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Abstract

Motivation: Integration of multiple genetic sources for copy number variation detection (CNV) is a
powerful approach to improve the identification of variants associated with complex traits.
Although it has been shown that the widely used change point based methods can increase statis-
tical power to identify variants, it remains challenging to effectively detect CNVs with weak signals
due to the noisy nature of genotyping intensity data. We previously developed modSaRa, a normal
mean-based model on a screening and ranking algorithm for copy number variation identification
which presented desirable sensitivity with high computational efficiency. To boost statistical power
for the identification of variants, here we present a novel improvement that integrates the relative
allelic intensity with external information from empirical statistics with modeling, which we called
modSaRa2.

Results: Simulation studies illustrated that modSaRa2 markedly improved both sensitivity and spe-
cificity over existing methods for analyzing array-based data. The improvement in weak CNV signal
detection is the most substantial, while it also simultaneously improves stability when CNV size
varies. The application of the new method to a whole genome melanoma dataset identified novel
candidate melanoma risk associated deletions on chromosome bands 1p22.2 and duplications on
6p22, 6025 and 19p13 regions, which may facilitate the understanding of the possible roles of
germline copy number variants in the etiology of melanoma.

Availability and implementation: http://c2s2.yale.edu/software/modSaRa2 or https://github.com/
FeifeiXiaoUSC/modSaRa2.

Contact: xiaof@mailbox.sc.edu or heping.zhang@yale.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Copy number variations (CNVs) are deletions (<2) or duplications
(>2) in DNA copies at a specific chromosomal location in the gen-
ome. According to their origin, CNVs are usually classified into two
categories. Germline CNVs refer to inherited variants, often existing
as polymorphisms at the population level and may explain part of

the ‘missing heritability’ (Maher, 2008). Copy number aberrations
in somatic cells, referred to as somatic CNVs, have also been investi-
gated to understand the non-inherited component of diseases, espe-
cially in tumorigenesis (Qiu et al., 2017). Up until now, studies have
provided evidence to support the unique roles of CNVs in the eti-
ology of many diseases such as cancer (Chen et al., 2013a,b;
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Kumaran et al., 2017; Lin et al., 2011), autoimmune (Li et al., 2017;
Marshall et al., 2017) and neurological diseases (Hou et al., 2013;
Stuart et al., 2012). For example, copy number gain of beta-defensin
genes has been revealed to be associated with increased risk of psor-
iasis in three cohorts of European origin (Barnes et al., 2008; Hollox
et al., 2008; Stuart et al., 2012). Also, the deletions of complement
4a and 4b have been found to increase risk for autoimmune diseases
(Li et al., 2017).

Although numerous statistical approaches have been developed
for different platforms (e.g. SNP array, exome sequencing), it
remains persistently difficult to accurately identify CNVs. One com-
plication is the irregularity of CNV occurrence since they do not
occur in the same location across individuals. Another complication
is the existence of random noise in the data, which easily leads to in-
valid CNV calling. Also, different genotyping platforms do not share
methods due to their technological complications. Well-developed
array-based CNV analytical tools are usually based on segmentation
and smoothing of Log R Ratio (LRR) and B-allele frequency (BAF),
which integrate evidence for copy number status (Wang er al.,
2007). LRR measures the normalized total intensity of the possible
alleles for a given marker, from which the magnitude of mean
change, referred to as jump size, are used for inference of break-
points. The larger the jump size, the more likely the existence of
CNV. BAF is the normalized measure of relative signal intensity
ratio of one of the possible alleles, a variation of which from
expected signals for a diploid region reflects the underlying copy
number states. Some existing statistical tools for sequencing gener-
ated data have already used the information embedded in BAF in the
segmentation. For example, SomatiCA was proposed to quantify
somatic copy number aberrations by integrating the read counts
sequencing data with the information from BAF (Chen et al.,
2013a,b). PennCNV, based on a Hidden Markov model, is another
widely used method integrating both intensities (Wang et al., 2007).
However, with change-point segmentation methods, the relative al-
lelic intensity information is still underutilized by many statistical
models, and often is integrated in an ad hoc manner.

For change point methods, the main goal is finding multiple
breakpoints in the expansive chromosome, where the length is typic-
ally thousands of SNPs. A previous review (Zhang, 2010) provided
a thorough introduction to the application of change-point models
in CNV detection. Among them, circular binary segmentation (CBS)
is a change-point test applied recursively to determine all of the
breakpoints (Olshen et al., 2004). As a default segmentation algo-
rithm, CBS has been widely implemented into CNV detection soft-
ware and tools such as CNV workshop, SegGene and NEXUS
(Darvishi, 2010; Deng, 2011; Gai et al., 2010). It provides a very
consistent performance although it presents high computational
complexity. A more recent result showed the improved computa-
tional speed; however, the heavy computation still presents obstacles
for its wide application in high dimensional data with large sample
sizes (Venkatraman and Olshen, 2007). Also, issues arise from the
application of these methods to genetic studies such as inflation of
false positives especially when the jump size is small.

