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Qubit state measurements are an essential part of any quan-
tum computer, constituting the readout. Accurate measure-
ments are also an integral component of one-way quantum 
computation and of error correction, which is needed for 
fault-tolerant quantum computation1. Here, we present a 
state measurement for neutral-atom qubits based on coher-
ent spatial splitting of the atoms’ wavefunctions. It is remi-
niscent of the Stern–Gerlach experiment2, but carried out 
in light traps. For around 160 qubits in a three-dimensional 
array, we achieve a measurement fidelity of 0.9994, which is 
roughly 20 times lower error than in previous measurements 
of neutral-atom arrays3,4. It also greatly exceeds the mea-
surement fidelity of other arrays with more than four qubits, 
including those with ion and superconducting qubits5,6. Our 
measurement fidelity is essentially independent of the num-
ber of qubits measured, and since the measurement causes 
no loss, we can reuse the atoms. We also demonstrate that 
we can replace atoms lost to background gas collisions during 
the experiment7.

Neutral atoms are promising qubit candidates, because they are 
identical, have long coherence times, and can be readily scaled to 
large arrays with spacings of several micrometres so that they can 
be individually addressed8. A simple way to measure the states of 
atom qubits is to resonantly push (clear) atoms in one qubit state out 
of the trap with light and detect those that remain. The detection 
fidelity for the remaining atoms can exceed 0.9997 (ref. 9), but the 
scheme suffers from two considerable drawbacks. First, qubit loss 
during the computation is indistinguishable from the atom being 
in the cleared state, making the loss rate the de facto limit on the 
fidelity of the state measurement. Second, about half the atoms are 
cleared during measurement, necessitating reloading of atoms, thus 
making it hard to adapt this method to error correction. A few alter-
native approaches have been used to achieve lossless state detection. 
Atoms in each state can in turn be made to fluoresce on a cycling 
transition3,4,10,11. However, since the atoms cannot be cooled dur-
ing the measurement, this method is a balance between detecting 
enough photons to identify the atom’s state and those photons heat-
ing the atom out of the trap. The best results on small, 1D alkali-atom 
ensembles have had 0.987 fidelity and 2% heating loss3 or 0.98 fidel-
ity and 1% heating loss4. One-dimensional arrays of alkaline earth 
atoms have achieved 0.98 fidelity, limited by off-resonant scattering 
of trap light, with 0.5% heating loss12. Photon collection efficiency 
improves when a single atom is trapped in a high-finesse cavity13,14, 
where 0.9992 fidelity has been achieved14, but this enhancement is 
hard to scale to more atoms. In a quantum gas microscope, a large 
magnetic field gradient was applied to coherently separate atoms 
in two different internal states, reminiscent of the Stern–Gerlach 
experiment, after which the two states were trapped and detected 
at adjacent lattice sites15. A fidelity of 0.98 was reached, limited by  

lattice phase fluctuations. Our technique is also a Stern–Gerlach-
type approach, but without magnetic field gradients.

Our state detection scheme is conceptually illustrated in Fig. 1a. 
We start with atoms in a 3D lattice with a large spacing in all direc-
tions (lattice XYZ) in an unknown superposition of two internal 
states. To detect the state of each atom, we adiabatically transform 
the state-independent X lattice into two state-dependent potentials 
that move in opposite directions7,16,17. The two state components 
of each atom follow their respective potentials, spatially splitting 
the wavefunction in two. Next, we replace X with XS, a lattice with 
an order of magnitude shorter lattice spacing. The two parts of 
the wavefunction are each localized to within a couple of XS lat-
tice sites. We then image the atoms with cooling light9, which proj-
ects the wavefunction of each atom onto a single site in XSYZ, and 
measures its location. Mapping the internal state to spatial position 
in this way avoids the detection–heating trade-off that has limited 
previous measurements.

