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Sorting ultracold atoms in a three-dimensional
optical lattice in a realization of Maxwell’s demon
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In 1872, Maxwell proposed his famous ‘demon’ thought experiment!.
By discerning which particles in a gas are hot and which are cold,
and then performing a series of reversible actions, Maxwell’s demon
could rearrange the particles into a manifestly lower-entropy state.
This apparent violation of the second law of thermodynamics
was resolved by twentieth-century theoretical work?: the entropy
of the Universe is often increased while gathering information?,
and there is an unavoidable entropy increase associated with the
demon’s memory*. The appeal of the thought experiment has led
many real experiments to be framed as demon-like. However, past
experiments had no intermediate information storage’, yielded only
a small change in the system entropy®’ or involved systems of four
or fewer particless‘w. Here we present an experiment that captures
the full essence of Maxwell’s thought experiment. We start with a
randomly half-filled three-dimensional optical lattice with about 60
atoms. We make the atoms sufficiently vibrationally cold so that the
initial disorder is the dominant entropy. After determining where
the atoms are, we execute a series of reversible operations to create
a fully filled sublattice, which is a manifestly low-entropy state. Our
sorting process lowers the total entropy of the system by a factor of
2.44. This highly filled ultracold array could be used as the starting
point for a neutral-atom quantum computer.

With an eye towards quantum computing and quantum simula-
tion applications, there has been a recent boom in cold-atom sorting
experiments. Atoms in a variety of arrays of dipole light traps have
been impressively rearranged by moving individual traps®”1"12, The
entropy associated with disordered occupancy in those cases is at
most about 10% of the system entropy®, which is dominated by vibra-
tional excitation in the traps. Good vibrational cooling, along with
well-sorted atoms, is required for cold collision-based quantum gates
or quantum simulations. For Rydberg-based gates or simulations'?,
although atoms are not strictly required to be vibrationally cold, colder
is better. Rydberg gates using colder atoms are likely to yield higher
fidelity because the atoms are less likely to change vibrational states
during the gate, which can undesirably entangle atomic motion with
qubit states. In general, better-localized atoms allow higher-fidelity
addressing of individual atoms'*. In blue-detuned traps, cold atoms
see less light and thus scatter fewer trapping photons, which leads
to longer coherence times. For instance, the coherence time in our
experiment now exceeds 12 s.

Four atoms in a one-dimensional optical lattice® have been com-
pacted using a method!® similar to the one that we demonstrate here
with 50 atoms in three dimensions. We note that at least about 50 qubits
are needed for a quantum computer to perform a calculation that can-
not be accomplished on a classical computer!®. A three-dimensional
(3D) geometry gives atoms many more nearby neighbours, which pro-
vides higher connectivity in the system. It also allows for a broad range
of quantum simulations and is favourable for further scaling of the
number of atoms in the system.

Our experiment proceeds as follows. We prepare a randomly
56%-filled blue-detuned 3D lattice with 4.8 pm lattice spacing'’. By
imaging polarization-gradient-cooling laser light, we determine the

occupancy across the lattice with an error of 1072 per site in 800 ms
(ref. 17). Projection sideband cooling!® puts 89% of the caesium
atoms into their vibrational ground states and >99.7% of them in the
|F =4, mp= —4) hyperfine ground state, where F and mpare the hyper-
fine and magnetic quantum numbers, respectively. We then combine
the ability to address atoms at individual sites (by using crossed laser
beams and microwaves to make site-dependent state changes'®) with
the ability to make state-dependent lattice translations (by rotating the
lattice beam polarizations®). Starting from a given 3D occupancy map
we devise a sequence of operations to fill up eithera5 x 5 x 2 ora
4 x 4 x 3 sublattice.

We can target any siteina 5 x 5 x 5 lattice by using a pair of focused
addressing beams intersecting at a right angle!*!°. Targeting pro-
ceeds as in our previous demonstration of high-fidelity single-qubit
gates', but the magnetic sublevels are different and in this case we
are unconcerned with long-term quantum coherence. The addressing
beams shift the (|F = 4, mp = —4) to |F = 3, mp = —3) resonance by
around 50 kHz, which allows us to drive the associated microwave tran-
sition using an adiabatic fast-passage pulse (see Methods for details)
that transfers only the target atom. An atom making the transition from
mp= —4to mp= —3 moves from the ‘stationary’ to the ‘motion’ state.

The linear polarizations of the two beams that create the lattice in
a given direction are initially aligned, so the two states are trapped
nearly identically. When the polarization of one of the lattice beams is
rotated (using two electro-optic modulators and a A\/4 plate, where A is
the wavelength), the optical lattices for the two states move in opposite
directions (see Fig. 1a). After rotating the polarization by T, we optically
pump the atoms back to the stationary state and rotate the polarization
back. The net effect of this sequence is that atoms that start in the sta-
tionary state move but return to the same place, while atoms that start
in the motion state are shifted by one lattice site.