To address the issue of computational complexity and other ap-
plication challenges, we previously developed a robust and powerful
method based on a normal mean change-point model, modSaRa,
implemented for analyzing array-based data (Xiao er al., 2015).
With modSaRa, we adopted a local search strategy in the segmenta-
tion which largely increased the computational efficiency. It pro-
vides a user-friendly tool that identifies CNVs across the genome
with optimal sensitivity and specificity. However, inflation of false
positives is still a challenge, especially when the CNV signal is weak.

In this study, we therefore fully utilized the relative allelic inten-
sity, BAF, in the segmentation algorithm to boost the power, along
with integrating external empirical statistics information to efficiently
control the false discovery rate. We then implemented this improved
segmentation algorithm and applied it to the modSaRa2 software, for
the analysis of array-based data. Our simulation studies illustrated the
increased power and well-controlled false discovery rate of
modSaRa2, especially for detecting CNVs with weak signals or large
CNVs. The computational speed is very fast, which is about 9s for
processing a chromosome with 90 000 markers. We also applied this
new method to a whole genome cutaneous melanoma study to un-
cover the roles of germline CNVs in the etiology of melanoma.

2 Materials and methods

2.1 Overview of modSaRa

First, we will introduce the background of modSaRa, which was
proposed for analyzing microarray data. We start from the screening
and ranking algorithm (SaRa) from the viewpoint of hypothesis test-
ing and in the context of CNV detection. Assume that we have a se-
quence or more specifically, a chromosome, let y = (y1,...,y.)" be
the random variables of genetic intensities with 7z markers (e.g. SNP
marker). For the ith marker, we assume

Vi = W + &, l:l7 2‘7"'7”' (1)

p=(u1,...,u,)7 is the underlying mean; the errors ¢ are i.i.d and
follow N(0,6?). A change point is a position 7 such that u, # u,. ;.
In this model, our goal was to simultaneously make inference on the
existence and location of 7’s. Therefore, it can be stated as the hy-
pothesis testing problem of multiple change points:

Ho:w =---=u,, versus,

Hl:/“Ll:"':ﬂj7éﬂj+1:"':ﬂk7éﬂk+l

=..-=p, for some j and k.

To test the alternative hypothesis of multiple change points, a lo-
cally defined diagnostic statistic was therefore proposed for screen-
ing the whole sequence as

b b
) (E Y=y )'/+:> )
Dy(j) = \"! = s j=h+ 1L b2, n—b, (2)

b

where b is a fixed integer representing bandwidth. The above func-
tion is simply evaluating the difference between the points on left
side and those on right side of point j, with window size 2b.
Obviously, the magnitude of D (j) reflects if the point is near or is a
change-point. The advantage of this strategy is its usages of local in-
formation while considering the global sequence. We can consider a
more general form of local diagnostic statistic, which is the weighted
average of y;s near the point of interest /,

Dy() =Y wili)yi, 3)
i=1

where the weight function w;(j) = 0 when |i —j| > b. In Equation
(2), we have an equal-weight diagnostic function

% 1-h<i—j<0
0 otherwise
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Notice that in the above function, each point had an equal
chance of being a change point.

To address issues arising from the application of SaRa, we fur-
ther proposed a robust and powerful method, modSaRa, as an en-
deavor to detect CNVs with SNP array data (Xiao ez al., 2015).
Specifically, we proposed using multiple bandwidths in the screening
and ranking steps to optimize the sensitivity in segmentation, then a
Gaussian mixture model-based clustering strategy to optimize its
specificity by simultaneously removing false positives and clustering
CNV  segments. The Expectation-Maximization algorithm
(Dempster et al., 1977) was used in the clustering step by assuming
the segmentation means were following normal distributions. By
simulations, we have illustrated the greater accuracy and computa-
tional speed of the modSaRa over CBS with SNP array data. Details
can be found in the previous method and package paper (Xiao ez al.,
2015, 2017). For algorithms involving bandwidths, the value of
bandwidths should be carefully chosen (Niu and Zhang, 2012). In
modSaRa2, we suggest using three different bandwidths with the
choices depending on the applications (for example, 5, 10, 15 for
microarray data).

2.2 Gaussian likelihood copy number estimation
Although we made important progress with modSaRa, our previous
work still had limitations. First, the segmentation algorithm imple-
mented in modSaRa was over-sensitive, resulting in abundant false
positives in the calling results. Second, the performance of the test
can be optimized by taking prior information of the genetic inten-
sities such as empirical statistics from external sources. To address
the above issues, we here have developed a Gaussian likelihood copy
number estimate to efficiently integrate the prior empirical statistics
into the statistical modeling, which efficiently improves the overall
accuracy.

