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optical lattice in a realization of Maxwell’s demon
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In 1872, Maxwell proposed his famous ‘demon’ thought experiment1. 
By discerning which particles in a gas are hot and which are cold, 
and then performing a series of reversible actions, Maxwell’s demon 
could rearrange the particles into a manifestly lower-entropy state. 
This apparent violation of the second law of thermodynamics 
was resolved by twentieth-century theoretical work2: the entropy 
of the Universe is often increased while gathering information3, 
and there is an unavoidable entropy increase associated with the 
demon’s memory4. The appeal of the thought experiment has led 
many real experiments to be framed as demon-like. However, past 
experiments had no intermediate information storage5, yielded only 
a small change in the system entropy6,7 or involved systems of four 
or fewer particles8–10. Here we present an experiment that captures 
the full essence of Maxwell’s thought experiment. We start with a 
randomly half-filled three-dimensional optical lattice with about 60 
atoms. We make the atoms sufficiently vibrationally cold so that the 
initial disorder is the dominant entropy. After determining where 
the atoms are, we execute a series of reversible operations to create 
a fully filled sublattice, which is a manifestly low-entropy state. Our 
sorting process lowers the total entropy of the system by a factor of 
2.44. This highly filled ultracold array could be used as the starting 
point for a neutral-atom quantum computer.

With an eye towards quantum computing and quantum simula-
tion applications, there has been a recent boom in cold-atom sorting 
experiments. Atoms in a variety of arrays of dipole light traps have 
been impressively rearranged by moving individual traps6,7,11,12. The 
entropy associated with disordered occupancy in those cases is at 
most about 10% of the system entropy6, which is dominated by vibra-
tional excitation in the traps. Good vibrational cooling, along with 
well-sorted atoms, is required for cold collision-based quantum gates 
or quantum simulations. For Rydberg-based gates or simulations13, 
although atoms are not strictly required to be vibrationally cold, colder 
is better. Rydberg gates using colder atoms are likely to yield higher 
fidelity because the atoms are less likely to change vibrational states 
during the gate, which can undesirably entangle atomic motion with 
qubit states. In general, better-localized atoms allow higher-fidelity 
addressing of individual atoms14. In blue-detuned traps, cold atoms 
see less light and thus scatter fewer trapping photons, which leads 
to longer coherence times. For instance, the coherence time in our 
experiment now exceeds 12 s.

Four atoms in a one-dimensional optical lattice8 have been com-
pacted using a method15 similar to the one that we demonstrate here 
with 50 atoms in three dimensions. We note that at least about 50 qubits 
are needed for a quantum computer to perform a calculation that can-
not be accomplished on a classical computer16. A three-dimensional 
(3D) geometry gives atoms many more nearby neighbours, which pro-
vides higher connectivity in the system. It also allows for a broad range 
of quantum simulations and is favourable for further scaling of the 
number of atoms in the system.

Our experiment proceeds as follows. We prepare a randomly 
56%-filled blue-detuned 3D lattice with 4.8 μm lattice spacing17. By 
imaging polarization-gradient-cooling laser light, we determine the 

occupancy across the lattice with an error of 10−3 per site in 800 ms 
(ref. 17). Projection sideband cooling18 puts 89% of the caesium 
atoms into their vibrational ground states and >99.7% of them in the 
|F = 4, mF = −4〉 hyperfine ground state, where F and mF are the hyper-
fine and magnetic quantum numbers, respectively. We then combine 
the ability to address atoms at individual sites (by using crossed laser 
beams and microwaves to make site-dependent state changes19) with 
the ability to make state-dependent lattice translations (by rotating the 
lattice beam polarizations20). Starting from a given 3D occupancy map 
we devise a sequence of operations to fill up either a 5 × 5 × 2 or a 
4 × 4 × 3 sublattice.

