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Abstract

Motivation: Integration of multiple genetic sources for copy number variation detection (CNV) is a

powerful approach to improve the identification of variants associated with complex traits.

Although it has been shown that the widely used change point based methods can increase statis-

tical power to identify variants, it remains challenging to effectively detect CNVs with weak signals

due to the noisy nature of genotyping intensity data. We previously developed modSaRa, a normal

mean-based model on a screening and ranking algorithm for copy number variation identification

which presented desirable sensitivity with high computational efficiency. To boost statistical power

for the identification of variants, here we present a novel improvement that integrates the relative

allelic intensity with external information from empirical statistics with modeling, which we called

modSaRa2.

Results: Simulation studies illustrated that modSaRa2 markedly improved both sensitivity and spe-

cificity over existing methods for analyzing array-based data. The improvement in weak CNV signal

detection is the most substantial, while it also simultaneously improves stability when CNV size

varies. The application of the new method to a whole genome melanoma dataset identified novel

candidate melanoma risk associated deletions on chromosome bands 1p22.2 and duplications on

6p22, 6q25 and 19p13 regions, which may facilitate the understanding of the possible roles of

germline copy number variants in the etiology of melanoma.

Availability and implementation: http://c2s2.yale.edu/software/modSaRa2 or https://github.com/

FeifeiXiaoUSC/modSaRa2.

Contact: xiaof@mailbox.sc.edu or heping.zhang@yale.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Copy number variations (CNVs) are deletions (<2) or duplications

(>2) in DNA copies at a specific chromosomal location in the gen-

ome. According to their origin, CNVs are usually classified into two

categories. Germline CNVs refer to inherited variants, often existing

as polymorphisms at the population level and may explain part of

the ‘missing heritability’ (Maher, 2008). Copy number aberrations

in somatic cells, referred to as somatic CNVs, have also been investi-

gated to understand the non-inherited component of diseases, espe-

cially in tumorigenesis (Qiu et al., 2017). Up until now, studies have

provided evidence to support the unique roles of CNVs in the eti-

ology of many diseases such as cancer (Chen et al., 2013a,b;
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Kumaran et al., 2017; Lin et al., 2011), autoimmune (Li et al., 2017;

Marshall et al., 2017) and neurological diseases (Hou et al., 2013;

Stuart et al., 2012). For example, copy number gain of beta-defensin

genes has been revealed to be associated with increased risk of psor-

iasis in three cohorts of European origin (Barnes et al., 2008; Hollox

et al., 2008; Stuart et al., 2012). Also, the deletions of complement

4a and 4b have been found to increase risk for autoimmune diseases

(Li et al., 2017).

Although numerous statistical approaches have been developed

for different platforms (e.g. SNP array, exome sequencing), it

remains persistently difficult to accurately identify CNVs. One com-

plication is the irregularity of CNV occurrence since they do not

occur in the same location across individuals. Another complication

is the existence of random noise in the data, which easily leads to in-

valid CNV calling. Also, different genotyping platforms do not share

methods due to their technological complications. Well-developed

array-based CNV analytical tools are usually based on segmentation

and smoothing of Log R Ratio (LRR) and B-allele frequency (BAF),

which integrate evidence for copy number status (Wang et al.,

2007). LRR measures the normalized total intensity of the possible

alleles for a given marker, from which the magnitude of mean

change, referred to as jump size, are used for inference of break-

points. The larger the jump size, the more likely the existence of

CNV. BAF is the normalized measure of relative signal intensity

ratio of one of the possible alleles, a variation of which from

expected signals for a diploid region reflects the underlying copy

number states. Some existing statistical tools for sequencing gener-

ated data have already used the information embedded in BAF in the

segmentation. For example, SomatiCA was proposed to quantify

somatic copy number aberrations by integrating the read counts

sequencing data with the information from BAF (Chen et al.,

2013a,b). PennCNV, based on a Hidden Markov model, is another

widely used method integrating both intensities (Wang et al., 2007).

However, with change-point segmentation methods, the relative al-

lelic intensity information is still underutilized by many statistical

models, and often is integrated in an ad hoc manner.

For change point methods, the main goal is finding multiple

breakpoints in the expansive chromosome, where the length is typic-

ally thousands of SNPs. A previous review (Zhang, 2010) provided

a thorough introduction to the application of change-point models

in CNV detection. Among them, circular binary segmentation (CBS)

is a change-point test applied recursively to determine all of the

breakpoints (Olshen et al., 2004). As a default segmentation algo-

rithm, CBS has been widely implemented into CNV detection soft-

ware and tools such as CNV workshop, SegGene and NEXUS

(Darvishi, 2010; Deng, 2011; Gai et al., 2010). It provides a very

consistent performance although it presents high computational

complexity. A more recent result showed the improved computa-

tional speed; however, the heavy computation still presents obstacles

for its wide application in high dimensional data with large sample

sizes (Venkatraman and Olshen, 2007). Also, issues arise from the

application of these methods to genetic studies such as inflation of

false positives especially when the jump size is small.

