
Abstract Interpretation under Speculative Execution

Meng Wu
Virginia Tech

Blacksburg, VA, USA

Chao Wang
University of Southern California

Los Angeles, CA, USA

Abstract

Analyzing the behavior of a program running on a processor
that supports speculative execution is crucial for applications
such as execution time estimation and side channel detection.
Unfortunately, existing static analysis techniques based on
abstract interpretation do not model speculative execution
since they focus on functional properties of a program while
speculative execution does not change the functionality. To
fill the gap, we propose a method to make abstract inter-
pretation sound under speculative execution. There are two
contributions. First, we introduce the notion of virtual con-
trol flow to augment instructions that may be speculatively
executed and thus affect subsequent instructions. Second,
to make the analysis efficient, we propose optimizations to
handle merges and loops and to safely bound the specula-
tive execution depth. We have implemented and evaluated
the proposed method in a static cache analysis for execution
time estimation and side channel detection. Our experiments
show that the new method, while guaranteed to be sound
under speculative execution, outperforms state-of-the-art
abstract interpretation techniques that may be unsound.

CCS Concepts · Software and its engineering → For-
mal software verification; Compilers; · Security and
privacy→ Cryptanalysis and other attacks.

Keywords Static analysis, speculative execution, abstract
interpretation, timing side channel, WCET, cache

ACM Reference Format:
Meng Wu and Chao Wang. 2019. Abstract Interpretation under
Speculative Execution. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI ’19), June 22ś26, 2019, Phoenix, AZ, USA. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3314221.3314647

1 Introduction

Speculative execution [53] is a feature that has been imple-
mented by many modern processors. It allows a processor to
increase the execution speed by exploring certain program

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6712-7/19/06. . . $15.00
https://doi.org/10.1145/3314221.3314647

paths ahead of time instead of waiting for the path conditions
to be satisfied. This is to prevent slower instructions, e.g.,
memory accesses, from blocking faster instructions. For ex-
ample, when a program reaches a branching instruction, e.g.,
if(x>5){...}else{...} where the condition depends on
an uncached value of x stored in memory, a non-speculative
execution will force the processor to wait, often for tens or
hundreds of clock cycles, until x is loaded from memory,
whereas speculative execution allows the processor to make
a prediction of the branching target and then proceed to
execute the predicted branch. During speculative execution,
the processor maintains a checkpoint of the CPU’s register
state, which will be used to roll back the changes if the pre-
diction turns out to be incorrect, i.e., after the value of x is
fetched from memory. However, if the prediction turns out
to be correct, speculative execution will save time and thus
outperform non-speculative execution.
Speculative execution is designed to be transparent to

the program running on the processor; that is, it does not
affect the program semantics, as the rollback ensures that
functional properties are preserved. This is the reason why,
in the past, static analysis techniques do not model spec-
ulative execution. However, recent vulnerabilities such as
Meltdown [36], Spectre [28] and ForeShadow [55] force the
community to take another look because, although specula-
tive execution preserves the CPU’s register state, for perfor-
mance reasons, it does not preserve the states of many other
components such as the cache and the pipeline [22, 23].
To see why this may be a problem, consider the cache

state that may be altered by speculative execution and thus
affect the timing behavior of the subsequent non-speculative
execution, e.g., cache hits may become misses, or vice versa.
This is important because an instruction may take only 1-
3 clock cycles when there is a cache hit, but tens or even
hundreds of clock cycles when there is a cache miss. Static
analysis is useful in examining the cache related properties
of a program, e.g., to detect information leaks through timing
side channels [7, 16, 29, 51, 58] or prove that a computation
task always meets the deadline [18, 20].
For side channel detection, in particular, one may want

to know if the program’s execution time depends on secret
data, e.g., the cryptographic key, security token, or password.
For deadline estimation, one may want to know the maxi-
mum number of cache misses along program paths, since it
corresponds to the execution time in the worst case. In both
applications, static analysis must be sound to be useful. By
sound, we mean all possible behaviors must be considered.
The reason is because, if the analysis fails to take into consid-
eration a certain behavior, e.g., a specific execution, it may

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Meng Wu and Chao Wang

Input

Program

Virtual

Speculative

CFG

Analysis

Report

Speculative

Abstract

Interpretation

Architectural Parameters (cache config., speculation depth)

Control

Flow

Analysis

Figure 1. Our static program analysis framework based on
sound abstract interpretation of speculative executions.

miss a bug or security vulnerability, which is not acceptable
in critical applications.

Unfortunately, existing abstract interpretation techniques
[16, 18, 19, 48] are unsound under speculative execution.
Instead, these prior works on abstract interpretation focus
more on modeling non-speculative executions, for which
numerous techniques have been developed, including widen-
ing/narrowing, chaotic iteration, and efficient implemen-
tations of abstract domains. Under speculative execution,
however, none of these techniques is relevant because the
problem is no longer about removing infeasible paths from
the over-approximated analysis, but about preventing real
behaviors from being excluded. This requires a different set
of ideas from what already exist in the literature.
We propose a method for lifting abstract interpretation

algorithms so that they are sound again under speculative
execution. We have developed two techniques. The first one
is a unified way of modeling both non-speculative and specu-
lative executions using virtual control flow. The second one is
redundancy removal, which is crucial for reducing runtime
overhead while maintaining accuracy.

At a high level, the virtual control flow augments the pro-
gram’s CFG by adding new nodes and edges, e.g., transitions
from locations in the body of one speculatively executed
branch to the starting point of the other branch, to model
the rollback upon mis-prediction. This approach is generally
applicable, regardless of how the abstract state is defined
and which algorithm is used to compute the fixed point. For
example, the abstract state may model side effects on the
cache or pipeline [46, 47], the non-functional properties to
be verified may be timing or power [17, 60], and the abstract
domain may be interval [14] or octagonal [40].
We have implemented the method in a static cache anal-

ysis shown in Figure 1, to compute the memory accesses
that correspond to Must-Hits. In this context, our method
first computes all possible speculative paths of the program
and uses them to augment the CFG. Next, it traverses the
speculative CFG to perform abstract interpretation, which
computes an abstract (cache) state for each program loca-
tion. To reduce the runtime overhead, it also bounds the
depth and number of speculative executions that abstract
interpretation has to consider. This is possible because, in
many cases, the abstract states are already computed for
some location and thus can be used to bound the speculative
executions in other locations. Furthermore, we discover that

the accuracy of abstract interpretation is often affected by
when abstract states from speculative and non-speculative
executions are merged, and we develop a strategy named
łjust-in-time mergingž to minimize the loss of accuracy.

We have implemented our method in LLVM [32], where
the speculative CFG is constructed by an LLVM pass before
it is used by abstract interpretation. We evaluated it on two
types of benchmarks: cryptographic software and real-time
software, where the goal is to detect timing side channels
and to estimate the execution time, respectively. In both
cases, the instruction set architecture is Alpha 21264, with
32-KB fully-associative data cache, 64 bytes per line, and
the LRU replacement policy. Our experiments show that,
compared to existing non-speculative methods, our method
is able to detect significantly more timing related behaviors,
i.e., cache misses and side-channel leaks. Furthermore, our
optimizations are effective in reducing the runtime overhead
while maintaining the accuracy.

To sum up, this paper makes the following contributions:

• We show why existing abstract interpretation tech-
niques are unsound for speculative execution.
• We propose a method for lifting existing algorithms
to make them sound for speculative execution.
• We develop optimizations to safely reduce the runtime
overhead while maintaining the accuracy.
• We implement the method and demonstrate its effec-
tiveness on a set of C programs.

The paper is structured as follows. First, we illustrate the
problem and our solution in Section 2. Then, we provide the
technical background in Section 3, before presenting our al-
gorithms in Sections 4, 5 and 6. We present our experimental
results in Section 7. We review the related work in Section 8.
Finally, we give our conclusions in Section 9.

2 Motivation

We illustrate some scenarios in which speculative execution
affects the cache behaviors associated with a program, and
explain why such behaviors are crucial for execution time
estimation and side channel detection.

2.1 Execution Time Estimation

Figure 2 shows a program that illustrates divergent cache be-
haviors under normal and speculative executions as observed
in practice [2ś4, 12, 25, 26]. Here, we have four variables:
ph, l1, l2, and p, which are mapped to different cache lines.
Suppose the register value k is 0, the load at line 8 will access
ph[0]. We assume the cache has 512 lines in total and 64
bytes per line. We also assume the cache is fully associative,
meaning any variable may be mapped to a different line.
The place holder variable ph is mapped to the first 510 lines
(line 3); in practice, ph may correspond to an assorted set
of program variables. Each of the remaining variables, l1, l2
and p, may be mapped to a cache line.