The sorting algorithm for compacting atoms in the lattice was pro-
posed in previous work!>?!; we have slightly modified it to allow the
filling of any continuous sublattice (see Methods). The general idea is to
first perform a series of balancing steps in the x and y directions so that
every row in the z direction has the required number of atoms to fill a
desired number of planes. Then, a series of compaction steps in the z
direction moves atoms to fill the planes of the target sublattice (Fig. 1b).
For example, to filla 5 x 5 X 2 sublattice from a half-filled 5 x 5 x 5
lattice, atoms are first ‘balanced’ in the x and y directions so that every
row in the z direction has at least two atoms. Parallel z-motion steps
then move the atoms to the desired planes. After sorting, we reimage
the atoms and repeat the procedure to correct any errors. The ability to
know exactly where the vacancies are is an advantage of this approach
to filling a lattice compared to implementing a superfluid—-Mott insula-
tor transition??, where residual occupancy errors are unknown.

Figure 2 shows two implementations of this algorithm, in which tar-
get sublattices were completely filled after two sorts. In general, start-
ing with at least half the lattice sites filled ina 5 X 5 x 5 array, three
sorts leave us with an average filling fraction of 0.97 for 5 x 5 x 2 and
0.95 for 4 x 4 x 3. We achieve the perfect filling shown in Fig. 2f and
Fig. 2¢ 32% and 27% of the time, respectively. For the first sort, the
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Fig. 1 | Motion steps and sorting algorithm. a, Motion steps used to

fill a vacancy in a given direction. The curves show the lattice potential

as a function of position for the ‘motion’ state (orange curve) and

the ‘stationary’ state (blue curve). Brown curves indicate overlapping
potentials. The arrows denote the direction of a time series in which the
angle (¢) between the polarizations of the two lattice beams is adiabatically
ramped to  and back to 0. The atom to be moved is transferred to the
motion state (orange circle) using targeted addressing at the beginning of
the time series. As the polarization of one of the lattice beams is rotated,
the atoms in the motion state and the stationary state (blue circle) move
in opposite directions, settling half a lattice spacing away from their

average number of motion steps is 6.4 (5.6) and the average number
of addressing operations was 38 (62) for fillinga 5 x 5 X 2 (4 x 4 X 3)
sublattice. Each sort takes about 190 ms on average. Figure 3 shows
the filling fraction as a function of the number of sorts. These num-
bers match well with Monte Carlo simulations that consider measured
sources of error (see Methods). A major source of error for atoms in
both the motion and stationary states is spontaneous emission from the
lattice. The spontaneous emission rate is significantly higher (17 times
on average) during a motion step because the lattice intensity is not
zero at the trap minima during the motion (see Fig. 1a). When an atom
spontaneously emits a photon and changes hyperfine state, it becomes
anti-trapped and is lost. The measured average loss per motion step is
about4 x 1073, Another source of error is imperfect transfer of atoms
from the stationary state to the motion state. Our measured transfer
fidelity is 0.986, limited by a combination of imperfect addressing beam
shape, pointing noise of the addressing beams and magnetic field fluc-
tuations. This error can cause two atoms to end up in the same lattice
site, both of which are lost during imaging. The number of sorts that
can be performed to fill errors is eventually limited by the 92-s vacuum
lifetime and by double-atom loss. Optical pumping leads to a modest
amount of heating, exciting about 7% of the population from the 3D
vibrational ground state per motion step. Were we to replace the more
convenient optical pumping with targeted addressing, this number
would be reduced to 0.6%.

After sorting and a final round of projection cooling, we measure the
vibrational sidebands to determine the final ground-state occupation,
as shown in Fig. 4. Projection sideband cooling (see Methods) leads to
ground-state occupation probabilities of 0.949(7), 0.954(6) and 0.985(1)
in the x, y and z directions, respectively, which implies 89% occupation
of the 3D vibrational ground state. The state is not thermal, but most
of the population is in the lowest three levels. We calculate that the
vibrational entropy for this state is about 0.59kg per particle, where kg
is the Boltzmann constant.
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The configurational entropy is given by*
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original positions when ¢ = w. The atom in the motion state is then
optically pumped to the stationary state (illustrated by the red arrow). As
the polarization is rotated back, both atoms move in the same direction,
with the atom that started in the stationary state returning to its original
position and the atom that started in the motion state moving by one
lattice site. b, Simplified illustration of two parts of the sorting algorithm
ina3 x 3 x 3 lattice. Orange and blue circles are as in a; empty circles
denote empty sites. The first motion step ‘balances’ the array so that every
z row has exactly two atoms. The second motion step ‘compacts’ atoms
into two planes.

where 7 is the filling fraction. The solid blue line in Fig. 3 shows
the configurational entropy as a function of the number of sorts, and
the dotted line shows the vibrational entropy after projection cool-
ing. Sorting reduces the configurational entropy by a factor of 8 and
the total entropy by a factor of 2.44. The final total entropy per
particle is 0.75k.