The X, Y and Z lattices in our experiment are created by pairs 
of 839 nm laser beams, crossing at 10° angles as shown in Fig. 1b, 
linearly polarized perpendicular to their plane of propagation. The 
lattice beams are slightly mutually shifted in frequency (by tens of 
megahertz), and together form an approximately cubic 3D lattice 
with 4.8 μm spacing and 190 μK depth. The vibrational frequency 
of an atom trapped near the bottom of a lattice site is 15 kHz (ref. 9).  
Caesium atoms are loaded into the lattice from a magneto-optic 
trap. We can either use the approximately 40% random occupancy 
we start with, or sort atoms to fully fill a sublattice7. We detect atoms 
in five planes by imaging phase-scrambled (see Supplementary 
Information) polarization gradient cooling light one Z plane at a 
time, which takes 830 ms in total (see Supplementary Information). 
Projection sideband cooling7,18 leaves 89% of the atoms in their 3D 
vibrational ground states and more than 99.9% of the atoms in the 
|F = 4,mF = −4〉 hyperfine ground state, where F and mF are the 
hyperfine and magnetic quantum numbers, respectively. We can 
transfer atoms into any other magnetic sublevel with a series of 
adiabatic fast passage (AFP) microwave pulses19, and we can create 
superpositions of sublevels using Blackman pulses19.

The 3D lattice initially traps all hyperfine sublevels nearly identi-
cally (see Fig. 1a (i)). We make the X lattice sublevel-dependent by 
rotating the polarization of one of its beams, which we accomplish 
with two Pockels cells and a λ/4 plate7. Atoms in different hyper-
fine levels with the same sign of mF, such as |F = 4,mF = −4〉 and 
|F = 3,mF = −3〉, move in opposite directions. A nearly π/2 polariza-
tion rotation separates the two states by almost half the X lattice 
spacing (see Fig. 1a (ii)). Ramping the voltage on the Pockels cell 
within 300 μs keeps the motion adiabatic. At the end of the ramp we 
suddenly turn on a retro-reflected approximately 150 μm waist laser 
beam that forms a lattice, XS, with 0.42 μm spacing (see Fig. 1b and 
Fig. 1a (iii)). To avoid mutual interference, the wavelength of the XS 
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light is slightly different (by tens of megahertz) from the other lattice 
beams. The spatial phase of XS relative to X is not controlled. After 
the initial turn on, the XS power is increased within 78 μs so that the 
vibrational frequency in the ground state is raised from 43 kHz to 
98 kHz, a sequence empirically adjusted to avoid site hopping in XS. 
We then turn off X and turn on the polarization gradient cooling 
light to cool and image the atoms. The wavefunction of the atom is 
thus projected into a single site of the XSYZ lattice (see Fig. 1a (iv)).

In Fig. 2a we show the results of measurements starting with 
all atoms in |F = 4, mF = −4〉 after optical pumping. For Fig. 2b, the 
atoms start in |F = 3,mF = −3〉 after an AFP pulse and an F = 4 state-
clearing laser pulse to ensure clean state preparation. The single 
plane images are typical and the grid vertices demark the initial 
atom locations. The detected atoms are clearly shifted to the left for 
|F = 4,mF = −4〉 and to the right for |F = 3,mF = −3〉. The locations 
of the atoms are fitted to a floating x centre (see Supplementary 
Information), and the distributions of these positions are shown in 
the histograms, which quantify the qualitative shifts visible in the 

images. For Fig. 2c, the atoms start in a superposition of the two 
internal states. We set the line that separates atoms in the two states 
at −0.2 μm, equidistant from the two peaks, and colour the histo-
grams and the occupancy maps accordingly.