Depending on the branching condition, either l1 or l2 may
be loaded to the cache, but both will result in 512 cache

Abstract Interpretation under Speculative Execution PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

1 char ph[64*510], l1[64], l2[64], p;

2 reg char k;

3 for(reg int i=0;i<64*510; i+=64) load ph[i];

4 if(p==0)

5 load l1[0];

6 else

7 load l2[0];

8 load ph[k];

Figure 2. Example program for timing side channel.

misses. As shown on the left-hand side of Figure 3, the state-
ment at line 8, accessing ph[0], is always a hit because the
content is already in the cache.

However, under speculative execution, upon reaching the
if-else statement, the CPU needs to load p from memory.
Due to a cache miss, it performs a speculative execution of
the branch (p==0). If the branch prediction is incorrect and
the CPU has to roll back the speculative execution, there
will be 514 cache misses (among which 513 cache misses
are observable from outside of the CPU) as shown by the
right-hand-side trace in Figure 3.
In this case, the program first speculatively executes the

then-branch and loads l1 into the cache, and then rolls back
to take the else-branch and loads l2. Although the functional
side-effects of executing the then-branch are eliminated by
the rollback mechanism, l1 is already in the cache. Since
the cache has only 512 lines, following the LRU replacement
policy, the first line associated with ph[0] is evicted. This is
why the subsequent access to ph[0] will be a cache miss.

For execution time estimation, the non-speculative execu-
tion will lead to 512 cache misses plus 1 cache hit, whereas
the speculative execution will lead to 513 observable cache
misses (and a speculative cache miss masked by the pipeline).
The additional cache miss is important because it will cause
a significant delay in the execution time. The message from
this example is as follows: if a static analysis is not sound in
modeling speculative execution, it may underestimate the
worst-case execution time and produce a bogus proof that
the computation task meets its deadline.

2.2 Side Channel Detection

We use Figure 2 again to illustrate a timing side channel
made possible by speculative execution. That is, the attacker,
by measuring the execution time of a program, may deduce
information of the secret data. This time, we assume the
variable k stores the secret data, e.g., a cryptographic key,
and the value of k is used as an index to access an S-Box-like
array named ph. If the time taken by the access varies with
respect to k , there is an information leak.
In a non-speculative execution, there cannot be leaks in

Figure 2 because, for all paths and values of k, the number of
cache misses remains the same. In particular, accessing ph[k]
is leak-free because the array is loaded to cache at line 3,
and executing either branch at lines 5 and 7 will not evict it.
However, similar to what we have observed in the execution

time estimation example, speculative execution may execute
one of the two branches first, and then roll back to execute
the other branch. Since the memory locations associated
with both branches must be accessed, which add up to more
than 512 cache lines, some of the cache lines associated with
ph will be evicted. Therefore, the subsequent load (at line 8)
may be a cache miss. The difference in execution time may
be observed by the attacker and used to deduce information
of the secret k : whether the last statement leads to a cache
miss depends on the value of k.

2.3 Technical Challenges

The above two examples illustrate the need to soundly model
speculative execution. However, there are several challenges.
The first one is to model the cache state of a program dur-
ing speculative execution without drastically altering the
abstract interpretation algorithm. The second challenge is
to judiciously merge abstract states computed from normal
and speculative executions, since when and how to merge
them drastically affect the accuracy of the fixed-point com-
putation. Furthermore, since a speculative execution may be
rolled back at any moment, the number of scenarios is expo-
nential in the number of speculatively executed instructions.
If we have to enumerate, the analysis time will be prohibi-
tively long. Therefore, we group scenarios into equivalence
classes, based on which we perform reduction to balance the
performance and accuracy.
In the remainder of this paper, we will present our solu-

tions in detail.

3 Preliminaries

We review the basics of abstract interpretation, as well as
the cache, branch prediction, and speculative execution.

3.1 Abstract Interpretation

Abstract interpretation [14] is a static analysis framework
that considers all paths and inputs to obtain a sound over-
approximation of the state at every program location [30,
31, 50]. For efficiency reasons, the state is kept abstract and
often represented by a set of constraints in a certain abstract
domain. For example, in the interval domain, each constraint
is of the form lb ≤ x ≤ ub, where x is a variable and lb,ub
are the lower and upper bounds. The join of two states,
s1 = lb1 ≤ x ≤ ub1 and s2 = lb2 ≤ x ≤ ub2 , is defined as
s1 ⊔ s2 = min(lb1, lb2) ≤ x ≤ max(ub1, ub2). Here, ⊔ denotes
the join operator, which returns an over-approximation of
the set union. If, for example, the polyhedral abstract domain
is used, a constraint will be a linear equation and the join
operator may be the convex hull.
The purpose of restricting the representation of states to

an abstract domain is to reduce the computational overhead.
Although various abstract domains may be plugged in, the
underlying fixed-point computation remains the same. The
fixed-point of states are computed on the program’s control
flow graph (CFG). Without loss of generality, we assume

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Meng Wu and Chao Wang

for(...) load ph[i];

load p

cmp p,0

jmp L5

load l1[0]

load ph[k]

Non-Speculation: 512 Misses + 1Hit

for(...) load ph[i];

load p

cmp p,0

jmp L5

load l1[0]

cmp p,0

jmp L7

load l2[0]

load ph[k]Speculation: 514 Misses

for(...) load ph[i];

load p

cmp p,0

jmp L5

load l1[0]

cmp p,0

jmp L7

load l2[0]

load ph[k]Speculation: 514 Misses

Figure 3. Pipelined execution trace for program in Figure 2

Algorithm 1 Abstract interpretation based static analysis.

1: Initialize S [n] to ⊤ if n = Entry(CFG), and to ⊥ otherwise
2: WL ← Entry(CFG)
3: while ∃ n ∈WL do

4: WL ←WL \ {n }

5: s′ ← Transfer(S [n], instn)
6: for all n′ ∈ Successors(CFG , n) do
7: if s′ @ S [n′]) then

8: S [n′] ← s[n′] ⊔ s′

9: WL ←WL ∪ {n′ }

10: end if

11: end for

12: end while

the CFG has a unique entry node and a unique exit node.
Inside the CFG, nodes are associated with instructions or
basic blocks of instructions, whereas edges represent the
control flows, guarded by conditional expressions.
Let Transfer : S × INST → S be the transfer function,

which takes a state s ∈ S and an instruction inst ∈ INST as
input, and returns the new state s ′ = Transfer(s, inst) as
output. s ′ is the result of executing inst in state s .
Algorithm 1 shows a generic procedure that returns, for

each CFG node n, an abstract state S[n] as output. S[n] is
supposed to be a sound over-approximation of all the possi-
ble states at n, regardless of the input values or paths taken
to reach n. Initially, S[n] is ⊤ (tautology) for the entry node
but ⊥ (empty) for all other CFG nodes. The remaining part
of the procedure is a standard worklist-based algorithm for
computing the fixed point [42]: starting from the entry node,
it computes the states of the successor nodes (n′) based on
the transfer function. To ensure convergence, e.g., when the
program has loops or is otherwise non-terminating, a widen-
ing operator (∇) is needed in addition to join (⊔). However,
for brevity, we omit the details; for a complete introduction,
refer to [14, 40].

The actual definitions of abstract state S and transfer func-
tion Transfer depend on the application. In this work, we
are concerned with the cache state corresponding to a pro-
gram. We will present our definitions in Section 4.

3.2 Cache and Speculative Execution

Cache is a type of small but fast storage to hold frequently
used data so that they do not need to be fetched from or

stored to the large but slow memory every time. Although
this work focuses on the data cache, which ismore relevant to
our applications, the underlying technique can be extended
to the instruction cache as well.
In a typical CPU, e.g., an Intel processor [1], instructions

are fetched from memory and decoded continuously before
they are sent to the scheduler for execution. Executing an in-
struction involves multiple units; speculative execution [53]
is an optimization that efficiently utilizes these execution
units. During speculative execution, instructions are sched-
uled in a pipeline as soon as the required execution units
are available; for example, while an instruction is waiting
for data to be fetched from memory, subsequent instructions
may be executed, as long as the program semantics remains
the same to observers from outside of the CPU.
Things become complicated when there are branches,

however, since the branch prediction unit must make a guess
on which branch target to execute. Instructions in the pre-
dicted branch will be executed while the branch condition is
being evaluated, and will be committed only after the predic-
tion is confirmed to be correct. Upon misprediction, however,
the result of speculative execution will be discarded and the
execution will be redirected to the correct branch.

The reorder buffer inside the execution unit, among others,
is responsible for this rollback: upon a branch mis-prediction,
it will not perform register retiring as in a normal execu-
tion; instead, it will flush out the affected registers, before
restoring the CPU to a previously saved state.

The branch predictor also plays an important role in spec-
ulative execution since its accuracy is directly related to the
performance of the CPU. However, regardless of the under-
lying strategies [27, 56, 59], when a branch prediction turns
out to be incorrect, the speculatively executed instructions
may leave side-effects on the states of other system compo-
nents, including the cache. In this work, we are concerned
with modeling of such side-effects in abstract interpretation.