We can target any site in a 5 × 5 × 5 lattice by using a pair of focused 
addressing beams intersecting at a right angle14,19. Targeting pro-
ceeds as in our previous demonstration of high-fidelity single-qubit 
gates14, but the magnetic sublevels are different and in this case we 
are unconcerned with long-term quantum coherence. The addressing 
beams shift the (|F = 4, mF = −4〉 to |F = 3, mF = −3〉 resonance by 
around 50 kHz, which allows us to drive the associated microwave tran-
sition using an adiabatic fast-passage pulse (see Methods for details) 
that transfers only the target atom. An atom making the transition from 
mF = −4 to mF = −3 moves from the ‘stationary’ to the ‘motion’ state.

The linear polarizations of the two beams that create the lattice in 
a given direction are initially aligned, so the two states are trapped 
nearly identically. When the polarization of one of the lattice beams is 
rotated (using two electro-optic modulators and a λ/4 plate, where λ is 
the wavelength), the optical lattices for the two states move in opposite 
directions (see Fig. 1a). After rotating the polarization by π, we optically 
pump the atoms back to the stationary state and rotate the polarization 
back. The net effect of this sequence is that atoms that start in the sta-
tionary state move but return to the same place, while atoms that start 
in the motion state are shifted by one lattice site.

The sorting algorithm for compacting atoms in the lattice was pro-
posed in previous work15,21; we have slightly modified it to allow the 
filling of any continuous sublattice (see Methods). The general idea is to 
first perform a series of balancing steps in the x and y directions so that 
every row in the z direction has the required number of atoms to fill a 
desired number of planes. Then, a series of compaction steps in the z 
direction moves atoms to fill the planes of the target sublattice (Fig. 1b). 
For example, to fill a 5 × 5 × 2 sublattice from a half-filled 5 × 5 × 5 
lattice, atoms are first ‘balanced’ in the x and y directions so that every 
row in the z direction has at least two atoms. Parallel z-motion steps 
then move the atoms to the desired planes. After sorting, we reimage 
the atoms and repeat the procedure to correct any errors. The ability to 
know exactly where the vacancies are is an advantage of this approach 
to filling a lattice compared to implementing a superfluid–Mott insula-
tor transition22, where residual occupancy errors are unknown.

Figure 2 shows two implementations of this algorithm, in which tar-
get sublattices were completely filled after two sorts. In general, start-
ing with at least half the lattice sites filled in a 5 × 5 × 5 array, three 
sorts leave us with an average filling fraction of 0.97 for 5 × 5 × 2 and 
0.95 for 4 × 4 × 3. We achieve the perfect filling shown in Fig. 2f and 
Fig. 2c 32% and 27% of the time, respectively. For the first sort, the 
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average number of motion steps is 6.4 (5.6) and the average number 
of addressing operations was 38 (62) for filling a 5 × 5 × 2 (4 × 4 × 3) 
sublattice. Each sort takes about 190 ms on average. Figure 3 shows 
the filling fraction as a function of the number of sorts. These num-
bers match well with Monte Carlo simulations that consider measured 
sources of error (see Methods). A major source of error for atoms in 
both the motion and stationary states is spontaneous emission from the 
lattice. The spontaneous emission rate is significantly higher (17 times 
on average) during a motion step because the lattice intensity is not 
zero at the trap minima during the motion (see Fig. 1a). When an atom 
spontaneously emits a photon and changes hyperfine state, it becomes 
anti-trapped and is lost. The measured average loss per motion step is 
about 4 × 10−3. Another source of error is imperfect transfer of atoms 
from the stationary state to the motion state. Our measured transfer 
fidelity is 0.986, limited by a combination of imperfect addressing beam 
shape, pointing noise of the addressing beams and magnetic field fluc-
tuations. This error can cause two atoms to end up in the same lattice 
site, both of which are lost during imaging. The number of sorts that 
can be performed to fill errors is eventually limited by the 92-s vacuum 
lifetime and by double-atom loss. Optical pumping leads to a modest 
amount of heating, exciting about 7% of the population from the 3D 
vibrational ground state per motion step. Were we to replace the more 
convenient optical pumping with targeted addressing, this number 
would be reduced to 0.6%.