The Gaussian root-mean-square widths of the displacement 
distributions in Fig. 2 are 203 nm, which is about half an XS lat-
tice spacing (210 nm). This width mostly results from the random 
phase relationship between X and XS. We infer that the asymme-
try of the displacement centres results from slight imperfections 
in the X polarization (see Supplementary Information). Across the 
entire 9 × 9 × 5 array, ×−

+ −7 103
4 4 of the atoms nominally prepared in 

|F = 4,mF = −4〉 are measured to be in |F = 3,mF = −3〉 and ×−
+ −5 102

3 4 
of the atoms nominally prepared in |F = 3,mF = −3〉 are measured 
to be in |F = 4,mF = −4〉 (see insets of Fig. 2a,b), yielding an average 
state detection fidelity of 0.9994.

When atoms spontaneously emit lattice light before they are cap-
tured in XS, they can change state and move in the wrong direction. 
We calculate a scattering rate of 3 × 10−4 during the motion in X, 

b
Z

X

XS

x

Y

ˆ

ŷ
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Fig. 1 | Overview of lossless state detection. a, State detection steps. The potential energy curves have a consistent vertical scale and the atomic 
wavefunctions are normalized. (i), Pre-measurement state. The purple curve denotes the state-independent potential energy in the x direction (X lattice). 
The purple shaded region represents the wavefunction of an atom in the vibrational ground state and an equal superposition of two states. (ii), Displaced 
state-dependent lattices. The potential has been adiabatically transformed into two shallower state-dependent potentials, where the potential energy and 
wavefunction for each of the two states are shown in orange and blue. (iii), Transfer atoms to XS. For each internal state, the number of XS lattice sites with 
substantial wavefunction amplitude depends on the relative position of the XS and the state-dependent X potential energy minima, which are not fixed in 
our experiment. (iv), Image atoms in XS. The wavefunction has been projected onto a single lattice site. The atom, now spread among many internal states 
and several vibrational levels, is denoted by the cyan circle. Its location is used for state assignment. (v), Atom transferred back to X. (vi), Atom at the 
bottom of X after one quarter oscillation period. At this point, another image is taken. b, Diagram of the lattice beams. The X, Y and Z lattices consist of 
pairs of linearly polarized laser beams crossing at 10° angles (drawn as 20° in the figure, but otherwise to scale), giving 4.8 μm lattice spacings. The beams 
are focused at the atoms with a Gaussian waist of 75 μm. The XS lattice (purple with double arrows) is formed by retro-reflection, resulting in a 0.42 μm 
lattice spacing. The XS beam has an approximately 150 μm Gaussian waist at the atoms.
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Fig. 2 | Displacement distributions and state assignment. The histograms show the displacement distributions during state detection. The atom centres  
are fitted to within a 0.15 μm s.d. (see Supplementary Information) and the 0.05 μm bin width is chosen to be small enough that no spatial information is  
lost. a, Atoms prepared in |F = 4,mF = −4〉. b, Atoms prepared in |F = 3,mF = −3〉. c, Atoms prepared in a superposition state. For each histogram we performed 
50 implementations starting with a 30–40% randomly loaded 9 × 9 × 5 lattice. The black dashed lines are Gaussian fits to the distributions. The vertical grey 
dashed line at −0.2 μm sets the dividing line for state assignment. Atoms to the left (right) are ascribed to |F = 4,mF = −4〉 (|F = 3,mF = −3〉) and coloured orange 
(blue). The state detection errors, those events that are nominally prepared in one state but are detected in the other state, are highlighted in the insets of  
a and b. The inset of c is a magnified histogram of the intermediate displacement region. An example image of one lattice plane is shown next to each 
histogram. The colour scale to the right is the intensity key, which uses contrast enhancement. The displacement of each atom in the x direction (horizontal 
in the image) is the difference between its fit centre and its initial position, which is marked by the dashed yellow grid. The occupancy map for each example 
image is shown in the associated square pattern. Orange or blue denotes an occupied site in one of the two states, while grey represents an empty site.
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Fig. 3 | Demonstration of re-initialization of a 3D qubit array. The two images in each column correspond to different lattice planes. The colour scale to 
the right is the intensity key, which has contrast enhancement. The dashed yellow grid marks the initial atom locations. The associated square patterns 
show the occupancy maps. Cyan denotes an occupied XYZ site, orange and blue denote an atom determined to be in the |F = 4,mF = −4〉 and |F = 3,mF = −3〉 
state, respectively, and grey denotes an empty site. a, Perfect filling of a 5 × 5 × 2 array after sorting from a randomly half-filled 5 × 5 × 5 XYZ lattice.  
b, Lossless state detection in XSYZ after the atoms were prepared in an equal superposition of |F = 4,mF = −4〉 and |F = 3,mF = −3〉. c, Atoms reloaded into 
XYZ. Note that an atom in plane 1 (at (4, 3)) has been lost owing to a background gas collision. d, Re-sorted atoms. The vacancy has been filled with an 
atom from the reservoir region (outside these two planes but within 5 × 5 × 5), where extra atoms had been left during the initial sorting.
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which is consistent with this being the dominant source of error.  
If the X polarization were to be improved, we could move the atoms 
faster and thus reduce the scattering and the associated state detec-
tion error. We could also employ a ‘throw and catch’ method. In this 
scheme, we would suddenly change an X beam polarization, let the 
atoms be accelerated by the shifted lattices, and then shut off X to 
avoid spontaneous emission. When the atoms have travelled suf-
ficiently far, XS would be turned on with cooling light to catch the 
atoms. We estimate that this could reduce our error from spontane-
ous emission by a factor of five.