4 Static Cache Analysis

In this section, we present our instantiation of the baseline
abstract interpretation algorithm. The goal is to decide, at
each program location, whether a memory access always
results in a cache hit. Previously, such must-hit analyses
were used in execution time estimation [19, 20] and side

Abstract Interpretation under Speculative Execution PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

u4

u3

u2

u1

u3

u2

u1

v

young
age

w2

w1

v

u

w2

w1

u

v

Figure 4. Transfer of the cache state under the LRU policy.

channel mitigation [7, 16, 58]; however, they did not model
speculative execution.

4.1 The Abstract State

LetV = {v1, ...,vn} be the set of program variables stored in
memory. Each variablev ∈ V may be mapped to a cache line.
Let the cache be fully associative with the LRU replacement
policy, which means a variable v ∈ V may be mapped to
any cache line and, if there is not enough space, the least
recently used (LRU) variable will be evicted from the cache.
Assume that N is the total number of cache lines, we can
define the age of each variablev ∈ V , denoted Age(v), which
is an integer ranging from 1 to N + 1. Here, Age(v) = 1
means v resides in the most recently used line, Age(v) = N
means v resides in the least recently used cache line, and
Age(v) = N + 1 means v is outside of the cache.
The cache state S associated with the entire program is

defined as S = ⟨Aдe(v1), . . . ,Aдe(vn)⟩. In this context, a
Must-Hit analysis needs to compute, at each program loca-
tion, an upper bound of Aдe(v). If the upper bound is less
than or equal to N , then v must be in the cache. Otherwise,
it is possible that v may be outside of the cache.

4.2 The Transfer Function

Let Transfer(S, inst) be the transfer function that models
the impact of executing inst in the cache state S : given the
current state S = ⟨Age(v1), . . . ,Age(vn)⟩, it returns a new
state S ′ = ⟨Age′(v1), . . . ,Age

′(vn)⟩. If inst does not access
memory at all, then S ′ = S . Otherwise, assume that v ∈ V is
the variable being accessed in inst , and we compute the new
state S ′ as follows:

• For the accessed variable v , set Age′(v) = 1 in S ′.
• For variable u ∈ V whose age may be younger than v
in S , increment the age of u; that is,
Age(u) < Age(v) → Age′(u) = Age(u) + 1.
• For any other variablew ∈ V , set Age′(w) = Age(w).

Given the definition of Transfer for an instruction, we de-
fine it for a sequence of instructions Insts = {inst0, inst1, ...instn}
as follows: Transfer(S, Insts) =

Transfer(. . . (Transfer(S, inst0), inst1), . . . , instn).

Figure 4 show two examples. The left-hand-side example
illustrates the access of v , which is not yet loaded into the
cache. After the access, Aдe(v) = 1, meaning v is loaded to
the youngest cache line. Furthermore, the ages of all other
lines increase by 1. Since Aдe(u4) > 4, the variable u4 is
evicted from the cache.

k
z
y
x

k
x
z
t

{ }
{ }

{x, z}
k

young
age

Figure 5. Join of two states at a control-flow merge point.

In the right-hand-side example, however, v is in the cache
prior to the execution of the instruction. Thus, existing cache
lines fall into two categories. For the variable (u) whose age
used to be younger than that ofv , the age increases by 1. For
the variables (w1 andw2) whose ages used to be older than
that of v , the ages remain the same.

4.3 The Join Operator

For efficiency reasons, states computed along two program
paths are joined together at the control-flow merge point,
to avoid creating an exponential number of states. In the
baseline abstract interpretation algorithm, the join opera-
tor (⊔) always maintains a single cache state in the result,
regardless of how many states are joined.

Figure 5 illustrates a join operator that computes, for each
variable v ∈ V , the maximum possible age. For example, the
ages of variable x were 1 in the state on the left and 3 in the
state on the right; thus, the age of x after join is 3. Similarly,
for variable z, the ages were 3 and 1; thus, the age after join
is 3. However, for k , since its ages were 4 and 4, after join,
the age remains 4. We define the join operator in this way
because our goal is to conduct a Must-Hit analysis: we know
that a variable v ∈ V is definitely in the cache only if v
is in the cache according to both states before the join, i.e.,
Aдe(v) ≤ N and Aдe ′(v) ≤ N .

Formally, given two states S = ⟨Aдe(v1), . . . ,Aдe(vn)⟩ and
S ′ = ⟨Aдe(v ′1), . . . ,Aдe(v

′
n)⟩, we define S

′′
= S⊔S ′ as follows:

S ′′ = ⟨max(Aдe(v1),Aдe(v
′
1)), . . . ,max(Aдe(vn),Aдe(v

′
n))⟩.

5 Modeling the Speculative Execution

In this section, we lift the baseline abstract interpretation
algorithm so that it can soundly model speculative execution.

5.1 Augmented CFG with Virtual Control Flow

Given the CFG of a program, we first augment it by adding
special nodes and edges, to model all possible control flows
produced by speculative executions. These implicit control
flows, which will be made explicit in our augmented CFG,
are called the virtual control flows.
A virtual control flow occurs at every if-else statement

where the branching condition depends on some variables
stored in memory. In a normal execution, a branch guarded

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Meng Wu and Chao Wang

by a condition (c) is explored only when c is satisfied. How-
ever, under speculative execution, the branch will be ex-
plored (speculatively) by our algorithm even if c is unsatis-
fiable. Furthermore, upon mis-prediction, the rollback will
re-direct the control to the other branch.

To model all these behaviors, we add the following special
nodes and edges to the CFG for every branch that may be
explored speculatively:

• vnstar t , which is a special CFG node that denotes the
start of a virtual control flow;
• vnstop , which is a special CFG node that denotes the
end of a virtual control flow.

The edges connecting such nodes, which represent the vir-
tual control flows, fall into five categories: (1) nśvnstar t ; (2)
vnstar tśn; (3) nśn; (4) nśvnstop , and (5) vnstopśn, where n
is a normal CFG node.
The edge nśvnstar t represents the start of a speculative

execution: it feeds the state S[n] to vnstar t , which in turn
generates a speculative state SS[vnstar t] = S[n]. Then, the
newly created speculative state is propagated through the
edge vnstar tśn. Next, it is propagated through the edges
nśn and nśvnstop until reaching vnstopśn. The special node
vnstop converts the speculative state SS[vnstop] back to the
normal state S[n] = SS[vnstop]. Afterward, the state is joined
with other states from the normal execution.

One way to add the special nodes and edges is illustrated
in Figure 6a. Specifically, for each if-else statement, we add
virtual control flow edges from instructions in one of the
branch to the entry node of the other branch under the same
branching condition.
Here, the blue solid lines represent normal executions,

whereas the red dashed lines represent virtual control flows
associated with speculative executions of the else-branch.
Virtual control flows associated with the then-branch are sim-
ilar, but omitted in the figure for clarity. The reasonwhy there
are more than one dashed lines is because the roll-back point
(i.e., location where roll-back occurs) is non-deterministic;
to be conservative, we assume it may occur at any moment
within the maximum speculation depth.

In practice, the speculation depth is platform-dependent
and bounded by a few factors [21, 45], e.g., the size of the
reorder buffer; the maximum number of unresolved branches
that the CPU can handle before it stalls; whether there are
division-by-zero or floating-point errors in the program; and
the number of clock cycles taken to access memory and
resolve a branching condition. For simplicity, for example,
we assume that the maximum speculative execution depth
is provided by the user. In Figure 6a, we assume that instB is
the boundary within which roll-back occurs.

5.2 Merging the Speculative Flows

Since we use abstract interpretation to over-approximate the
cache states, multiple executions must be merged to reduce
the computational overhead. In the baseline algorithm, for
example, states from two different paths are joined whenever

inst0
inst1
...

instB

inst0
inst1
...

instB

T F

(a) flows without merging

inst0
inst1
...

instB

inst0
inst1
...

instB

T F

(b) merged after branch

inst0
inst1
...

instB

inst0
inst1
...

instB

T F

(c) merged before branch

inst0
inst1
...

instB

inst0
inst1
...

instB

T F

(d) merged into normal flow

Figure 6. Strategies for merging speculative control flows.

the program paths are merged in the CFG. In the speculative
analysis, we also need to decide when to join the normal and
the speculative states.

Figure 6 shows three merging strategies in addition to the
original no-merging strategy in Figure 6a. Consider Figure 6b,
for example, since the executions before the branch entry
node are identical, they are merged without losing accuracy;
in addition, the speculative executions are merged right be-
fore the exit point of the other branch. Recall that the join
operator (⊔) used to handle merging is over-approximated,
we know that the strategy outlined in Figure 6b is a sound
over-approximation of Figure 6a.

To over-approximate evenmore, consider Figure 6c, which
merges all speculative states of the else-branch before reach-
ing the then-branch. However, the merged speculative state
is propagated through the then-branch before it is merged
with the normal state. In contrast, Figure 6d is a more ag-
gressive over-approximation, which merges the speculative
states with the non-speculative state at the entry node of the
then-branch.