We consider a diallelic locus A on a chromosome with two
alleles, A; and A,. Consequently, given a normal diploid state when
no duplication or deletion occurs, the genotypes include A1A1,A1A;
and A;A;. When an allele is gained, the genotype can be AjA A4,
A1A1Ay, A1A2A;, A2A2A; depending on the original genotype and
which allele is duplicated. Naturally, the genotypes will be Ay or A,
when one copy of the alleles is lost. The raw signal intensity values
measured for the Ay and A, alleles are then subject to a five-step
normalization procedure using the signal intensity of all SNPs. The
procedure produces the normalized intensity values, X; and X5, for
the two alleles respectively. As a normalized measure of total signal
intensity, the log R Ratio (LRR) value for each SNP is calculated as
LRR = logs(Ropserved/Rexpected)s Where R = Xy + X, refers to the
total signal intensity and Rexpected is computed from linear interpol-
ation of canonical genotype clusters (Peiffer e al., 2006). BAF is an-
other dimension of measure representing normalized measure of
relative signal intensity of the minor allele (e.g. A;). The detailed
mathematical definition can be found in previous published litera-
ture (Wang et al., 2007). Briefly, when the segments are normal state
(diploids), the BAF values usually display three clusters at values of
0, 0.5 and 1 with small variance, representing homozygotes of A; al-
lele (A1Ay), heterozygotes (A1A;) and homozygotes of A, allele
(A2A;), respectively. When deletion occurs, only one allele is left,
hence the BAF means will be 0 and 1, respectively.

To integrate the information from BAF, we first introduce a less
sparse intensity compared to BAF, Lesser Allele Frequency (LAF):

BAF VBAF < 0.5

LAF= { 1— BAF VBAF> 0.5 )

The above transformation makes the modeling more efficient
since we usually do not need to distinguish certain genotype pairs
such as AjA1A; or AjA3A; when on copy is gained. Given a dia-
llelic locus, let Z = (Zy,...,Z,)" represent the sequence of LAF;
G* = (Gi,...,GT denote the genotype of a locus with eight pos-
sible genotypes; $* = (S7,...,8:)T be the copy number state that
needs to be estimated, which includes deletion of double copy
(Del.D), deletion of single copy (Del.S), normal state (Diploids), du-
plication of single copy (Dup.S) and duplication of double copy
(Dup.D). The connection between genotypes and these copy number
states can be found in Supplementary Table S1. Among these states,
two-copy duplications/deletions (Del.D and Dup.D) have relatively
strong CNV signals and therefore can be easily captured, whereas
the single-copy changes (Del.S and Dup.S) are more difficult to
identify.

For the ith locus, we assume both LRR and LAF follow normal
distributions conditional on the genotype, that Y; ~ N(uy,0%|G})
and Z; ~ N(uz,0%|G;). The mean y and variance o>
parameters and will be estimated from the external information of
empirical statistics for LRR and LAF, respectively. For the estima-

are unknown

tion of these parameters, cnvPartition embedded in the Genome
Studio software developed by Illumina (https://www.illumina.com/
documents/products/technotes/technote_cnv_algorithms.pdf), pro-
vides a good summary of all the genotypes and copy number states
with the estimated mean and variance for each state (Supplementary
Table S2). For data generated from the Affymetrix platform, the em-
pirical means are provided in the Affymetrix website, whereas the
variance can be easily estimated from the samples. Owing to the
normalization procedures of the intensities, when both copies are
deleted, the BAF is generated as a random value. As a result, Z; ~
Uniform(0, 0.5) for the copy number state of Del.D. For the locus
i, the likelihood of being each hidden genotype is given by:

Lo, = tn(Yiluy, ov, G In(Ziluz, 0z, G?)lfl(G::DD)

1(G:=DD (6)
fu(Ziluz, 02, G;) (Gi=pD),
I(G} = DD) is the indicator function which equals to one when the
genotype is Del.D. These genotype likelihoods are then summarized
by five composite copy number likelihoods by L, ;=
> Giesy Lai(k=1, 2, ..., §) with respect to the kth copy number
state, where s = {Del.D, Del.D, Diploid, Dup.S, Dup.D} represent-
ing the assumed five copy number states.
The preliminary copy number estimate eCN; is therefore defined as

Mv‘

(k—1)Ly,;
eCN;j =% . 7
i ST, (7)
The expected value of the continuous variable eCN will be inte-
ger values from 0 to 4 reflecting the five copy number states,
respectively.

2.3 CNV detection and post CNV-calling steps

After we obtained the preliminary copy number estimates eCN, the
screening and ranking algorithm with multiple bandwidths was
applied for breakpoints identification. The goal was to identify
regions of the genome where the values of eCN are consistently
higher or lower than two, the expected value of a diploid segment.
Then the procedure of change point identification and copy number
assignments was conducted in a similar manner as in modSaRa
(Supplementary Methods and Results Al). A false discovery rate ap-
proach was used to adjust the P-values for the multiple comparison
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problem (Supplementary Methods A2). For the subset selection of
candidate change points, the threshold of P-values is an important
user-defined parameter in the package. Using high quality CNV calls
from three previous studies as validation sets (Conrad et al., 2010;
International HapMap et al., 2010; McCarroll ez al., 2008),
we evaluated the performance of the modSaRa2 package under dif-
ferent P-value thresholds. As a result, we recommended the signifi-
cance level to be 0.01 or 0.05 in applications (Supplementary
Methods and Results A3). By default, the significance level was set
at a more stringent level at 0.01 in the package. Some post CNV
calling quality control steps were also developed for reliable CNV
calling, including an ad hoc procedure for removing false positives
and merging adjacent CNV calls (Supplementary Methods and
Results A4). Supplementary Figure S1 systematically illustrates how
modSaRa2 works.