After sorting and a final round of projection cooling, we measure the 
vibrational sidebands to determine the final ground-state occupation, 
as shown in Fig. 4. Projection sideband cooling (see Methods) leads to 
ground-state occupation probabilities of 0.949(7), 0.954(6) and 0.985(1) 
in the x, y and z directions, respectively, which implies 89% occupation 
of the 3D vibrational ground state. The state is not thermal, but most 
of the population is in the lowest three levels. We calculate that the 
vibrational entropy for this state is about 0.59kB per particle, where kB 
is the Boltzmann constant.

The configurational entropy is given by23
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where ̄n  is the filling fraction. The solid blue line in Fig. 3 shows  
the configurational entropy as a function of the number of sorts, and 
the dotted line shows the vibrational entropy after projection cool-
ing. Sorting reduces the configurational entropy by a factor of 8 and 
the total entropy by a factor of 2.44. The final total entropy per  
particle is 0.75kB.

The number of required motion steps scales as N1/3, where N is the 
number of atoms to be sorted15,21. Similar scaling for state flipping 
could be obtained if the addressing beams were generated holograph-
ically; such a versatile 3D light pattern would allow many atoms to be 
state-flipped with microwaves simultaneously. Monte Carlo simulations 
using our current sequential addressing scheme and error rate show 
that starting from a half-filled 10 × 10 × 10 lattice, 10 × 10 × 4 and 
7 × 7 × 7 sublattices can be filled to a filling fraction of about 0.93. 
The error due to the motion could be reduced by further detuning the 
lattice light. Tripling the lattice detuning would decrease the sponta-
neous emission rate by a factor of 9 and the lattice depth by a factor of 
3. Although the resulting lower trap frequency would require that we 
move atoms three times more slowly, the total spontaneous emission 
per motion step would be reduced by a factor of three, which would 
improve the filling fraction to approximately 0.975 for about 400 sorted 
atoms. It should be possible to improve microwave transfer errors by 
an order of magnitude by improving magnetic field stabilization and 
adapting our phase gate14, which is insensitive to addressing-beam 
intensity fluctuations. Because atoms in a 3D lattice geometry have 
many near neighbours, small known filling errors can be readily incor-
porated into the design of any quantum computation.

We now more fully discuss our characterization of this experiment 
as the first, to our knowledge, to capture the full essence of Maxwell’s 
demon on a large array of particles. Any process that involves selectively 
acting on particles differently depending on their momentum, energy 
or internal state, like all laser-cooling methods5,24,25, evokes an aspect 
of Maxwell’s demon, who sorted particles based on velocity. However, 
when there is no stored information, such mechanisms differ in spirit 
from Maxwell’s demon and other thought-experiment demons26. When 
the entropy increase of the outside world is built into the cooling cycle, 
carried away by lost particles or scattered light, there is no trace of the 
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Fig. 1 | Motion steps and sorting algorithm. a, Motion steps used to 
fill a vacancy in a given direction. The curves show the lattice potential 
as a function of position for the ‘motion’ state (orange curve) and 
the ‘stationary’ state (blue curve). Brown curves indicate overlapping 
potentials. The arrows denote the direction of a time series in which the 
angle (φ) between the polarizations of the two lattice beams is adiabatically 
ramped to π and back to 0. The atom to be moved is transferred to the 
motion state (orange circle) using targeted addressing at the beginning of 
the time series. As the polarization of one of the lattice beams is rotated, 
the atoms in the motion state and the stationary state (blue circle) move 
in opposite directions, settling half a lattice spacing away from their 

original positions when φ = π. The atom in the motion state is then 
optically pumped to the stationary state (illustrated by the red arrow). As 
the polarization is rotated back, both atoms move in the same direction, 
with the atom that started in the stationary state returning to its original 
position and the atom that started in the motion state moving by one 
lattice site. b, Simplified illustration of two parts of the sorting algorithm 
in a 3 × 3 × 3 lattice. Orange and blue circles are as in a; empty circles 
denote empty sites. The first motion step ‘balances’ the array so that every 
z row has exactly two atoms. The second motion step ‘compacts’ atoms 
into two planes.
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theoretical paradox that twentieth-century information theory worked 
to resolve2.

