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Stern-Gerlach detection of neutral-atom qubits in
a state-dependent optical lattice

Tsung-Yao Wu

Qubit state measurements are an essential part of any quan-
tum computer, constituting the readout. Accurate measure-
ments are also an integral component of one-way quantum
computation and of error correction, which is needed for
fault-tolerant quantum computation’. Here, we present a
state measurement for neutral-atom qubits based on coher-
ent spatial splitting of the atoms' wavefunctions. It is remi-
niscent of the Stern-Gerlach experiment?, but carried out
in light traps. For around 160 qubits in a three-dimensional
array, we achieve a measurement fidelity of 0.9994, which is
roughly 20 times lower error than in previous measurements
of neutral-atom arrays®“. It also greatly exceeds the mea-
surement fidelity of other arrays with more than four qubits,
including those with ion and superconducting qubits®¢. Our
measurement fidelity is essentially independent of the num-
ber of qubits measured, and since the measurement causes
no loss, we can reuse the atoms. We also demonstrate that
we can replace atoms lost to background gas collisions during
the experiment’.

Neutral atoms are promising qubit candidates, because they are
identical, have long coherence times, and can be readily scaled to
large arrays with spacings of several micrometres so that they can
be individually addressed®. A simple way to measure the states of
atom qubits is to resonantly push (clear) atoms in one qubit state out
of the trap with light and detect those that remain. The detection
fidelity for the remaining atoms can exceed 0.9997 (ref. °), but the
scheme suffers from two considerable drawbacks. First, qubit loss
during the computation is indistinguishable from the atom being
in the cleared state, making the loss rate the de facto limit on the
fidelity of the state measurement. Second, about half the atoms are
cleared during measurement, necessitating reloading of atoms, thus
making it hard to adapt this method to error correction. A few alter-
native approaches have been used to achieve lossless state detection.
Atoms in each state can in turn be made to fluoresce on a cycling
transition**'*'". However, since the atoms cannot be cooled dur-
ing the measurement, this method is a balance between detecting
enough photons to identify the atom’s state and those photons heat-
ing the atom out of the trap. The best results on small, 1D alkali-atom
ensembles have had 0.987 fidelity and 2% heating loss’ or 0.98 fidel-
ity and 1% heating loss’. One-dimensional arrays of alkaline earth
atoms have achieved 0.98 fidelity, limited by off-resonant scattering
of trap light, with 0.5% heating loss'2. Photon collection efficiency
improves when a single atom is trapped in a high-finesse cavity'*",
where 0.9992 fidelity has been achieved', but this enhancement is
hard to scale to more atoms. In a quantum gas microscope, a large
magnetic field gradient was applied to coherently separate atoms
in two different internal states, reminiscent of the Stern-Gerlach
experiment, after which the two states were trapped and detected
at adjacent lattice sites'”. A fidelity of 0.98 was reached, limited by
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lattice phase fluctuations. Our technique is also a Stern-Gerlach-
type approach, but without magnetic field gradients.

Our state detection scheme is conceptually illustrated in Fig. 1a.
We start with atoms in a 3D lattice with a large spacing in all direc-
tions (lattice XYZ) in an unknown superposition of two internal
states. To detect the state of each atom, we adiabatically transform
the state-independent X lattice into two state-dependent potentials
that move in opposite directions”'®"”. The two state components
of each atom follow their respective potentials, spatially splitting
the wavefunction in two. Next, we replace X with X, a lattice with
an order of magnitude shorter lattice spacing. The two parts of
the wavefunction are each localized to within a couple of X, lat-
tice sites. We then image the atoms with cooling light’, which proj-
ects the wavefunction of each atom onto a single site in X;YZ, and
measures its location. Mapping the internal state to spatial position
in this way avoids the detection-heating trade-off that has limited
previous measurements.

The X, Y and Z lattices in our experiment are created by pairs
of 839 nm laser beams, crossing at 10° angles as shown in Fig. 1b,
linearly polarized perpendicular to their plane of propagation. The
lattice beams are slightly mutually shifted in frequency (by tens of
megahertz), and together form an approximately cubic 3D lattice
with 4.8 pm spacing and 190 pK depth. The vibrational frequency
of an atom trapped near the bottom of a lattice site is 15 kHz (ref. °).
Caesium atoms are loaded into the lattice from a magneto-optic
trap. We can either use the approximately 40% random occupancy
we start with, or sort atoms to fully fill a sublattice’. We detect atoms
in five planes by imaging phase-scrambled (see Supplementary
Information) polarization gradient cooling light one Z plane at a
time, which takes 830 ms in total (see Supplementary Information).
Projection sideband cooling”'® leaves 89% of the atoms in their 3D
vibrational ground states and more than 99.9% of the atoms in the
|F=4,m,=—4) hyperfine ground state, where F and m, are the
hyperfine and magnetic quantum numbers, respectively. We can
transfer atoms into any other magnetic sublevel with a series of
adiabatic fast passage (AFP) microwave pulses’, and we can create
superpositions of sublevels using Blackman pulses’.

