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Abstract—It is important to track adverse events that occur
due to flu shots as those could pose a serious threat to public
health. Traditional adverse event reporting systems suffer from
poor timeliness and a severe lack of data. In contrast, social
media like Twitter and Facebook have become ubiquitous real-
time social sensors where user states are indicated swiftly and
extensively. However, little work has focused on adverse event
detection using social media because of several challenges that
have not been jointly solved: 1) message sparsity with irrele-
vant topics, 2) the difficulty of labeling health states, and 3)
scalability in parameter optimization. To address these prob-
lems simultaneously, this paper presents a new semi-supervised
multi-instance learning model to detect potential adverse events
reflected by social media, which will facilitate the further clinical
verification and prompt intervention. Specifically, given only user-
level labels, this model interpretably identifies the user’s adverse-
event-indicative messages by employing a multi-instance learning
strategy; unlabeled users’ messages are also utilized to improve
classifier performance by a semi-supervised term. Two models
and corresponding algorithms, namely the non-smooth Semi-
Supervised Multi-instance (nSSM) algorithm and the smooth
Semi-Supervised Multi-instance (sSSM) algorithm, have been
developed to optimize parameters accurately and efficiently.
Experiments on a synthetic dataset and a real Twitter dataset
confirm that our model outperforms other baseline models. Case
studies show interesting interpretable patterns including key
messages, keywords, and several common symptoms found in
adverse-relevant tweets extracted by our methods.

I. INTRODUCTION

A wide range of vaccinations are now available world-
wide such as influenza and hepatitis B, making a significant
contribution to global health. Many people are reached by
vaccination programs; for example, flu vaccination coverage
during the 2014-15 flu season was 47.1 percent of the whole
U.S. population, according to a report released by the CDC1.
However, although it does prevent people from becoming
infected, sometimes vaccination itself can cause adverse re-
actions in large populations, which is now one of the most
significant issues in healthcare. For example, 25.8 percent
of adverse events, including one diagnosed as pneumonia,
were reported from a recent Influenza A (H1N1) vaccination
program in Korea[18]. Severe adverse reactions may even lead
to death. For instance, a woman died of multiorgan failure and
respiratory distress, which is clinically verified to be caused by

1CDC: U.S. Centers for Disease Control and Prevention.
https://www.cdc.gov

a yellow fever vaccination in Spain on October 24, 2004[14].
Therefore, considering the immense influence and potentially
severe consequences of these vaccination adverse reactions,
a system that can promptly and accurately identify adverse
events is imperative (e.g. FDA’s Sentinel Initiative[4]).

Traditionally, adverse events are gathered by reporting sys-
tems where users submit long descriptions with complicated
forms after the victims recover from the adverse reactions.
Here are two major drawbacks to this system: First, only a
few people will actually submit a formal adverse report due
to the complex procedures involved, and second, there is a
serious time delay for the submission of such formal reports
due to administrative processing. For example, the FDA’s2

adverse event reporting system typically only releases data
every three months. In contrast, social media like Twitter
and Facebook, which have rapidly become new information
dissemination platforms, have begun to be used in several ap-
plications in health care[22][19][27] because social media can
capture timely and ubiquitous disease information from social
sensors. These advantages effectively address the drawbacks
in traditional adverse event reporting systems. However, until
now little work has focused on their use for adverse event
detection, despite the immense potential of this approach.