To address the issue of computational complexity and other ap-

plication challenges, we previously developed a robust and powerful

method based on a normal mean change-point model, modSaRa,

implemented for analyzing array-based data (Xiao et al., 2015).

With modSaRa, we adopted a local search strategy in the segmenta-

tion which largely increased the computational efficiency. It pro-

vides a user-friendly tool that identifies CNVs across the genome

with optimal sensitivity and specificity. However, inflation of false

positives is still a challenge, especially when the CNV signal is weak.

In this study, we therefore fully utilized the relative allelic inten-

sity, BAF, in the segmentation algorithm to boost the power, along

with integrating external empirical statistics information to efficiently

control the false discovery rate. We then implemented this improved

segmentation algorithm and applied it to the modSaRa2 software, for

the analysis of array-based data. Our simulation studies illustrated the

increased power and well-controlled false discovery rate of

modSaRa2, especially for detecting CNVs with weak signals or large

CNVs. The computational speed is very fast, which is about 9 s for

processing a chromosome with 90 000 markers. We also applied this

new method to a whole genome cutaneous melanoma study to un-

cover the roles of germline CNVs in the etiology of melanoma.

2 Materials and methods

2.1 Overview of modSaRa
First, we will introduce the background of modSaRa, which was

proposed for analyzing microarray data. We start from the screening

and ranking algorithm (SaRa) from the viewpoint of hypothesis test-

ing and in the context of CNV detection. Assume that we have a se-

quence or more specifically, a chromosome, let y ¼ y1; . . . ; ynð ÞT be

the random variables of genetic intensities with n markers (e.g. SNP

marker). For the ith marker, we assume

yi ¼ li þ ei; i ¼ 1; 2; . . . ; n: (1)

l ¼ u1; . . . ;unð ÞT is the underlying mean; the errors ei are i.i.d and

follow Nð0;r2Þ. A change point is a position s such that ls 6¼ lsþ1.

In this model, our goal was to simultaneously make inference on the

existence and location of s’s. Therefore, it can be stated as the hy-

pothesis testing problem of multiple change points:

H0 : l1 ¼ � � � ¼ ln; versus;

H1 : l1 ¼ � � � ¼ lj 6¼ ljþ1 ¼ � � � ¼ lk 6¼ lkþ1

¼ � � � ¼ ln for some j and k:

To test the alternative hypothesis of multiple change points, a lo-

cally defined diagnostic statistic was therefore proposed for screen-

ing the whole sequence as

Dh jð Þ ¼
Ph
l¼1

yjþ1�l�
Ph
l¼1

yjþl

� �,
h

; j ¼ hþ 1;hþ 2; . . . ; n� h; (2)

where h is a fixed integer representing bandwidth. The above func-

tion is simply evaluating the difference between the points on left

side and those on right side of point j, with window size 2h.

Obviously, the magnitude of Dh jð Þ reflects if the point is near or is a

change-point. The advantage of this strategy is its usages of local in-

formation while considering the global sequence. We can consider a

more general form of local diagnostic statistic, which is the weighted

average of y
0
is near the point of interest j,

Dh jð Þ ¼
Xn
i¼1

wi jð Þyi; (3)

where the weight function wi jð Þ ¼ 0 when i� jj j > h. In Equation

(2), we have an equal-weight diagnostic function

wi jð Þ ¼

1

h
1 � h � i� j � 0

�1

h
1 � i� j � h

0 otherwise

:

8>>>><
>>>>:

(4)
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Notice that in the above function, each point had an equal

chance of being a change point.

To address issues arising from the application of SaRa, we fur-

ther proposed a robust and powerful method, modSaRa, as an en-

deavor to detect CNVs with SNP array data (Xiao et al., 2015).

Specifically, we proposed using multiple bandwidths in the screening

and ranking steps to optimize the sensitivity in segmentation, then a

Gaussian mixture model-based clustering strategy to optimize its

specificity by simultaneously removing false positives and clustering

CNV segments. The Expectation-Maximization algorithm

(Dempster et al., 1977) was used in the clustering step by assuming

the segmentation means were following normal distributions. By

simulations, we have illustrated the greater accuracy and computa-

tional speed of the modSaRa over CBS with SNP array data. Details

can be found in the previous method and package paper (Xiao et al.,

2015, 2017). For algorithms involving bandwidths, the value of

bandwidths should be carefully chosen (Niu and Zhang, 2012). In

modSaRa2, we suggest using three different bandwidths with the

choices depending on the applications (for example, 5, 10, 15 for

microarray data).

2.2 Gaussian likelihood copy number estimation
Although we made important progress with modSaRa, our previous

work still had limitations. First, the segmentation algorithm imple-

mented in modSaRa was over-sensitive, resulting in abundant false

positives in the calling results. Second, the performance of the test

can be optimized by taking prior information of the genetic inten-

sities such as empirical statistics from external sources. To address

the above issues, we here have developed a Gaussian likelihood copy

number estimate to efficiently integrate the prior empirical statistics

into the statistical modeling, which efficiently improves the overall

accuracy.