Abstract Interpretation under Speculative Execution PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

1: load a,b,c

2: load d 3: load e

T F

4: load a

a
b
c

Ts FsT F

a
b
c
d

a
b
c
e

b
c
e
d

b
c
d
e

a
b
c

(non-speculative or
aggressive merge strategy)

b
c

(optimal merge strategy)

Figure 7. Cache state with different merge points.

Regardless of the merging strategy, however, our method
ensures that the result is a sound over-approximation. Since
every time state merging occurs, it may lose information,
in general, the later that merging occurs, the more accurate
the result is, but there is no guarantee. Furthermore, late
merging may lead to a more expensive analysis. Our ex-
perimental comparisons of these four strategies show that
the one outlined in Figure 6c is the best: it not only obtains
significantly more accurate results than the one in Figure 6d,
but also runs almost equally fast. Therefore, we have settled
down on this strategy: we call it Just-in-Time merging.

5.3 Just-in-Time Merging: An Example

Consider the CFG of a branch shown on the left-hand side
of Figure 7, where each basic block refers to a variable (from
a to e). The initial cache state, at the top of the figure on the
right-hand side, is the state after executing the first basic
block, where variables a, b and c are loaded into the cache.
Here, the solid arrows represent the normal execution, where
either d or e is mapped to the youngest cache line. Since we
are concerned with a Must-Hit analysis, after merging at
basic block 4, only a, b and c are left in the cache.
Under speculative execution, we may execute the else-

branch before rolling back to execute the then-branch. If we
choose to merge the speculative state right after the rollback,
the merging would be between d , c , b and a on the one hand,
and e , d , c and b on the other hand. The merged state will not
contain e anymore, thus losing the important information
of speculative execution.

However, if we propagate the speculative state computed
from the else-branch through the then-branch and thenmerge
with the non-speculative state, the cache state at basic block
4 will be more accurate. As shown by the dotted arrow Ts ,
variable e is loaded to the cache before d is loaded to the
cache; similarly, for Fs , variable d is loaded before e is loaded.
Finally, when the four states are merged, the result is that
only c and b are guaranteed to result in cache hits. Thus,

the cache state on the bottom-right of Figure 7, which cor-
responds to Just-in-Time merging illustrated in Figure 6c,
captures the side effect of speculative execution.

6 Generalization and Optimization

In this section, we present the generalized algorithm before
discussing several optimizations, which help increase accu-
racy as well as decrease runtime overhead.
Algorithm 2 shows the static analysis procedure that is

sound under speculative execution. Given the original CFG
of a program, it first constructs an augmented CFG by adding
the virtual control flows. Then, it initializes the abstract states
for each program location n, including both the default state,
denoted S[n], and the speculative state, denoted SS[n]. Next,
it starts the fixed-point computation using a worklist based
procedure that is similar to that of Algorithm 1.

Algorithm 2 Abstract interpretation under speculation.

1: VCFG ← AugmentCFGwithVirtualControlFlow(CFG)
2: Initialize S [n] to ⊤ if n ∈ Entry(VCFG), else to ⊥
3: Initialize SS [n] to ⊥ for all n ∈ VCFG
4: WL ← Entry(VCFG)
5: while ∃n ∈WL do

6: WL ←WL \ {n }

7: if n is a normal CFG node then

8: s′ ← Transfer(S [n], n)
9: ss′ ← Transfer(SS [n], n)
10: else

11: Set ss′ to S [n] if n is a special nstar t node, else to ⊥
12: Set s′ to SS [n] if n is a special nstop node, else to ⊥
13: end if

14: for each n′ ∈ Successors(VCFG, n) do
15: if s′ @ S [n′] or ss′ @ SS [n′] then

16: S [n′] ← S [n′] ⊔ s′

17: SS [n′] ← SS (n′) ⊔ ss′

18: WL ←WL ∪ {n′ }

19: end if

20: end for

21: end while

However, when the special CFG node vnstar t is encoun-
tered (Line 11), the default state S[n], which is from the in-
coming edge, is used to create a speculative state ss ′← S[n];
this is to model the side effects caused by the failed specula-
tive execution upon rollback. From then on, both the default
state S[n] and the speculative state SS[n] will be propagated
through subsequent nodes in the VCFG; at each node n, the
transfer function has to be applied to both of them (Lines 8-9).
This continues until the other special node vnstop is encoun-
tered, which transforms the speculative state SS[n] back to
s ′ (Line 12) before s ′ is merged into the normal flow.

6.1 The Running Example

To illustrate how the algorithm works, consider the example
program in Figure 8, which is a real-time DSP program writ-
ten in C [25]. The corresponding CFG is shown in Figure 9,
where the red (solid and dashed) edges represent the two
virtual control flows.

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Meng Wu and Chao Wang

1 /* table is 31-byte long to make quantl look-up

2 easier, last entry is for mil=30 when wd is max */

3 int quant26bt_pos[31] = { 61,60,59,58,57,56,55,54,

4 53,52,51,50,49,48,47,46,45,44,43,42,41,40,39,

5 38,37,36,35,34,33,32,32 };

6 /* table is 31-byte long to make quantl look-up

7 easier, last entry is for mil=30 when wd is max */

8 int quant26bt_neg[31] = { 63,62,31,30,29,28,27,26,

9 25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,

10 9,8,7,6,5,4,4 };

11 /* decision levels - pre-multiplied by 8 */

12 int decis_levl[30] = { 280,576,880,1200,1520,1864,

13 2208,2584,2960,3376,3784,4240,4696,5200,5712,

14 6288,6864,7520,8184,8968,9752,10712,11664,12896,

15 14120,15840,17560,20456,23352,32767 };

16
17 int quantl(int el,int detl) {

18 int ril,mil;

19 long int wd,decis;

20 /* abs of difference signal */

21 wd = my_abs(el);

22 /* mil based on decision levels and detl gain */

23 for(mil = 0 ; mil < 30 ; mil++) {

24 decis = (decis_levl[mil]*(long)detl) >> 15L;

25 if(wd <= decis) break;

26 }

27 /*if mil=30, wd is less than all decision levels*/

28 if(el >= 0) ril = quant26bt_pos[mil];

29 else ril = quant26bt_neg[mil];

30 return(ril);

31 }

Figure 8. Code snippet from a real-time DSP program [25].

ref wd
ref el
bb1

bb2
ref mil

bb3
ref decis_levl[mil]

ref detl
ref decis
ref wd
ref decis

bb5
ref el

bb4
ref mil
ref mil

bb6
ref quant26bt_pos[mil]

ref ril

bb7
ref quant26bt_neg[mil]

ref ril

bb8
ref ril

Figure 9. Augmented CFG with virtual control flows.

Table 1. Cache states during the fixed-point computation.

BBlk Cache State

0 { }
1 {wd, el}
2 {mil, wd, el}
3 {decis, wd, detl, decis_lev[1*], mil, el}
4 {mil,decis, wd, detl, decis_lev[1*], el}
2 {mil,decis, wd, detl, decis_lev[1*], el}
3 {decis, wd,detl, decis_lev[2*], mil, decis_lev[1*], el}
4 {mil, decis, wd,detl, decis_lev[2*], decis_lev[1*], el}
2 {mil, decis, wd,detl, decis_lev[2*], decis_lev[1*], el}
5 {el ,decis, wd,detl, decis_lev[2*], mil, decis_lev[1*]}
6 {ril, quant26bt_pos[1*], el ,decis, wd,detl, decis_lev[2*], mil, decis_lev[1*]}
7 {ril, quant26bt_neg[1*], el ,decis, wd,detl, decis_lev[2*], mil, decis_lev[1*]}
8 {ril, ∅ , el ,decis, wd,detl, decis_lev[2*], mil, decis_lev[1*]}

Result from Non-speculative Executions Table 1 shows
the cache state computed for each location (basic block)
based on only normal executions (black edges in Figure 9);
this is analogous to running the baseline procedure in Algo-
rithm 1. In Column 2, the variables are arranged according
to their ages: the younger variable appears on the left.

Initially, the cache is empty. From basic block 1 to 5, we ap-
ply the transfer functions: decis_lev takes two cache lines,
but since we do not unwind the loop, we do not know its
index statically. Thus, we nondeterministically pick one for
the first time, decis_lev[1*]. Following the back edge from
basic block 4, when decis_lev is accessed again, we conser-
vatively choose the second cache line for decis_lev[2*] to
ensure that the cache state remains an over-approximation.
Our analysis iterates through the loop three times before it
reaches a fixed-point (light gray row) and terminates.

Result from Speculative Executions Table 2 shows the
cache state computed under speculative execution. For clar-
ity, we only focus on the cache states relevant to the specula-
tive executions starting from basic block 5. We use two differ-
ent colors, blue and red, to differentiate the cache states com-
puted from non-speculative (blue) and speculative (red) exe-
cutions. By considering speculative executions, it is possible
for us to access both quant26bt_pos and quant26bt_neg

in a single execution.