By contrast, our experiment is conceptually similar to Maxwell’s 
thought experiment. We increase the entropy of the outside world in 
the process of determining site occupancy. At the same time, the con-
figurational entropy goes to zero because there is only one state with 
that particular configuration. The stored occupancy information is 
then used as a guide to the execution of reversible operations that 
leave the system in a manifestly low-entropy state. Of course, that 
is also true for any sorting operation, as when checkers are arrayed 
on a board. The difference here is that most of the initial entropy of 
our system is in the initial configurational disorder, so that by meas-
uring and sorting we considerably reduce the total system entropy. 
Maxwell’s demon collected information and acted on one particle 
at a time. By contrast, our demon obtains an occupancy map of the 
whole system, so that it can map out a plan to act on all the particles 
in parallel.

Maxwell visualized work being extracted from the reconfigured  
system by using the demon-imposed temperature gradient to drive a 
heat engine. Work can probably not be extracted in our experiment, 
but the fact that the overall system entropy is reduced means that trap 
changes that affect all atoms in the same way can create a much colder 
gas. For instance, the experiment would pass the 1.24kB entropy- 
per-particle threshold below which there would be a Bose–Einstein 
condensate if the lattice were adiabatically shut off and the atoms were 
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Fig. 2 | Perfect filling of 4 × 4 × 3 and 5 × 5 × 2 sublattices. a–f, The 
five images in each row correspond to the five lattice planes (labelled 1–5). 
The colour map shows intensity. We have applied contrast enhancement (a 
threshold of ~35% of the peak intensity) to make empty sites more obvious 
in the figure. The associated grid patterns are real-time occupancy maps, 
generated by processing the five images. The two sets of images (a–c and 
d–f) are from two different experimental implementations. a, An initial, 
unsorted atom distribution. The occupancy maps are used as the basis 
of a series of site-selective state flips and state-selective translations that 
execute our sorting algorithm. b, Result after one sorting sequence with 
the goal of filling a 4 × 4 × 3 sublattice in planes 2–4. There are three 

errors after this sort (one in plane 3, two in plane 4). c, Result after a 
second sorting sequence starting from the distribution in b. The sorting 
goal has been reached. Atoms outside the target sublattice can be kept as 
spares, or they can be selectively state-flipped and removed by a resonant 
clearing beam. d, Another initial, unsorted atom distribution. e, The result 
after one sorting sequence with the goal of filling a 5 × 5 × 2 sublattice in 
planes 2 and 3. There are four errors after this sort (one in plane 2, three 
in plane 3). f, The result after a second sorting sequence starting from the 
distribution in e. The sorting goal has been reached. The absence of spare 
atoms in f is coincidental.
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Fig. 3 | Filling fraction and entropy. The empty red symbols show 
the filling fraction as a function of the number of sorts for 5 × 5 × 2 
(circles) and 4 × 4 × 3 (squares) target sublattices. The circles (squares) 
show results based on 85 (48) experimental implementations. The red 
horizontal dashed line is the limit associated with loss from collisions with 
background gas atoms during the 1 s required to image and sort. The solid 
blue symbols show the configurational entropy as a function of the number 
of sorts for 5 × 5 × 2 (circles) and 4 × 4 × 3 (squares) target sublattices. 
The total entropy at the beginning and at the end is the sum of the 
vibrational entropy (blue horizontal dotted line) and the configurational 
entropy; sorting reduces it by a factor of 2.44. The 1σ error bars are smaller 
than the size of the symbols.
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left in a 3D box potential23,27. The adiabatic timescale for making this 
approximate Mott-insulator-to-superfluid transition is far too large 
given our current lattice spacing, but it could be accomplished if the 
lattices were made in an accordion configuration28, in which the angle 
between the beam pairs could be dynamically changed to reduce the 
lattice constant by a factor of five. That would present a third path to 
quantum degeneracy of cold atoms, joining many evaporative-cooling 
experiments and one laser-cooling experiment25,29.