We consider a diallelic locus A on a chromosome with two

alleles, A1 and A2. Consequently, given a normal diploid state when

no duplication or deletion occurs, the genotypes include A1A1,A1A2

and A2A2. When an allele is gained, the genotype can be A1A1A1,

A1A1A2, A1A2A2, A2A2A2 depending on the original genotype and

which allele is duplicated. Naturally, the genotypes will be A1 or A2

when one copy of the alleles is lost. The raw signal intensity values

measured for the A1 and A2 alleles are then subject to a five-step

normalization procedure using the signal intensity of all SNPs. The

procedure produces the normalized intensity values, X1 and X2, for

the two alleles respectively. As a normalized measure of total signal

intensity, the log R Ratio (LRR) value for each SNP is calculated as

LRR ¼ log2(Robserved/Rexpected), where R ¼ X1 þ X2 refers to the

total signal intensity and Rexpected is computed from linear interpol-

ation of canonical genotype clusters (Peiffer et al., 2006). BAF is an-

other dimension of measure representing normalized measure of

relative signal intensity of the minor allele (e.g. A2). The detailed

mathematical definition can be found in previous published litera-

ture (Wang et al., 2007). Briefly, when the segments are normal state

(diploids), the BAF values usually display three clusters at values of

0, 0.5 and 1 with small variance, representing homozygotes of A1 al-

lele (A1A1), heterozygotes (A1A2) and homozygotes of A2 allele

(A2A2), respectively. When deletion occurs, only one allele is left,

hence the BAF means will be 0 and 1, respectively.

To integrate the information from BAF, we first introduce a less

sparse intensity compared to BAF, Lesser Allele Frequency (LAF):

LAF ¼ BAF 8BAF � 0:5
1 � BAF 8BAF > 0:5

:

�
(5)

The above transformation makes the modeling more efficient

since we usually do not need to distinguish certain genotype pairs

such as A1A1A2 or A1A2A2 when on copy is gained. Given a dia-

llelic locus, let Z ¼ Z1; . . . ;Znð ÞT represent the sequence of LAF;

G� ¼ G�
1; . . . ;G

�
nð ÞT denote the genotype of a locus with eight pos-

sible genotypes; S� ¼ S�1; . . . ; S
�
nð ÞT be the copy number state that

needs to be estimated, which includes deletion of double copy

(Del.D), deletion of single copy (Del.S), normal state (Diploids), du-

plication of single copy (Dup.S) and duplication of double copy

(Dup.D). The connection between genotypes and these copy number

states can be found in Supplementary Table S1. Among these states,

two-copy duplications/deletions (Del.D and Dup.D) have relatively

strong CNV signals and therefore can be easily captured, whereas

the single-copy changes (Del.S and Dup.S) are more difficult to

identify.

For the ith locus, we assume both LRR and LAF follow normal

distributions conditional on the genotype, that Yi � N lY ; r
2
Y jG�

i

� �
and Zi � N lZ;r

2
ZjG�

i

� �
. The mean l and variance r2 are unknown

parameters and will be estimated from the external information of

empirical statistics for LRR and LAF, respectively. For the estima-

tion of these parameters, cnvPartition embedded in the Genome

Studio software developed by Illumina (https://www.illumina.com/

documents/products/technotes/technote_cnv_algorithms.pdf), pro-

vides a good summary of all the genotypes and copy number states

with the estimated mean and variance for each state (Supplementary

Table S2). For data generated from the Affymetrix platform, the em-

pirical means are provided in the Affymetrix website, whereas the

variance can be easily estimated from the samples. Owing to the

normalization procedures of the intensities, when both copies are

deleted, the BAF is generated as a random value. As a result, Zi �
Uniform 0; 0:5ð Þ for the copy number state of Del.D. For the locus

i, the likelihood of being each hidden genotype is given by:

LGi
¼ fN YijlY ; rY ;G�

i

� �
fN ZijlZ;rZ;G�

i

� �1�I G�
i ¼DDð Þ

fU ZijlZ; rZ;G�
i

� �I G�
i ¼DDð Þ;

(6)

I G�
i ¼ DDð Þ is the indicator function which equals to one when the

genotype is Del.D. These genotype likelihoods are then summarized

by five composite copy number likelihoods by Lsk ;i ¼P
Gi�sk

LGi
ðk ¼ 1; 2; . . . ; 5Þ with respect to the kth copy number

state, where s ¼ fDel:D; Del:D;Diploid;Dup:S;Dup:Dg represent-

ing the assumed five copy number states.

The preliminary copy number estimate eCNi is therefore defined as

eCNi ¼

P5
k¼1

ðk� 1ÞLsk ;iP
Lsk ;i

: (7)

The expected value of the continuous variable eCN will be inte-

ger values from 0 to 4 reflecting the five copy number states,

respectively.

