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ABSTRACT P m e

The timing characteristics of cache, a high-speed storage between
the fast CPU and the slow memory, may reveal sensitive information
of a program, thus allowing an adversary to conduct side-channel
attacks. Existing methods for detecting timing leaks either ignore
cache all together or focus only on passive leaks generated by the
program itself, without considering leaks that are made possible by
concurrently running some other threads. In this work, we show
that timing-leak-freedom is not a compositional property: a program
that is not leaky when running alone may become leaky when inter-
leaved with other threads. Thus, we develop a new method, named
adversarial symbolic execution, to detect such leaks. It systematically
explores both the feasible program paths and their interleavings
while modeling the cache, and leverages an SMT solver to decide if
there are timing leaks. We have implemented our method in LLVM
and evaluated it on a set of real-world ciphers with 14,455 lines of
C code in total. Our experiments demonstrate both the efficiency
of our method and its effectiveness in detecting side-channel leaks.

CCS CONCEPTS

« Security and privacy — Cryptanalysis and other attacks;
« Software and its engineering — Software verification and
validation;
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1 INTRODUCTION

Side-channel attacks are security attacks where an adversary ex-
ploits the dependency between sensitive data and non-functional
properties of a program such as the execution time [28, 43], power
consumption [44, 51], heat, sound [37], and electromagnetic radia-
tion [36, 57]. For timing side channels, in particular, there are two
main sources of leaks: variances in the number of executed instruc-
tions and variances in the cache behavior. Instruction-induced leaks
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Figure 1: Flow of our cache timing leak detector SymSC.

are caused by differences in the number and type of instructions
executed along different paths: unless the differences are indepen-
dent of the sensitive data, they may be exploited by an adversary.
Cache-induced leaks are caused by differences in the number of
cache hits and misses along different paths.

Existing methods for detecting timing leaks or proving their
absence often ignore the cache all together while focusing on
instruction-induced leaks. For example, Chen et al. [23] used Carte-
sian Hoare Logic [58] to prove the timing leak of a program is
within a bound; Antonopoulos et al. [8] used a similar technique
that partitions the set of program paths in a way that, if individual
partitions are proved to be timing attack resilient, the entire pro-
gram is also timing attack resilient. Unfortunately, these methods
ignore the cache-timing characteristics. Even for techniques that
consider the cache [12, 21, 25, 30, 46, 61], their focus has been on
leaks manifested by the program itself when running alone, without
considering the cases when it is executed concurrently with some
other (benign or adversarial) threads.

In this work, we show side-channel leak-freedom, as a security
property, is not compositional. That is, a leak-free program when
running alone may still be leaky when it is interleaved with other
threads, provided that they share the memory subsystem. This is
the case even if all paths in the program have the same number
and type of instructions and thus do not have instruction-induced
timing leaks at all. Unfortunately, no existing method or tool is
capable of detecting such timing leaks.

We propose a new method, named adversarial symbolic execu-
tion, to detect such concurrency-related timing leaks. Specifically,
given a program where one thread conducts a security-critical com-
putation, e.g., by calling functions in a cryptographic library, and
another thread is (either accidentally or intentionally) adversarial,
our method systematically explores both paths in these threads and
their interleavings. The exploration is symbolic in that it covers
feasible paths under all input values. During the symbolic execu-
tion, we aim to analyze the cache behavior related to sensitive data
to detect timing leaks caused by the interleaving.

Figure 1 shows the flow of our leak detector named SymSC, which
takes the victim thread P, a potentially adversarial thread P’, and
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the cache configuration as input. If P’ is not given, SYyMSC creates
it automatically. While symbolically executing the program, SymSC
explores all thread paths and searches for an adversarial interleaving
of these paths that exposes divergent cache behaviors in P. There
are two main technical challenges. The first one is associated with
systematic exploration of the interleaved executions of a concurrent
program so as not to miss any adversarial interleaving. The second
one is associated with modeling the cache accurately while reducing
the computational cost.

To address the first challenge, we developed a new algorithm for
adversarially exploring the interleaved executions while mitigat-
ing the path and interleaving explosions. Specifically, cache timing
behavior constraints, which are constructed on the fly during sym-
bolic execution, are leveraged to prune interleavings redundant for
detecting leaks and thus speed up the exploration.

To address the second challenge, we developed a technique for
modeling the cache behavior of a program based on the cache’s
type and configuration, as well as optimizations of the subsequent
constraint solving to reduce overhead. For each concurrent execu-
tion (an interleaving of the threads) denoted 7 = (in, sch), where
in is the sensitive data input and sch is the interleaving schedule,
we construct a logical constraint 7;(in, sch) for every potentially
adversarial memory access ¢, to indicate when it leads to a cache
hit. Then, we seek two distinct values of the data input, in and in’,
for which the cache behaves differently: 7+(in, sch) # 7+(in’, sch),
meaning one of them is a hit but the other is a miss, and they are
due to differences in the sensitive data input.

We have implemented our method in a software tool based on
LLVM and the KLEE symbolic virtual machine [20], and evaluated
it on twenty benchmark programs. These security-critical programs
are ciphers taken from cryptographic libraries in the public domain;
they have 14,455 lines of C code in total. Since these programs are
crafted by domain experts, they do not have obvious timing leaks
when running alone, such as unbalanced branching statements or
variances in lookup-table accesses. However, our experiments of
applying SYMSC show that they may still have timing leaks when
being executed concurrently with other threads.

To summarize, we make the following contributions:

e We propose an adversarial symbolic execution method ca-
pable of detecting cache timing leaks in a security-critical
program when it runs concurrently with other threads.

e We implement and evaluate our method on real-world ci-
pher programs to demonstrate its effectiveness in detecting
concurrency-related timing leaks.

In the remainder of this paper, we first motivate our work us-
ing several examples in Section 2 and then provide the technical
background in Section 3. We present our detailed algorithms in Sec-
tions 4 and 5, which are followed by domain-specific optimizations
in Section 6 to reduce the computational overhead. We present our
experimental results in Section 7 and review the related work in
Section 8. Finally, we give our conclusions in Section 9.

2 MOTIVATION

In this section, we use examples to explain the difference between
self-leaking and concurrency-induced leaking.

2.1 A Self-leaking Program and the Repair

Figure 2(a) shows a program whose execution time is dependent
of the sensitive variable k. It is a revised version of the running
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/* k is sensitive input */ /* k is sensitive input x/
1: char p[256]; 1: char p[256];

2: unsigned char k; 2: unsigned char k;

3: char q[256]; 3: char q[256];

4: 4:

5: load regl, pLkl 5: if (k <= 127)

6: if (k <= 127) 6: load reg2, q[255-k]
7: load reg2, q[255-k] 7: else

8: else 8: load reg2, qlk-128]
9: load reg2, qlk-128] 9: 1load regl, pLk]l

10: add regl, reg2 10: add regl, reg2

11: store regl, p[k] 11: store regl, p[k]

k=0 : <miss, miss, miss>

1<k<255: <miss, miss, hit> 0<k<255: <miss, miss, hit>

(a) The leaky program P (b) The leak-free version P,

Figure 2: A program with cache-timing leak (cf. [22]).

example used in [22], for which the authors proposed the leak-free
version shown in Figure 2(b). The two programs have the same set
of instructions but differ in where the highlighted load instruction
is located: line 5 in P and line 9 in P;.

Consider executing the two programs under a 512-byte direct-
mapped cache with one byte per cache line, as shown in Figure 3.
The choice of one-byte-per-cache-line — same as in [22] — is meant
to simplify analysis without loss of generality. Specifically, the
256-byte array p is associated with the first 256 cache lines, while
variable k is associated with the 257-th cache line. Due to the finite
cache size, q[255] has to share the cache line with p[@].

There are two program paths in P, each with three memory
accesses: load (line 5), load (line 7 or line 9), and store (line 11).
However, depending on the value of k, these three memory accesses
may exhibit different cache behaviors, thus causing data-dependent
timing variance.

Assume that k’s value is 0, executing P means taking the then
branch and accessing p[0], q[255], and p[@]. The first access to
pL@] is a cold miss since the cache is empty at the moment. The
access to q[255] is a conflict miss because the cache line (shared
by q[255] and p[@]) is occupied by p[01]; as a result q[255] evicts
p[@]. The next access to p[@] is also a conflict miss since the
cache line is occupied by q[255]. All in all, the cache behavior
is <miss,miss,miss> for k=0.

This sequence is also unique in that all other values of k would
produce <miss,miss,hit>as shown at the bottom of Figure 2(a).
This means P, when running alone, leaks information about k. For
example, upon observing the delay caused by <miss,miss,miss>
via monitoring, an adversary may infer that k’s value is 0.

Program P, is a repaired version [22] where the load is moved
from line 5 to line 9 as in Figure 2(b). Thus, the load accessing p[k]
at line 9 always generates a cold miss (0<k<255) or a conflict miss
(k=0). Consequently, the store at line 11 is always a hit. Thus, for
all values of k, the cache behavior remains <miss,miss,hit> - no
information of k is leaked.