After the state measurement, we adiabatically turn X back on 
with its standard polarization and then turn off XS with essen-
tially the reverse sequence that we used to turn it on (see Fig. 1a 
(v) and Supplementary Information). One quarter oscillation cycle 
later, when the atoms are centred in X (see Fig. 1a (vi)), we recool 
them and take another set of pictures to determine the final occu-
pancy. The final occupancy map facilitates the occupancy determi-
nation in XSYZ, bringing its error below 10−4 (see Supplementary 
Information). Between the initial occupancy determination and the 
state detection, 2% of the atoms are lost, which is consistent with 
independent measurements of the loss rate due to collisions with 
the background gas. We infer that the state detection measurement 
itself causes no loss. We also see no evidence of loss or site hopping 
due to the process of transferring the atoms back to X.

With essentially lossless detection, we can re-initialize our qubits 
after state measurement, a procedure we demonstrate in Fig. 3. We 
first sort to get a perfectly filled 5 × 5 × 2 pattern (see Fig. 3a)7. We 
then prepare an equal superposition of the two stretched states, 
execute state detection in XSYZ (see Fig. 3b), and reload into XYZ 
(see Fig. 3c). Atom loss to a background gas collision can occur in 
either stage; in this implementation, one atom was lost between 
state detection and reloading. We re-sort, filling the vacancy with 
an atom from the reservoir region (within 5 × 5 × 5 but outside 
5 × 5 × 2) (see Fig. 3d). The ability to fix qubit loss errors will ulti-
mately be an important element of quantum error correction.

Because of their insensitivity to noise, it is preferable to quantum 
compute in the clock states, |F = 4,mF = 0〉 and |F = 3,mF = −0〉 (ref. 20).  
However, these states do not move in the state-dependent lattice. To 
generalize our detection method, we use two AFP pulses to trans-
fer atoms from superpositions of clock states to superpositions of 
|F = 4,mF = −2〉 and |F = 3,mF = −2〉, and detect the state from there 
(see Supplementary Information). We generate a range of clock 
state superpositions by transferring all the atoms to |F = 3,mF = 0〉 
and executing a π/2–π–π–π/2 sequence on the clock transition, 
scanning the phase of the final pulse. We do this in a one-quarter-
depth XYZ lattice, which is preferred for minimizing decoherence 
while maintaining gate fidelity. Before state detection, we adiabati-
cally raise the lattice to full power. The result is shown in Fig. 4a, 
with 480 μs between the π/2 pulses. The fraction of atoms found in 
the wrong state at phase π is ×−

+ −0 100
5 4, which is to say we found 

no errors in 2,200 atom detections, consistent with as good a fidel-
ity as we measured starting from the stretched states. The error at 
phase 0 is larger, ×−

+ −22 108
12 4. We attribute the poorer performance 

when measuring from the |F = 4,mF = 0〉 state to Rabi frequency 
differences between the various AFP microwave transitions (see 
Supplementary Information). Adding the ability to dynamically 
change the microwave polarization should avoid this issue com-
pletely.