The number of required motion steps scales as N/, where N is the
number of atoms to be sorted'>?!. Similar scaling for state flipping
could be obtained if the addressing beams were generated holograph-
ically; such a versatile 3D light pattern would allow many atoms to be
state-flipped with microwaves simultaneously. Monte Carlo simulations
using our current sequential addressing scheme and error rate show
that starting from a half-filled 10 x 10 x 10 lattice, 10 x 10 x 4 and
7 x 7 x 7 sublattices can be filled to a filling fraction of about 0.93.
The error due to the motion could be reduced by further detuning the
lattice light. Tripling the lattice detuning would decrease the sponta-
neous emission rate by a factor of 9 and the lattice depth by a factor of
3. Although the resulting lower trap frequency would require that we
move atoms three times more slowly, the total spontaneous emission
per motion step would be reduced by a factor of three, which would
improve the filling fraction to approximately 0.975 for about 400 sorted
atoms. It should be possible to improve microwave transfer errors by
an order of magnitude by improving magnetic field stabilization and
adapting our phase gate!%, which is insensitive to addressing-beam
intensity fluctuations. Because atoms in a 3D lattice geometry have
many near neighbours, small known filling errors can be readily incor-
porated into the design of any quantum computation.

We now more fully discuss our characterization of this experiment
as the first, to our knowledge, to capture the full essence of Maxwell’s
demon on a large array of particles. Any process that involves selectively
acting on particles differently depending on their momentum, energy
or internal state, like all laser-cooling methods>*%%, evokes an aspect
of Maxwell’s demon, who sorted particles based on velocity. However,
when there is no stored information, such mechanisms differ in spirit
from Maxwell’s demon and other thought-experiment demons?. When
the entropy increase of the outside world is built into the cooling cycle,
carried away by lost particles or scattered light, there is no trace of the
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Fig. 2 | Perfect filling of 4 X 4 X 3and 5 X 5 X 2 sublattices. a-f, The
five images in each row correspond to the five lattice planes (labelled 1-5).
The colour map shows intensity. We have applied contrast enhancement (a
threshold of ~35% of the peak intensity) to make empty sites more obvious
in the figure. The associated grid patterns are real-time occupancy maps,
generated by processing the five images. The two sets of images (a-c and
d-f) are from two different experimental implementations. a, An initial,
unsorted atom distribution. The occupancy maps are used as the basis

of a series of site-selective state flips and state-selective translations that
execute our sorting algorithm. b, Result after one sorting sequence with
the goal of filling a 4 x 4 x 3 sublattice in planes 2-4. There are three

theoretical paradox that twentieth-century information theory worked
to resolve?.

By contrast, our experiment is conceptually similar to Maxwell’s
thought experiment. We increase the entropy of the outside world in
the process of determining site occupancy. At the same time, the con-
figurational entropy goes to zero because there is only one state with
that particular configuration. The stored occupancy information is
then used as a guide to the execution of reversible operations that
leave the system in a manifestly low-entropy state. Of course, that
is also true for any sorting operation, as when checkers are arrayed
on a board. The difference here is that most of the initial entropy of
our system is in the initial configurational disorder, so that by meas-
uring and sorting we considerably reduce the total system entropy.
Maxwell’s demon collected information and acted on one particle
at a time. By contrast, our demon obtains an occupancy map of the
whole system, so that it can map out a plan to act on all the particles
in parallel.

Maxwell visualized work being extracted from the reconfigured
system by using the demon-imposed temperature gradient to drive a
heat engine. Work can probably not be extracted in our experiment,
but the fact that the overall system entropy is reduced means that trap
changes that affect all atoms in the same way can create a much colder
gas. For instance, the experiment would pass the 1.24kg entropy-
per-particle threshold below which there would be a Bose-Einstein
condensate if the lattice were adiabatically shut off and the atoms were
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errors after this sort (one in plane 3, two in plane 4). ¢, Result after a
second sorting sequence starting from the distribution in b. The sorting
goal has been reached. Atoms outside the target sublattice can be kept as
spares, or they can be selectively state-flipped and removed by a resonant
clearing beam. d, Another initial, unsorted atom distribution. e, The result
after one sorting sequence with the goal of fillinga 5 x 5 x 2 sublattice in
planes 2 and 3. There are four errors after this sort (one in plane 2, three
in plane 3). f, The result after a second sorting sequence starting from the
distribution in e. The sorting goal has been reached. The absence of spare
atoms in f is coincidental.