ExecutionTimeEstimation The last row of Table 2, which
differs from the last row of Table 1, shows that most of the
program variables have older ages than before. This is dan-
gerous because, if the cache is only large enough to hold the
first eight variables, there will be an additional cache miss,
which may force the program to miss its deadline.

Side Channel Detection The additional cache miss may
also lead to side-channel leaks. Figure 10 shows a client
program that uses the program in Figure 8. The application
first accepts some input from the user, then processes it using
quantl as a subroutine, and finally encrypts the result using
a cipher such as AES. Before calling quantl, a look-up table
named sbox is loaded; the lookup table will be used by the
cipher while it encrypts the data, during which time a secret
key is used as the index to access sbox.

Abstract Interpretation under Speculative Execution PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

Table 2. Cache states during speculative execution.

BBlk Cache State

... ...
5 {el ,decis, wd,detl, decis_lev[2*], mil, decis_lev[1*]}
6 {ril, quant26bt_pos[1*], el ,decis, wd,detl, decis_lev[2*], mil, decis_lev[1*]}
7 {ril, quant26bt_neg[1*], el ,decis, wd,detl, decis_lev[2*], mil, decis_lev[1*]}
6 {ril, quant26bt_pos[1*], el ,decis, wd,detl, decis_lev[2*], mil, decis_lev[1*]}
7 {ril, quant26bt_neg[1*], el ,decis, wd,detl, decis_lev[2*], mil, decis_lev[1*]}
7 {ril, quant26bt_neg[1*], quant26bt_pos[1*], el ,decis, wd,detl, de-

cis_lev[2*], mil, decis_lev[1*]}
6 {ril, quant26bt_pos[1*], quant26bt_neg[1*], el ,decis, wd,detl, de-

cis_lev[2*], mil, decis_lev[1*]}
8 {ril, ∅ , el ,decis, wd,detl, decis_lev[2*], mil, decis_lev[1*]}
8 {ril, ∅ , ∅, el ,decis, wd,detl, decis_lev[2*], mil, decis_lev[1*]}

1 #define BUF_SIZE 1024*16

2 const uint8_t sbox[256] = { 0x63, 0x7c, 0x77,

3 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67,

4 0x2b, 0xfe, 0xd7, 0xab, 0x76, ... };

5 int main()

6 {

7 uint32_t inBuf[BUF_SIZE];

8 int el, delt, tmp;

9 for(int i=0; i< 256; i++) // preload sbox

10 tmp = sbox[i];

11 for(int i=0; i< BUF_SIZE; i++) // read inBuf

12 tmp = inBuf[i];

13 tmp = quantl(el, delt);

14 AES_encode(inBuf);

15 }

Figure 10. The client code that leads to side-channel leaks.

By controlling the input size, a malicious user can force
part of the sbox to be evicted from the cache. As a result, for
some key values, accessing sbox results in a cache hit, but for
other key values, it results in a cache miss. Although timing
side channels have been investigated before [7, 16, 24, 58],
these prior works never considered speculative execution.
Our contribution, in this context, is to show that even if a
program is leak-free under normal execution, it may still be
leaky under speculative execution.

6.2 Dynamically Bounding Speculation Depth

Although the maximum number of speculatively executed
instructions is used to construct the augmented CFG, in
practice, the number of speculatively executed instructions
can be smaller. For example, when all variables needed to
resolve a branching condition are in the cache, speculative
execution may be shortened. Since our cache analysis aims to
decide whether a variable access is amust-hit, as the analysis
continues it may report more must-hit variables, which can
be used to bound the speculation depths of other branches.

Thus, we propose an optimization that leverages themust-
hit variables to dynamically remove virtual control flows
that are deemed redundant. Toward this end, we maintain
two predefined bounds for each speculative execution, bh
and bm , which correspond to the branching condition being
a cache hit or miss. (Since bh and bm are platform-dependent,

they are set based on input from the user.) By default, we
use bm as the bound; but as soon as the branching condition
is proved to be a must-hit, we switch the bound to bh .
This optimization not only decreases the computational

overhead, i.e., by reducing the number of edges in the VCFG,
but also increases the accuracy since it results in a poten-
tially tighter over-approximation. In the extreme case where
bh = 0, for example, switching to bh means avoiding specu-
lative execution all together, which can avoid many bogus
behaviors.

While our focus here is on exploiting changes to the spec-
ulation depth due to cache misses, the proposed technique
may be extended to exploit other sources of changes, e.g.,
execution units being busy, or division taking a longer time
based on the operands.

6.3 Handling the Merges and Loops

The algorithm presented so far uses the join operator (⊔) to
over-approximate the union of two abstract states. However,
in the presence of loops, it may have limitations: (1) the
resulting state may not be accurate enough, and (2) it may
take a long time (or forever) to reach a fixed point.
Thus, we add a widening operator [15] to the standard

join operation s[n′]⊔s ′; that is, we use (s[n′]⊔s ′)∇s ′ instead
of s[n′]⊔s ′. The idea behind widening (∇) is simple: first, we
identify the direction of growth from the state s ′ to the state
(s[n′] ⊔ s ′); then, we over-approximate (s[n′] ⊔ s ′) in such
a way that it maximizes the progress along the direction of
growth. In the interval domain, for example, if the previous
state is s ′ = 0 ≤ x ≤ 3 and the current state is s = 0 ≤ x ≤ 5,
the result of widening would be s∇s ′ = 0 ≤ x ≤ +∞. To
achieve better accuracy, loops with fixed iteration number
will be fully unrolled; only unresolved loops will be widened.

Figure 11 shows another loop-related problem. First, vari-
able a is loaded into the cache. Then, inside the loop, every
time the branch is executed, Aдe(a) increases by 1. After the
join, however, neither b nor c will be in the cache. Thus,
eventually, a is evicted from the cache as well. This is not
accurate because, during the actual execution, a will never
be evicted. With a refined join operator, we will be able to
avoid this problem.
We refine the join operator (⊔) by adding extra informa-

tion into the cache state. Similar to Touzeau et al. [54], we
introduce a shadow variable ∃v for each v ∈ V . Whenever
two states are merged and v appears in only one of the two
states, the shadow variable ∃v will remain in the merged
cache (while the normal variablev will not). Figure 12 shows
an example, where both b and e will be replaced with ∃b
and ∃e in the final cache state. That is, there exists a path in
which variable b or c is cached.

We also revise the transfer function: the shadow variable
∃v will be removed if a concrete reference to v is applied.
For example, in Figure 12, if the variable b is accessed on the
merged state, ∃b will be removed from final state.

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Meng Wu and Chao Wang

a

b c

...

a

b c

b c

b c

[a, ⊥, ⊥, ⊥]

[b, a, ⊥, ⊥] [c, a, ⊥, ⊥]

[b, ⊥, a, ⊥] [c, ⊥, a, ⊥]

[b, ⊥, ⊥, a] [c, ⊥, ⊥, a]

[⊥, a, ⊥, ⊥]

[⊥, ⊥, a, ⊥]

[⊥, ⊥, ⊥, a]

Figure 11. Example program for the widening operator.

d
c
b
a

d
a
c
e

∃e
∃b

{a, c}
d

b
∃e

{a, c}
d

young
age

ref b

Figure 12. Transfer function with shadow variables.

a

b c

b c

b c

[a, ⊥, ⊥, ⊥]

[b, a, ⊥, ⊥] [c, a, ⊥, ⊥]

[b, ∃c, a, ⊥] [c, ∃b, a, ⊥]

[b, ∃c, a, ⊥] [c, ∃b, a, ⊥]

[{∃b, ∃c}, a, ⊥, ⊥]

[⊥, {∃b, ∃c}, a, ⊥]

[⊥, {∃b, ∃c}, a, ⊥]

Figure 13. The refined join using shadow variables.

For simplicity, we unroll the loop for three times and
illustrate the sequence of memory accesses in Figure 13.
The abstract cache states are listed on both sides at each
memory access and merge point. With the shadow variables,
our cache states are able to reach the fixed-points after only
three iterations and avoid evicting a.

6.4 Handling Multiple Speculative Executions

Finally, we extend our algorithm so it can independently
propagate the speculative states through the virtual control
flows, without interfering each other, even if one branching
statement is embedded inside another branching statement.

Algorithm 3 Analysis under a set of speculative executions.