To further make use of our state detection method, we mea-
sure our qubit coherence time by adding additional intermediate π 
pulses at 20 ms intervals (see Supplementary Information) and per-
forming the spin-echo measurement described above with longer 
evolution times. From the observed fringe contrast as a function of 
time, shown in Fig. 4b, we find that the coherence times ( ′T2 and T1) 
for atoms in a 5 × 5 × 5 volume is 12.6 s. The improvement over our 
previously reported coherence time of 7.4 s (refs. 719) results from 
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Fig. 4 | State-selective detection from the clock states. a, Fringes from a 
spin-echo measurement sequence on the |F = 4,mF = 0〉 and |F = 3, mF = 0〉 
transition. The evolution time is 480 μs and the phase of the final π/2 
pulse is scanned. Atoms are transferred with microwave AFP pulses to 
|F = 4,mF = −2〉 (orange) and |F = 3,mF = −2〉 (blue) for state detection. 
At each point, the populations of both states are determined in the same 
state measurement. The data points at phase 2π are the same as those 
at phase 0. The solid curves are fits using a sine function, and the fit 
amplitude gives the fringe contrast. b, Magnified regions of a. At phases 
π and 0, perfect state preparation and detection would lead to all atoms 
being in the same state. At π phase, there were no errors among the 
2,200 atoms we measured. We attribute the 2 × 10−3 error at 0 phase to 
the lower quality of some AFP pulses (see Supplementary Information). 
Error bars in a and b represent 1 s.d. and are due to counting statistics. 
The error bars for the data points at phase π are smaller than the size of 
the symbols. c, Semi-logarithmic plot of fringe contrasts for spin-echo 
sequences, for a range of evolution times. The fitted exponential time 
constant, which gives the coherence time of the qubits, is 12.6 s. The one 
standard deviation error bars from the fringe contrast fits are smaller than 
the size of the symbols.
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better cooling and a farther-detuned optical lattice, both of which 
minimize spontaneous emission from the lattice.

The concept of our state measurement method, where internal 
states are mapped to atom positions, can be generalized to atoms 
in reconfigurable dipole-trap arrays21–24. Each dipole trap can be 
formed by overlapping two traps with opposite circular polariza-
tion. For state detection, the two traps can be spatially separated.  
If needed, dipole heating could be minimized by making the two 
traps linearly polarized before the atoms are imaged.

While it can now be used for final state readout, we ultimately plan 
to adapt this measurement technique to quantum error correction, 
where state detection of only a subset of the atoms is required25–27. 
The atoms to be detected would be selectively transferred to larger 
mF states. During the motion, the clock state qubits will remain 
weakly trapped at their original position. Transferring them to XS 
will probably require matching the nodes of X to nodes of XS. Speed 
concerns will require fluorescent detection to be replaced with 
phase-contrast imaging28, which would act as a form of holography 
and allow all planes to be imaged at once. Preventing the undetected 
qubits from interacting with detection light will require the qubits 
to be shifted out of resonance or transferred to dark states, or the 
use of a second atomic species for measurement29. Our state detec-
tion error approaches the commonly accepted threshold of 10−4 for 
fault-tolerant quantum computation30, and it already comfortably 
surpasses the thresholds of about 10−3 used for some surface codes31.

Data availability
The data that support the plots in this paper are available from the 
corresponding author upon reasonable request.
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