Filling fraction
Entropy (S/kg)

0 1 2 3
Number of sorts

0.5
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Fig. 3 | Filling fraction and entropy. The empty red symbols show

the filling fraction as a function of the number of sorts for 5 x 5 x 2
(circles) and 4 x 4 X 3 (squares) target sublattices. The circles (squares)
show results based on 85 (48) experimental implementations. The red
horizontal dashed line is the limit associated with loss from collisions with
background gas atoms during the 1 s required to image and sort. The solid
blue symbols show the configurational entropy as a function of the number
of sorts for 5 x 5 x 2 (circles) and 4 x 4 x 3 (squares) target sublattices.
The total entropy at the beginning and at the end is the sum of the
vibrational entropy (blue horizontal dotted line) and the configurational
entropy; sorting reduces it by a factor of 2.44. The 1o error bars are smaller
than the size of the symbols.
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Fig. 4 | Microwave spectra showing the results of projection sideband
cooling'®. Atoms start in |[F = 4, mp = —4), and the curves show the
number of atoms that make an adiabatic fast-passage transition from the
|F =4, mp= —4) to the |F = 3, mp = —3) state because atoms that remain
in |F = 4, mp = —4) are cleared by a resonant beam before detection.
Slightly rotating the polarization of one lattice beam of the x, y or zlattice
beam pairs leads to non-zero projections between different vibrational
states (vibrational quantum number v) in that direction. Nearly all atoms
make the transition at the peaks centred at zero, where the frequency is
f=/0~9.19130 GHz, which corresponds to no change of vibrational
level. Nearly all atoms make the transition at the lower-frequency peaks
(at f- fo &= —15 kHz), which corresponds to the vibrational quantum
number increasing by one (Av = +1). Atoms make the transition at the
higher-frequency peaks (Av = —1, at f - f ~ 15 kHz) only if there is a
lower vibrational level available, which is true for all atoms except those
in the vibrational ground state. The heights of the Ay = —1 peaks thus
provide a measure of the atoms that are not in the vibrational ground state.
The empty maroon circles show the Av = —1 and Av = —2 sidebands in
the x direction before projection sideband cooling. The sidebands for the
yand z directions are similar (not shown). The solid maroon circles, solid
blue squares and solid green diamonds show the spectra for the x, y and z
directions, respectively, after projection sideband cooling. Each data point
in the ‘before cooling’ dataset is obtained from about 60 atoms and in the
‘after cooling’ datasets from about 400 atoms. All error bars represent

one standard deviation. The maroon, blue and green solid lines are sums
of four fitted super-Gaussians of order 4 for the x, y and z directions,
respectively. We infer from the large suppressions of the Av = —1 and
Av = —2 sidebands in this figure that the 3D vibrational ground state is
occupied 88.9(9)% of the time.

left in a 3D box potential>*?’. The adiabatic timescale for making this
approximate Mott-insulator-to-superfluid transition is far too large
given our current lattice spacing, but it could be accomplished if the
lattices were made in an accordion configuration®, in which the angle
between the beam pairs could be dynamically changed to reduce the
lattice constant by a factor of five. That would present a third path to
quantum degeneracy of cold atoms, joining many evaporative-cooling
experiments and one laser-cooling experiment®%,

Maxwell’s thought experiment led to a deep understanding of
the relationship between entropy and information. The experiment
that we present here has several practical applications. It prepares a
favourable initial state for a neutral-atom quantum computer with
one atom at nearly every 3D lattice site, each cooled near its vibra-
tional ground state. The cold array minimizes many potential errors
in Rydberg-gate-based quantum computations. The 3D optical lattice
allows entanglement with many near neighbours and provides favour-
able scaling, often as N/ or N*, to minimize computation time and
the laser power requirements. If we can further improve cooling—for
instance, by temporarily transferring the atoms to a lattice with smaller
detuning, where the atoms are trapped more deeply in the Lamb-Dicke
limit—we might be able to create large-scale entanglement through
cold-collision gates®**! and thus ultimately implement one-way quan-
tum computation®. Our sorted array could also be used for a variety of
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Rydberg-based quantum simulations with different geometries, dimen-
sionalities and anisotropy of interactions. For instance, the simulations
of Ising-like Hamiltonians that have recently been implemented in one-
and two-dimensional (2D) tweezer and microtrap arrays'®*® could be
extended to three dimensions in our optical lattice. Our demonstrated
coherent site-selective control' allows the possible implementation
of a universal quantum simulator, which might be used to implement
Kitaev’s toric code in 2D sublattices and in 2D or 3D lattice gauge
theories®.

Online content

Any methods, additional references, Nature Research reporting summaries, source
data, statements of data availability and associated accession codes are available at
https://doi.org/10.1038/541586-018-0458-7.

Received: 15 January 2018; Accepted: 16 July 2018;
Published online 5 September 2018.