Flu shots adverse event detection suffers from several chal-
lenges. 1. The sparsity of indicative messages. Side-effect
descriptions in the messages regarding flu shots are indicators
of flu shot adverse events. However, these messages are very
sparse, which makes a classifier difficult to catch such message
indicators. According to our dataset of 300 users labeled as
positive, only 7.22% were indicative of adverse reactions. 2.
Cost of labeling health states. Even though it is mandatory
to check message by message in order to label health states,
labeling sufficient users is prohibitively labor-intensive. For
example, a user on average has at least 100 messages every
month, so in order to collect a label set with a modest size of
ten thousand, it is required to check a million messages, which
is difficult to accomplish manually. Considering millions of
users, most of them remain unlabeled. However, little existing
work for health states has typically utilized them to improve
model performance, which leads to a huge information loss.
3. Scalability in parameter optimization. Flu shot adverse

2FDA: U.S. Food and Drug Administration. http://www.fda.gov
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event detection task entails the use of a real-time (or near real-
time) framework and hence computational scalability is criti-
cal. However, this is challenging for several reasons, including
(1) high-dimensional features that characterize thousands of
enriched keywords; (2) the large user sets consisting of large-
scale social networks; and (3) a large message set for each user.
This implies that even a medium dataset with 1,000 keywords
and 10,000 users, each of whom has 100 messages, will yield
1 billion data points, which entails massive storage and time-
consuming computation. As a result, flu shot adverse event
detection requires large-scalable optimization algorithms.

In order to simultaneously address all these technical
problems, we propose a novel semi-supervised multi-instance
learning model. Specifically, given only user-level labels, this
model automatically selects representative messages by a
multi-instance learning strategy which combines user levels
with message levels directly. In the meantime, unlabeled
users’ messages are also utilized to stabilize the decision
boundaries of the classifier and reinforce its generalization
abilities by a semi-supervised term. To handle the challenge
of scalability, we have developed two optimization algorithms
that we have named the non-smooth Semi-Supervised Multi-
instance (nSSM) algorithm and the smooth Semi-Supervised
Multi-instance (sSSM) algorithm based on the Alternating
Direction Method of Multipliers (ADMM)[7] to process large-
scale user and message data in a decentralized fashion.

The main contributions of our research are summarized as
follows:

• Design a framework to address the flu shot ad-
verse event detection problem. A general framework
for detecting adverse events for flu shots on Twitter is
formulated. Some classic models are proved to be special
cases of our generalized model.

• Develop an effective nSSM algorithm based on the
ADMM and a linear search method. The objective
function proposed by the model contains the non-smooth
max function, the nSSM algorithm based on the ADMM
and a linear search method is developed to deal with the
max function directly.

• Propose an efficient sSSM algorithm based on the
ADMM and a smooth approximation approach. The
nSSM algorithm cannot ensure convergence. Therefore,
the efficient sSSM algorithm based on the ADMM and a
smooth approximation approach substitutes a softmax op-
erator for the max function and guarantees convergence.

• Conduct extensive experiments for performance eval-
uations. Experiments on a synthetic dataset and a real
Twitter dataset show that our nSSM and sSSM out-
perform other models. Key parameters of the proposed
model and scalability are explored on the Twitter data.
Furthermore, case studies show interesting keyword pat-
terns and several common symptoms found in adverse-
relevant tweets extracted by our methods.

The rest of the paper is organized as follows. In Section II,
we summarize recent research work related to this paper. In

Section III, we present the problem formulation. In Section
IV, we propose the learning framework and two models.
In Section V, we develop two effective ADMM-based opti-
mization algorithms to solve two optimization problems. In
Section VI, extensive experiments are conducted to validate
the effectiveness of our model. Section VII concludes by
summarizing the whole paper.