2.2 New Leak Induced by Concurrency

Although P, is a valid repair when the program is executed sequen-
tially, the situation changes when it is executed concurrently with
other threads. Specifically, if we use one thread (T;) to execute P,
while allowing a second thread (T2) to run concurrently, P, may
exhibit new timing leaks.

Figure 4 shows a two-threaded program comprising T; and an
adversarial T» that accesses a new variable tmp. Assume tmp is
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Figure 3: The direct-mapped cache layout (cf. [22]).

* [Thread T1] %/ /* [Thread T2] */
char p[256]; 12: unsigned char tmp;
unsigned char k; 13: load reg3, tmp
char q[256]; 14: ...

if (k <= 127)

load reg2, q[255-k]
else

load reg2, qlk-128]
load regl, pLk]
0: add regl, reg2
1: store regl, plk]

- = 0N U A WN =~

Figure 4: Concurrent program with side-channel leak.

mapped to the same cache line as p[1]. Then, it is possible for
T, to cause Tj to leak information of its secret data. There are
various ways of mapping tmp to the same cache line as p[1], e.g.,
by dynamically allocating the memory used by tmp or invoking a
recursive (or non-recursive) function within which tmp is defined
as a stack variable.

Table 1 shows the six interleavings of threads Ty and T;. The left
half of this table contains three interleavings where T; took the
then branch of the if-statement, while the right half contains three
interleavings where T; took the else branch. In each case, the four
columns show the ID, the execution order, the cache sequence of
thread T1, and the value range of k. For example, in 6-9-11-13, the
store at line 11 is a cache hit because its immediate predecessor
(line 9) already loads p[k] into the cache. Since the last load at
line 13 comes from thread T5, the cache behavior sequence of Tj is
<miss,miss,hit>, denoted <m,m, h> for brevity.

Table 1: Interleavings and thread T;’s cache sequences.

ID Interleaving Cache-seq k HID Interleaving Cache-seq k

1 6-13-9-11  <mmh> [0,127] 4 8-13-9-11  <mmh> (127,255]

2 6-9-11-13 <m,mh> [0,127] 5 8-11-9-13 <m,mh> (127,255]

3 6-9-13-11  <mmh> [0,1)U(1,127]||6 8-9-13-11 <mmh> (127,255]
<m,m,m> 1

Although context switches between the threads T; and T, may
occur at any time in practice, for the purpose of analyzing cache
timing leaks, we assume they occur only before the 1oad and store
statements. Furthermore, we only focus on these memory accesses
when they are mapped to the same cache line, e.g., between the
load in T, and statements that access p[k] in T7.

We use Figure 5 to show details of 6-9-13-11. The blue and
orange rectangles represent the load and store accesses, respec-
tively, and the red dashed poly-line shows their execution order.
The first three load operations all cause cache misses, whereas
the last store could be a cache hit if (k!=1) and a cache miss if
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Figure 5: Interleaving 6-9-13-11 and the cache layout.

(k=1). When (k=1), the four memory accesses would be q[2541],
pL1], tmp, and p[1]. The first two trigger cold misses. The third
one (tmp) triggers a conflict miss as the cache line was occupied by
pL1]. Evicting this cache line would then lead to another conflict
miss for the subsequent store to p[1].

The examples presented so far show that, even for a timing-leak-
free program (T1), running it concurrently with another thread (T3)
may cause it to exhibit new timing leaks. This is the case even if the
two threads (T; and T3) are logically independent of each other. In
other words, they do not need to share variables or communicate
through messages; they can affect each other’s timing behaviors by
sharing the same cache system.

2.3 Adversarial Symbolic Execution

The goal of developing a new symbolic execution method is to
detect such timing leaks. More specifically, we are concerned with
two application scenarios for SYMSC, depending on whether the
adversarial thread (T3) exists in the given program or not.

Case 1. Thread T, is given, together with fixed addresses of the
memory region accessed by Ty. In this case, T is an integral part
of the concurrent system that also contains the security-critical
computation in Tj. Since the only source of nondeterminism is
thread interleaving, our tool aims to check if the concurrent system
itself has timing leaks.

Case 2. Thread T is not given, but created by our tool, and thus
the addresses of the memory region accessed by Ty are assumed to
be symbolic. This is when, inside the cache layout of Figure 5, the
address of tmp would be made symbolic, thus allowing it to be
mapped to any cache line (as opposed to be fixed to the 2nd line).
There are now two sources of non-determinism: thread interleaving
and memory layout. Our tool explores both to check if T; may leak
information due to interference from T5.

In the second case, when T, executes a memory load instruction ¢,
for example, the symbolic address addr may be mapped to any cache
line. The purpose of having such aggressive adversarial addressing
is to allow SYymSC to conduct a (predictive) what-if analysis: it
searches all potential memory layouts to check if there exists one
that allows T to cause a timing leak.

3 THE THREAT MODEL

We now review the technical background and present the threat
model, which defines what an adversary can or cannot do.

3.1 Cache and the Timing Side Channels

The execution time of a program depends on the CPU cycles taken
to execute the instructions and the time needed to access memory.
The first component is easy to compute but also less important in
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practice, because security-critical applications often execute the
same set of instructions regardless of values of their sensitive vari-
ables [65]. In contrast, leaks are more likely to occur in the second
component: the time taken to access memory. Compared to the time
needed to execute an instruction, which may be 1-3 clock cycles,
the time taken to access memory, during a cache miss, may be tens
or even hundreds of clock cycles.

There are different types of cache based on the size, associa-
tivity and replacement policy. For ease of comprehension, we use
direct-mapped cache with LRU policy in this paper, but other cache
types may be handled similarly. Indeed, during our experiments,
both direct-mapped cache and 4-way set-associative cache were
evaluated and they led to similar analysis results.

We assume the security-critical program P implements a func-
tion ¢ « f(k,x), where k is the sensitive input (secret), x is the
non-sensitive input (public), and c is the output. In block ciphers,
for example, k would be the cryptographic key, x would be the
plaintext, ¢ would be the ciphertext, and f would be the encryption
or decryption procedure.

Let the execution time of P be zp(k, x). Since there may be mul-
tiple paths inside P, when referring to a particular path p € P, we
use 7p(k, x). But if there is no ambiguity, we may omit the detail
and simply use 7(k, x). We say P is leak-free if 7(k, x) remains the
same for all input values. That is,

Vx, ki, ko . 7(ki,x) = 7(k2, x)

Here ki and kj are two arbitrary values of k. Since in practice,
decision procedures (e.g., SMT solvers) are designed for checking
satisfiability, instead of proving the validity of a formula, we try to
falsify it by checking the formula below:

Ax, ki, ky . 7(k1,x) # 7(k2, X)

Here, we search for two values of k that can lead to differences.

If the set of instructions executed by P remains the same, we
only need to check whether 7(k, x) and 7(kg, x) have the same
number of cache hits and misses. Furthermore, in our threat model
where the attacker can only observe (passively) the execution time
of P, but not control or observe x, we can reduce the computational
cost by fixing a value X of x arbitrarily and then checking if 7(k;)
and 7(ky) have the same number of cache hits and misses.

3.2 Example of an Attack

Now, we show a concrete example of exploiting cache timing leaks
in concurrent systems. The goal is to illustrate what an adversary
may be able to achieve in practice.

Figure 6 shows a two-threaded program, its cache mapping, and
the thread-local control flows. Initially, T2 allocates a memory area
(buf) whose size matches the input. Although the input size may
be arbitrary, here, we assume it is an integral multiple of 64, e.g.,
1024 bytes (INPUT_SIZE=1024). In the while-loop (line 14) T2 reads
64 bytes from input every time to fill buf. Thread T1 tracks the
progress (idx) of T2 (line 4) and repeatedly retrieves 64-byte data
from buf to the array out (line 5). The encryption on out involves
the S-Box array S and a given key (lines 6-7). Once the data is
encrypted, T1 sends it out (line 8). When T1 finds that buf runs out
of data, it sleeps for 50ms (line 10).

First, we explain why the program has a timing leak. We use a
32KB direct-mapped cache here and set each cache line to 64 bytes.
The S-Box array S hence maps to 4 cache lines and the buf array
maps to 16 cache lines. For brevity, we only focus on the important
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uint8_t *buf = @; uint32_t size = INPUT_SIZE; uint32_t idx = 0;

/% [Thread T1] %/ /* [Thread T2] =/
1: uint8_t S[2561 = {@x4b,...}; Me ...
2: uint8_t out[64] = {0}; 12: buf=(uint8_t *)malloc(size);
3: for(int i=0; i<size; ) 13: while(idx<size)
4: if (i < idx) 14: memcpy (buf+idx,read(...),64);
5: memcpy (out,buf+i,64); 15: idx+=64;
6: for (int j=0;j<64;j++,i++) 16: ......
7: out[jl &= SCkey[j1l;
8: write(out, ...);
9: else
10: sleep(50);
64 byt
...... e T2
buff0]-buf[63]
______ ~Jdx<size
S[0]-S[63] , buf[960]-buf[1023 13
q;} g[l}m fO0Tbull023) | oy [ .. %0
—
S[128]-S[191]
S[192]-S[255]

Figure 6: A two-threaded encryption program.

arrays (S and buf) while assuming other variables do not affect the
cache mapping. Furthermore, we assume S and buf share one cache
line as highlighted in Figure 6.