Maxwell, J. C. Theory of Heat (Longmans, Green and Co., London, 1871).

Leff, H. S. & Rex, A. F. Maxwell’s Demon: Entropy, Information, Computing

(Princeton University Press, Princeton, 1990).

Brillouin, L. Maxwell’s demon cannot operate — information and entropy. 1.

J. Appl. Phys. 22,334-337 (1951).

Landauer, R. Irreversibility and heat generation in the computing process.

IBM J. Res. Dev. 5, 183-191 (1961).

5. Price, G. N,, Bannerman, S. T, Viering, K., Narevicius, E. & Raizen, M. G.
Single-photon atomic cooling. Phys. Rev. Lett. 100, 093004 (2008).

6. Barredo, D., de Leseleuc, S, Lienhard, V., Lahaye, T. & Browaeys, A. An
atom-by-atom assembler of defect-free arbitrary two-dimensional atomic
arrays. Science 354, 1021-1023 (2016).

7. Endres, M. et al. Atom-by-atom assembly of defect-free one-dimensional cold
atom arrays. Science 354, 1024-1027 (2016).

8. Robens, C. et al. Low-entropy states of neutral atoms in polarization-
synthesized optical lattices. Phys. Rev. Lett. 118, 065302 (2017).

9. Lester, B.J,, Luick, N., Kaufman, A. M., Reynolds, C. M. & Regal, C. A. Rapid
production of uniformly filled arrays of neutral atoms. Phys. Rev. Lett. 115,
073003 (2015).

10. Strasberg, P, Schaller, G., Brandes, T. & Esposito, M. Thermodynamics of a
physical model implementing a Maxwell demon. Phys. Rev. Lett. 110, 040601
(2013).

11. Barredo, D, Lienhard, V., de Léséleuc, S., Lahaye, T. & Browaeys, A. Synthetic
three-dimensional atomic structures assembled atom by atom. Nature
http://dx.doi.org/10.1038/s41586-018-0450-2 (2018).

12. Kim, H. et al. In situ single-atom array synthesis using dynamic holographic
optical tweezers. Nat. Commun. 7, 13317 (2016).

13. Saffman, M. Quantum computing with atomic qubits and Rydberg interactions:
progress and challenges. J. Phys. B 49, 202001 (2016).

14. Wang, Y., Kumar, A, Wu, T. Y. & Weiss, D. S. Single-qubit gates based on targeted
phase shifts in a 3D neutral atom array. Science 352, 1562-1565 (2016).

15. Weiss, D. S. et al. Another way to approach zero entropy for a finite system of
atoms. Phys. Rev. A 70, 040302 (2004).

16. Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum
simulator. Nature 551, 579-584 (2017).

17. Nelson, K. D., Li, X. & Weiss, D. S. Imaging single atoms in a three-dimensional
array. Nat. Phys. 3, 556-560 (2007).

18. Li, X, Corcovilos, T. A, Wang, Y. & Weiss, D. S. 3D projection sideband cooling.
Phys. Rev. Lett. 108, 103001 (2012).

19. Wang, Y., Zhang, X. L., Corcovilos, T. A,, Kumar, A. & Weiss, D. S. Coherent
addressing of individual neutral atoms in a 3D optical lattice. Phys. Rev. Lett.
115,043003 (2015).

20. Deutsch, I. H. & Jessen, P. S. Quantum-state control in optical lattices. Phys. Rev.
A57,1972-1986 (1998).

21. Vala, J. et al. Perfect pattern formation of neutral atoms in an addressable
optical lattice. Phys. Rev. A 71, 032324 (2005).

22. Jaksch, D., Bruder, C,, Cirac, J. I., Gardiner, C. W. & Zoller, P. Cold bosonic atoms
in optical lattices. Phys. Rev. Lett. 81,3108-3111 (1998).

23. Olshanii, M. & Weiss, D. Producing Bose-Einstein condensates using optical
lattices. Phys. Rev. Lett. 89, 090404 (2002).

24. Chu, S, Hollberg, L., Bjorkholm, J. E., Cable, A. & Ashkin, A. Three-dimensional
viscous confinement and cooling of atoms by resonance radiation pressure.
Phys. Rev. Lett. 55, 48-51 (1985).

25. Anderson, M. H., Ensher, J. R.,, Matthews, M. R., Wieman, C. E. & Cornell, E. A.
Observation of Bose-Einstein condensation in a dilute atomic vapor. Science
269, 198-201 (1995).

26. Szilard, L. Uber die Entropieverminderung in einem thermodynamischen
System bei Eingriffen intelligenter Wesen. Z. Phys. 53, 840-856 (1929).

27. Gaunt, A. L, Schmidutz, T. F,, Gotlibovych, I., Smith, R. P. & Hadzibabic, Z.
Bose-Einstein condensation of atoms in a uniform potential. Phys. Rev. Lett.
110, 200406 (2013).