The 3D lattice initially traps all hyperfine sublevels nearly identi-
cally (see Fig. 1a (i)). We make the X lattice sublevel-dependent by
rotating the polarization of one of its beams, which we accomplish
with two Pockels cells and a A/4 plate’. Atoms in different hyper-
fine levels with the same sign of my, such as |F=4,m;=—4) and
|F=3,m;=—3), move in opposite directions. A nearly 7/2 polariza-
tion rotation separates the two states by almost half the X lattice
spacing (see Fig. la (ii)). Ramping the voltage on the Pockels cell
within 300 ps keeps the motion adiabatic. At the end of the ramp we
suddenly turn on a retro-reflected approximately 150 pm waist laser
beam that forms a lattice, X, with 0.42 pm spacing (see Fig. 1b and
Fig. 1a (iii)). To avoid mutual interference, the wavelength of the X;
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Fig. 1| Overview of lossless state detection. a, State detection steps. The potential energy curves have a consistent vertical scale and the atomic
wavefunctions are normalized. (i), Pre-measurement state. The purple curve denotes the state-independent potential energy in the x direction (X lattice).
The purple shaded region represents the wavefunction of an atom in the vibrational ground state and an equal superposition of two states. (ii), Displaced
state-dependent lattices. The potential has been adiabatically transformed into two shallower state-dependent potentials, where the potential energy and
wavefunction for each of the two states are shown in orange and blue. (iii), Transfer atoms to X;. For each internal state, the number of X; lattice sites with
substantial wavefunction amplitude depends on the relative position of the X and the state-dependent X potential energy minima, which are not fixed in
our experiment. (iv), Image atoms in X;. The wavefunction has been projected onto a single lattice site. The atom, now spread among many internal states
and several vibrational levels, is denoted by the cyan circle. Its location is used for state assignment. (v), Atom transferred back to X. (vi), Atom at the
bottom of X after one quarter oscillation period. At this point, another image is taken. b, Diagram of the lattice beams. The X, Y and Z lattices consist of
pairs of linearly polarized laser beams crossing at 10° angles (drawn as 20° in the figure, but otherwise to scale), giving 4.8 um lattice spacings. The beams
are focused at the atoms with a Gaussian waist of 75 pm. The X; lattice (purple with double arrows) is formed by retro-reflection, resulting in a 0.42 pm
lattice spacing. The X beam has an approximately 150 pm Gaussian waist at the atoms.

light is slightly different (by tens of megahertz) from the other lattice
beams. The spatial phase of Xj relative to X is not controlled. After
the initial turn on, the X; power is increased within 78 ps so that the
vibrational frequency in the ground state is raised from 43kHz to
98KkHz, a sequence empirically adjusted to avoid site hopping in X
We then turn off X and turn on the polarization gradient cooling
light to cool and image the atoms. The wavefunction of the atom is
thus projected into a single site of the X YZ lattice (see Fig. 1a (iv)).

In Fig. 2a we show the results of measurements starting with
all atoms in |[F=4, m,=—4) after optical pumping. For Fig. 2b, the
atoms start in |F=3,m;=—3) after an AFP pulse and an F=4 state-
clearing laser pulse to ensure clean state preparation. The single
plane images are typical and the grid vertices demark the initial
atom locations. The detected atoms are clearly shifted to the left for
|F=4,my=—4) and to the right for |F=3,m,=—-3). The locations
of the atoms are fitted to a floating x centre (see Supplementary
Information), and the distributions of these positions are shown in
the histograms, which quantify the qualitative shifts visible in the

images. For Fig. 2¢, the atoms start in a superposition of the two
internal states. We set the line that separates atoms in the two states
at —0.2 pm, equidistant from the two peaks, and colour the histo-
grams and the occupancy maps accordingly.

The Gaussian root-mean-square widths of the displacement
distributions in Fig. 2 are 203 nm, which is about half an Xj lat-
tice spacing (210nm). This width mostly results from the random
phase relationship between X and X;. We infer that the asymme-
try of the displacement centres results from slight imperfections
in the X polarization (see Supplementary Information). Across the
entire 9X9 X 5 array, 773 x 10™* of the atoms nominally prepared in
|F=4,m,=—4) are measured to be in |F=3,m,=—3) and 573 x 10~
of the atoms nominally prepared in |F=3,m;=—3) are measured
to be in |[F=4,m,=—4) (see insets of Fig. 2a,b), yielding an average
state detection fidelity of 0.9994.