II. RELATED WORK

This section introduces the related work in several research
fields.
Multi-instance learning. Multi-instance classifiers are cat-
egorized as either instance-level and bag-level[2]. Instance-
level classifiers score each instance without considering the
characteristic of the whole bag. For example, the image
classification of beaches and non-beaches is determined by
their visual content[2], and Kumar and Raj detected audio
events based on a collection of audio recordings[21]. Bag-level
is more common than instance-level. Dietterich et al. evaluate
drugs as being good if at least one of the three-dimensional
shapes binds well with the target binding site[2][13]. Andrews
et al. gave instance-level and bag-level formulations as a
maximum margin problem in their Support Vector Machines
(SVM) settings[3]. Zhou et al. developed two methods to
discriminate bag labels by graph theories[43]. However, few
of these methods are performed in the social media setting and
on text data types. As an example, Wang et al. utilized formal
reports to detect vaccine adverse events in the multi-instance
learning framework[33].
Semi-supervised learning. This technique has been employed
extensively in the data mining field. The main idea of semi-
supervised learning is to utilize a large number of unlabeled
data to enhance classification ability[9]. Some researchers
have applied it to improve training performance. For exam-
ple, Cheng et al. combined parallel corpora and monolin-
gual corpora to improve a neural machine translation (NMT)
system[11]. Zhang et al. re-evaluated mislabeled data, exploit-
ing the complementarity between audio-visual features[40].
Wang et al. employed the graph-based semi-supervised learn-
ing model to perform object detection and segmentation from
multi-view images[32]. Guillaumin et al. combined image
information with keywords from labeled and unlabeled images
to improve image categorization performance[17]. Others have
applied it to the unsupervised learning or clustering process.
For example, Cohn et al. iterated the clustering process with
user feedback[12] and Wang et al. guided the co-clustering
process with inter-type information and constraints[31]. How-
ever, little work has been done on utilizing social media data
to improve classification ability.
Adverse event surveillance and detection. Previously, much
work attempted to analyze adverse events in traditional adverse
event reporting systems. For example, Cai et al. proposed a
random effects model to test the heterogeneity of reporting
rates across reporting years[8]. Shimabukuro et al. provided
an overview of the Vaccine Adverse Event Reporting Sys-
tem (VAERS) and described strengths and limitations about
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TABLE I
NOTATIONS AND DESCRIPTIONS

Notations Descriptions
Xu The tweet set from user u
Yu The predefined label from user u
K The keyword set
U The user set
U1 The set of labeled users
U2 The set of unlabeled users
β The coefficient vector of the keyword set
β0 The constant intercept

VAERS[29]. Recently, health care topics on social media
have begun to attract considerable attention from researchers.
Some work focuses on flu surveillance. For instance, Lee et
al. conducted a real-time analysis of Twitter data to detect
seasonal flu[20] and Chen et al. inferred the hidden state
of a user from his tweets during flu outbreaks and aggre-
gated state statistics by geographic region[10]. Signorini et al.
tracked public concerns regarding H1N1 flu and measured flu
activities[30], while Lampos et al. monitored the incidence
of flu-like illness in several areas of the United Kingdom
using a Twitter microblogging service[23]. Some work de-
tects sentiments related to vaccinations in social media. For
example, Marcel Salathe and Shashank Khandelwal measured
the spatiotemporal sentiment towards a new vaccine using
public social media data collected over six months[28]. Mitra
et al. identified users who persistently hold pro and anti
attitudes to vaccination on Twitter and analyzed the drivers of
attitudes[26]. Others are drug-related adverse event detection.
For example, Metke et al. evaluated the impact of the text-
processing step on the extraction results[25]. Yomtov and
Gabrilovich proposed a low-cost method to monitor adverse
drug events continuously[38]. White et al. mined adverse drug
events on the Internet user search logs[36]. Freifeld et al.
evaluated the level of concordance between adverse-relevant
tweets and spontaneous reports received by a regulatory
agency[16]. However, to the best of our knowledge, little work
has aimed to detect adverse events caused by flu shots.

III. PROBLEM SETUP

In this section, the problem addressed by this research is
formulated in the Twitter setting.