The graph in Figure 6 shows an interleaving of T1 and T2, where
the dotted red arrow represents a context switch after T2 executes
the memcpy statement (line 14) while T1 just reaches the for-loop
at line 6. The text above the arrow means idx’s value is 960 at the
moment, indicating thread T2 has just accessed the last 64 bytes of
buf at line 14.

After the context switch, T1 enters the for-loop (line 6) and reads
SCkey[j1] atline 7. Note that the offset to S’s base address depends
on key[ j], thus different keys may make thread T1 access different
items of S. We pick two 64-byte keys k1 and k2 which differ in
the first eight bits: 10000000 for k1 and 00000000 for k2. Using
k1, thread T1 first reads key[@] and S[128]. The access to S[128]
would lead to a cache hit if i is greater than 63. This is because
after the for-loop (lines 6-7) finishes once (i=64), S[128] is already
mapped to cache and no further accesses evict it.

In contrast, with k2, thread T1 loads S[@] which maps to the
cache line shared with buf[960-1023]. Recall that, before the
context switch, T2 just accessed the area starting from buf+idx
(buf[960]). Consequently T1’s access to S[@] causes a conflict
miss because the shared cache line was occupied by buf. Thus,
we find a leak: two keys (k1 and k2) leading to divergent cache
behaviors at a program location due to thread interleaving.

Next, we discuss how this leak may be exploited. The leak is due
to the sharing of cache between S and buf, which is crucial to our
threat model. In this program, S has a fixed size while buf is dynam-
ically allocated at run time based on the input data. Furthermore,
INPUT_SIZE is a variable affected by the external input. Although
the actual input size cannot be arbitrarily large in practice, for this
exploit to work, it only needs to be larger than the total cache size,
which is 32KB.

Thus, the attacker could mutate the input to alter the buffer
size, hence affecting the memory layout. Furthermore, real applica-
tions sometimes use relatively large fixed buffers. For example, in
OpenSSH [5], the scp program has a 16KB buffer for COPY_BUFLEN
and the sftp program has a 32KB buffer for DEFAULT_COPY_BUFFER.



/* cipher-ctr-mt.c */ /* cipher-ctr-mt.c %/
S 238:static voidx
504: for(i=0;i<CIPHER_THREADS; i++){ 239:thread_loop(void *x) {
507: pthread_create(..., 326: for(i=0;i<KQLEN;i++) {
thread_loop, ...); 327: AES_encrypt(g->ctr,
...... q->keys[i],&key);

Figure 7: Concurrency-related code in HPN-SSH [2].

Moreover, OpenSSH’s SSHBUF _SIZE_MAX buffer for a socket chan-
nel is as large as 256 MB. These large buffers allow room for attackers
to construct the desired cache layout.

We have found a similar scenario in the open-source implemen-
tation of HPN-SSH [2], which is an enhancement of OpenSSH [5]
by leveraging multi-threading to accelerate the data encryption. Fig-
ure 7 shows the code snippet directly taken from the HPN-SSH [2]
repository: On the left-hand side are threads created to run the
thread_loop function, shown on the right-hand side, which re-
peatedly calls AES_encrypt to encrypt data given by the user (line
327). By controlling the size and content of the data, as well as
the number of threads, a malicious user is able to affect both the
memory layout and the thread interleaving.

In our experimental evaluation (Section 7), we will show that
the AES subroutine from OpenSSL indeed has cache timing leaks,
which may subject HPN-SSH to attack scenarios similar to the one
illustrated in Figure 6.

4 ADVERSARIAL SYMBOLIC EXECUTION

We first present the baseline algorithm for concurrent programs.
Then, we enhance it to search for cache timing leaks.

4.1 The Baseline Algorithm

Following Guo et al. [40], we assume the entire program consists of
a finite set {T1, ..., T, } of threads where each thread T; (1 < i < n)
is a sequential program. Without loss of generality, we assume T}
is critical and any of Ty, ..., T, may be adversarial. Let st be an
instruction in a thread. Let event e = (tid, [, st,I’) be an instance
of st, where [ and [’ are thread-local locations before and after
executing st. A global location is a tuple s = (l1, .. .,l,) where each
l; is a location in T;. Depending on the type of st, an event may
have one of the following types:

e a-event, which is an assignment v; := exp; where v; is a
local variable and exp; is an expression in local variables.

e f-event, which is a local branch denoted assume(cond;)
where the condition cond; is expressed in local variables.

e y-event, which is a load from global memory of the form
v] = vy, a store to global memory of the form vg = expy,
or a thread synchronization operation.

For an if(c)-else statement, we use assume(c) to denote the then-
branch, and assume (—c) to denote the else-branch. Since ¢ is ex-
pressed in local variables or local copies of global variables, f-events
are local branching points whereas y-events are thread interleaving
points. Both f- and y-events contribute to the state-space explosion
problem. In contrast, a-events are local to their own threads. Details
on handling of language features such as pointers and function calls
are omitted, since they are orthogonal issues addressed by existing
symbolic execution tools [20, 26].

Algorithm 1 shows the baseline symbolic execution procedure
that follows the prior work [14, 26, 40] except that, for the purpose
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of detecting timing leaks, it considers two events as dependent also
when they are mapped to the same cache line. Here, an execution
is characterized by 7 = (in, sch) where in = {k, x} is the data input
and sch is the thread schedule, corresponding to a total order of
events e; . .. ey, and Stack is a container for symbolic states. Each
s € Stack is a tuple (M, pcon, branch, enabled, crt), where M is the
symbolic memory, pcon is the path condition, branch is the set of
branching (f) events, enabled is the set of thread interleaving (y)
events, and crt is the event chosen to execute at s.

Algorithm 1: Baseline Symbolic Execution Procedure.

Initially: State stack Stack = 0;
Start SYMSC(so) with the initial symbolic state sg.

1 SymSC(State s)
2 begin
3 Stack.push(s);
4 if s is a thread-local branching point then
5 for t € s.branch and s.pcon A t is satisfiable do
6 | SYmMSC(NextSymbolicState(s, t)); // [} event
7 end
8 else if s is a thread interleaving point then
9 for ¢t € s.enabled do
10 | SymSC(NextSymbolicState(s, t)); y event (enhanced)
11 end
12 else if s is other sequential computation then
13 | SymMSC(NextSymbolicState(s, s.crt)); « event
14 else
15 | terminate at s;
16 end
17 Stack.pop();
18 end
19 NextSymbolicState(State s, Event t)
20 begin
21 s.crt < t;
22 s’ « Execute the event ¢ in the state s;
23 return s’;
24 end

At the beginning, the stack is empty and the entry is the initial
state so. Then, depending on the type of the state s, we may execute
a local branch (line 4), perform a context switch (line 8), or execute
a sequential computation (line 12). In all cases, SYMSC is invoked
again on the new state.

Sub-procedure NextSymbolicState takes the current state s and
to-be-executed event t as input, and returns the new state s’ as
output: s’ is the result of executing ¢ at s. We omit details since
they are consistent with existing symbolic execution methods [39-
41, 66, 67].

Also note that, in the prior work, symbolic execution would
allow interleavings between global (y) events only if they have data
conflicts, i.e., they are from different threads, accessing the same
memory location, and at least one of them is a write. This is because
only such accesses may lead to different states if they are executed
in different orders. However, in our case, whether these events are
mapped to the same cache line also matters.

4.2 Enhanced Algorithm

We enhance the baseline algorithm to arrive at Algorithm 2, where
the main difference is in the interleaving points. Upon entering the
for-loop at line 5, we first check if an enabled event t may lead to
a timing leak by invoking DivergentCacheBehavior(s,t). Details of
the subroutine will be presented in Section 5, but at the high level,
it constructs a cache behavior constraint 7; and then searches for
two values, k; and kj, such that Tt(a) * rt(E).

Since detecting such divergent behaviors is computationally
expensive, prior to invoking the subroutine, we make sure that
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event ¢ indeed may be involved in an adversarial interleaving. This
is determined by AdversarialAccess(s,t) which checks if (1) ¢ comes
from the critical thread T; and (2) there exists a previously executed
event t’ = s’.crt where s’ € Stack and the two events (¢t and t’) are
mapped to the same cache line.

Algorithm 2: Symbolic Execution in SYmSC

Initially: State stack Stack=0;
Start SYMSC(so) with the initial symbolic state sg.