2.4 Software implementation

In the current modSaRa2, instead of calculating the sequence of em-
pirical values of reverse cumulative distribution value of Dj,(j) from
a sequencing with no change-points recurrently as in modSaRa, we
calculated once beforehand and repeatedly used it. Consequently,
we reduced computational burden. For example, the computational
time was dramatically saved, which is 8.63 s for a chromosome with
86 694 markers. The above calculation is based on analysis made at
a desktop workstation with an Intel Core 15 CPU 2.6 GHz processor
and 8.0 GB of RAM. The modSaRa package is now publicly avail-
able at: http://c2s2.yale.edu/software/modSaRa2 and https://github.
com/FeifeiXiaoUSC/modSaRa2.

2.5 Numerical simulations

We first simulated data to evaluate the performance of modSaRa2
as compared to the previous version of modSaRa and other state-of-
the-art methods. We used the simulations mimicking the data gener-
ated from Illumina platform. In total, fifty samples or sequences
with 10 000 markers per sequence were generated assuming inde-
pendence of the markers. In each sequence, twenty dispersed and
non-overlapping CNVs were generated, the locations of which were
randomly selected but shared by individuals. To minimixze detec-
tion bias, the distance gap between two adjacent CNVs was more
than 10 markers. For each simulation setting, there were 1000
CNVs or equivalently 2000 change points in total.

We characterized the performance of modSaRa2 in different
scenarios of CNV lengths and states. The CNV lengths vary among
10-50, 50-100 or 100-200 markers. The copy number states
included Dup.S, Dup.D, Del.S and Del.D. For each scenario, the
LRR and BAF intensities were generated from a normal distribution
with the mean (n) and standard deviation (o) as those provided with
the values computed by Illumina (Supplementary Table S2). Let us
take the scenario of Del.S and CNV length of 10-50 as an example.
First, the length of copy number segments for the independent
CNVs was randomly generated from values between 10 and 50.
Then the genomic markers within each CNV region received values
generated from distribution with N (—0.45, 0, 18?) for LRR inten-
sities. For Del.S, the genotype can be either A; or A,, which resulted
in randomly generated values of 0 or 1 with variance setting at 0.03
in BAF values (Supplementary Table S1). For the rest of the same se-
quence with diploids (normal state), the LRRs were generated from
N (0, 0, 18?) whereas the BAFs were generated from a mixture of N
(0, 0.03%), N (0.5, 0.03%) and N (1, 0.03%). Similarly, for the other
copy number states with multiple possible genotypes, we randomly
generated the genotype for each location.

We compared the performance of modSaRa2 to existing state-
of-the-art methods, namely, CBS (Venkatraman and Olshen, 2007)
and PennCNV (Wang ez al., 2007). We also focused on the
improved sensitivity and specificity as compared the original
method, modSaRa, to demonstrate the characteristics of the new
method.

2.6 Application dataset and quality control steps

To illustrate the proposed method, we further applied modSaRa2 to
a cohort study of melanoma from Gene Environment Association
Studies initiative (GENEVA) that included 3115 participants. The
high-density SNP array data for skin cutaneous melanoma were
released in 2008, details of which have been described previously
(Amos et al., 2011). The raw data were processed by Illumina’s gen-
otyping module v1.94 in the GenomeStudio (v2.0.2) to calculate
probe intensities including LRR and BAF. Samples with a standard
deviation of LRR on chromosome 1 less than 0.25 were high quality
intensity data for CNV analysis and therefore retained. Missing
data, presence of more homozygous genotypes or departure from
Hardy Weinberg Equilibrium (HWE) in samples can be possibly
caused by duplications or deletions on chromosomal segments.
Thus, typical quality control (QC) procedures in genotyping based
on HWE deviation or low call rate of SNPs for CNV analysis were
not employed in this study. QC filters in this study only included ex-
clusion of duplicates or relatives based on pairwise identity by des-
cent calculation (IBD > 0.95). For those pairs of duplicates, samples
with relatively higher call rate were retained.

2.7 CNV calling and association with melanoma risk
After intensities pre-processing step of GC model adjustment by
PennCNV, modSaRa2 was applied in CNV calling. After obtaining
the generated raw CNVs, we merged adjacent CNVs with distance
less than ten markers. CNV quality control filters included retaining
samples with a total number of CNVs < 1000; CNVs with length >
10 markers, > 10kb and < 1 Mb. NCBI build 36 (hg18) was used
for finding overlapping genes for CNV calls. The identified CNVs
were mapped to 1000 Genome Project phase 3 which curated infor-
mation about 60 000 structural variations captured at the popula-
tion level (Sudmant et al., 2015), and the database for human CNV
map (Zarrei et al., 2015) to ascertain CNV calls on 935 medically
relevant genes.