A. Problem Formulation

Important notations used in this paper are described in Table
I. Suppose a tweet set is denoted as X = {Xu}u∈U , where
a user set is denoted as U and Xu ∈ Znu×|K| stands for the
tweets from user u. K denotes a keyword set that represents
symptom descriptions of flu shots and nu refers to the number
of tweets from user u. Xu,i stands for the ith tweet from user
u. The jth entry of Xu,i, denoted by Xu,i,j , is the count of
the jth keyword in the ith tweet from user u. The user set U
is then divided into two disjoint parts: U = U1∪U2, where U1

and U2 denote the set of labeled users and unlabeled users,
respectively. A labeled user u ∈ U1 has a predefined label

Yu while an unlabeled user does not. Yu ∈ {0, 1} denotes
the health state of user u, Yu = 1 implies that user u is
regarded as a positive (i.e., affected by adverse events) user
while Yu = 0 shows user u is negative. Y = {Yu}u∈U
denotes the health states of all users. X1 = {Xu}u∈U1

and
X2 = {Xu}u∈U2

denote tweet sets of labeled users and
unlabeled users, respectively. Then the problem of flu shots
adverse event detection can be formulated as follows:
Problem Formulation: Given a tweet set X = {Xu}u∈U ,
the goal of the problem is to detect the health state of a user
u ∈ U by learning the mapping f :

f : {Xu,1, Xu,2, · · · , Xu,nu} → Yu (1)

B. Challenges

To address the formulated problem in Equation (1), several
specific challenges remain unsolved: 1) Only a small pro-
portion of tweets indicate adverse events, but it is difficult
to make them stand out. 2) The user set U consists of the
labeled user set U1 and the unlabeled user set U2, so the
utilization of U2 is important because in practice |U1| � |U2|.
3) An optimization algorithm to solve this problem meets
the difficulty of a growing amount of computation as the
user set |U |, the keyword set |K| and the tweet set |X|
increase substantially. Thus in the next two sections, we
propose a novel semi-supervised multi-instance learning model
to address these problems in turn.

IV. SEMI-SUPERVISED MULTI-INSTANCE LEARNING
MODEL

A. Automatic Representative Tweet Selection

We begin by considering how to select representative tweets
automatically for a user. Although user u ∈ U may have a
large number of tweets, only few of them will be relevant
to flu shots. As for positive users, we only need a tweet
indicating abnormal symptoms, but for negative users none of
tweets should imply any abnormal information. In order to dig
positive tweets out, the max rule, a multi-instance learning
strategy, is applied to flu shot adverse event detection task,
provided that every user and their tweets are considered as a
bag and instances, respectively. The max rule means that a bag
(i.e., user) label is judged as positive if at least an instance (i.e.,
tweet) indicates a positive label and negative if none of the
instances are indicative of a positive label. Suppose a logistic
regression model is used to predict the probability of instance
labels, the max rule summarizes the relation between bags and
instances mathematically as follows:

pu = maxi=1,··· ,nu logit(Xu,i;β;β0) (2)

where logit(Xu,i;β;β0) = 1/(1 + exp(−βTXu,i − β0)) is a
logit function[15] which predicts the probability of an instance
label from a input vector Xu,i, pu is a predicted probability of
a positive label for user u, β is a coefficient vector from the
keyword set K, of which each element indicates the weight
of a keyword and β0 is a constant intercept.

The max rule biases for positive users and hence offsets
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the bias induced by the problem of highly imbalanced classes
where the majority of users are labeled as negative, as shown
in empirical results (in Section VI-B). The max rule is also
very resistant to noisy tweet data because the representative
tweets for a user depend on not a single tweet but on all
candidate tweets. For example, suppose 1000 candidate tweets
are posted by a user, the noiseless representative tweet selected
by the max rule prevents the introduction of noise from other
999 tweets.