When atoms spontaneously emit lattice light before they are cap-
tured in X, they can change state and move in the wrong direction.
We calculate a scattering rate of 3 10™* during the motion in X,
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Fig. 2 | Displacement distributions and state assighment. The histograms show the displacement distributions during state detection. The atom centres

are fitted to within a 0.15pm s.d. (see Supplementary Information) and the 0.05 pm bin width is chosen to be small enough that no spatial information is

lost. a, Atoms prepared in |F=4,m,=—4). b, Atoms prepared in |[F=3,m.=—-3). ¢, Atoms prepared in a superposition state. For each histogram we performed
50 implementations starting with a 30-40% randomly loaded 9 x 9 x 5 lattice. The black dashed lines are Gaussian fits to the distributions. The vertical grey
dashed line at —0.2 pm sets the dividing line for state assignment. Atoms to the left (right) are ascribed to |F=4,m.=—-4) (|F=3,m,=-3)) and coloured orange
(blue). The state detection errors, those events that are nominally prepared in one state but are detected in the other state, are highlighted in the insets of
aand b. The inset of ¢ is a magnified histogram of the intermediate displacement region. An example image of one lattice plane is shown next to each
histogram. The colour scale to the right is the intensity key, which uses contrast enhancement. The displacement of each atom in the x direction (horizontal

in the image) is the difference between its fit centre and its initial position, which is marked by the dashed yellow grid. The occupancy map for each example
image is shown in the associated square pattern. Orange or blue denotes an occupied site in one of the two states, while grey represents an empty site.
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Fig. 3 | Demonstration of re-initialization of a 3D qubit array. The two images in each column correspond to different lattice planes. The colour scale to
the right is the intensity key, which has contrast enhancement. The dashed yellow grid marks the initial atom locations. The associated square patterns
show the occupancy maps. Cyan denotes an occupied XYZ site, orange and blue denote an atom determined to be in the |[F=4,m,=-4) and |F=3,m;=-3)
state, respectively, and grey denotes an empty site. a, Perfect filling of a 5x 5 x 2 array after sorting from a randomly half-filled 5x5x 5 XYZ lattice.

b, Lossless state detection in X;YZ after the atoms were prepared in an equal superposition of |F=4,m,=—-4) and |F=3,m,=-3). ¢, Atoms reloaded into
XYZ. Note that an atom in plane 1 (at (4, 3)) has been lost owing to a background gas collision. d, Re-sorted atoms. The vacancy has been filled with an
atom from the reservoir region (outside these two planes but within 5x5x5), where extra atoms had been left during the initial sorting.
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which is consistent with this being the dominant source of error.
If the X polarization were to be improved, we could move the atoms
faster and thus reduce the scattering and the associated state detec-
tion error. We could also employ a ‘throw and catch’ method. In this
scheme, we would suddenly change an X beam polarization, let the
atoms be accelerated by the shifted lattices, and then shut off X to
avoid spontaneous emission. When the atoms have travelled suf-
ficiently far, X would be turned on with cooling light to catch the
atoms. We estimate that this could reduce our error from spontane-
ous emission by a factor of five.

After the state measurement, we adiabatically turn X back on
with its standard polarization and then turn off Xg with essen-
tially the reverse sequence that we used to turn it on (see Fig. la
(v) and Supplementary Information). One quarter oscillation cycle
later, when the atoms are centred in X (see Fig. la (vi)), we recool
them and take another set of pictures to determine the final occu-
pancy. The final occupancy map facilitates the occupancy determi-
nation in X,YZ, bringing its error below 10™* (see Supplementary
Information). Between the initial occupancy determination and the
state detection, 2% of the atoms are lost, which is consistent with
independent measurements of the loss rate due to collisions with
the background gas. We infer that the state detection measurement
itself causes no loss. We also see no evidence of loss or site hopping
due to the process of transferring the atoms back to X.

With essentially lossless detection, we can re-initialize our qubits
after state measurement, a procedure we demonstrate in Fig. 3. We
first sort to get a perfectly filled 55X 2 pattern (see Fig. 3a)”. We
then prepare an equal superposition of the two stretched states,
execute state detection in XYZ (see Fig. 3b), and reload into XYZ
(see Fig. 3c). Atom loss to a background gas collision can occur in
either stage; in this implementation, one atom was lost between
state detection and reloading. We re-sort, filling the vacancy with
an atom from the reservoir region (within 5X5X5 but outside
5x5x2) (see Fig. 3d). The ability to fix qubit loss errors will ulti-
mately be an important element of quantum error correction.