1: (VCFG, C) ← AugmentCFGwithVirtualControlFlow(CFG)
2: Initialize S [n] to ⊤ if n ∈ Entry(VCFG), else to ⊥
3: Initialize SS [n][c] to ⊥ for all n ∈ VCFG and for all color c ∈ C
4: WL ← Entry(VCFG)
5: while ∃n ∈WL do

6: WL ←WL \ {n }

7: if n is a normal CFG node then

8: s′ ← Transfer(S [n], n)
9: ss′[c] ← Transfer(SS [n][c], n) for all color c ∈ C
10: else

11: Set s′ to SS [n][c] if n is node nstar t of color c , else to ⊥
12: Set ss′[c] to S [n] if n is node nstop of color c , else to ⊥
13: end if

14: for each n′ ∈ Successors(VCFG, n) do
15: if s′ @ S [n′] or ∃c : ss′[c] @ SS [n′][c] then

16: S [n′] ← S [n′] ⊔ s′

17: SS [n′][c] ← SS (n′) ⊔ ss′[c] for all color c ∈ C
18: WL ←WL ∪ {n′ }

19: end if

20: end for

21: end while

Algorithm 3 shows the procedure, which computes, for
each node n in the augmented CFG, a set of states of the
form SS[n][c], one for each speculative execution. Let C =
{1, . . . ,k} be the set of all branches in the program that
can be speculatively executed; each 1 ≤ i ≤ k is the index
of a branch in this set. We call c = i the color of the i-th
speculative execution. While constructing the VCFG, for
each c ∈ C , we add a separate set of virtual control-flow
edges and nodes, with the color c .
During the fixed-point computation, instead of applying

the transfer function once to generate a speculative state
ss ′, the procedure applies the transfer function |C | times, to
generate a vector of speculative states ss ′[c], one for each
speculative execution with color c . As such, every specula-
tive execution (of color c ∈ C) is handled separately until
the corresponding node nstop (of the same color c) is en-
countered, in which case the speculative state SS[n][c] is
transformed back to a non-speculative state s ′.

There are alternative ways of presenting the analysis pro-
cedure in Algorithm 3, for example, by using the trace parti-
tioning framework developed by Mauborgne and Rival [38].
Also note that, for ease of comprehension, we choose to split
the speculative states from the normal states. However, the
two types of states may be treated uniformly and processed
using a generalized worklist-based algorithm. Assume that
the worklist-based algorithm is smart enough, the special
merge nodes created for virtual control flows can be viewed
as merely optimization hints.

7 Experiments

We have implemented our method in LLVM [32] and experi-
mentally compared it with a state-of-the-art, non-speculative
static cache analysis technique [58]. In our experiments, we
used a set-associative cache with the LRU replacement policy,

Abstract Interpretation under Speculative Execution PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

Table 3. Execution time estimation: benchmark statistics.

Name Source Description Loc

adpcm WCET@mdh motor control 910
susan MiBench image process algorithm 2,140
layer3 MiBench mp3 audio lib 2,233
jcmarker MiBench jpeg compose algorithm 1,444
jdmarker MiBench jpeg decompose algorithm 2,068
jcphuff MiBench jpeg Huffman entropy encoding routines 694
gtk MiBench GTK plotting routines 949
g72 mediaBench routines for G.721 and G.723 conversions 608
vga mediaBench Driver for Borland Graphics Interface 386
stc mediaBench pson Stylus-Color Printer-Driver 492

Table 4. Side channel detection: benchmark statistics.

Name Source Description Loc

hash hpn-ssh hash function 320
encoder LibTomCrypt hex encode a string 134
chacha20 LibTomCrypt chacha20poly1305 cipher 776
ocb LibTomCrypt OCB implementation 377
aes LibTomCrypt AES implementation 1,838
str2key openssl key prepare for des 385
des openssl des cipher 1,051
seed linux-tegra seed cipher 487
camellia linux-tegra camellia cipher 1,324
salsa linux-tegra Salsa20 stream cipher 279

512 cache lines, and 64 bytes per line. The speculative execu-
tion depths, following a cache hit and a cache miss, are set
to 20 and 200 instructions, respectively. These bounds were
derived from our analysis of the pipelined execution traces
produced by GEM5 [8], a state-of-the-art micro-architecture
simulator, with O3CPU, which is a detailed out-of-order CPU
model based on the Alpha 21264 processor.

Our experiments were designed to answer three questions:
(1) Is our method more accurate in detecting cache misses
than the existing method, which does not consider specula-
tive execution? (2) Is our method fast enough for practical
use? (3) Are the optimizations proposed in Section 6 effective
in reducing overhead and increasing accuracy?

7.1 Benchmarks

Tables 3 and 4 show the statistics of our benchmarks, col-
lected from various sources including the Malardalen real-
time software benchmark [25], a commercially representa-
tive embedded software suite named MiBench [26], a high
performance patch for SSH (hpn-ssh) [12], a cryptographic
toolkit named LibTomCrypt [2], the openssh source code [3],
and a Linux kernel for tegra [4] used on Tesla automobiles.
These benchmarks are divided into two sets: execution time
estimation and side channel detection. The benchmarks for
execution time estimation (Table 3) are used as is, whereas
the benchmarks for side channel detection (Table 4) are used
together with a client program that we wrote, to invoke the
benchmark program in a way similar to Figure 10.

7.2 Effectiveness: Execution Time Estimation

We first compare our method with the state-of-the-art, non-
speculativemethod [58]. The results are shown in Table 5. For
our method, we also report the number of speculative cache

Table 5. Execution time estimation: comparisons in terms
of the analysis time and the number of cache misses.

Name
Non-speculative Speculative
Time (s) #Miss Time (s) #Miss #SpMiss #Branch #Iteration

adpcm 0.98 24 12.70 32 17 75 173
susan 19.40 17 248.40 26 17 113 464
layer3 7.24 78 65.54 88 35 241 374
jcmarker 0.20 22 3.40 26 11 37 72
jdmarker 2.89 21 15.18 78 55 193 726
jcphuff 0.03 12 0.44 12 13 25 32
gtk 19.90 16 274.76 19 13 77 190
g72 0.16 6 0.94 9 4 41 79
vga 0.05 4 0.06 4 3 3 3
stc 0.13 10 0.96 23 14 39 105

Table 6. Execution time estimation: comparisons of two
strategies for merging speculative executions.

Name
Merging at rollback point Just-in-time merging

Time(s) #Miss #SpMiss #Ite Time(s) #Miss #SpMiss #Ite

adpcm 14.40 31 25 261 12.70 32 17 173
susan 405.70 30 29 620 248.40 26 17 464
layer3 84.64 94 53 471 65.54 88 35 374
jcmarker 4.80 27 19 99 3.40 26 11 72
jdmarker 16.11 35 59 777 15.18 78 55 726
jcphuff 0.48 12 10 36 0.44 12 13 32
gtk 358.56 24 26 236 274.76 19 13 190
g72 1.28 7 1 122 0.94 9 4 79
vga 0.07 4 3 5 0.06 4 3 3
stc 1.86 31 35 222 0.96 23 14 105

misses (#SpMiss), which are not observable from outside of
the CPU, the number of conditional branches that can be
speculatively executed, and the total number of iterations of
our method on loops.
The results show that our method detected more cache

misses, thus highlighting the unsoundness of the existing
method and the importance of modeling speculative execu-
tion during execution time estimation.
As for the analysis time, our method completed all the

benchmarks, although it took a longer time than the non-
speculative analysis due to its focus on being always sound.
The reason why it took significantly longer for the gtk bench-
mark, in particular, is because the program has a large data
size (of nearly 3MB), which led to a large number of variables
to be tracked in the abstract cache state.
Table 6 compares two merging strategies in terms of the

analysis time, the number of cache misses, the number of
speculative cache misses, and the number of iterations. The
result is somewhat surprising in that although merging at
rollback point is more aggressive than just-in-time merging,
the later is actually faster. The reason is because merging the
speculative state with the normal state right after the rollback
point may force the normal state to become a coarser-grained
over-approximation. This can lead to a slower convergence
to a coarser fixed point, as shown by the data in Columns 5
and 9. However, there are exceptions, indicating that opti-
mal merging in general is problem-specific, and the accuracy
depends on the combined effects of branches and loops in a
program.

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Meng Wu and Chao Wang

Table 7. Side channel detection: comparisons in terms of the
analysis time and whether leaks are detected.

Name Buffer (byte)
Non-speculative Speculative

Time (s) Leak Detected Time (s) Leak Detected

hash 31,808 0.67 No 1.15 Yes
encoder 32,512 0.03 No 0.10 Yes
chacha20 26,304 1.18 No 9.24 Yes
ocb 31,616 0.10 No 0.68 Yes
aes 32,768 0.08 No 2.13 No
str2key 32,768 0.01 No 0.01 No
des 0 0.60 No 14.20 Yes
seed 32,768 0.01 No 0.07 No
camellia 32,768 0.35 No 6.35 No
salsa 32,768 0.02 No 0.06 No

7.3 Effectiveness: Side Channel Detection

Table 7 shows the results for side channel detection, includ-
ing comparisons of the two methods in terms of the analysis
time and whether leaks are detected. In this context, a leak
refers to the dependency between the cache behavioral differ-
ence and sensitive data; furthermore, whether there is a leak
or not often depends on the input buffer size controlled by
the (potentially malicious) user. Thus, during experiments,
we set the buffer size to various values from 32K bytes (the
size of cache we use) down to 0 byte.
Generally speaking, the larger the buffer size, the easier

that the client program triggers the behavioral difference.
Thus we first set the buffer size to 32KB, and starting from
there we gradually reduce the buffer size and keep track of
the impact of speculative execution on cache state, until the
two methods return different results.