1 SymSC(State s)
2 begin
3 | ...
4 else if s is a global-memory access point then
5 for t € s.enabled do
6 if DivergentCacheBehavior(s, t) then
7 generate test case;
8 terminate at s;
9 else
10 | SymSC(NextSymbolicState(s, t));
11 end
12 end
13
14 end
15
16 DivergentCacheBehavior(State s, Event t)
17 begin
18 if AdversarialAccess(s, t) then
19 7; < compute ¢’s cache hit constraint;
20 if 3k, k" such that 7;(k) # 7;(k’) then
21 | return true;
22 end
23 return false;
24 end
25
26 AdversarialAccess(State s, Event t)
27 begin
28 if t is from the critical thread then
29 let s’ € Stackand t’ = s’ .crt;
30 if 3¢’ . t and t’ may map to same cache line then
31 | return true;
32 return false;
33 end

For our running example in Figure 4, in particular, Algorithm 2
would explore the first three interleavings in Table 1 before detect-
ing the leak. The process is partially illustrated by Figure 8, where
events t1:1oad q[255-k], t2:1oad p[k] and t3:store p[k] belong
to thread T; whereas t4:10oad tmp belongs to thread T».

Assume T executes t; to reach t2 and T, is about to execute ty4:
this corresponds to the figure on the left. At this moment, s.enabled
={ty, tg }. If t4 is executed before tp, AdversarialAccess(s,tz) would
evaluate to true because t3 comes from the critical thread and
pLk] may be mapped to the same cache line as tmp accessed by t4.
However, there is no timing leak at 2, because p[k] differs from
t1’s access q[255-k], meaning the cache behavior at ¢, remains the
same for all values of k.

If t, were executed before t4, we would have the second scenario
in Figure 8. At this moment, s.enabled = { t3, t4 }. If t4 is executed
after 3, the interleaving would be 6-9-11-13, which does not have
timing leaks either. But if t4 were executed before t3, we would
have the third scenario in Figure 8, where AdversarialAccess(s, t3)
evaluates to true, 74, (k) evaluates to false for (k=1) but to true for
(k#1)A(k<127), as shown in Table 2, leading to divergent cache
behaviors in 6-9-13-11.

5 ADVERSARIAL CACHE ANALYSIS

Our method for detecting divergent cache behaviors is as follows.
First, it constructs the behavioral constraint for each memory access.
Then, it solves the constraint to compute a pair of sensitive values
that allow the constraint to return divergent results.
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Figure 8: The three interleavings generated by SYymSC.

5.1 Cache Modeling

Recall that the entire program contains T; and Tz, among other
threads, where T; invokes the critical computation and T3 is po-
tentially adversarial. During symbolic execution, SYMSC conducts
context switches when load or store instructions may be mapped
to the same cache line. Here, each interleaving p corresponds to
a data input in and a thread schedule sch. The data input is di-
vided further into in = {k, x}, where k is sensitive (secret) and x is
non-sensitive (public). Whenever the value of x is immaterial, we
assume in = {k}.
¢ An interleaving p is a sequence of memory accesses denoted
plsch, in) = {Aj1, ..., Ap} where sch represents the order of
these accesses and in represents the data input.
e Each A;, where i € [0, n], denotes a memory access.
e pcon;(k) is the path condition under which A; is reached.

Thus, when pcon;(k) is true, meaning A; is reachable, we check
if A; can lead to a cache hit:

o 7;(k) denotes the condition under which A; triggers a cache
hit.

e addr; denotes the memory address accessed by A;.

e tag(addr) is a function that returns the unique tag of addr.

e line(addr) is a function that returns the cache line of addr.

Thus, we define the cache-hit condition as follows:

uky=\/ ( tag(addr;) = tag(addr;) A

0<j<i
VI € [j+1,i-1] |line(addr;) # line(addri)) (1)

For each memory access A;, SYMSC traverses the preceding memory
accesses in the interleaving p to see if any such A; may result in
A; being a cache hit. This is done by comparing the tag of addr; to
that of addr;j—a hit is possible only when two tags are the same.
Furthermore, any other memory access (A;) between A; and A;
must not evict the cache line occupied by A; (and hence A;). This
means, for all j < I < i, we have line(addr;) # line(addr;).

If A; always causes a cache hit, or a miss, it cannot leak sensitive
information because it implies Vk1, k2 . 7i(k1) = 7i(k2). In contrast,
if 7;(k) evaluates to true for some value of k but to faise for a
different value of k, then it is a leak.

5.2 Leakage Detection

After constructing 7;(k), which is the cache-hit condition for a po-
tentially adversarial memory access A;, we instantiate the symbolic
expression twice, first with a fresh variable k; and then with an-
other fresh variable ky. We use an off-the-shelf SMT solver to search
for values of k; and k; that can lead to divergent behaviors.



Table 2: Cache-related information of interleaving p.

‘ # line ‘ i ‘ peon; ‘ addr; ‘ i ‘ cache ‘
6 0 | k<127 | q[255-K] false miss
9 1 k <127 plk] tag(plk]) = tag(q[255 — k]) miss
tag(tmp) = tag(plkDV
13 2 k <127 tmp (tag(tmp) = tag(q[255 — k]) miss
Aline(tmp) # line(p[k]))
tag(plk]) = tag(tmp)v miss
1 3 | k<127 plk] (tag(plk]) = tag(p[k]) or
A line(p[k]) # line(tmp)) hit
Precise Solution. The precise formulation is as follows:
Tk, ka . (ky # ko) A Tiky) # 7i(ko) ()

We need to conduct this check at every memory access A;, where
i € [0, n], along the symbolic execution path p. If the above formula
is satisfiable, the SMT solver will return values k_1 and k_z of variables
k1 and kg, respectively.

Two-Step Approximation. Since computing both values at the
same time is expensive, in practice, we can take two steps:

e First, solve subformula 3k; . 7;(k1) to compute a concrete
value for k1, denoted k_1

e Second, solve subformula 3k . (k_1 # ko) A r,-(k_l) # ti(k2)
to compute a concrete value k; for ko.

Since the formula solved in each step is (almost twice) smaller,
the solving time can be reduced significantly. Furthermore, a valid
solution (k; and k) is guaranteed to be a valid solution for the
original formula as well. However, in general, the two-step approach
is an under-approximation: when it fails to find any solution, it is
not a proof that no such solution exists.

To make the two-step approach precise, one would have to apply
it repeatedly, each time with a different k1 computed in the first
step, until all solutions of k_1 is covered. Nevertheless, we shall
show through experiments that, in practice, applying it once is
often accurate enough to detect the actual leak.

5.3 The Running Example

We revisit the example in Figure 4 to show how our approach detects
the leak. Recall that SyMSC would generate the six interleavings
shown in Table 1. For each interleaving, Table 2 shows the line
number (#line) of every access A;, path condition pcon;, memory
address addr;, and the cache-hit constraint z;.

Inside the interleaving 6-9-13-11, for instance, upon reaching
the load of q[255-k] at line 6, the path condition would be (k <
127). Since it is the first memory access, 79 must be false (cache
miss). We will record this memory address for further analysis.

Next is the 1oad of p[k] at line 9. SymSC builds 71 and checks its
satisfiability. Since p[k] and the preceding q[255-k] correspond to
different memory addresses, the tag comparison in 7; returns false,
indicating a cache miss. The load at line 13 accesses tmp. Since
tmp is different from any of the elements in arrays p and q, the tag
comparisons in 79 return false, making Ay a cache miss.

Similarly, 73 for the store at line 11 is shown in the last row
of Table 2. It is worth mentioning that 73 only compares p[k]
(addrs) with tmp (addr;) and p[k] (addry) but not q[255-k] (addry)
because SYMSC finds that, if the access to tmp does not evict the
cache line used by its preceding access to p[k] (addr;), the last
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uint8_t SBOX1[641={0x6f,0x3c,0x77,0xb7,0x2f,0x7b,0x5f,0xc6, ...};
uint8_t SBOX2[64]1={0x3d,0x4c,0x5f,0xb6,0xd1,0xff,0x3e,0xed, ...};
void encrypt(uint8_t *block){
for (uint8_t i = 0; i < 64; i++){
block[i] |= SBOX1[block[i]];
block[i] *= SBOX2[block[ill;
}

5 )

Figure 9: Example code for accessing S-Box lookup tables.

store to p[k] (addrs) must be a cache hit; SYMSC stops here to
avoid further (and unnecessary) analysis.

Differing from 79, 7; and 72, the constraint 73 depends on k due
to the constraint line(p[k]) # line(tmp). Specifically, r3(k) is true
when (k! = 1 A k < 127) and is false when (k = 1).

In SYMSC, two symbolic variables k1, k2 will be used to substitute
k in the symbolic expression of 73(k), to form z3(k;) and z3(ky).
Solving the satisfiability problem described by 73(k1) XOR 73(k2)
would produce the assignment {k1=0 and k=1}, which makes 73(0)
evaluate to true and 73(1) evaluate to false.

6 OPTIMIZATIONS

Symbolic execution, when applied directly to cipher programs, may
have a high computational overhead because of the heavy use of
arithmetic computations and look-up tables in these programs. In
this section, we present techniques for reducing the overhead.

Toward this end, we have two insights. First, when conducting
cache analysis, we are not concerned with the actual numerical
computations inside the cipher unless they affect the addresses of
memory accesses that may depend on sensitive data, e.g., indices of
lookup tables such as S-Boxes. Second, for the purpose of detecting
leaks, as opposed to proving their absence, we are free to under-
approximate as long as it does not diminish the leak-detection
capability of our analysis.