Because of their insensitivity to noise, it is preferable to quantum
compute in the clockstates, |[F=4,m;=0) and |F=3,m,=—0) (ref.>").
However, these states do not move in the state-dependent lattice. To
generalize our detection method, we use two AFP pulses to trans-
fer atoms from superpositions of clock states to superpositions of
|F=4,my=—-2) and |F=3,m;=—2), and detect the state from there
(see Supplementary Information). We generate a range of clock
state superpositions by transferring all the atoms to |F=3,m;=0)
and executing a m/2-m-n-7/2 sequence on the clock transition,
scanning the phase of the final pulse. We do this in a one-quarter-
depth XYZ lattice, which is preferred for minimizing decoherence
while maintaining gate fidelity. Before state detection, we adiabati-
cally raise the lattice to full power. The result is shown in Fig. 4a,
with 480 ps between the nt/2 pulses. The fraction of atoms found in
the wrong state at phase & is 0%5 x 107, which is to say we found
no errors in 2,200 atom detections, consistent with as good a fidel-
ity as we measured starting from the stretched states. The error at
phase 0 is larger, 22¥4* x 10™%. We attribute the poorer performance
when measuring from the |[F=4,m;=0) state to Rabi frequency
differences between the various AFP microwave transitions (see
Supplementary Information). Adding the ability to dynamically
change the microwave polarization should avoid this issue com-
pletely.

To further make use of our state detection method, we mea-
sure our qubit coherence time by adding additional intermediate
pulses at 20 ms intervals (see Supplementary Information) and per-
forming the spin-echo measurement described above with longer
evolution times. From the observed fringe contrast as a function of
time, shown in Fig. 4b, we find that the coherence times (T, and T)
for atoms in a 5X 5X 5 volume is 12.6 s. The improvement over our
previously reported coherence time of 7.4 s (refs. 7*%) results from
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Fig. 4 | State-selective detection from the clock states. a, Fringes from a
spin-echo measurement sequence on the [F=4,m,=0) and |F=3, m;=0)
transition. The evolution time is 480 ps and the phase of the final ©/2
pulse is scanned. Atoms are transferred with microwave AFP pulses to
|F=4,m.=-2) (orange) and |F=3,m.=—2) (blue) for state detection.

At each point, the populations of both states are determined in the same
state measurement. The data points at phase 2x are the same as those

at phase 0. The solid curves are fits using a sine function, and the fit
amplitude gives the fringe contrast. b, Magnified regions of a. At phases
n and O, perfect state preparation and detection would lead to all atoms
being in the same state. At & phase, there were no errors among the
2,200 atoms we measured. We attribute the 2x 103 error at O phase to
the lower quality of some AFP pulses (see Supplementary Information).
Error bars in a and b represent 1s.d. and are due to counting statistics.
The error bars for the data points at phase & are smaller than the size of
the symbols. ¢, Semi-logarithmic plot of fringe contrasts for spin-echo
sequences, for a range of evolution times. The fitted exponential time
constant, which gives the coherence time of the qubits, is 12.6 s. The one
standard deviation error bars from the fringe contrast fits are smaller than
the size of the symbols.
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better cooling and a farther-detuned optical lattice, both of which
minimize spontaneous emission from the lattice.

The concept of our state measurement method, where internal
states are mapped to atom positions, can be generalized to atoms
in reconfigurable dipole-trap arrays®-**. Each dipole trap can be
formed by overlapping two traps with opposite circular polariza-
tion. For state detection, the two traps can be spatially separated.
If needed, dipole heating could be minimized by making the two
traps linearly polarized before the atoms are imaged.

While it can now be used for final state readout, we ultimately plan
to adapt this measurement technique to quantum error correction,
where state detection of only a subset of the atoms is required®-?.
The atoms to be detected would be selectively transferred to larger
m;; states. During the motion, the clock state qubits will remain
weakly trapped at their original position. Transferring them to Xj
will probably require matching the nodes of X to nodes of X;. Speed
concerns will require fluorescent detection to be replaced with
phase-contrast imaging®, which would act as a form of holography
and allow all planes to be imaged at once. Preventing the undetected
qubits from interacting with detection light will require the qubits
to be shifted out of resonance or transferred to dark states, or the
use of a second atomic species for measurement”. Qur state detec-
tion error approaches the commonly accepted threshold of 10~ for
fault-tolerant quantum computation®, and it already comfortably
surpasses the thresholds of about 10~* used for some surface codes’.

Data availability
The data that support the plots in this paper are available from the
corresponding author upon reasonable request.
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