28. Williams, R. A. et al. Dynamic optical lattices: two-dimensional rotating and
accordion lattices for ultracold atoms. Opt. Express 16, 16977-16983 (2008).

29. Hu, J.Z et al. Creation of a Bose-condensed gas of Rb-87 by laser cooling.

Science 358, 1078-1080 (2017).

N =

> ow

© 2018 Springer Nature Limited. All rights reserved.


https://doi.org/10.1038/s41586-018-0458-7
http://dx.doi.org/10.1038/s41586-018-0450-2

30. Jaksch, D., Briegel, H. J., Cirac, J. |, Gardiner, C. W. & Zoller, P.
Entanglement of atoms via cold controlled collisions. Phys. Rev. Lett. 82,
1975-1978 (1999).

31. Kaufman, A. M. et al. Entangling two transportable neutral atoms via local spin
exchange. Nature 527, 208-211 (2015).

32. Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett.
86,5188-5191 (2001).

33. Labuhn, H. et al. Tunable two-dimensional arrays of single Rydberg atoms for
realizing quantum Ising models. Nature 534, 667-670 (2016).

34. Weimer, H., Muller, M., Lesanovsky, I., Zoller, P. & Buchler, H. P. A Rydberg
quantum simulator. Nat. Phys. 6, 382-388 (2010).

Acknowledgements This work was supported by the US National Science
Foundation through grant PHY-1520976.

LETTER

Author contributions All authors contributed to the design, execution and
analysis of the experiment and the writing of the manuscript. AK, T-Y.W. and
F.G. collected all the data.

Competing interests The authors declare no competing interests.

Additional information

Extended data is available for this paper at https://doi.org/10.1038/s41586-
018-0458-7.

Reprints and permissions information is available at http://www.nature.com/
reprints.

Correspondence and requests for materials should be addressed to D.S.W.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

6 SEPTEMBER 2018 | VOL 561 | NATURE | 87

© 2018 Springer Nature Limited. All rights reserved.


https://doi.org/10.1038/s41586-018-0458-7
https://doi.org/10.1038/s41586-018-0458-7
http://www.nature.com/reprints
http://www.nature.com/reprints

LETTER

METHODS

Apparatus. We load atoms from a Magneto-Optical Trap to a 3D optical lattice
formed by three pairs of 75-pum-waist, 838.95-nm laser beams. Each lattice beam
has a power of 250 mW, giving a lattice depth of 190 pK at the central lattice site.
The two beams in each pair cross each other at 10°, yielding a lattice spacing of
4.9 pm. Two pairs are frequency-shifted relative to the third by +30 MHz and
—175 MHz to prevent mutual interference among the lattice pairs. One beam in
each pair has two electro-optic modulators in its path, aligned so that their axes are
at 45° relative to the incoming polarization, followed by a \/4 wave-plate aligned
with the incoming polarization. As the voltage on the electro-optic modulators is
increased, the polarization of this beam rotates. The angle of rotation is ®* when
the half-wave voltage is applied to both electro-optic modulators.

Projection sideband cooling. Projection sideband cooling has been described in
detail in a previous paper'®. We give a brief overview here. Projection sideband
cooling is similar to other sideband-cooling techniques, except that microwave
photons, which have a very small momentum compared to the optical photons that
are usually used, drive the vibrational-state-changing transitions. To accomplish
this, for a given lattice direction, say x, the polarization of one of the lattice beams
in the pair is rotated slightly, which displaces the traps experienced by atoms in
the |F = 4, mp= —4) and |F = 3, mp = —3) states slightly relative to each other
(the same effect that we use to state-selectively translate atoms during our sort-
ing operations). Therefore, all the vibrational wavefunctions associated with
one magnetic sublevel have non-zero projections onto the wavefunctions of the
other sublevel. There are consequently non-zero matrix elements for vibration-
state-changing microwave transitions.

Projection cooling proceeds as follows. All the atoms are prepared in
|F = 4, mp= —4) via optical pumping. The x lattice-beam polarization is rotated,
and then a Av, = -2 microwave adiabatic fast passage (AFP) pulse drives the
transition |F = 4, mp = —4) to |F = 3, mp = —3), followed by a modified polar-
ization rotation and then a Av, = 1 microwave pulse from |F = 3, mp = —3)
to |F = 4, mp = —4) (which is a Av = —1 pulse for atoms that start in
|F = 4, mp = —4)). The AFP pulses work well regardless of the initial vibrational
state. The two AFP pulses lower v, by 1 for all the atoms except those initially
in v, = 0, which make no transitions. All the atoms for which both AFP pulses
were successful end in |F = 4, mp = —4), except those that started in v, = 1. The
polarization is rotated back, and an optical pumping pulse resets all the atoms to
|F =4, mp= —4). These steps are then repeated for the y and z lattice beams, and
then the sequence is repeated 50 times. The whole cooling sequence takes about
1s. The Av= —2 — Av = 1 sequences minimize the number of times that an
atom has to be optical pumped, which is a particular advantage for cooling atoms
from high vibrational states. Sequentially stepping through the Cartesian directions
optimizes the final cooling steps.