6.1 Domain-specific Reduction

By studying real-world cipher programs, we have found the com-
putational overhead is often associated with symbolic indices of
lookup tables such as the one shown in Figure 9.

Here, block points to a 8-byte storage area whose content de-
pends on the cryptographic key; thus, the eight bytes are initialized
with symbolic values. Accordingly, indices to the S-Box tables —
block[i] at line 4 - are symbolic. However, not all memory ac-
cesses should be treated as symbolic. For example, the address of
block[i] itself, and the address of local variables such as i should
be treated as concrete values to reduce the cost of symbolic exe-
cution. Therefore, we conduct a static analysis of the interleaved
execution trace p to identify the sequence of memory accesses that
need to be kept symbolic while avoiding the symbolic expressions
of other unnecessary memory addresses.

Also, a program may have multiple S-Box arrays, like SBOX1 and
SBOX2 in Figure 9. Two successive accesses to SBOX1 and SBOX2 (at
lines 5 and 6) cannot form a cache hit no matter what the lookup
indices are. Therefore, we do not need to invoke the SMT solver
to check the equivalence of these symbolic addresses. This can
significantly cut down the constraint-solving time.
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6.2 Layout-directed Reduction

Another reduction is guided by the memory layout. In LLVM, mem-
ory layout may be extracted from the compiler back-end after the
code generation step. Recall that when analyzing a pair of poten-
tially adversarial addresses, we need to compare them with all other
addresses accessed between them to build the cache behavior con-
straint. More specifically, to check if Ay is a cache hit because of
A along the execution Ay — B1—, ..., =By — Az, we need to check
if any B; (1 < i < n) could evict the cache line used by A;. Due to
the large value of n and often complex symbolic expression of B;,
the constraint-solving time could be large.

Our approach in this case is to directly compare A; and Ay while
postponing the comparisons to B;. This is based on the observation
that, in practice, the cache line of A; can possibly be evicted by B;
only if the differences between their addresses is the multiple of
the cache size (e.g., 64KB), which may not be possible in compact
cipher programs. For example, in a 64KB direct-mapped cache, for
By to evict the 64-byte cache line of Ay, their address difference has
to be 21 = 64KB. In a 4-way set-associative cache, their address
difference has to be 2% = 16KB. Furthermore, in the event that A,
has a cache hit due to Aj, we can add back the initially-omitted
comparisons to By, ..., B, to undo the approximation.

7 EXPERIMENTS

We have implemented SymSC using the LLVM compiler [48] and
Cloud9[18], which is a symbolic execution engine for multithreaded
programs built upon KLEE [20]. We enhanced Cloud9 in three as-
pects. First, we extended its support for multi-threading by allowing
context switches prior to accessing global memory; the original
Cloud9 only allows context switches prior to executing a synchro-
nization primitive (e.g., lock/unlock). Second, we made Cloud9 fork
new states to flip the execution order of two simultaneously enabled
events when they may be mapped to the same cache line; the origi-
nal Cloud9 does not care about cache lines. Third, we made Cloud9
record the address of each memory access along the execution, so
it can incrementally build the cache-hit constraint. Based on these
enhancements, we implemented our cache timing leak detector and
optimized it for efficient constraint solving.

After compiling the C code of a program to LLVM bit-code, our
SYmSC tool executes it symbolically to generate interleavings ac-
cording to Algorithm 2. The cache constraint at each memory access
is expressed in standard KQuery expressions defined in KLEE [20].
By solving these constraints, we can obtain a concrete execution
that showcases the leak, including a thread schedule, two input

values ki, k and the adversarial memory address.

7.1 Benchmarks

We evaluated SYymSC on a diverse set of open-source cipher pro-
grams. Specifically, the first group has five programs from a light-
weight cryptographic system named FELICS [29], which was de-
signed for resource-constrained devices. The second group has
four programs from Chronos [27], a real-time Linux kernel. The
third group has four programs from the GNU cryptographic library
Libgcrypt [3], while the remaining programs are from the LibTom-
Crypt [4], the OpenSSL [6], and a recent publication [21]. They
include multiple versions of several well-known algorithms such
as AES [6, 27] and DES [3, 27], which are useful in evaluating the
impact of cipher implementations on the performance of SymSC.

Shengjian Guo, Meng Wu, and Chao Wang

Table 3: Benchmark statistics: lines of C code (LOC) and LLVM code
(LL), sensitive key-size (KS), and the memory accesses (MA).

[ Name [LOC ] LL|KS]| MA ]| Name [LOC] LL[KS] MA |
AES[6] 1,429 | 4,384 | 24 771 || FCrypt[27] 437 | 1,623 | 12 428
AES[27] 1,368 | 4,144 | 24 | 788 || KV_name[21] [ 1,350 | 1402 [ 4| 19
Camellia[4] | 776 [ 5319 | 16 | 1,301 || LBlock[29] | 930 | 4,010 | 10 | 1,618
CAST5[4] 735 | 2,790 | 16 | 909 || Misty1[1] 391 | 1,199 | 16 | 270
CAST5[27] 883 | 4,190 | 16 | 1,180 || Piccolo[29] | 301 | 1,034 [ 12| 350
Chaskey[29] 248 | 638 | 16 | 242 || PRESENT[29] 194 | 272 | 10 94
DES[3] 596 | 2,166 | 8| 963 || rfc2268[3] | 388 | 870 16| 149
DES[27] 1,010 | 3,926 | 8| 1,029 || Seed[3] 607 [ 3,535 | 16 [ 979
Kasumi[1] 350 | 1224 | 16 | 259 || TWINE[29] 256 | 562 | 10 | 229
Khazad[27] | 838 | 463 | 16 | 123 || Twofish[3] | 1,048 | 4,510 | 16 | 1,180

Table 3 shows the statistics of these benchmark programs. The
LOC and LL columns denote the lines of C code and the corre-
sponding LLVM bit-code. The KS column shows the size of the
sensitive input in bytes. The maximum number of memory accesses
on program paths of each benchmark is shown in the MA column,
which indicates the computational cost of the program.

Each program in the benchmark suite has from 194 to 1,429 lines
of C code. In total, there are 14,455 lines of C code, which compile
to 49,048 lines of LLVM bit-code. These numbers are considered
substantial because ciphers are typically compact programs with
highly computation-intensive operations, e.g., due to their use of
loops and lookup-table based transformations. For example, the
program named PRESENT has only 194 lines of C code but 8,233
memory accesses at run time.

We analyzed these benchmark programs using two types of
caches: direct-mapped cache and four-way set-associative cache.
The cache size is 64KB with each cache line consisting of 64 bytes;
thus, there are 64KB/64B = 1024 cache lines, which are typical in
mainstream computers today.

Our experiments were designed to answer two questions:

e Can SymSC detect cache-timing leaks exposed by concur-
rently running a program with other threads?
e Are the optimizations in Section 6 effective in reducing the
cost of symbolic execution and constraint solving?
We conducted all experiments with Ubuntu 12.04 Linux running on
a computer with a 3.40GHz CPU and 8GB RAM. For all evaluations
we set the timeout threshold to 1,600 minutes.

7.2 Results Obtained with Fixed Addresses

Table 4 shows our results obtained using fixed addresses in the cache
layout (Case 1 in Section 2.3). The first column shows the benchmark
name. The next three columns show the result of computing the
precise solution for our cache analysis problem. The last three
columns show the result of running the simplified, two-step version,
where the solution for 3ky, k2 . 7(k1) # 7(ky) is computed in two
steps, by first computing a value of k1 and then computing a value of
k2. In each method, we show the number of interleavings explored
(#.Inter), the number of leaky memory accesses detected (#.Test),
and the execution time in minutes (m). For the two-step approach,
we also show the number of leakage points detected after the first
step and after the second step.

Among these twenty programs, we detected leakage points in
four: ASE from OpenSSL [6], DES from Libgcrypt [3], FCrypt from
Chronos [27], and Khazad from Chronos [27]. We manually in-
spected these four programs in a way similar to what is described in
Section 3.2, and confirmed that all these leakage points are realistic.



Table 4: Results of leak detection with fixed addresses: Is the
program leaky w.r.t. the given thread?
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Table 5: Results of leak detection with symbolic addresses: Is
the given program leaky w.r.t. any adversarial thread?