Since the benchmarks aremostly cryptographic algorithms,
which are relatively small in terms of the number of lines of
code, the analysis time is short. Furthermore, our method suc-
cessfully detected leaks in half of the benchmarks, whereas
the existing (unsound) method did not detect leaks in any of
them. This highlights the importance of having a sound static
cache analysis for speculative execution, e.g., to detect more
leaks and avoid bogus proofs (that there is no leak). On one
of the benchmarks, des, leaks are detected even if the buffer
size is set to 0 because, even without the client program,
the benchmark program itself has a user controlled buffer,
which can be set to sizes that induce timing side-channel
leaks under speculative execution.

As a static analysis procedure, our method may generate
false positives. In addition to abstraction, the other source
of false positives is modeling of the speculative execution.
Therefore, for each of the new leaks detected by our method
in Table 7, we manually inspected the software code and the
execution trace. Our inspection confirmed that all of them are
indeed real leaks; that is, there exist specific memory/cache
layouts and execution traces that induce the leaks.

8 Related Work

Abstract interpretation [14] is a framework for conducting
static analysis and proving properties. Ferdinand and Wil-
helm [18, 20] pioneered the use of abstract interpretation in

may- andmust-hit cache analyses [57]. Others also used simi-
lar techniques to detect timing side channels [7, 16, 58]. How-
ever, prior works focused primarily on improving abstract
interpretation without considering speculative execution.
There are some techniques that consider the impact of

speculative execution [34], but only for the instruction pipeline.
In a commercial tool named AIT, speculations are also con-
sidered during execution time estimation by leveraging a
standalone pipeline analysis as a driver [57]. Since the tool
is propriety, details of this analysis have not been made pub-
lic; therefore, it is not clear how speculative execution is
modeled during abstract interpretation.

Our method differs from the large body of work on statis-
tically estimating the worst-case execution time of real-time
software [33, 35, 41] using either CPU simulators or charac-
teristics of prior simulation results [52]. These techniques,
while useful, are not designed to be sound, and hence may
not be suitable for the applications that we have in mind,
such as detecting side-channel leaks or proving that leaks do
not exist. The reason is because, if the analysis is not sound,
the proof may not be valid and as a consequence, leaks may
be left undetected.
For timing side channels, many analysis and verification

techniques [6, 9, 10, 24, 43, 44, 51, 58] have been developed,
including the one proposed by Chen et al. [11], which uses
Cartesian Hoare Logic [49] to prove that timing leaks of a
program are bounded. Antonopoulos et al. [5] also devel-
oped a method for proving the absence of timing channels.
However, these methods only consider instruction-induced
timing variance while ignoring the cache.
There are also techniques for improving the accuracy of

cache analysis, e.g., by using symbolic execution or model
checking to refine the cache analysis results [13, 39, 54] and
by extending the analysis from single-core to multi-core
CPUs [37]. However, none of these techniques considered
speculative execution, which is the focus of our work.

9 Conclusions

We have presented a new abstract interpretation technique
that can soundly analyze a program under speculative execu-
tion. The goal is to lift existing static analyzers, which were
geared toward analyzing only non-speculative executions,
so that they become sound also for speculative executions.
We have implemented the technique in a static cache anal-
ysis tool and evaluated it on two sets of benchmarks, for
execution time estimation and side channel detection. Our
experimental results show that the method can detect many
cache misses and side-channel leaks overlooked by a state-
of-the-art non-speculative analysis technique.

Acknowledgments

This work was partially funded by the U.S. National Science
Foundation (NSF) under the grants CNS-1617203 and CNS-
1702824 and the Office of Naval Research (ONR) under the
grant N00014-17-1-2896.

Abstract Interpretation under Speculative Execution PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

References
[1] 2014. Intel ®64 and IA-32 Architectures Optimization Reference Manual.

https://botan.randombit.net/.
[2] 2018. LibTomCrypt: A Modular and Portable Cryptographic Toolkit.

https://www.libtom.net/LibTomCrypt.
[3] 2018. OpenSSH. http://www.openssh.com/

[4] 2018. Tesla Motors: Linux. https://github.com/teslamotors/linux.
[5] Timos Antonopoulos, Paul Gazzillo, Michael Hicks, Eric Koskinen,

Tachio Terauchi, and Shiyi Wei. 2017. Decomposition instead of self-
composition for proving the absence of timing channels. In ACM

SIGPLAN Conference on Programming Language Design and Implemen-

tation. 362ś375.
[6] Lucas Bang, Abdulbaki Aydin, Quoc-Sang Phan, Corina S. Pasare-

anu, and Tevfik Bultan. 2016. String analysis for side channels with
segmented oracles. In ACM SIGSOFT Symposium on Foundations of

Software Engineering. 193ś204.
[7] Gilles Barthe, Boris Köpf, Laurent Mauborgne, and Martín Ochoa. 2014.

Leakage resilience against concurrent cache attacks. In International

Conference on Principles of Security and Trust. 140ś158.
[8] Nathan L. Binkert, Bradford M. Beckmann, Gabriel Black, Steven K.

Reinhardt, Ali G. Saidi, Arkaprava Basu, Joel Hestness, Derek Hower,
Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell,
Muhammad Shoaib Bin Altaf, Nilay Vaish, Mark D. Hill, and David A.
Wood. 2011. The GEM5 simulator. SIGARCH Computer Architecture

News 39, 2 (2011), 1ś7.
[9] Tegan Brennan, Seemanta Saha, and Tevfik Bultan. 2018. Symbolic path

cost analysis for side-channel detection. In International Conference on

Software Engineering. 424ś425.
[10] Tevfik Bultan, Fang Yu, Muath Alkhalaf, and Abdulbaki Aydin. 2017.

String Analysis for Software Verification and Security.
[11] Jia Chen, Yu Feng, and Isil Dillig. 2017. Precise Detection of Side-

Channel Vulnerabilities using Quantitative Cartesian Hoare Logic. In
ACM SIGSAC Conference on Computer and Communications Security.
875ś890.

[12] Rapier Chris, StevenMichael, Bennett Benjamin, and TasotaMike. 2018
(accessed March 1, 2019). High Performance SSH/SCP - HPN-SSH.
https://www.psc.edu/hpn-ssh

[13] Duc-Hiep Chu, Joxan Jaffar, and Rasool Maghareh. 2016. Precise
cache timing analysis via symbolic execution. In IEEE Real-Time and

Embedded Technology and Applications Symposium. 1ś12.
[14] Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a

unified lattice model for static analysis of programs by construction
or approximation of fixpoints. In ACM SIGACT-SIGPLAN Symposium

on Principles of Programming Languages. 238ś252.
[15] Patrick Cousot and Nicolas Halbwachs. 1978. Automatic Discovery

of Linear Restraints Among Variables of a Program. In ACM SIGACT-

SIGPLAN Symposium on Principles of Programming Languages. 84ś96.
[16] Goran Doychev, Dominik Feld, Boris Köpf, Laurent Mauborgne, and

Jan Reineke. 2013. CacheAudit: A tool for the static analysis of cache
side channels. In USENIX Security Symposium. 431ś446.

[17] Hassan Eldib, Chao Wang, and Patrick Schaumont. 2014. Formal Veri-
fication of Software Countermeasures against Side-Channel Attacks.
ACM Trans. Softw. Eng. Methodol. 24, 2 (2014), 11:1ś11:24.

[18] Christian Ferdinand, Florian Martin, Reinhard Wilhelm, and Martin
Alt. 1999. Cache behavior prediction by abstract interpretation. Science
of Computer Programming 35, 2-3 (1999), 163ś189.

[19] Christian Ferdinand and Reinhard Wilhelm. 1998. On predicting data
cache behavior for real-time systems. In ACM SIGPLAN Workshop on

Languages, Compilers, and Tools for Embedded Systems. 16ś30.
[20] Christian Ferdinand and Reinhard Wilhelm. 1999. Efficient and precise

cache behavior prediction for real-time systems. Real-Time Systems

17, 2-3 (1999), 131ś181.
[21] Eliseu M. Chaves Filho and Edil S. Tavares Fernandes. 1997. The Effect

of the Speculation Depth on the Performance of Superscalar Archi-
tectures. In International Euro-Par Conference on Parallel Processing.
1061ś1065.

[22] Qian Ge, Yuval Yarom, Tom Chothia, and Gernot Heiser. 2019. Time
Protection: The Missing OS Abstraction. In Proceedings of the Four-

teenth EuroSys Conference. 1:1ś1:17.
[23] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. 2018. A survey

of microarchitectural timing attacks and countermeasures on contem-
porary hardware. J. Cryptographic Engineering 8, 1 (2018), 1ś27.