We have improved the performance of our previously demonstrated projec-
tion sideband cooling method"® considerably, from 76% to 89% occupancy of the
ground vibrational state. This improvement results from two changes. First, we
increased the fidelity of the Av = —2 microwave pulse, where Av is the micro-
wave-driven change in vibrational level, by separately optimizing the lattice
displacement for Av = —2 and Av = —1. Second, we improved the quality of the
optical-pumping-light polarization at the atoms by a factor of 5.
Implementation of a motion step. Extended Data Fig. 1 illustrates our timing
sequence for one motion step. Before any motion, atoms are optically pumped to
the |F = 4, mp = —4) state (not shown). The atoms to be moved are transferred
to the |F = 3, mp = —3) state sequentially. The addressing lasers, directed by
micro-mechanical electronic systems mirrors, cross at a target atom in the 3D array,
causing an a.c. Stark shift on its resonance frequency between |F = 4, mp = —4)
and |F = 3, mp = —3) by —50 kHz with respect to the atoms that are not in the
path of either addressing laser. The addressing laser powers are ramped up over
40 ps, after which we wait for another 110 ps for our intensity lock to settle. We
drive the transition in the target atoms with a 3-ms-long AFP microwave pulse,
which involves a 12-kHz frequency sweep. The crosstalk is less than 3 x 1072,

To initiate motion, the polarization of one of the lattice beams is linearly rotated
by 7 over 3 ms by ramping the voltages on the electro-optic modulators. The atoms
in |[F = 3, mp= —3) are then optically pumped to |F = 4, mp= —4) in 0.2 ms (with
an intensity of 4 mW cm™? and detuning of —7.5 MHz onthe F=3to F' = 4
transition, and 0.5 mW cm~2and 7.5 MHz on the F = 4 to F/ = 4 transition). The
voltages are then ramped back to zero. A final optical pumping step over 0.25 ms
ensures that all atoms are back to |[F = 4, mp = —4) for the next motion step.
Measuring state-flip fidelity. To measure the efficiency of our addressing scheme,
we take an occupancy map, apply projection sideband cooling to the atoms and
optically pump them to the |[F = 4, mp = —4) state. We then sequentially flip the
state of all the atoms withina 5 x 5 x 5 region to |F = 3, mp= —3) using targeted
addressing. Then, another laser beam resonant with the transition from |F = 4)
to |[F' = 5) pushes away the atoms that were left in the |F = 4, mp = —4) state. A
new occupancy map is then generated to identify the atoms that were successfully

transferred to |F = 3, mp = —3). Averaging over 50 implementations, we measure
a state-flip fidelity of 0.986(5). However, the addressing laser beam drifts slowly
once aligned, which can decrease the state-flip fidelity by about 0.02 after about
100 sorting operations.

Measuring motion fidelities. Motion errors can occur when atoms spontaneously
emit lattice light. An atom is usually lost during motion if light scattering leaves
it in the anti-trapped state. Occasionally the atom site-hops, if it stays trapped
but follows the ‘wrong’ lattice potential. We measured the motion fidelities for
atoms in |F = 4, mp= —4) and |F = 3, mp = —3) separately (see Extended Data
Fig. 2). Atoms were first projection-sideband-cooled and optically pumped to
|F = 4, mp= —4). To find the cumulative effect of making 2N motion steps in
a given direction, we ramped up to the half-wave voltage, V,, of the electro-
optic modulators, then ramped down to —V/,, and repeated the process N times.
Because no optical pumping or state flips were applied during the motions, all the
atoms moved back and forth by one lattice spacing around their initial positions.
By comparing the occupancy maps before and after these motions steps, we can
identify the percentage of atoms that successfully return to their initial positions,
which we call the motion fidelity. For motion in |F = 3, mp = —3), the sequence is
the same except that after the atoms are optically pumped to |F = 4, mp= —4),a
global microwave pulse is applied to flip the state of all atoms to |[F = 3, mp= —3)
before executing the motions. Each data point in Extended Data Fig. 2 is aver-
aged over 10 sorting operations and corrected for the loss due to collisions with
background gas atoms. A linear fit gives the fidelities per motion step. For atoms
in the |F = 4, mp = —4) state and motion in the lattice directions, the fidelities are
{0.9951(6), 0.9982(6), 0.9962(4)}, where the errors refer to one standard deviation.
The corresponding fidelities for atoms in the |F = 3, mp= —3) state are {0.9956(4),
0.9961(10), 0.9956(1)}. The calculated probability of spontaneous emission for an
atom in the vibrational ground state during a motion step is 3.5 x 107>.