Precise Two-Step Precise Two-Step
Name #.Inter ‘ #Test | Time (m) | #Inter }—{#,Test Time (m) Name #.Acc #Inter ‘ #Test | Time(m) ‘ #Inter }—{#‘Tﬁt Time(m)
stepl / step2 stepl / step2
AES[6] 57 55 430.2 57 55/55 140.3 AES [6] 1,026 224 220 1016.4 224 220/ 220 237.5
AES[27] 1 0 288.9 1 1/0 414 AES[27] 2,568 141 139 >1600 256 302 /254 548.3
Camellia[4] 1 0 0.1 1 1/0 0.1 Camellia[4] 2,590 176 172 830.8 176 172 /172 303.5
CAST5[4] 1 0 0.1 1 1/0 0.1 CAST5[4] 1,815 167 164 >1600 384 381/ 381 1337.4
CAST5[27] 1 0 0.1 1 1/0 0.1 CAST5[27] 1,392 183 180 >1600 384 381/ 381 1392.5
Chaskey[29] 1 0 0.1 1 1/0 0.1 Chaskey[29] 1,380 1 0 0.1 1 1/0 0.1
DES([3] 16 15 7.8 16 16/ 15 3.5 DES[3] 2,135 144 127 38.6 144 164 /127 27.2
DES[27] 1 0 0.1 1 1/0 0.1 DES[27] 2,539 119 114 >1600 194 187 /183 1191.5
FCrypt[27] 16 15 4.1 16 15/ 15 8.1 FCrypt[27] 428 64 60 15.1 64 60/ 60 20.1
Kasumi[1] 1 0 0.1 1 1/0 0.2 Kasumi[1] 1,785 83 82 >1600 96 94 /94 151.9
Khazad[27] 25 23 206.5 25 23/23 83.0 Khazad[27] 684 114 103 >1600 248 254 / 240 165.3
KV_Name[21] 1406 0 0.5 1406 1406 / 0 0.4 KV_Name[21] 140 1406 0 0.5 1406 1406 / 0 0.5
LBlock[29] 1 0 0.1 1 1/0 0.1 LBlock[29] 4,068 1 0 0.1 1 1/0 0.1
Misty1[1] 1 0 0.1 1 1/0 0.1 Misty1[1] 2,966 76 75 >1600 96 94 /94 265.1
Piccolo[29] 1 0 0.1 1 1/0 0.1 Piccolo[29] 5,103 1 0 0.1 1 1/0 0.1
PRESENT(29] 1 0 0.1 1 1/0 0.1 PRESENT([29] 8,233 1 0 0.2 1 1/0 0.2
rfc2268(3] 1 0 0.1 1 1/0 0.1 rfc2268[3] 3,190 113 112 303.4 113 112/ 112 42.9
Seed[3] 1 0 0.1 1 1/0 0.1 Seed[3] 1,632 201 197 >1600 320 316 / 316 1505.1
TWINE[29] 1 0 0.1 1 1/0 0.1 TWINE[29] 10,492 1 0 0.1 1 1/0 0.1
Twofish[3] 1 0 0.1 1 1/0 0.2 Twofish[3] 12,400 2514 84 >1600 900 84,063 /76 >1600

Furthermore, our two-step approach returned exactly the same
results as the precise analysis for all benchmark programs, but in
significantly less time.

We also conducted our experiments using 4-way set-associative
cache instead of direct-mapped cache. The results of these exper-
iments are similar to the ones reported in Table 4. Therefore, we
omit them for brevity.

Nevertheless, the similarity is expected. For example, a 1024-byte
S-Box would be mapped to 16 consecutive cache lines in directed-
mapped cache as well as 4-way set-associative cache, provided that
the cache size is 64KB and the line size is 64-byte. The only minor
difference is that, in the 4-way set-associative cache, we need four
adversarial memory accesses from thread T to fully evict a cache
set. But if we have already detected the first adversarial address
(say addr), the remaining three could simply be addr+cache_size,
addr+2*cache_size, and addr+3*cache_size. Thus, there is no signifi-
cant difference from analyzing direct-mapped cache.

7.3 Results Obtained with Symbolic Addresses

The results shown in Table 4 are useful, but also somewhat conserva-
tive. A more aggressive analysis is to assume the adversarial thread
T, may access memory regions whose cache layout is symbolic
(refer to Case 2 in Section 2.3).

Table 5 shows the experimental results obtained using direct-
mapped cache and symbolic addresses in thread T, (Case 2 in Sec-
tion 2.3). The first two columns show the benchmark name and the
maximum number of memory addresses accessed by an interleav-
ing at run time. The Precise column shows the result of computing
the precise solution for our cache analysis problem. The Two-Step
column shows the result of running the simplified version. In both
cases, we report the total number of interleavings explored by sym-
bolic execution (#Inter), the number of leaky memory accesses
detected (#.Test), and the total execution time in minutes (m). For
Two-Step, the number of leaky accesses is further divided into two
subcolumns: the leaky accesses detected after the first step and the
leaky accesses detected after the second step.

The results show that, for most of the benchmark programs, the
overhead of precisely solving our cache analysis is too high: on nine
of the twenty programs, it could not complete within the time limit.
In contrast, our two-step analysis was able to complete nineteen
out of the twenty programs. In terms of accuracy, our two-step
approach is almost as good as precise analysis: in all completed
programs, they detected the same number of leakage points, which
indicate a possible combination of adversarial threads and memory
layout that can trigger timing leaks.

Our results also show that, for the same type of cryptographic
algorithms (such as AES), different implementations may lead to
drastically different overhead. For example, we detected 34 more
leakage points in the AES implementation of Chronos [27] than that
of OpenSSL [6]. However, the AES of Chronos took almost twice
as long for our tool to analyze. For DES implementations from
Libgcrypt [3] and Chronos [27], we detected a slightly different
number of leakage points, but the time taken is significantly differ-
ent (27.1 minutes versus 1191.5 minutes). In contrast, for the two
versions of CAST5, we detected the same number of leakage points
in roughly the same amount of time.

For the benchmark where Two-Step took a long time, we found it
is due to the increasing size of symbolic constraints which consist
of the addresses in S-Box accesses. Typically the later a S-Box access
in a loop, the larger its symbolic address expression would be. In
Twofish, SYmMSC timed out because it encountered a large number
of "may-be-related" event pairs (i.e., accessing the same S-Box but
not the same cache line), which made SMT solving difficult.

7.4 Discussion

Based on the results, we answer the two research questions as fol-
lows. First, SYMSC is able to identify cache timing leaks in concur-
rent programs automatically. Specifically, using symbolic addresses
in the adversarial thread allows us to demonstrate the possibility
of triggering leaks in a concurrent system, whereas using fixed
addresses in the analysis allows us to show that such leaks are
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more practical. Second, SYMSC’s performance optimization tech-
niques are effective in reducing the computational overhead, which
is demonstrated on a diverse set of real-world cipher programs.

SymSC searches for sensitive inputs as well as an interleaving
schedule that, together, trigger divergent cache behaviors. If an
individual program path has a constant cache behavior, e.g., all the
memory accesses refer to fixed memory addresses regardless of the
value of the sensitive input, then timing leaks are impossible. By
checking for and leveraging such conditions, SYmSC can reduce the
computation cost even further. For instance, with naive exploration,
SyMSC would have generated 1,406 interleavings for the benchmark
program named KV_name. However, with the above analysis, it does
not have to generate any interleaving.

In this example, KV_name’s 4-byte symbolic input only affects the
branch conditions but does not taint any memory access address.
Thus, many paths are explored by symbolic execution. However,
no leak is detected on these paths.

Another example is Chaskey, which has a single program path,
together with 1,380 memory accesses on this path. These memory
addresses are all independent of the 16-Byte symbolic input, which
means no leakage point can be found by SymSC.

8 RELATED WORK

Side-channel leaks have been exploited in a wide range of sys-
tems [28, 36-38, 43-45, 51, 54, 57]. For timing side channels, in
particular, many analysis and verification techniques have been de-
veloped. For example, Chen et al. [23] proposed a technique named
Cartesian Hoare Logic [58] for proving that the timing leaks of a
program are bounded. Antonopoulos et al. [8] proposed a similar
method for proving the absence of timing channels: it partitions the
program paths in a way that, if individual partitions are proved to
be timing attack resilient, the entire program is also timing attack
resilient. However, these methods only consider instruction-induced
timing while ignoring the cache.

In the context of analyzing real-time systems, there is a large
body of work on cache analysis [49, 50, 52], with the goal of esti-
mating the worst-case execution time (WCET). Various techniques
including abstract interpretation [61], symbolic execution [12, 21],
and interpolation [25] have been used to compute the upper bound
of execution time along all program paths. Chattopadhyay et al. [22]
also developed CHALICE to quantify information leaked through
the cache side channel, but the focus was on dependencies between
sensitive data and misses/hits on the CPU’s data cache.

Doychev et al. [30] developed CacheAudit, a tool relying on ab-
stract interpretation based static analysis to analyze cache timing
leaks. Wang et al. [64] developed CacheD, an offline trace analy-
sis tool for detecting key-dependent program points in a cipher
program that may be vulnerable to side channel attacks. Sung et
al. [60] developed CANAL, an LLVM transformation that models
cache timing behaviors for standard verification tools. However,
these techniques handle sequential programs or traces only.

Pasareanu et al. [55] developed a symbolic execution tool for
reasoning about the degree of leaked information, assuming the
attacker can take multiple measurements. The test input that causes
the maximum amount of leakage is computed using Max-SMT solv-
ing. Bultan et al. [10, 17, 19] developed techniques for quantifying
information leaked by string operations. Their method can handle
both single and multiple runs [10]: it applies probabilistic symbolic
execution to collect path constraints of a single run and then uses
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these constraints to compute the leakage of multiple runs. Phan et
al. [56] also developed a symbolic attack model and formulated the
problem of test generation to obtain the maximum leakage as an
optimization problem.