Maxwell’s thought experiment led to a deep understanding of 
the relationship between entropy and information. The experiment 
that we present here has several practical applications. It prepares a 
favourable initial state for a neutral-atom quantum computer with 
one atom at nearly every 3D lattice site, each cooled near its vibra-
tional ground state. The cold array minimizes many potential errors 
in Rydberg-gate-based quantum computations. The 3D optical lattice 
allows entanglement with many near neighbours and provides favour-
able scaling, often as N1/3 or N2/3, to minimize computation time and 
the laser power requirements. If we can further improve cooling—for 
instance, by temporarily transferring the atoms to a lattice with smaller 
detuning, where the atoms are trapped more deeply in the Lamb–Dicke 
limit—we might be able to create large-scale entanglement through 
cold-collision gates30,31 and thus ultimately implement one-way quan-
tum computation32. Our sorted array could also be used for a variety of 

Rydberg-based quantum simulations with different geometries, dimen-
sionalities and anisotropy of interactions. For instance, the simulations 
of Ising-like Hamiltonians that have recently been implemented in one- 
and two-dimensional (2D) tweezer and microtrap arrays16,33 could be 
extended to three dimensions in our optical lattice. Our demonstrated 
coherent site-selective control14 allows the possible implementation 
of a universal quantum simulator, which might be used to implement 
Kitaev’s toric code in 2D sublattices and in 2D or 3D lattice gauge 
theories34.
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Fig. 4 | Microwave spectra showing the results of projection sideband 
cooling18. Atoms start in |F = 4, mF = −4〉, and the curves show the 
number of atoms that make an adiabatic fast-passage transition from the 
|F = 4, mF = −4〉 to the |F = 3, mF = −3〉 state because atoms that remain 
in |F = 4, mF = −4〉 are cleared by a resonant beam before detection. 
Slightly rotating the polarization of one lattice beam of the x, y or z lattice 
beam pairs leads to non-zero projections between different vibrational 
states (vibrational quantum number ν) in that direction. Nearly all atoms 
make the transition at the peaks centred at zero, where the frequency is 
f = f0 ≈ 9.19130 GHz, which corresponds to no change of vibrational 
level. Nearly all atoms make the transition at the lower-frequency peaks 
(at f – f0 ≈ −15 kHz), which corresponds to the vibrational quantum 
number increasing by one (Δν = +1). Atoms make the transition at the 
higher-frequency peaks (Δν = −1, at f – f0 ≈ 15 kHz) only if there is a 
lower vibrational level available, which is true for all atoms except those 
in the vibrational ground state. The heights of the Δν = −1 peaks thus 
provide a measure of the atoms that are not in the vibrational ground state. 
The empty maroon circles show the Δν = −1 and Δν = −2 sidebands in 
the x direction before projection sideband cooling. The sidebands for the 
y and z directions are similar (not shown). The solid maroon circles, solid 
blue squares and solid green diamonds show the spectra for the x, y and z 
directions, respectively, after projection sideband cooling. Each data point 
in the ‘before cooling’ dataset is obtained from about 60 atoms and in the 
‘after cooling’ datasets from about 400 atoms. All error bars represent 
one standard deviation. The maroon, blue and green solid lines are sums 
of four fitted super-Gaussians of order 4 for the x, y and z directions, 
respectively. We infer from the large suppressions of the Δν = −1 and 
Δν = −2 sidebands in this figure that the 3D vibrational ground state is 
occupied 88.9(9)% of the time.
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Methods
Apparatus. We load atoms from a Magneto-Optical Trap to a 3D optical lattice 
formed by three pairs of 75-μm-waist, 838.95-nm laser beams. Each lattice beam 
has a power of 250 mW, giving a lattice depth of 190 μK at the central lattice site. 
The two beams in each pair cross each other at 10°, yielding a lattice spacing of 
4.9 μm. Two pairs are frequency-shifted relative to the third by +30 MHz and 
−175 MHz to prevent mutual interference among the lattice pairs. One beam in 
each pair has two electro-optic modulators in its path, aligned so that their axes are 
at 45° relative to the incoming polarization, followed by a λ/4 wave-plate aligned 
with the incoming polarization. As the voltage on the electro-optic modulators is 
increased, the polarization of this beam rotates. The angle of rotation is π when 
the half-wave voltage is applied to both electro-optic modulators.
Projection sideband cooling. Projection sideband cooling has been described in 
detail in a previous paper18. We give a brief overview here. Projection sideband 
cooling is similar to other sideband-cooling techniques, except that microwave 
photons, which have a very small momentum compared to the optical photons that 
are usually used, drive the vibrational-state-changing transitions. To accomplish 
this, for a given lattice direction, say x, the polarization of one of the lattice beams 
in the pair is rotated slightly, which displaces the traps experienced by atoms in 
the |F = 4, mF = −4〉 and |F = 3, mF = −3〉 states slightly relative to each other  
(the same effect that we use to state-selectively translate atoms during our sort-
ing operations). Therefore, all the vibrational wavefunctions associated with 
one magnetic sublevel have non-zero projections onto the wavefunctions of the 
other sublevel. There are consequently non-zero matrix elements for vibration- 
state-changing microwave transitions.

