn(x) [13]. In particular, fisf (x) < 0.1, 0.1 < fisf (x) < 0.31,
and fisf (x) > 0.31 correspond to FCC, disordered, and HCP local structures, respectively. dcn is the distance

between the two middle intersections (red circles) formed between the fisf (x) and fcn(x) profiles.

detection function, i.e.,

fisf(ζ1, ζ2) = exp

[
−ε
(
ζ1

bA1

)2

− 9ε

(
ζ2

bA2
− 2

3

)2
]

+ exp

[
−ε
(
ζ1

bA1
− 1

2

)2

− 9ε

(
ζ2

bA2
− 1

6

)2
]

+ exp

[
−ε
(
ζ1

bA1
− 1

)2

− 9ε

(
ζ2

bA2
− 2

3

)2
]

(46)

which consists of a sum of Gaussian functions about the states (ζ1/b
A
1 , ζ2/b

A
2 ) =

(0, 2/3), (1/2, 1/6), (1, 2/3) that correspond to the ISFs on a GSFE surface, as shown
in Fig. 12(a). For relatively smooth Gaussian functions, ε = 15.

Table 5. The HCP region threshold κ that is used to
determine dcn based on fisf (x) for different monopoles

in Au and Al.

Au, Edge Au, Screw Al, Edge Al, Screw

κ 0.48 0.31 0.374 0.31

Next, the MS-based disregistry fields [ζ1(x), ζ2(x)] are substituted into Eq. 46. This
action results in fisf(x) that can be plotted against the CNA index fcn(x), where fcn =
0, 1, and 2 correspond to disordered, FCC, and HCP local structures, respectively.
Four intersections form between the two curves, labeled by the two blue squares and
two red circles in Fig. 12(b), which can be considered the transitions between the
FCC and disordered regions as well as those between the disordered and HCP regions,
respectively. The values of fisf at the two intersections nearest to the perfect dislocation
center, i.e., the two red circles, are averaged to yield the HCP region threshold κ. It
follows that for a given PF-based fisf(x) profile, the distance between the two points
associated with fisf > κ is the ISF width dcn. Note that the intersections, and hence
the threshold κ, depend on the relative scaling between fisf and fcn. Thus, for each
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monopole, the value of κ, presented in Tab. 5, is determined by fitting to the MS-based
ISF width rendered by CNA (Fig. 1).

Table 6. ISF width measures, in units of d111, for Au and Al. In PFDDfs, both 7-term

and 11-term Fourier series forms are used to obtain the GSFE surface γgsf ; some results for
Au are presented as “–” when the disregistry field profiles contain aphysical local extrema.

Superscripts edg and scr stand for edge and screw monopoles, respectively. Based on the

numerical resolution, all APFM and APFMng results are in ±0.5d111, while all PFDD and
PFDDfs results are in ±0.5bP, respectively. † There are more than one local maximum ∂xζβ on

the same side of the perfect dislocation center. In this case, the largest local maximum ∂xζβ on
the same side of the perfect dislocation center is assumed to correspond to the Shockley partial

dislocation core center. ‡ There is only one local maximum ∂xζ1 in total and hence d1 = 0 by

definition. § The maximum fisf is smaller than the corresponding HCP region threshold κ and
hence dcn = 0 by definition.

MS APFM APFMng PFDD PFDDfs(7-term) PFDDfs(11-term)

Au

dedg
1 11.9 10.0 6.0† 6.12† – 7.35†

dedg
2 10.8 10.0 6.0† 6.12† – –

dedg
pd 9.53 8.55 6.14 5.11 2.52 6.6

dedg
cn 10.8 9.75 6.54 5.59 3.06 7.13
dscr

1 2.1 4.0 0‡ 0‡ 3.67 3.67
dscr

2 6.3 6.0 1.0 3.67 – 3.67
dscr

pd 2.63 3.34 1.07 1.38 1.19 2.38

dscr
cn 4.1 5.42 1.72 2.21 1.93 3.26

Al

dedg
1 4.5 0‡ 3.0 0‡ 0‡ 0‡

dedg
2 5.8 6.0 3.0 3.67 3.67 3.67

dedg
pd 2.69 1.72 1.25 1.77 1.71 1.69

dedg
cn 3.85 2.09 1.7 2.52 2.51 2.4
dscr

1 0‡ 0‡ 0‡ 0‡ 0‡ 0‡

dscr
2 4.2 4.0 2.0 3.67 2.45 3.67
dscr

pd 1.13 1.2 0.47 0.54 0.87 0.58

dscr
cn 1.05 1.53 0§ 0§ 1.49 0§

Results of ISF widths d determined by different methods using MS and PF-based
simulation data are summarized in Tab. 6. All methods find that the edge monopole
has a larger ISF width than a screw monopole for the same material in agreement with
linear elasticity. Also for the same type of monopole, the ISF width is larger in Au
than in Al, between which the former has a lower stable SFE. Among the PF-based
methods, there are three main differences:

(1) Between APFM and APFMng, introducing the gradient energy density ψgra uni-
formly increases the ISF width d in all cases where d is non-zero. This is an
outcome revealed by the present calculations with the selected material parame-
ters. We find that it is more energetically favorable for the dislocation to increase
d, thereby reducing the interaction energy between the partial dislocation at the
expense of increasing the fault area than the other way around. Note that this
finding agrees with a prior PF-based work [49]. Moreover, varying ηg0 to any
non-zero value only affects the shapes of the disregistry profiles but not d [38].