2.3 CNV detection and post CNV-calling steps
After we obtained the preliminary copy number estimates eCN, the

screening and ranking algorithm with multiple bandwidths was

applied for breakpoints identification. The goal was to identify

regions of the genome where the values of eCN are consistently

higher or lower than two, the expected value of a diploid segment.

Then the procedure of change point identification and copy number

assignments was conducted in a similar manner as in modSaRa

(Supplementary Methods and Results A1). A false discovery rate ap-

proach was used to adjust the P-values for the multiple comparison
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problem (Supplementary Methods A2). For the subset selection of

candidate change points, the threshold of P-values is an important

user-defined parameter in the package. Using high quality CNV calls

from three previous studies as validation sets (Conrad et al., 2010;

International HapMap et al., 2010; McCarroll et al., 2008),

we evaluated the performance of the modSaRa2 package under dif-

ferent P-value thresholds. As a result, we recommended the signifi-

cance level to be 0.01 or 0.05 in applications (Supplementary

Methods and Results A3). By default, the significance level was set

at a more stringent level at 0.01 in the package. Some post CNV

calling quality control steps were also developed for reliable CNV

calling, including an ad hoc procedure for removing false positives

and merging adjacent CNV calls (Supplementary Methods and

Results A4). Supplementary Figure S1 systematically illustrates how

modSaRa2 works.

2.4 Software implementation
In the current modSaRa2, instead of calculating the sequence of em-

pirical values of reverse cumulative distribution value of Dh jð Þ from

a sequencing with no change-points recurrently as in modSaRa, we

calculated once beforehand and repeatedly used it. Consequently,

we reduced computational burden. For example, the computational

time was dramatically saved, which is 8.63 s for a chromosome with

86 694 markers. The above calculation is based on analysis made at

a desktop workstation with an Intel Core i5 CPU 2.6 GHz processor

and 8.0 GB of RAM. The modSaRa package is now publicly avail-

able at: http://c2s2.yale.edu/software/modSaRa2 and https://github.

com/FeifeiXiaoUSC/modSaRa2.

2.5 Numerical simulations
We first simulated data to evaluate the performance of modSaRa2

as compared to the previous version of modSaRa and other state-of-

the-art methods. We used the simulations mimicking the data gener-

ated from Illumina platform. In total, fifty samples or sequences

with 10 000 markers per sequence were generated assuming inde-

pendence of the markers. In each sequence, twenty dispersed and

non-overlapping CNVs were generated, the locations of which were

randomly selected but shared by individuals. To minimixze detec-

tion bias, the distance gap between two adjacent CNVs was more

than 10 markers. For each simulation setting, there were 1000

CNVs or equivalently 2000 change points in total.

We characterized the performance of modSaRa2 in different

scenarios of CNV lengths and states. The CNV lengths vary among

10–50, 50–100 or 100–200 markers. The copy number states

included Dup.S, Dup.D, Del.S and Del.D. For each scenario, the

LRR and BAF intensities were generated from a normal distribution

with the mean (m) and standard deviation (r) as those provided with

the values computed by Illumina (Supplementary Table S2). Let us

take the scenario of Del.S and CNV length of 10–50 as an example.

First, the length of copy number segments for the independent

CNVs was randomly generated from values between 10 and 50.

Then the genomic markers within each CNV region received values

generated from distribution with N (�0.45, 0, 182) for LRR inten-

sities. For Del.S, the genotype can be either A1 or A2, which resulted

in randomly generated values of 0 or 1 with variance setting at 0.03

in BAF values (Supplementary Table S1). For the rest of the same se-

quence with diploids (normal state), the LRRs were generated from

N (0, 0, 182) whereas the BAFs were generated from a mixture of N

(0, 0.032), N (0.5, 0.032) and N (1, 0.032). Similarly, for the other

copy number states with multiple possible genotypes, we randomly

generated the genotype for each location.

We compared the performance of modSaRa2 to existing state-

of-the-art methods, namely, CBS (Venkatraman and Olshen, 2007)

and PennCNV (Wang et al., 2007). We also focused on the

improved sensitivity and specificity as compared the original

method, modSaRa, to demonstrate the characteristics of the new

method.

2.6 Application dataset and quality control steps
To illustrate the proposed method, we further applied modSaRa2 to

a cohort study of melanoma from Gene Environment Association

Studies initiative (GENEVA) that included 3115 participants. The

high-density SNP array data for skin cutaneous melanoma were

released in 2008, details of which have been described previously

(Amos et al., 2011). The raw data were processed by Illumina’s gen-

otyping module v1.94 in the GenomeStudio (v2.0.2) to calculate

probe intensities including LRR and BAF. Samples with a standard

deviation of LRR on chromosome 1 less than 0.25 were high quality

intensity data for CNV analysis and therefore retained. Missing

data, presence of more homozygous genotypes or departure from

Hardy Weinberg Equilibrium (HWE) in samples can be possibly

caused by duplications or deletions on chromosomal segments.