After CNV calling, a gene-based association strategy was applied
to investigate the contribution of CNVs to melanoma risk suscepti-
bility. The association of the CNVs in each gene with melanoma
risk was evaluated using logistic regression logit(P(Y =1)) =
Bo + Prlae + Palawy + P3Age + f4Gender. Effects from deletions
and duplications were tested separately; gender and age were
adjusted as covariates. Permutation based adjustment was per-
formed so that 10 000 replicates in each test were generated to ad-
just the nominal P-values.

3 Results

3.1 Performance assessment via simulations

We assessed the performance of modSaRa2 in different scenarios
and compared it to modSaRa and two other conventional methods,
PennCNV and CBS (Table 1 and Fig. 1). Table 1 provides an overall
comparison for all simulation scenarios with different CNV sizes
and copy number states. The Receive Operating Characteristic
(ROC) curve in Figure 1 explicitly compared these methods in
detecting weak signals at various threshold setting (Dup.S). Overall,
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all four tests increased power when the jump sizes increased. For
gain/loss of two copies (Del.D and Dup.D), all methods detected al-
most all breakpoints accurately. The major differences were in
detecting weak signals (Del.S and Dup.S) that modSaRa2 easily
achieved a high level of true positive rate (TPR) while controlling
the type I error very well (Fig. 1), details of which are illustrated
below.

First, we demonstrated the increased sensitivity and specificity of
modSaRa2 compared to the modSaRa in detecting weak signals
(Dup.S). At a comparable or higher TPR, modSaRa2 identified
much fewer false positives (FPs) than modSaRa. For short CNVs
with (length 10-50), with a higher TPR at around 0.99, modSaRa2
detected fewer FPs than modSaRa (0 versus 12). When the length of
CNV segments increase, the number of FPs remained at a low level
for modSaRa2 whereas the number detected by modSaRa increased.
A receiver operating characteristic (ROC) curve further compared
these two methods explicitly (Fig. 1). In summary, modSaRa2 was
improved in specificity compared to the original modSaRa method
for detecting CNVs with weak signals.

To evaluate the performance of change point model-based and
Hidden Markov model-based methods, the second comparison was

Table 1. Assessment of power and false discovery rate with differ-
ent CNV sizes and jump sizes

modSaRa2 modSaRa  PennCNV  CBS

CNV CNV TPR #FP TPR #FP TPR #FP TPR #FP

length State

10-50 Del.D 1.0 0 1.0 0 1.0 0 1.0 23
Del.S 0.9990 0 1.0 0 1.0 0 0.9990 3
Dup.S 0.9860 0 0.8890 12 0.9500 0 0.9460 13
Dup.D 1.0 0 1.0 0 1.0 0 1.0 1

50-100 Del.D 1.0 0 1.0 0 1.0 0 1.0 1
Del.S 1.0 0 1.0 0 0.95 100 1.0 0
Dup.S 09870 0 0.9755 23 0.9750 50 0.9910 17
Dup.D 1.0 0 1.0 0 1.0 0 1.0 0

100-200 Del.D 1.0 0 1.0 0 1.0 0 1.0 0
Del.S 0.9995 1 0.9995 1 0.9000 100 0.9995 3
Dup.S 0.9910 0 0.9695 51 0.9250 150 0.9865 36
Dup.D 1.0 0 1.0 0 1.0 0 1.0 0

Del.D, deletion of double copy; Del.S, deletion of single copy; Dup.S, du-
plication of single copy; Dup.D, duplication of double copy. The total number
of simulated CNV was 1, 000. Significance level of modSaRa2 was set as the
default value of 0.01. TPR, True positive rate; #FP, Number of false positives.

between the modSaRa methods (i.e. modSaRa2 and modSaRa) and
PennCNV. Still, there were no differences in detecting loss/gain of
double copies (Del.D and Dup.D) (Table 1). For detection of Dup.S,
modSaRa2 and modSaRa outperformed PennCNV in most scenarios
of weak signals. For detection of Del.S, modSaRa2 outperformed
PennCNV when CNVs were relatively large in length (>50
markers). modSaRa2 showed consistency in performance; however,
PennCNV was less powerful when CNV sizes increased.

Although the comparison of modSaRa and CBS has been thor-
oughly illustrated (Xiao et al., 2015), we compared modSaRa2 and
CBS to be inclusive. In almost all scenarios, modSaRa2 outper-
formed CBS for detection of weak signals (Fig. 1). For detection of
Del.D with small sizes, modSaRa2 achieved higher specificity than
CBS. In conclusion, modSaRa2 showed superior performance in
detecting CNVs, and its accuracy in detecting weak CNV signals
was significantly improved by integrating more external genetic in-
formation. It is worth mentioning that CBS was the slowest algo-
rithm among the four tests in our study.