However, in all these existing methods, the program is assumed
to be sequential. In contrast, SYMSC focuses on concurrency-induced
leaks. Although Barthe et al. [11] proposed an abstract interpreta-
tion technique based on CacheAudit [30] to track the cache state of
a program with concurrent adversary, the adversary is a separate
process (that tries to probe and set the cache states), not a thread.
Furthermore, users have to provide data inputs and interleaving
schedules, whereas SYMSC generates them automatically.

Stefan et al. [59] proposed an instruction-based scheduling mech-
anism in information flow control systems running on a single CPU,
to avoid cache timing attacks introduced by classic time-based
schedulers. Therefore, it is a system-level mitigation technique. In
contrast, SYMSC focuses on detecting whether a security-critical
program may leak sensitive information through the timing side
channel due to interference from other threads.

Our state-space reduction in SYmMSC is related to partial order
reduction (POR) [35] in model checking, but with an important
difference. In classic POR [9, 24, 42, 47, 63, 69], one would typically
select representative interleavings from equivalence classes, which
are defined based on standard data-conflict and data-dependence
relations. However, in SYmMSC, they must be broadened to also in-
clude functionally-independent events that may access the same
cache line.

So far, SYyMSC focuses on cases where the adversarial thread
flushes a single cache line. In the terminology of side-channel anal-
ysis, this corresponds to first-order attacks. If, on the other hand,
the adversarial thread is capable of flushing multiple cache lines,
it may be more likely to trigger timing leaks. Such cases would
be called high-order attacks. We leave the analysis of high-order
attacks for future work.

Besides leak detection, there are side-channel leak mitigation
techniques that can generate countermeasures automatically, e.g.,
using compiler-like program transformations [7, 13, 53, 65] or SMT
solver based formal verification [15, 32, 33, 68] and program syn-
thesis [16, 31, 34, 62] techniques. However, none of these emerging
techniques was designed for, or applicable to, cache timing side
channels due to concurrency.

9 CONCLUSIONS

We have presented a symbolic execution method for detecting cache
timing leaks in a computation that runs concurrently with an ad-
versarial thread. Our method systematically explores both thread
paths and their interleavings, and relies on an SMT solver to detect
divergent cache behaviors. Our experiments show that real cipher
programs do have concurrency related cache timing leaks, and al-
though it remains unclear to what extent such leaks are exploited
in practice, our method computes concrete data inputs and inter-
leaving schedules to demonstrate these leaks are realistic. To the
best of our knowledge, this is the first symbolic execution method
for detecting cache timing side-channel leaks due to concurrency.

ACKNOWLEDGMENTS

This work was supported in part by the U.S. National Science Foun-
dation (NSF) under grants CNS-1617203 and CNS-1702824 and the
Office of Naval Research (ONR) under grant N00014-17-1-2896.



REFERENCES

=

[10

[11]

[12]

[13

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Botan. https://botan.randombit.net/.

High Performance SSH/SCP - HPN-SSH. https://www.psc.edu/hpn-ssh.
Libgcrypt. https://gnupg.org/software/libgerypt/index.html.

LibTomCrypt. http://www.libtom.net/LibTomCrypt/.

OpenSSH. http://www.openssh.com/.

OpenSSL. https://github.com/openssl/openssl/tree/OpenSSL_0_9_7-stable.
Giovanni Agosta, Alessandro Barenghi, and Gerardo Pelosi. A code morphing
methodology to automate power analysis countermeasures. In ACM/IEEE Design
Automation Conference, pages 77-82, 2012.

Timos Antonopoulos, Paul Gazzillo, Michael Hicks, Eric Koskinen, Tachio Ter-
auchi, and Shiyi Wei. Decomposition instead of self-composition for proving
the absence of timing channels. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 362375, 2017.

Stavros Aronis, Bengt Jonsson, Magnus Lang, and Konstantinos Sagonas. Optimal
dynamic partial order reduction with observers. In International Conference on
Tools and Algorithms for Construction and Analysis of Systems, pages 229-248,
2018.

Lucas Bang, Abdulbaki Aydin, Quoc-Sang Phan, Corina S. Pasareanu, and Tevfik
Bultan. String analysis for side channels with segmented oracles. In ACM SIGSOFT
Symposium on Foundations of Software Engineering, pages 193-204, 2016.

Gilles Barthe, Boris K6pf, Laurent Mauborgne, and Martin Ochoa. Leakage re-
silience against concurrent cache attacks. In International Conference on Principles
of Security and Trust, pages 140-158, 2014.

Tiyash Basu and Sudipta Chattopadhyay. Testing cache side-channel leakage.
In IEEE International Conference on Software Testing, Verification and Validation,
pages 51-60, 2017.

Ali Galip Bayrak, Francesco Regazzoni, Philip Brisk, Francois-Xavier Standaert,
and Paolo Ienne. A first step towards automatic application of power analysis
countermeasures. In ACM/IEEE Design Automation Conference, pages 230-235,
2011.

Tom Bergan, Dan Grossman, and Luis Ceze. Symbolic execution of multithreaded
programs from arbitrary program contexts. In ACM SIGPLAN Conference on
Object Oriented Programming, Systems, Languages, and Applications, pages 491
506, 2014.

Roderick Bloem, Hannes Grof3, Rinat Tusupov, Bettina Konighofer, Stefan Man-
gard, and Johannes Winter. Formal verification of masked hardware implementa-
tions in the presence of glitches. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques (EUROCRYPT), pages 321-353, 2018.
Arthur Blot, Masaki Yamamoto, and Tachio Terauchi. Compositional synthesis
of leakage resilient programs. In International Conference on Principles of Security
and Trust, pages 277-297, 2017.

Tegan Brennan, Seemanta Saha, and Tevfik Bultan. Symbolic path cost analysis
for side-channel detection. In International Conference on Software Engineering,
pages 424-425, 2018.

Stefan Bucur, Vlad Ureche, Cristian Zamfir, and George Candea. Parallel symbolic
execution for automated real-world software testing. In European Conference on
Computer Systems, pages 183-198, 2011.

Tevfik Bultan, Fang Yu, Muath Alkhalaf, and Abdulbaki Aydin. String Analysis
for Software Verification and Security. Springer, 2017.

Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: unassisted and
automatic generation of high-coverage tests for complex systems programs. In
USENIX Symposium on Operating Systems Design and Implementation, pages
209-224, 2008.

Sudipta Chattopadhyay. Directed automated memory performance testing. In
International Conference on Tools and Algorithms for Construction and Analysis of
Systems, pages 38-55, 2017.

Sudipta Chattopadhyay, Moritz Beck, Ahmed Rezine, and Andreas Zeller. Quanti-
fying the information leak in cache attacks via symbolic execution. In ACM-IEEE
International Conference on Formal Methods and Models for System Design, pages
25-35, 2017.

Jia Chen, Yu Feng, and Isil Dillig. Precise detection of side-channel vulnerabilities
using quantitative cartesian hoare logic. In ACM SIGSAC Conference on Computer
and Communications Security, pages 875-890, 2017.

Lin Cheng, Zijiang Yang, and Chao Wang. Systematic reduction of GUI test
sequences. In IEEE/ACM International Conference On Automated Software Engi-
neering, pages 849-860, 2017.

Duc-Hiep Chu, Joxan Jaffar, and Rasool Maghareh. Precise cache timing anal-
ysis via symbolic execution. In IEEE Symposium on Real-Time and Embedded
Technology and Applications, pages 293-304, 2016.

Liviu Ciortea, Cristian Zamfir, Stefan Bucur, Vitaly Chipounov, and George
Candea. Cloud9: a software testing service. Operating Systems Review, 43(4):5-10,
2009.

Matthew Dellinger, Piyush Garyali, and Binoy Ravindran. Chronos linux: a best-
effort real-time multiprocessor linux kernel. In ACM/IEEE Design Automation
Conference, pages 474-479, 2011.

Jean-Francois Dhem, Frangois Koeune, Philippe-Alexandre Leroux, Patrick
Mestré, Jean-Jacques Quisquater, and Jean-Louis Willems. A practical implemen-
tation of the timing attack. In International Conference on Smart Card Research
and Applications, pages 167-182, 1998.

ESEC/FSE 18, November 4-9, 2018, Lake Buena Vista, FL, USA

[29] Daniel Dinu, Yann Le Corre, Dmitry Khovratovich, Léo Perrin, Johann
Grof3schadl, and Alex Biryukov. Triathlon of lightweight block ciphers for
the internet of things. Cryptology ePrint Archive, Report 2015/209, 2015.

[30] Goran Doychev, Dominik Feld, Boris K6pf, Laurent Mauborgne, and Jan Reineke.
Cacheaudit: A tool for the static analysis of cache side channels. In USENIX
Security Symposium, pages 431-446, 2013.

[31] Hassan Eldib and Chao Wang. Synthesis of masking countermeasures against
side channel attacks. In International Conference on Computer Aided Verification,
pages 114-130, 2014.