Thus, typical quality control (QC) procedures in genotyping based

on HWE deviation or low call rate of SNPs for CNV analysis were

not employed in this study. QC filters in this study only included ex-

clusion of duplicates or relatives based on pairwise identity by des-

cent calculation (IBD > 0.95). For those pairs of duplicates, samples

with relatively higher call rate were retained.

2.7 CNV calling and association with melanoma risk
After intensities pre-processing step of GC model adjustment by

PennCNV, modSaRa2 was applied in CNV calling. After obtaining

the generated raw CNVs, we merged adjacent CNVs with distance

less than ten markers. CNV quality control filters included retaining

samples with a total number of CNVs < 1000; CNVs with length >

10 markers, > 10 kb and < 1 Mb. NCBI build 36 (hg18) was used

for finding overlapping genes for CNV calls. The identified CNVs

were mapped to 1000 Genome Project phase 3 which curated infor-

mation about 60 000 structural variations captured at the popula-

tion level (Sudmant et al., 2015), and the database for human CNV

map (Zarrei et al., 2015) to ascertain CNV calls on 935 medically

relevant genes.

After CNV calling, a gene-based association strategy was applied

to investigate the contribution of CNVs to melanoma risk suscepti-

bility. The association of the CNVs in each gene with melanoma

risk was evaluated using logistic regression log it P Y ¼ 1ð Þð Þ ¼
b0 þ b1Idel þ b2Idup þ b3Ageþ b4Gender. Effects from deletions

and duplications were tested separately; gender and age were

adjusted as covariates. Permutation based adjustment was per-

formed so that 10 000 replicates in each test were generated to ad-

just the nominal P-values.

3 Results

3.1 Performance assessment via simulations
We assessed the performance of modSaRa2 in different scenarios

and compared it to modSaRa and two other conventional methods,

PennCNV and CBS (Table 1 and Fig. 1). Table 1 provides an overall

comparison for all simulation scenarios with different CNV sizes

and copy number states. The Receive Operating Characteristic

(ROC) curve in Figure 1 explicitly compared these methods in

detecting weak signals at various threshold setting (Dup.S). Overall,
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all four tests increased power when the jump sizes increased. For

gain/loss of two copies (Del.D and Dup.D), all methods detected al-

most all breakpoints accurately. The major differences were in

detecting weak signals (Del.S and Dup.S) that modSaRa2 easily

achieved a high level of true positive rate (TPR) while controlling

the type I error very well (Fig. 1), details of which are illustrated

below.

First, we demonstrated the increased sensitivity and specificity of

modSaRa2 compared to the modSaRa in detecting weak signals

(Dup.S). At a comparable or higher TPR, modSaRa2 identified

much fewer false positives (FPs) than modSaRa. For short CNVs

with (length 10–50), with a higher TPR at around 0.99, modSaRa2

detected fewer FPs than modSaRa (0 versus 12). When the length of

CNV segments increase, the number of FPs remained at a low level

for modSaRa2 whereas the number detected by modSaRa increased.

A receiver operating characteristic (ROC) curve further compared

these two methods explicitly (Fig. 1). In summary, modSaRa2 was

improved in specificity compared to the original modSaRa method

for detecting CNVs with weak signals.

To evaluate the performance of change point model-based and

Hidden Markov model-based methods, the second comparison was

between the modSaRa methods (i.e. modSaRa2 and modSaRa) and

PennCNV. Still, there were no differences in detecting loss/gain of

double copies (Del.D and Dup.D) (Table 1). For detection of Dup.S,

modSaRa2 and modSaRa outperformed PennCNV in most scenarios

of weak signals. For detection of Del.S, modSaRa2 outperformed

PennCNV when CNVs were relatively large in length (>50

markers). modSaRa2 showed consistency in performance; however,

PennCNV was less powerful when CNV sizes increased.

Although the comparison of modSaRa and CBS has been thor-

oughly illustrated (Xiao et al., 2015), we compared modSaRa2 and

CBS to be inclusive. In almost all scenarios, modSaRa2 outper-

formed CBS for detection of weak signals (Fig. 1). For detection of

Del.D with small sizes, modSaRa2 achieved higher specificity than

CBS. In conclusion, modSaRa2 showed superior performance in

detecting CNVs, and its accuracy in detecting weak CNV signals

was significantly improved by integrating more external genetic in-

formation. It is worth mentioning that CBS was the slowest algo-

rithm among the four tests in our study.

3.2 Analysis of whole genome data of melanoma cases

and controls
In this study, we identified 354 210 CNVs in autosomes of 2838

samples (see Fig. 2 for study design). Overall, the total number of

deletions was nearly as large as duplications (Supplementary Table

S3). No significant difference was observed in the overall proportion

of CNVs with deletions in cases and controls, 48% versus 46%, re-

spectively. Also, there was no difference in the number or length of

CNVs between cases and controls.