Projection cooling proceeds as follows. All the atoms are prepared in 
|F = 4, mF = −4〉 via optical pumping. The x lattice-beam polarization is rotated, 
and then a Δνx = –2 microwave adiabatic fast passage (AFP) pulse drives the 
transition |F = 4, mF = −4〉 to |F = 3, mF = −3〉, followed by a modified polar-
ization rotation and then a Δνx = 1 microwave pulse from |F = 3, mF = −3〉 
to |F = 4, mF = −4〉 (which is a Δν = −1 pulse for atoms that start in 
|F = 4, mF = −4〉). The AFP pulses work well regardless of the initial vibrational 
state. The two AFP pulses lower νx by 1 for all the atoms except those initially 
in νx = 0, which make no transitions. All the atoms for which both AFP pulses 
were successful end in |F = 4, mF = −4〉, except those that started in νx = 1. The 
polarization is rotated back, and an optical pumping pulse resets all the atoms to 
|F = 4, mF = −4〉. These steps are then repeated for the y and z lattice beams, and 
then the sequence is repeated 50 times. The whole cooling sequence takes about 
1 s. The Δν = −2 → Δν = 1 sequences minimize the number of times that an 
atom has to be optical pumped, which is a particular advantage for cooling atoms 
from high vibrational states. Sequentially stepping through the Cartesian directions 
optimizes the final cooling steps.

We have improved the performance of our previously demonstrated projec-
tion sideband cooling method18 considerably, from 76% to 89% occupancy of the 
ground vibrational state. This improvement results from two changes. First, we 
increased the fidelity of the Δν = −2 microwave pulse, where Δν is the micro-
wave-driven change in vibrational level, by separately optimizing the lattice  
displacement for Δν = −2 and Δν = −1. Second, we improved the quality of the 
optical-pumping-light polarization at the atoms by a factor of 5.
Implementation of a motion step. Extended Data Fig. 1 illustrates our timing 
sequence for one motion step. Before any motion, atoms are optically pumped to 
the |F = 4, mF = −4〉 state (not shown). The atoms to be moved are transferred 
to the |F = 3, mF = −3〉 state sequentially. The addressing lasers, directed by 
micro-mechanical electronic systems mirrors, cross at a target atom in the 3D array, 
causing an a.c. Stark shift on its resonance frequency between |F = 4, mF = −4〉 
and |F = 3, mF = −3〉 by −50 kHz with respect to the atoms that are not in the 
path of either addressing laser. The addressing laser powers are ramped up over 
40 μs, after which we wait for another 110 μs for our intensity lock to settle. We 
drive the transition in the target atoms with a 3-ms-long AFP microwave pulse, 
which involves a 12-kHz frequency sweep. The crosstalk is less than 3 × 10−3.