[32] Hassan Eldib, Chao Wang, and Patrick Schaumont. SMT-based verification of

software countermeasures against side-channel attacks. In International Con-

ference on Tools and Algorithms for Construction and Analysis of Systems, pages

62-77,2014.

Hassan Eldib, Chao Wang, Mostafa Taha, and Patrick Schaumont. QMS: Eval-

uating the side-channel resistance of masked software from source code. In

ACM/IEEE Design Automation Conference, pages 209:1-6, 2014.

Hassan Eldib, Meng Wu, and Chao Wang. Synthesis of fault-attack countermea-

sures for cryptographic circuits. In International Conference on Computer Aided

Verification, pages 343-363, 2016.

[35] Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction for

model checking software. In ACM SIGACT-SIGPLAN Symposium on Principles of

Programming Languages, pages 110-121, 2005.

Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic anal-

ysis: Concrete results. In International Conference on Cryptographic Hardware

and Embedded Systems, pages 251-261, 2001.

Daniel Genkin, Adi Shamir, and Eran Tromer. RSA key extraction via low-

bandwidth acoustic cryptanalysis. In Annual International Cryptology Conference

(CRYPTO), pages 444-461, 2014.

Daniel Gruss, Julian Lettner, Felix Schuster, Olga Ohrimenko, Istvan Haller, and

Manuel Costa. Strong and efficient cache side-channel protection using hardware

transactional memory. In USENIX Security Symposium, pages 217-233, 2017.

Shengjian Guo, Markus Kusano, and Chao Wang. Conc-iSE: incremental symbolic

execution of concurrent software. In IEEE/ACM International Conference On

Automated Software Engineering, pages 531-542, 2016.

[40] Shengjian Guo, Markus Kusano, Chao Wang, Zijiang Yang, and Aarti Gupta. As-

sertion guided symbolic execution of multithreaded programs. In ACM SIGSOFT

Symposium on Foundations of Software Engineering, pages 854-865, 2015.

Shengjian Guo, Meng Wu, and Chao Wang. Symbolic execution of programmable

logic controller code. In ACM SIGSOFT Symposium on Foundations of Software

Engineering, 2017.

Vineet Kahlon, Chao Wang, and Aarti Gupta. Monotonic partial order reduc-

tion: An optimal symbolic partial order reduction technique. In International

Conference on Computer Aided Verification, pages 398—413, 2009.

[43] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss,
and other systems. In Annual International Cryptology Conference (CRYPTO),
pages 104-113, 1996.

[44] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Annual International Cryptology Conference (CRYPTO), pages 388-397, 1999.

[45] Jingfei Kong, Onur Acii¢mez, Jean-Pierre Seifert, and Huiyang Zhou. Architect-

ing against software cache-based side-channel attacks. IEEE Trans. Computers,

62(7):1276-1288, 2013.

Boris Képf, Laurent Mauborgne, and Martin Ochoa. Automatic quantification of

cache side-channels. In International Conference on Computer Aided Verification,

pages 564580, 2012.

[47] Markus Kusano and Chao Wang. Assertion guided abstraction: a cooperative

optimization for dynamic partial order reduction. In IEEE/ACM International

Conference On Automated Software Engineering, pages 175-186, 2014.

Chris Lattner and Vikram S. Adve. LLVM: A compilation framework for lifelong

program analysis & transformation. In IEEE/ACM International Symposium on

Code Generation and Optimization, pages 75-88, 2004.

Xianfeng Li, Tulika Mitra, and Abhik Roychoudhury. Accurate timing analysis

by modeling caches, speculation and their interaction. In ACM/IEEE Design

Automation Conference, pages 466-471, 2003.

[50] Yan Li, Vivy Suhendra, Yun Liang, Tulika Mitra, and Abhik Roychoudhury. Tim-

ing analysis of concurrent programs running on shared cache multi-cores. In

IEEE Real-Time Systems Symposium, pages 57-67, 2009.

Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks -

revealing the secrets of smart cards. 2007.

Tulika Mitra, Jiirgen Teich, and Lothar Thiele. Time-critical systems design: A

survey. IEEE Design & Test, 35(2):8-26, 2018.

[53] Andrew Moss, Elisabeth Oswald, Dan Page, and Michael Tunstall. Compiler

assisted masking. In International Conference on Cryptographic Hardware and

Embedded Systems, pages 58-75, 2012.

Elke De Mulder, Thomas Eisenbarth, and Patrick Schaumont. Identifying and

eliminating side-channel leaks in programmable systems. IEEE Design & Test,

35(1):74-89, 2018.

Corina S. Pasareanu, Quoc-Sang Phan, and Pasquale Malacaria. Multi-run side-

channel analysis using symbolic execution and max-smt. In IEEE Computer

Security Foundations Symposium, pages 387-400, 2016.

[56] Quoc-Sang Phan, Lucas Bang, Corina S. Pasareanu, Pasquale Malacaria, and
Tevfik Bultan. Synthesis of adaptive side-channel attacks. In IEEE Computer
Security Foundations Symposium, pages 328-342, 2017.

[33

[34

[36

[37

[38

[39

[41

[42

[46

(48

[49

[51

[52

[54

[55


https://botan.randombit.net/
https://www.psc.edu/hpn-ssh
https://gnupg.org/software/libgcrypt/index.html
http://www.libtom.net/LibTomCrypt/
http://www.openssh.com/
https://github.com/openssl/openssl/tree/OpenSSL_0_9_7-stable

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

[57] Jean-Jacques Quisquater and David Samyde. ElectroMagnetic Analysis (EMA):

Measures and Counter-measures for Smart Cards, pages 200-210. 2001.

Marcelo Sousa and Isil Dillig. Cartesian hoare logic for verifying k-safety prop-
erties. In ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 57-69, 2016.

Deian Stefan, Pablo Buiras, Edward Z. Yang, Amit Levy, David Terei, Alejan-
dro Russo, and David Maziéres. Eliminating cache-based timing attacks with
instruction-based scheduling. In European Symposium on Research in Computer
Security, pages 718-735, 2013.

Chungha Sung, Brandon Paulsen, and Chao Wang. CANAL: A cache timing anal-
ysis framework via llvm transformation. In IEEE/ACM International Conference
On Automated Software Engineering, 2018.

Valentin Touzeau, Claire Maiza, David Monniaux, and Jan Reineke. Ascertaining
uncertainty for efficient exact cache analysis. In International Conference on
Computer Aided Verification, pages 22-40, 2017.

Chao Wang and Patrick Schaumont. Security by compilation: an automated
approach to comprehensive side-channel resistance. ACM SIGLOG News, 4(2):76—
89, 2017.

Chao Wang, Zijiang Yang, Vineet Kahlon, and Aarti Gupta. Peephole partial order
reduction. In International Conference on Tools and Algorithms for Construction

Shengjian Guo, Meng Wu, and Chao Wang

and Analysis of Systems, pages 382-396, 2008.

Shuai Wang, Pei Wang, Xiao Liu, Danfeng Zhang, and Dinghao Wu. CacheD:
Identifying cache-based timing channels in production software. In USENIX
Security Symposium, pages 235-252, 2017.

Meng Wu, Shengjian Guo, Patrick Schaumont, and Chao Wang. Eliminating
timing side-channel leaks using program repair. In International Symposium on
Software Testing and Analysis, 2018.

Qiuping Yi, Zijiang Yang, Shengjian Guo, Chao Wang, Jian Liu, and Chen Zhao.
Eliminating path redundancy via postconditioned symbolic execution. IEEE
Trans. Software Eng., 44(1):25-43, 2018.

Tingting Yu, Tarannum S. Zaman, and Chao Wang. DESCRY: reproducing
system-level concurrency failures. In ACM SIGSOFT Symposium on Foundations
of Software Engineering, pages 694-704, 2017.

[68] Jun Zhang, Pengfei Gao, Fu Song, and Chao Wang. SCInfer: Refinement-based

verification of software countermeasures against side-channel attacks. In Inter-
national Conference on Computer Aided Verification, 2018.

Naling Zhang, Markus Kusano, and Chao Wang. Dynamic partial order reduction
for relaxed memory models. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 250-259, 2015.



	Abstract
	1 Introduction
	2 Motivation
	2.1 A Self-leaking Program and the Repair
	2.2 New Leak Induced by Concurrency
	2.3 Adversarial Symbolic Execution

	3 The Threat Model
	3.1 Cache and the Timing Side Channels
	3.2 Example of an Attack

	4 Adversarial Symbolic Execution
	4.1 The Baseline Algorithm
	4.2 Enhanced Algorithm

	5 Adversarial Cache Analysis
	5.1 Cache Modeling
	5.2 Leakage Detection
	5.3 The Running Example

	6 Optimizations
	6.1 Domain-specific Reduction
	6.2 Layout-directed Reduction

	7 Experiments
	7.1 Benchmarks
	7.2 Results Obtained with Fixed Addresses
	7.3 Results Obtained with Symbolic Addresses
	7.4 Discussion

	8 Related Work
	9 Conclusions
	References