Different CNV calling methods have their strengths and limita-

tions (Kumaran et al., 2017; Sapkota et al., 2016); the CNV break

points called by different algorithms may or may not overlap and

some algorithms tend to call redundant CNVs. Therefore, it was im-

portant to ascertain that the called CNVs were reliable by independ-

ent methods. We therefore considered higher resolution structural

variation data available from the public domain from the 1000

Genomes Project (Phase 3) as a reference (Sudmant et al., 2015).

CNVs were mapped to 1000 Genomes Project data to access concor-

dances for the CNVs identified in this study (Supplementary Table

S4). Of the break points identified by modSaRa2, 28.49% were

mapped to the 1000 Genomes Project, which was slightly higher

than those identified by PennCNV (26.63%). Another comparison

was the empirical true positive rate. We mapped 97.12% of the clus-

tered common copy number region from the 1000 Genomes Project

to the breakpoints called by modSaRa2, which was much higher

Fig. 1. Evaluation of statistical power through simulations. Detailed simulation settings are described under Section 2. Results of scenario of duplication of single

copy (Dup.S) with (A) short CNV sizes (10–50 markers); (B) medium CNV sizes (50–100 markers); (C) long CNV sizes (100–200 markers)

Table 1. Assessment of power and false discovery rate with differ-

ent CNV sizes and jump sizes

modSaRa2 modSaRa PennCNV CBS

CNV

length

CNV

State

TPR #FP TPR #FP TPR #FP TPR #FP

10–50 Del.D 1.0 0 1.0 0 1.0 0 1.0 23

Del.S 0.9990 0 1.0 0 1.0 0 0.9990 3

Dup.S 0.9860 0 0.8890 12 0.9500 0 0.9460 13

Dup.D 1.0 0 1.0 0 1.0 0 1.0 1

50–100 Del.D 1.0 0 1.0 0 1.0 0 1.0 1

Del.S 1.0 0 1.0 0 0.95 100 1.0 0

Dup.S 0.9870 0 0.9755 23 0.9750 50 0.9910 17

Dup.D 1.0 0 1.0 0 1.0 0 1.0 0

100–200 Del.D 1.0 0 1.0 0 1.0 0 1.0 0

Del.S 0.9995 1 0.9995 1 0.9000 100 0.9995 3

Dup.S 0.9910 0 0.9695 51 0.9250 150 0.9865 36

Dup.D 1.0 0 1.0 0 1.0 0 1.0 0

Del.D, deletion of double copy; Del.S, deletion of single copy; Dup.S, du-

plication of single copy; Dup.D, duplication of double copy. The total number

of simulated CNV was 1, 000. Significance level of modSaRa2 was set as the

default value of 0.01. TPR, True positive rate; #FP, Number of false positives.
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than PennCNV (51.09%). This comparison was not ideal as the

results from 1000 Genomes Project cannot be considered as truth,

but it still provides reference about the high sensitivity of

modSaRa2.

Although we identified CNVs in both protein coding and non-

protein coding regions, those overlapping protein coding regions

have higher potential to contribute to variation in the trait (Lee and

Scherer, 2010). Therefore, CNVs overlapping with protein coding

genes were considered for melanoma risk relevance. Coding genes

within the CNVs identified were interrogated for gene-dosage effects

by evaluating the association between copy number status and mel-

anoma status. We identified 133 genes within the deletions signifi-

cantly associated with melanoma (permutation P-value < 0.05). Of

these, 34 genes were overlapping with the 1000 Genomes Project

curated structural variations or human CNV map (Table 2,

Supplementary Table S6). We also identified 161 genes with dupli-

cations that showed significant association with melanoma risk

(Supplementary Table S7), among which 41 were overlapping with

the 1000 Genomes Project data or human CNV map. Among the

significantly associated deletions were gene LRRC8C in 1p22.2

region (chr1: 89 842 228–89 893 620) (OR ¼ 2.11, 95% CI ¼ 1.12–

4.32, adjusted P-values ¼ 2:35 � 10�2, Supplementary Table S6). A

plot of the LRR and BAF indicated that all of these variants were

deletions of single copy (data not shown). The amplification of the

same region was not statistically significant (P-value ¼ 0.35). The

results of duplication highlighted the chromosomal regions on 6p22,

Fig. 2. Overview of the whole genome CNV study. The figure outlines the

study design with brief description of data filters and methods. Summary of

key results of each analysis indicating the sample size and number of CNVs at

various stage of analysis

Table 2. Top significantly associated germline CNVs with melanoma risk (deletions) with mapping to publicly available databases

(P-value < 0.001)

Deletions Duplications

Gene Chr Coordinate Case:Cont OR (95%CI) P.adj OR (95%CI) P.adj Mapping

LIFR 5p13.1 38 510 821–38 631 264 98:18 2.98 (1.84, 5.12) 1.00 � 10�4 0.63 (0.47, 0.86) 4.80 � 10�3 –