[24] Shengjian Guo, MengWu, and ChaoWang. 2018. Adversarial symbolic
execution for detecting concurrency-related cache timing leaks. In
ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering. 377ś388.
[25] Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. 2010.

The Mälardalen WCET Benchmarks ś Past, Present and Future. In
International Workshop on Worst-Case Execution Time Analysis. 137ś
147.

[26] Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin,
Trevor Mudge, and Richard B Brown. 2001. MiBench: A free, commer-
cially representative embedded benchmark suite. In IEEE International

Workshop on Workload Characterization. 3ś14.
[27] Daniel A Jiménez and Calvin Lin. 2001. Dynamic branch prediction

with perceptrons. In IEEE International Symposium On High Perfor-

mance Computer Architecture. 197ś206.
[28] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Ham-

burg, Moritz Lipp, StefanMangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2018. Spectre Attacks: Exploiting Speculative Exe-
cution. ArXiv e-prints (Jan. 2018). arXiv:1801.01203

[29] Boris Köpf, Laurent Mauborgne, and Martín Ochoa. 2012. Automatic
quantification of cache side-channels. In International Conference on

Computer Aided Verification. 564ś580.
[30] Markus Kusano and Chao Wang. 2016. Flow-Sensitive Composition of

Thread-Modular Abstract Interpretation. In ACM SIGSOFT Symposium

on Foundations of Software Engineering.
[31] Markus Kusano and Chao Wang. 2017. Thread-modular static anal-

ysis for relaxed memory models. In ACM SIGSOFT Symposium on

Foundations of Software Engineering. 337ś348.
[32] Chris Lattner and Vikram S. Adve. 2004. LLVM: A Compilation Frame-

work for Lifelong Program Analysis & Transformation. In IEEE / ACM

International Symposium on Code Generation and Optimization. 75ś88.
[33] Xianfeng Li, Tulika Mitra, and Abhik Roychoudhury. 2003. Accurate

timing analysis by modeling caches, speculation and their interaction.
In ACM/IEEE Design Automation Conference. 466ś471.

[34] Xianfeng Li, Abhik Roychoudhury, and Tulika Mitra. 2006. Modeling
out-of-order processors for WCET analysis. Real-Time Systems 34, 3
(2006), 195ś227.

[35] Yan Li, Vivy Suhendra, Yun Liang, Tulika Mitra, and Abhik Roychoud-
hury. 2009. Timing Analysis of Concurrent Programs Running on
Shared Cache Multi-Cores. In IEEE Real-Time Systems Symposium.
57ś67.

[36] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. 2018. Meltdown. ArXiv e-prints (Jan. 2018).
arXiv:1801.01207

[37] Mingsong Lv, Wang Yi, Nan Guan, and Ge Yu. 2010. Combining
abstract interpretation with model checking for timing analysis of
multicore software. In IEEE Real-Time Systems Symposium. 339ś349.

[38] Laurent Mauborgne and Xavier Rival. 2005. Trace Partitioning in
Abstract Interpretation Based Static Analyzers. In European Symposium

on Programming Languages and Systems. 5ś20.
[39] Ravindra Metta, Martin Becker, Prasad Bokil, Samarjit Chakraborty,

and R Venkatesh. 2016. TIC: a scalable model checking based approach
to WCET estimation. In ACM SIGPLAN Notices, Vol. 51. ACM, 72ś81.

[40] Antoine Miné. 2006. The octagon abstract domain. Higher-order and
symbolic computation 19, 1 (2006), 31ś100.

[41] Tulika Mitra, Jürgen Teich, and Lothar Thiele. 2018. Time-Critical
Systems Design: A Survey. IEEE Design & Test 35, 2 (2018), 8ś26.

[42] F Nielson, Riis H Nielson, and CL Hankin. 1999. Principles of Program
Analysis. (1999).

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Meng Wu and Chao Wang

[43] Corina S. Pasareanu, Quoc-Sang Phan, and Pasquale Malacaria. 2016.
Multi-run Side-Channel Analysis Using Symbolic Execution and Max-
SMT. In IEEE Computer Security Foundations Symposium. 387ś400.

[44] Quoc-Sang Phan, Lucas Bang, Corina S. Pasareanu, PasqualeMalacaria,
and Tevfik Bultan. 2017. Synthesis of Adaptive Side-Channel Attacks.
In IEEE Computer Security Foundations Symposium. 328ś342.

[45] Jim Pierce and Trevor N. Mudge. 1994. The Effect of Speculative Exe-
cution on Cache Performance. In International Symposium on Parallel

Processing. 172ś179.
[46] Jörn Schneider. 1998. Statische pipeline-analyse für echtzeitsysteme.

Dipl. thesis, Univ. Saarland, Saarbruecken, Germany (1998).
[47] Jörn Schneider and Christian Ferdinand. 1999. Pipeline behavior pre-

diction for superscalar processors by abstract interpretation. In ACM

SIGPLAN Notices, Vol. 34. 35ś44.
[48] Rathijit Sen and Y. N. Srikant. 2007. WCET estimation for executables

in the presence of data caches. In ACM/IEEE International conference

on Embedded Software. 203ś212.
[49] Marcelo Sousa and Isil Dillig. 2016. Cartesian hoare logic for verifying

k-safety properties. In ACM SIGPLAN Conference on Programming

Language Design and Implementation. 57ś69.
[50] Chungha Sung, Markus Kusano, and Chao Wang. 2017. Modular

verification of interrupt-driven software. In IEEE/ACM International

Conference On Automated Software Engineering. 206ś216.
[51] Chungha Sung, Brandon Paulsen, and Chao Wang. 2018. CANAL:

a cache timing analysis framework via LLVM transformation. In
IEEE/ACM International Conference On Automated Software Engineer-

ing. 904ś907.
[52] Henrik Theiling, Christian Ferdinand, and Reinhard Wilhelm. 2000.

Fast and precise WCET prediction by separated cache and path analy-
ses. Real-Time Systems 18, 2 (2000), 157ś179.

[53] R. M. Tomasulo. 1967. An Efficient Algorithm for Exploiting Multiple
Arithmetic Units. IBM Journal of Research and Development 11, 1 (Jan
1967), 25ś33.

[54] Valentin Touzeau, Claire Maiza, David Monniaux, and Jan Reineke.
2017. Ascertaining uncertainty for efficient exact cache analysis. In
International Conference on Computer Aided Verification. 22ś40.

[55] Jo Van Bulck,MarinaMinkin, OfirWeisse, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom,
and Raoul Strackx. 2018. Foreshadow: Extracting the Keys to the Intel
SGX Kingdom with Transient Out-of-Order Execution. In USENIX

Security Symposium.
[56] LucianNVintan andMihaela Iridon. 1999. Towards a high performance

neural branch predictor. In International Joint Conference on Neural

Networks. 868ś873.
[57] Reinhard Wilhelm, Sebastian Altmeyer, Claire Burguière, Daniel

Grund, Jörg Herter, Jan Reineke, Björn Wachter, and Stephan Wilhelm.
2010. Static timing analysis for hard real-time systems. In International

Workshop on Verification, Model Checking, and Abstract Interpretation.
3ś22.

[58] Meng Wu, Shengjian Guo, Patrick Schaumont, and Chao Wang. 2018.
Eliminating timing side-channel leaks using program repair. In Inter-

national Symposium on Software Testing and Analysis. 15ś26.
[59] Tse-Yu Yeh and Yale N Patt. 1991. Two-level adaptive training branch

prediction. In IEEE/ACM International Symposium on Microarchitecture.
51ś61.

[60] Jun Zhang, Pengfei Gao, Fu Song, and Chao Wang. 2018. SCInfer:
Refinement-Based Verification of Software Countermeasures Against
Side-Channel Attacks. In International Conference on Computer Aided

Verification. 157ś177.

	Abstract
	1 Introduction
	2 Motivation
	2.1 Execution Time Estimation
	2.2 Side Channel Detection
	2.3 Technical Challenges

	3 Preliminaries
	3.1 Abstract Interpretation
	3.2 Cache and Speculative Execution

	4 Static Cache Analysis
	4.1 The Abstract State
	4.2 The Transfer Function
	4.3 The Join Operator

	5 Modeling the Speculative Execution
	5.1 Augmented CFG with Virtual Control Flow
	5.2 Merging the Speculative Flows
	5.3 Just-in-Time Merging: An Example

	6 Generalization and Optimization
	6.1 The Running Example
	6.2 Dynamically Bounding Speculation Depth
	6.3 Handling the Merges and Loops
	6.4 Handling Multiple Speculative Executions

	7 Experiments
	7.1 Benchmarks
	7.2 Effectiveness: Execution Time Estimation
	7.3 Effectiveness: Side Channel Detection

	8 Related Work
	9 Conclusions
	References