(2) Between APFMng and PFDD, two essential differences are elastic anisotropy and
grid spacing, the latter of which is negligible. It is found that when d is non-zero,

d is larger in PFDD than in APFMng, except dedg
pd and dedg

cn in Au. Note that the

elastic anisotropy index for cubic systems Ac = 2C44/(C11 − C12) = 1.21 and
2.9 for Al and Au, respectively [50]. The influence of the elastic anisotropy on
the core structure of extended dislocations agrees with a recent analytic study
in FCC metals [51].

(3) Between PFDD and PFDDfs, γgsf is calculated in different ways. In Au, with
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respect to the PFDD results, PFDDfs tends to underestimate and overestimate
d, respectively, when the 7-term and 11-term Fourier series forms are used to
approximate γgsf . In Al, the PFDDfs results with the 11-term Fourier series form
for γgsf are generally more accurate than those based on the 7-term Fourier series
form, especially for the screw monopole which has a narrow ISF.

5.3. Shockley partial dislocation core size
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Figure 13. Different measurements lξ with ξ = 1, 2, ave of a Shockley partial dislocation core size based on

MS diregistry field for an edge monopole in Au.

Here, following the determination of the interface region width in Ref. [52], the core
size of a Shockley partial dislocation is defined as

lβ =
|ζβ(+∞)− ζβ(−∞)|

|∂xζβ(0)| (47)

where x = 0 corresponds to the location with maximum ∂xζβ , regardless of how
many maximum ∂xζβ there may be; −∞ and +∞ refer to the boundaries between the
unslipped region and the partial dislocation and that between the partial dislocation
and ISF, respectively. The measures l1 and l2 are depicted schematically in Fig. 13(a–
b). Since, as in the case of the ISF widths, usually l1 6= l2, we propose an averaged
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Table 7. Shockley partial dislocation core size measures, in units

of d111, based on Eqs. 47 and 48 for Au and Al. Superscripts edg

and scr stand for edge and screw monopole, respectively. Based on
numerical resolution, all APFM-based results are ±0.5d111. Only

APFM-based results are presented for that lave is used as l0 in

Eq. 10.

Au Al

MS APFM APFMng MS APFM APFMng

ledg
1 9.7 10.1 3.5 5.7 4.6 2.6

ledg
2 8.2 9.7 3.4 4.3 4.9 2.2

ledg
ave 9.6 10.4 3.6 6.2 6.4 2.9
lscr
1 5.2 7.2 4.7 3.2 3.6 1.5
lscr
2 6.0 7.6 2.9 3.5 4.2 1.3
lscr
ave 7.1 8.7 2.8 4.7 5.4 2.4

disregistry profile, ζave, i.e.,

ζave =

√
(ζ1)2 + 3 (ζ2)2 (48)

which, along with the measurement of the core size lave, are shown in Fig. 13(c).
In APFM, it is lave that is used as l0 in Eq. 10. Values of lξ with ξ = 1, 2, ave are
summarized in Tab. 7 for Au and Al. Like the ISF widths, all results here indicate
that adding the gradient energy density ψgra to the total energy density increases the
partial dislocation core size and yields a better agreement with MS.

6. Conclusions

In this work, MS and PF-based methods are employed to calculate the 2D disregistry
fields of extended dislocations with pure edge and pure screw characters in two FCC
metals: Au and Al, which have distinct stable SFE and elastic anisotropy. Four PF-
based methods, including APFM and PFDD methods as well as their variants, are
employed. A new 11-term truncated Fourier series form is developed to better approx-
imate the GSFE surface γgsf than the original 7-term one in that the former addresses
the artificial local energy minimum in some regions and presents more accurate γgsf

values in the region where actual paths for the extended dislocations cross. As a result,
the aphysical local extrema on some disregistry profiles predicted by PFDDfs with the
7-term Fourier series form for γgsf are removed in the 11-term Fourier series form-
based PFDDfs results. The general agreement between MS and PF-based simulations
confirms the accuracy of using the elastic energy density ψela and GSFE density ψgsf in
the latter as approximations to the corresponding atomic quantities. Introducing the
gradient energy ψgra, which is done in APFM, yields an improvement in the descrip-
tion of the dislocation core structure with respect to the MS-based results, compared
with the PF-based methods without ψgra.

The differences in the calculated disregistry fields are quantified in terms of the
ISF width d and the Shockley partial dislocation core size l. A common factor in
determining d and l is the identification of the Shockley partial dislocation core center,
whose location may not be unique if one assumes that it corresponds to a peak value
in the partial derivative of the disregistry with respect to the coordinates along the
direction that is on the slip plane and normal to the dislocation line. Accordingly, two
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new methods, which make use of only the 2D disregistry fields but not their derivatives,
are proposed to calculate d. We also propose one new method, which combines the
disregistry fields along the two perpendicular directions, to determine l. It is found
that, in general

(1) Adding ψgra to the total energy density increases both d and l, which help achieve
better predictions of the entire dislocation structure with respect to MS;

(2) Approximating an elastic anisotropic medium as an elastic isotropic one results
in an overestimate of d;

(3) Determining γgsf , and hence ψgsf , using either the 2D truncated Fourier series
or the look-up table form, does not significantly affect the calculated disregistry
fields as long as the key parameters in the Fourier series are based on the same
interatomic potentials used in MS.

Ongoing work includes realizing full elastic anisotropy in PFDD, carrying out ab
initio-based calculations to obtain more accurate GSFE surfaces for common metals,
and extending the current work to other lattices such as HCP and body-centered
cubic types. We will also compare the PF-based disregistry profiles with those from
other meso-scale modeling methods, and compare the Shockley partial dislocation core
center determination methods included in this work with other approaches based on
the differential displacement map or Nye tensor.
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