ZFYVE9 1p32.3 52 380 353–52 584 946 95:18 2.86 (1.76, 4.91) 1.00 � 10�4 0.52 (0.37, 0.72) 2.00 � 10�4 –

MMRN2 10q23.2 88 685 277–88 707 405 63:11 3.10 (1.69, 6.24) 2.00 � 10�4 0.54 (0.35, 0.83) 3.30 � 10�3 –

ANKRD33B 5p15.2 10 617 434–10 710 928 105:27 2.15 (1.42, 3.38) 5.00 � 10�4 0.91 (0.73, 1.13) 0.39 –

LIFR-AS1 5p13.1 38 592 644–38 644 716 77:17 2.47 (1.49, 4.34) 5.00 � 10�4 0.63 (0.45, 0.89) 7.10 � 10�3 1000g

PL � ND1 3q22.1 130 756 745–130 808 272 54:10 2.93 (1.55, 6.14) 7.00 � 10�4 0.67 (0.42, 1.07) 8.52 � 10�2 –

SNCG 10q23.2 88 708 267–88 712 997 33:2 9.23 (2.79, 57.07) 9.00 � 10�4 0.37 (0.20, 0.66) 3.00 � 10�4 –

MMP15 16q21 56 616 782–56 638 305 69:16 2.37 (1.40, 4.25) 1.30 � 10�3 0.98 (0.68, 1.44) 0.93 –

CLSTN2 3q23 141 136 716–141 769 609 64:14 2.47 (1.42, 4.61) 2.20 � 10�3 0.67 (0.47, 0.94) 1.61 � 10�2 1000g

MARCH11 5p15.1 16 120 473–16 232 897 124:39 1.74 (1.21, 2.54) 2.60 � 10�3 0.74 (0.53, 1.02) 6.85 � 10�2 –

MIR4656 7p22.1 4 794 721–4 794 796 86:21 2.07 (1.30, 3.44) 2.60 � 10�3 0.47 (0.37, 0.59) 1.00 –

HTRA3 4p16.1 8 322 388–8 359 738 32:3 5.79 (2.07, 24.13) 2.80 � 10�3 0.47 (0.26, 0.84) 9.60 � 10�3 –

ITGB5 3q21.2 125 964 484–126 088 834 29:2 7.87 (2.37, 48.76) 2.90 � 10�3 0.63 (0.36, 1.12) 0.13 –

AC131097.3 2q37.3 242 472 186–242 669 546 214:81 1.48 (1.14, 1.94) 3.70 � 10�3 1.31 (0.97, 1.79) 9.11 � 10�2 –

GABRA5 15q12 24 663 365–24 777 103 99:30 1.80 (1.20, 2.77) 5.10 � 10�3 0.63 (0.46, 0.88) 7.00 � 10�3 –

MYO5B 18q21.1 45 603 153–45 975 449 129:44 1.64 (1.16, 2.36) 5.20 � 10�3 1.28 (0.89, 1.85) 0.19 –

CCDC85C 14q32.2 99 047 355–99 140 480 19:1 10.51 (2.17, 189.18) 5.30 � 10�3 0.52 (0.35, 0.78) 1.70 � 10�3 1000g

LYN � 1 8q24.3 143 842 757–143 855 746 22:2 6.14 (1.80, 38.49) 5.60 � 10�3 0.48 (0.22, 1.03) 4.21 � 10�2 –

RNU6-71P 13q13.3 56 245 647–56 723 097 63:16 2.17 (1.28, 3.90) 5.90 � 10�3 0.26 (0.01, 2.73) 6.18 � 10�2 1000g

DENND5BAS1 12p11.21 31 634 123–31 659 552 38:7 2.90 (1.37, 7.12) 7.00 � 10�3 0.51 (0.32, 0.81) 4.00 � 10�3 –

DENND5B 12p11.21 31 426 423–31 635 219 38:7 2.90 (1.37, 7.11) 8.20 � 10�3 0.49 (0.31, 0.79) 1.90 � 10�3 –

NR2F6 19p13.11 17 203 693–17 217 151 31:5 3.39 (1.43, 9.95) 8.60 � 10�3 0.48 (0.24, 0.94) 2.54 � 10�2 –

USHBP1 19p13.11 17 221 848–17 236 544 31:5 3.39 (1.43, 9.95) 8.60 � 10�3 0.45 (0.22, 0.89) 1.66 � 10�2 –

AP5Z1 7p22.1 4 781 787–4 800 552 100:28 1.79 (1.18, 2.79) 9.00 � 10�3 0.48 (0.38, 0.60) 1.00 –

RGS12 4p16.3 3 285 671–3 411 438 37:7 2.89 (1.37, 7.11) 9.00 � 10�3 1.29 (0.77, 2.23) 0.32 1000g

P.adj is the adjusted P-value after 10 000 permutations. chr, chromosome; 1000g, 1000 Genomes Project; CNV map, the curated medically relevant CNVs.