3.2 Analysis of whole genome data of melanoma cases
and controls

In this study, we identified 354 210 CNVs in autosomes of 2838
samples (see Fig. 2 for study design). Overall, the total number of
deletions was nearly as large as duplications (Supplementary Table
S3). No significant difference was observed in the overall proportion
of CNVs with deletions in cases and controls, 48% versus 46 %, re-
spectively. Also, there was no difference in the number or length of
CNVs between cases and controls.

Different CNV calling methods have their strengths and limita-
tions (Kumaran et al., 2017; Sapkota et al., 2016); the CNV break
points called by different algorithms may or may not overlap and
some algorithms tend to call redundant CNVs. Therefore, it was im-
portant to ascertain that the called CNVs were reliable by independ-
ent methods. We therefore considered higher resolution structural
variation data available from the public domain from the 1000
Genomes Project (Phase 3) as a reference (Sudmant et al., 2015).
CNVs were mapped to 1000 Genomes Project data to access concor-
dances for the CNVs identified in this study (Supplementary Table
S4). Of the break points identified by modSaRa2, 28.49% were
mapped to the 1000 Genomes Project, which was slightly higher
than those identified by PennCNV (26.63%). Another comparison
was the empirical true positive rate. We mapped 97.12% of the clus-
tered common copy number region from the 1000 Genomes Project
to the breakpoints called by modSaRa2, which was much higher

A CNV length 10-50 B CNV length 50-100 C CNV length 100-200
,°_—' oo oo, °e o . 2 {ge oo o0 ogeee . 3—0.' e g o soemne
L3
oo [ . s .
g4 2 - 2 -
o
o e 2 .
T ©
o o | - & o | ® ‘; =
g (=} L © 2
3 Z %
£ = | g < | e £ < p
o © . o © o ©
2 3 E
= = [
N e N e ~ |8
© ® modSaRa2 o e ® modSaRa2 i ® modSaRa2
® modSaRa ® modSaRa ® modSaRa
o | e CBS o | e CBS o | ® CBS
o o o
T T T T T T T T T T T T T T T
0 S 10 15 20 25 0 10 20 30 40 0 10 20 30 40
Number of FPs Number of FPs Number of FPs

Fig. 1. Evaluation of statistical power through simulations. Detailed simulation settings are described under Section 2. Results of scenario of duplication of single
copy (Dup.S) with (A) short CNV sizes (10-50 markers); (B) medium CNV sizes (50-100 markers); (C) long CNV sizes (100-200 markers)
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Raw intensities of 2,947 melanoma cases and cantrols,
1,109,421 markers (chr 1-22)

66 samples removed with 77 > 0.95 in IBD
analysis or with LRR_SD > 0.25 on chr 1

| 2,881 samples, 1,109,421 markers ‘

43 samples removed with no complete
\L clinical data

| 2,838 samples, 1,109,421 markers |

J/ modSaRaz2 for CNV calling

| 2,838 samples, 586,470 raw CNVs

length > 10 markers and > 10kb,
samples with < 1000 CNVs

| 2,838 samples, 354,210 CNVs |

J, Annotation: NCBI build 36 (hg18)

Genome wide association with
permutation base adjustment

Fig. 2. Overview of the whole genome CNV study. The figure outlines the
study design with brief description of data filters and methods. Summary of
key results of each analysis indicating the sample size and number of CNVs at
various stage of analysis

than PennCNV (51.09%). This comparison was not ideal as the
results from 1000 Genomes Project cannot be considered as truth,
but it still provides reference about the high sensitivity of
modSaRa2.

Although we identified CNVs in both protein coding and non-
protein coding regions, those overlapping protein coding regions
have higher potential to contribute to variation in the trait (Lee and
Scherer, 2010). Therefore, CNVs overlapping with protein coding
genes were considered for melanoma risk relevance. Coding genes
within the CNVs identified were interrogated for gene-dosage effects
by evaluating the association between copy number status and mel-
anoma status. We identified 133 genes within the deletions signifi-
cantly associated with melanoma (permutation P-value < 0.05). Of
these, 34 genes were overlapping with the 1000 Genomes Project
curated structural variations or human CNV map (Table 2,
Supplementary Table S6). We also identified 161 genes with dupli-
cations that showed significant association with melanoma risk
(Supplementary Table S7), among which 41 were overlapping with
the 1000 Genomes Project data or human CNV map. Among the
significantly associated deletions were gene LRRC8C in 1p22.2
region (chr1: 89842 228-89 893 620) (OR =2.11,95% CI = 1.12-
4.32, adjusted P-values = 2.35 x 1072, Supplementary Table S6). A
plot of the LRR and BAF indicated that all of these variants were
deletions of single copy (data not shown). The amplification of the
same region was not statistically significant (P-value = 0.35). The
results of duplication highlighted the chromosomal regions on 6p22,

Table 2. Top significantly associated germline CNVs with melanoma risk (deletions) with mapping to publicly available databases

(P-value < 0.001)