To initiate motion, the polarization of one of the lattice beams is linearly rotated 
by π over 3 ms by ramping the voltages on the electro-optic modulators. The atoms 
in |F = 3, mF = −3〉 are then optically pumped to |F = 4, mF = −4〉 in 0.2 ms (with 
an intensity of 4 mW cm−2 and detuning of −7.5 MHz on the F = 3 to F′ = 4 
transition, and 0.5 mW cm−2 and 7.5 MHz on the F = 4 to F′ = 4 transition). The 
voltages are then ramped back to zero. A final optical pumping step over 0.25 ms 
ensures that all atoms are back to |F = 4, mF = −4〉 for the next motion step.
Measuring state-flip fidelity. To measure the efficiency of our addressing scheme, 
we take an occupancy map, apply projection sideband cooling to the atoms and 
optically pump them to the |F = 4, mF = −4〉 state. We then sequentially flip the 
state of all the atoms within a 5 × 5 × 5 region to |F = 3, mF = −3〉 using targeted 
addressing. Then, another laser beam resonant with the transition from |F = 4〉 
to |F′ = 5〉 pushes away the atoms that were left in the |F = 4, mF = −4〉 state. A 
new occupancy map is then generated to identify the atoms that were successfully 

transferred to |F = 3, mF = −3〉. Averaging over 50 implementations, we measure 
a state-flip fidelity of 0.986(5). However, the addressing laser beam drifts slowly 
once aligned, which can decrease the state-flip fidelity by about 0.02 after about 
100 sorting operations.
Measuring motion fidelities. Motion errors can occur when atoms spontaneously 
emit lattice light. An atom is usually lost during motion if light scattering leaves 
it in the anti-trapped state. Occasionally the atom site-hops, if it stays trapped 
but follows the ‘wrong’ lattice potential. We measured the motion fidelities for 
atoms in |F = 4, mF = −4〉 and |F = 3, mF = −3〉 separately (see Extended Data 
Fig. 2). Atoms were first projection-sideband-cooled and optically pumped to 
|F = 4, mF = −4〉. To find the cumulative effect of making 2N motion steps in 
a given direction, we ramped up to the half-wave voltage, Vλ/2, of the electro- 
optic modulators, then ramped down to −Vλ/2, and repeated the process N times. 
Because no optical pumping or state flips were applied during the motions, all the 
atoms moved back and forth by one lattice spacing around their initial positions. 
By comparing the occupancy maps before and after these motions steps, we can 
identify the percentage of atoms that successfully return to their initial positions, 
which we call the motion fidelity. For motion in |F = 3, mF = −3〉, the sequence is 
the same except that after the atoms are optically pumped to |F = 4, mF = −4〉, a 
global microwave pulse is applied to flip the state of all atoms to |F = 3, mF = −3〉 
before executing the motions. Each data point in Extended Data Fig. 2 is aver-
aged over 10 sorting operations and corrected for the loss due to collisions with 
background gas atoms. A linear fit gives the fidelities per motion step. For atoms 
in the |F = 4, mF = −4〉 state and motion in the lattice directions, the fidelities are 
{0.9951(6), 0.9982(6), 0.9962(4)}, where the errors refer to one standard deviation. 
The corresponding fidelities for atoms in the |F = 3, mF = −3〉 state are {0.9956(4), 
0.9961(10), 0.9956(1)}. The calculated probability of spontaneous emission for an 
atom in the vibrational ground state during a motion step is 3.5 × 10−3.
Sorting algorithm. We have generalized the sorting algorithm for any initial 
N × N × N lattice and any final i × j × k sublattice. If i = j = N, then only balanc-
ing and compaction steps are needed. If i, j < N, then extra motion steps in x and y  
are added to move as many atoms as possible into an i × j × N sublattice from 
‘outside’ before balancing and compaction (‘outside’ means the full lattice minus 
the target sublattice). For example, to fill a 4 × 4 × 3 sublattice, as many atoms as 
possible are first moved into a 4 × 4 × 5 region in two motion steps, one in x and 
one in y, from outer y–z and x–z planes of the lattice. Balancing and compaction 
are then applied to a 4 × 4 × 5 lattice rather than a 5 × 5 × 5 lattice. The simu-
lations that we describe below suggest that even though this procedure does not 
always empty the outside planes, there are always enough atoms to fill a 4 × 4 × 3 
sublattice when starting from a 50% filled 5 × 5 × 5 lattice.