The column of Case, Cont provides the number of CNVs in cases and controls, respectively. To illustrates the risk variants associated with melanoma, we pro-

vided results of variants with OR greater than 1.
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6q25 and 19p13 (Supplementary Table S5). Still, the deletion of any

of these regions was not statistically significant. It was noteworthy

that most of the identified candidate associated CNVs were all rare

variants, with sample proportions ranging from 1% to 2%, which

may partially explain why the discoveries of germline CNVs in can-

cer studies are still not compelling.

4 Discussion

This paper mainly is directed at large-scale CNV detection for

improving specificity of CNVs with moderate jump sizes which

remains the bottleneck for achieving high accuracy in CNV detec-

tion. Massive genome-wide data for associating germline variants

with diseases and traits have been produced in the past few decades,

but the important roles of germline CNVs have not been fully

explored. To date, the majority of germline CNVs that have been

identified for diseases are either rare conferring high penetrance, or

common variants with low penetrance, especially in cancer (Al-

Sukhni et al., 2012; Krepischi et al., 2012; Kuusisto et al., 2013;

Laitinen et al., 2016). To identify statistically significant DNA copy

number changes, proper statistical modeling is critical, especially

when some CNV signals are difficult to capture.

A limitation shared by many compelling CNV detection methods

that have been highlighted by multiple independent benchmarking

studies is the lack of sensitivity and specificity for variants with weak

CNV signals. To meet the widespread demand for improved CNV de-

tection, we developed a new method, modSaRa2, to reduce the tech-

nical noise by integrating more genetic information and external

empirical statistics in statistical modeling. modSaRa2 builds on our

existing method modSaRa with the significant improvement of sensi-

tivity and specificity (Supplementary Figs. S2–S3), thus allowing full-

spectrum CNV detection. modSaRa2 can be applied to profile all

CNVs in multiple platforms of microarray data and has the potential

to be extended to next generation sequencing generated signals.

We thoroughly evaluated modSaRa2 against existing methods.

First, we performed extensive simulations to elucidate how key vari-

ables, such as CNV sizes and jump sizes, influence performance in

detection. We showed that modSaRa2 markedly improved both sen-

sitivity and specificity over existing methods. The improvement for

weak CNV signals was the most substantial, with simultaneously

improved stability when CNV size varied. The newly computed sig-

nal intensity that integrated both LRR and BAF coupled with the

distribution assumption with prior knowledge of the intensities

enhanced the signals from CNVs with small jump sizes. In the se-

cond evaluation, we used an ROC curve to demonstrate the remark-

ably improved performance of modSaRa2 versus modSaRa. Finally,

we applied modSaRa2 to whole genome microarray data of cutane-

ous melanoma, where modSaRa2 detected CNVs with higher sensi-

tivity and comparable precision than PennCNV. In combination,

these results established the improved accuracy of modSaRa2 over

other state-of-the-art approaches, as well as the stability under vari-

ous conditions.

modSaRa2 is the first attempt to use change point searching

method in a comprehensive framework by fully utilizing genetic

intensities and empirical statistics of the intensities. It uses the em-

pirical values from the Illumina platform generated data and allows

customized usage by inputting empirical statistics of other platforms

(e.g. Affymetrix). With the increasing capacity of CNV information

and a rising need to profile CNVs as an essential source of genetic

variation, modSaRa2 is a flexible approach that has the potential to

be widely used. We are exploring ways to extend the proposed

method to analyze sequencing data. As we know, next generation

sequencing data present different features from array data, including

discrete nature and higher dimensionality, which sets untrivial bar-

riers for the natural extension from methods originally developed

for microarray. With existing sequencing data-based CNV analysis

tools, continuous intensities can be generated after normalization of

read counts and comparison to a reference panel (Jiang et al., 2015;

Magi et al., 2013). Segmentation methods such as CBS are then

applied for breakpoints identification (Jiang et al., 2015). We con-

ducted preliminary studies with these ideas, and it appeared it is

feasible to extend our method to the sequence data, but it is beyond

the scope of this work to present our extension.

We have presented the results of applying modSaRa2 to whole

genome germline CNV calling and the association with melanoma

risk. Among the top associations is the discovery of 1p22.2 region

overlapping with LRRC8C that was previously found in a region

containing a novel susceptibility gene for cutaneous melanoma by

linkage analysis (Gillanders et al., 2003). Moreover, deletion map-

ping with somatic melanoma tissues or cell lines suggested that a

tumor suppressor gene was contained in this region (Walker et al.,

2004). Copy number aberration analysis with TCGA samples also

indicated that the deletion of this region was significantly associated

with melanoma tumorigenesis (http://gdac.broadinstitute.org). In

addition, the amplification of chromosome 6p has been described,

and the chromosome 6q25 was found to be frequently altered in di-

verse tumor types including melanoma (Millikin et al., 1991; Santos

et al., 2007). Our above finding indicated the possible roles of dele-

tions on 1p22.2 region and the amplifications on 6p22 and 6q25 in

the origin and tumorigenesis of melanoma, although further valid-

ation studies need to be performed.
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