Deletions Duplications

Gene Chr Coordinate Case:Cont OR (95%CI) P.adj OR (95%CI) P.adj Mapping
LIFR 5p13.1 38 510 821-38 631 264 98:18 2.98(1.84,5.12)  1.00 x 10™* 0.63 (0.47,0.86) 4.80 x 1073 -
ZFYVE9 1p32.3 52380 353-52 584 946 95:18 2.86 (1.76,4.91) 1.00 x 107* 0.52 (0.37,0.72) 2.00 x 107 -
MMRN2 10g23.2 88 685277-88 707 405 63:11 3.10 (1.69, 6.24)  2.00 x 10~ 0.54(0.35,0.83) 3.30 x 1073 -
ANKRD33B 5pl5.2 10 617 434-10 710 928 105:27 2.15(1.42,3.38)  5.00 x 107* 0.91(0.73,1.13) 0.39 -
LIFR-AS1 Sp13.1 38 592 644-38 644 716 77:17 2.47 (1.49, 4.34) 5.00 x 107* 0.63 (0.45,0.89) 7.10 x 1073 1000g
PL x ND1 3q22.1 130756 745-130 808 272 54:10 2.93(1.55,6.14)  7.00 x 107* 0.67(0.42,1.07) 8.52 x 1072 -
SNCG 10q23.2 88708 267-88 712 997 33:2 9.23(2.79,57.07)  9.00 x 10~* 0.37(0.20, 0.66) 3.00 x 10~* -
MMP15 1621 56 616 782-56 638 305 69:16 2.37 (1.40, 4.25) 1.30 x 1073 0.98 (0.68, 1.44) 0.93 -
CLSTN2 3923 141 136 716-141 769 609  64:14 2.47 (1.42,4.61) 220 x 107> 0.67 (0.47,0.94) 1.61 x 107> 1000g
MARCHI11 Sp15.1 16 120 473-16 232 897 124:39 1.74 (1.21, 2.54) 2.60 x 1073 0.74 (0.53,1.02) 6.85 x 1072 -
MIR4656 7p22.1 4794 721-4 794 796 86:21 2.07(1.30, 3.44) 2.60 x 1073 0.47 (0.37,0.59) 1.00 -
HTRA3 4pl6.1 8322 388-8 359 738 32:3 5.79(2.07,24.13)  2.80 x 107> 0.47(0.26,0.84) 9.60 x 1073 -
ITGBS 3q21.2 125964 484-126 088 834 29:2 7.87(2.37,48.76)  2.90 x 1073 0.63 (0.36,1.12) 0.13 -
AC131097.3 2q37.3 242472 186-242 669 546  214:81 1.48 (1.14, 1.94) 3.70 x 107 1.31 (0.97,1.79) 9.11 x 1072 -
GABRAS 15q12 24 663 365-24 777 103 99:30 1.80(1.20,2.77)  5.10 x 107> 0.63 (0.46, 0.88) 7.00 x 1073 -
MYOSB 18q21.1 45603 153-45 975 449 129:44 1.64 (1.16,2.36)  5.20 x 107> 1.28 (0.89, 1.85) 0.19 -
CCDC85C 14q32.2 99 047 355-99 140 480 19:1 10.51(2.17,189.18) 5.30 x 1073 0.52 (0.35,0.78) 1.70 x 1073 1000g
LYN x 1 8q24.3 143 842 757-143 855 746 22:2 6.14 (1.80, 38.49)  5.60 x 107> 0.48 (0.22,1.03) 4.21 x 1072 -
RNU6-71P 13q13.3 56245 647-56 723 097 63:16 2.17(1.28,3.90)  5.90 x 10~* 0.26 (0.01,2.73) 6.18 x 107>  1000g
DENNDSBAST 12p11.21 31634 123-31 659 552 38:7 2.90(1.37,7.12) 7.00 x 107 0.51 (0.32,0.81) 4.00 x 1073 -
DENNDSB 12p11.21 31426 423-31 635219 38:7 2.90(1.37,7.11) 820 x 107> 0.49 (0.31,0.79) 1.90 x 1073 -
NR2F6 19p13.11 17203 693-17 217 151 31:5 3.39(1.43,9.95)  8.60 x 107> 0.48 (0.24,0.94) 2.54 x 1072 -
USHBP1 19p13.11 17221 848-17 236 544 31:5 3.39(1.43,9.95) 8.60 x 1072 0.45 (0.22,0.89) 1.66 x 1072 -
APSZ1 7p22.1 4781 787-4 800 552 100:28 1.79 (1.18,2.79)  9.00 x 107> 0.48 (0.38, 0.60) 1.00 -
RGS12 4pl6.3 3285671-3411438 37:7 2.89(1.37,7.11) 9.00 x 1073 1.29 (0.77,2.23) 0.32 1000g

P.adj is the adjusted P-value after 10 000 permutations. chr, chromosome; 1000g, 1000 Genomes Project; CNV map, the curated medically relevant CNVs.