Sorting algorithm. We have generalized the sorting algorithm for any initial
N x N x Nlattice and any final i X j x k sublattice. If i = j = N, then only balanc-
ing and compaction steps are needed. If i, j < N, then extra motion steps in x and y
are added to move as many atoms as possible into an i X j x N sublattice from
‘outside’ before balancing and compaction (‘outside’ means the full lattice minus
the target sublattice). For example, to filla 4 x 4 x 3 sublattice, as many atoms as
possible are first moved into a 4 x 4 x 5 region in two motion steps, one in x and
one in y, from outer y-z and x-z planes of the lattice. Balancing and compaction
are then applied to a4 x 4 x 5 lattice rather thana 5 x 5 x 5 lattice. The simu-
lations that we describe below suggest that even though this procedure does not
always empty the outside planes, there are always enough atoms to filla4 x 4 x 3
sublattice when starting from a 50% filled 5 x 5 x 5 lattice.

The steps for balancing an i x j x N lattice to fillan i x j x k sublattice are
roughly as follows:

1. If this is the first iteration, choose a dividing plane, P, to be an x-z plane.
Otherwise, choose the dividing plane to be perpendicular (either x-z or y-z) to
the previous iteration. Choose P to divide the lattice into two parts, S; and S5, that
are as similar as possible (that is, a difference of one plane between S; and S is
permitted if the lattice dimension is odd).

2. If the number of z rows in S; (S5) is n (m), the required number of atoms in §;
(82) is k x n (k x m). Move atoms between the two sublattices until they each have
at least the required number of atoms.

3. Repeat these steps for §; and S, separately, stopping when each of them is just
a single z row.

Balancing guarantees that there are k atoms in each of the i x j z rows. These
atoms are then moved in the z direction (‘compaction’) in parallel to fill the desired
k planes, usually in the middle of the accessible lattice. The algorithm minimizes
the number of motion steps.

The sorting algorithm can probably be improved by replacing the initial steps
to empty the outer x-z and y-z planes by a more optimal algorithm. For instance,
the first sort could be modified to distribute the extra atoms evenly and thus reduce
the number of correction steps.

Monte Carlo simulations. Monte Carlo simulations of this sorting algorithm start
with a randomly half-filled 3D array. Errors are probabilistically applied at each
motion step and atom loss is considered after the completion of a sort. We calculate
a separate motion fidelity for each internal state as the average of the measured
fidelities in the three directions. One thousand simulations were run for various
lattice dimensions and various target sublattices. For fillinga5 x 5 x 2or4 x 4 x 3
sublattice from a half-filled 5 x 5 x 5 lattice, the simulations predict an average
filling factor of about 0.97 after three sorts, in agreement with our measured filling
factor to within the uncertainty associated with our measured errors.

Real-time control. The sorting process requires changing the timing sequence
in real time. This is accomplished by combining real-time data analysis with two
field-programmable gate arrays (FPGAs). The experiment has a ‘backbone’ of a
fixed timing sequence. After the motion steps have been generated according to
the initial occupancy map, the FPGAs pause that fixed timing sequence and take
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control of the electronic channels (optical pumping, electro-optic modulator
voltages, addressing, microwaves) required for sorting. The data used for sorting,
which comprise a sequence of directions for the motion steps and the lattice sites to
be addressed at each motion step, are communicated to the FPGAs by the program
that generates the occupancy map and creates the sorting plan. The FPGAs convert
the motion steps into several voltage sequences that are output synchronously.

LETTER

After the motion steps have been executed, the FPGAs transfer the timing control
back to the fixed backbone, which resumes where it was paused.

Code availability. The Monte Carlo code used to model our algorithm is available
from the corresponding author on request.

Data availability. The underlying data used to generate the figures and conclusions
in the paper are available from the corresponding author on reasonable request.
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Extended Data Fig. 1 | Motion step. A motion step to move n atoms spacing. After motion, the atoms are optically pumped so that they all

is shown. n atoms are sequentially targeted by the addressing beams return to the stationary state. The EO voltages are then ramped back
and transferred from the ‘stationary’ state to the ‘motion’ state using down. A final optical pumping (OP) ensures optimal preparation for the
microwaves. The electro-optic modulator (EO) voltages are ramped up to next motion step.

the half-wave voltage (V/,) in order to move atoms by half of the lattice
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Extended Data Fig. 2 | Motion fidelities. a, b, Measured motion fidelity (green diamonds) directions. The lines are fits to the data. The error
as a function of the number of motion steps in |F = 4, mp = —4) (a) and bars represent one standard deviation. Each point corresponds to about
|F =3, mp= —3) (b) in the x (maroon circles), y (blue squares) and z 600 atoms.
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