The steps for balancing an i × j × N lattice to fill an i × j × k sublattice are 
roughly as follows:
1. If this is the first iteration, choose a dividing plane, P, to be an x–z plane. 
Otherwise, choose the dividing plane to be perpendicular (either x–z or y–z) to 
the previous iteration. Choose P to divide the lattice into two parts, S1 and S2, that 
are as similar as possible (that is, a difference of one plane between S1 and S2 is 
permitted if the lattice dimension is odd).
2. If the number of z rows in S1 (S2) is n (m), the required number of atoms in S1 
(S2) is k × n (k × m). Move atoms between the two sublattices until they each have 
at least the required number of atoms.
3. Repeat these steps for S1 and S2 separately, stopping when each of them is just 
a single z row.

Balancing guarantees that there are k atoms in each of the i × j z rows. These 
atoms are then moved in the z direction (‘compaction’) in parallel to fill the desired 
k planes, usually in the middle of the accessible lattice. The algorithm minimizes 
the number of motion steps.

The sorting algorithm can probably be improved by replacing the initial steps 
to empty the outer x–z and y–z planes by a more optimal algorithm. For instance, 
the first sort could be modified to distribute the extra atoms evenly and thus reduce 
the number of correction steps.
Monte Carlo simulations. Monte Carlo simulations of this sorting algorithm start 
with a randomly half-filled 3D array. Errors are probabilistically applied at each 
motion step and atom loss is considered after the completion of a sort. We calculate 
a separate motion fidelity for each internal state as the average of the measured 
fidelities in the three directions. One thousand simulations were run for various 
lattice dimensions and various target sublattices. For filling a 5 × 5 × 2 or 4 × 4 × 3 
sublattice from a half-filled 5 × 5 × 5 lattice, the simulations predict an average 
filling factor of about 0.97 after three sorts, in agreement with our measured filling 
factor to within the uncertainty associated with our measured errors.
Real-time control. The sorting process requires changing the timing sequence 
in real time. This is accomplished by combining real-time data analysis with two 
field-programmable gate arrays (FPGAs). The experiment has a ‘backbone’ of a 
fixed timing sequence. After the motion steps have been generated according to 
the initial occupancy map, the FPGAs pause that fixed timing sequence and take  
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control of the electronic channels (optical pumping, electro-optic modulator 
voltages, addressing, microwaves) required for sorting. The data used for sorting, 
which comprise a sequence of directions for the motion steps and the lattice sites to 
be addressed at each motion step, are communicated to the FPGAs by the program 
that generates the occupancy map and creates the sorting plan. The FPGAs convert 
the motion steps into several voltage sequences that are output synchronously. 

After the motion steps have been executed, the FPGAs transfer the timing control 
back to the fixed backbone, which resumes where it was paused.
Code availability. The Monte Carlo code used to model our algorithm is available 
from the corresponding author on request.
Data availability. The underlying data used to generate the figures and conclusions 
in the paper are available from the corresponding author on reasonable request.
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Extended Data Fig. 1 | Motion step. A motion step to move n atoms 
is shown. n atoms are sequentially targeted by the addressing beams 
and transferred from the ‘stationary’ state to the ‘motion’ state using 
microwaves. The electro-optic modulator (EO) voltages are ramped up to 
the half-wave voltage (Vλ/2) in order to move atoms by half of the lattice 

spacing. After motion, the atoms are optically pumped so that they all 
return to the stationary state. The EO voltages are then ramped back 
down. A final optical pumping (OP) ensures optimal preparation for the 
next motion step.

© 2018 Springer Nature Limited. All rights reserved.



Letter RESEARCH

Extended Data Fig. 2 | Motion fidelities. a, b, Measured motion fidelity 
as a function of the number of motion steps in |F = 4, mF = −4〉 (a) and 
|F = 3, mF = −3〉 (b) in the x (maroon circles), y (blue squares) and z 

(green diamonds) directions. The lines are fits to the data. The error  
bars represent one standard deviation. Each point corresponds to about 
600 atoms.

© 2018 Springer Nature Limited. All rights reserved.
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