The column of Case, Cont provides the number of CNVs in cases and controls, respectively. To illustrates the risk variants associated with melanoma, we pro-

vided results of variants with OR greater than 1.
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6925 and 19p13 (Supplementary Table S5). Still, the deletion of any
of these regions was not statistically significant. It was noteworthy
that most of the identified candidate associated CNVs were all rare
variants, with sample proportions ranging from 1% to 2%, which
may partially explain why the discoveries of germline CNVs in can-
cer studies are still not compelling.

4 Discussion

This paper mainly is directed at large-scale CNV detection for
improving specificity of CNVs with moderate jump sizes which
remains the bottleneck for achieving high accuracy in CNV detec-
tion. Massive genome-wide data for associating germline variants
with diseases and traits have been produced in the past few decades,
but the important roles of germline CNVs have not been fully
explored. To date, the majority of germline CNVs that have been
identified for diseases are either rare conferring high penetrance, or
common variants with low penetrance, especially in cancer (Al-
Sukhni et al., 2012; Krepischi et al., 2012; Kuusisto et al., 2013;
Laitinen et al., 2016). To identify statistically significant DNA copy
number changes, proper statistical modeling is critical, especially
when some CNV signals are difficult to capture.

A limitation shared by many compelling CNV detection methods
that have been highlighted by multiple independent benchmarking
studies is the lack of sensitivity and specificity for variants with weak
CNV signals. To meet the widespread demand for improved CNV de-
tection, we developed a new method, modSaRa2, to reduce the tech-
nical noise by integrating more genetic information and external
empirical statistics in statistical modeling. modSaRa2 builds on our
existing method modSaRa with the significant improvement of sensi-
tivity and specificity (Supplementary Figs. S2-S3), thus allowing full-
spectrum CNV detection. modSaRa2 can be applied to profile all
CNVs in multiple platforms of microarray data and has the potential
to be extended to next generation sequencing generated signals.

We thoroughly evaluated modSaRa2 against existing methods.
First, we performed extensive simulations to elucidate how key vari-
ables, such as CNV sizes and jump sizes, influence performance in
detection. We showed that modSaRa2 markedly improved both sen-
sitivity and specificity over existing methods. The improvement for
weak CNV signals was the most substantial, with simultaneously
improved stability when CNV size varied. The newly computed sig-
nal intensity that integrated both LRR and BAF coupled with the
distribution assumption with prior knowledge of the intensities
enhanced the signals from CNVs with small jump sizes. In the se-
cond evaluation, we used an ROC curve to demonstrate the remark-
ably improved performance of modSaRa2 versus modSaRa. Finally,
we applied modSaRa2 to whole genome microarray data of cutane-
ous melanoma, where modSaRa2 detected CNVs with higher sensi-
tivity and comparable precision than PennCNV. In combination,
these results established the improved accuracy of modSaRa2 over
other state-of-the-art approaches, as well as the stability under vari-
ous conditions.

modSaRa2 is the first attempt to use change point searching
method in a comprehensive framework by fully utilizing genetic
intensities and empirical statistics of the intensities. It uses the em-
pirical values from the Illumina platform generated data and allows
customized usage by inputting empirical statistics of other platforms
(e.g. Affymetrix). With the increasing capacity of CNV information
and a rising need to profile CNVs as an essential source of genetic
variation, modSaRaz2 is a flexible approach that has the potential to
be widely used. We are exploring ways to extend the proposed

method to analyze sequencing data. As we know, next generation
sequencing data present different features from array data, including
discrete nature and higher dimensionality, which sets untrivial bar-
riers for the natural extension from methods originally developed
for microarray. With existing sequencing data-based CNV analysis
tools, continuous intensities can be generated after normalization of
read counts and comparison to a reference panel (Jiang et al., 2015;
Magi et al., 2013). Segmentation methods such as CBS are then
applied for breakpoints identification (Jiang et al., 2015). We con-
ducted preliminary studies with these ideas, and it appeared it is
feasible to extend our method to the sequence data, but it is beyond
the scope of this work to present our extension.

We have presented the results of applying modSaRa2 to whole
genome germline CNV calling and the association with melanoma
risk. Among the top associations is the discovery of 1p22.2 region
overlapping with LRRC8C that was previously found in a region
containing a novel susceptibility gene for cutaneous melanoma by
linkage analysis (Gillanders ez al., 2003). Moreover, deletion map-
ping with somatic melanoma tissues or cell lines suggested that a
tumor suppressor gene was contained in this region (Walker ez al.,
2004). Copy number aberration analysis with TCGA samples also
indicated that the deletion of this region was significantly associated
with melanoma tumorigenesis (http:/gdac.broadinstitute.org). In
addition, the amplification of chromosome 6p has been described,
and the chromosome 6925 was found to be frequently altered in di-
verse tumor types including melanoma (Millikin et al., 1991; Santos
et al., 2007). Our above finding indicated the possible roles of dele-
tions on 1p22.2 region and the amplifications on 6p22 and 6q25 in
the origin and tumorigenesis of melanoma, although further valid-
ation studies need to be performed.
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