B. Utilization of Unlabeled Users

In practice, the number of users who have been labeled is
very limited and labeling users is a laborious task. As a result,
|U1| � |U2|, i.e. unlabeled users greatly outnumber labeled
users. Instead of learning with labeled users only, we introduce
unlabeled users based on the following two considerations:
first, while the decision boundary for the logistic regression
varies widely based on the limited labeled users, these extra
unlabeled users restrict the range of the decision boundary
and hence improve its generalization ability; second, the in-
troduction of unlabeled users increases the size of the training
samples and reduces the noise induced by labeled users.
Therefore, we introduce a semi-supervised loss Lu(β;β0) for
an unlabeled user u ∈ U2 as follows:

Lu(β;β0) = −min(log(pu), log(1− pu)) (3)

where pu determined by β and β0 is defined in Equation (2).
The Lu(β;β0) forces pu to approach toward either 0 or 1
so that probabilities pu for all unlabeled users u ∈ U2 are
separable from a clear decision boundary determined by β
and β0.

C. Overall Model

We combine the max rule for multi-instance learning with
unlabeled data for semi-supervised learning to a unified learn-
ing model. The proposed learning model aims to minimize the
empirical risk.

(β∗, β∗0)=arg minβ,β0

∑
u∈U1

Hu(β;β0)

+ν
∑

u∈U2

Lu(β;β0) +Ω(β) (4)

where Hu(β;β0) = −Yu log pu−(1−Yu) log(1−pu) is a log-
loss for user u ∈ U1, Lu(β;β0) is given in Equation (3), Ω(β)
is a regularization term and ν > 0 is a parameter. Ω(β) =
λ‖β‖1 due to the nature of high dimension and high sparsity
of the feature set, the sparsity of β is enforced conventionally
by `1-norm, where λ > 0 is a regularization parameter.

D. Objective Functions and Approximation

In this subsection, two transformations of the original model
are conducted to form two responding models: the non-smooth
Semi-supervised Multi-instance (nSSM) model and the smooth
Semi-supervised Multi-instance (sSSM) model. The nSSM
model is equivalent of the original model; the sSSM model
replaces the non-smooth terms max(·) and min(·) in the
original model with the smooth approximation.

1) the nSSM model: We transform the nSSM model directly
by integrating Equation (2) into Equation (4) and using the fact
that max(log(·)) = log(max(·)).

(β∗,β∗0 )=argminβ,β0
∑

u∈U1

(log(1+exp(maxi=1,···,nu(Xu,iβ + β0)))

− Yumaxi=1,··· ,nu(Xu,iβ + β0) + λ‖β‖1
+ ν

∑
u∈U2

(log(1 + exp(maxi=1,··· ,nu(Xu,iβ + β0)))

−min(maxi=1,··· ,nu(Xu,iβ + β0, 0))) (5)

2) the sSSM model: The max(·) and min(·) in the Equation
(5) are non-smooth, which make the problem non-convex and
parameter optimization difficult. To address this problem, the
sSSM model is proposed below to approximate these non-
smooth terms, which is simply to replace the non-smooth
max(·) and min(·) with smooth softmax operators[6]. Soft-
max operators approximate max(·) and min(·) asymptotically
while preserving the smoothness, which are are formulated as
follows:

maxi=1,··· ,nu(βTXu,i + β0) ≈ (log
∑nu

i=1
eA(βXu,i+β0))/A

−min(log(pu), log(1− pu)) = max(− log(pu),− log(1− pu))

≈ log(e−B log(pu)+e−B log(1−pu))/B

where A > 0 and B > 0 control the approximation degree
of the non-smooth max(·) and min(·). Then the objective
function is approximated from (4) as follows:

(β∗, β∗0) = arg minβ,β0

∑
u∈U1

(−Yu log pu − (1− Yu) log(1− pu))

+ν
∑

u∈U2

log(e−B log(pu)+e−B log(1−pu))/B+λ‖β‖1

s.t. pu = 1/(1 + (
∑nu

i=1
eA(βXu,i+β0))−1/A) (6)

where pu is the probability of a positive label for user u ∈ U
based on the softmax approximation.

E. Relationship to Previous Related Approaches

In this section, we show that several classic methods are
special cases of our model.

1. Generalization of logistic regression. Let nu = 1 for
u ∈ U1 and U2 = ∅. The model then is reduced to a logistic
regression with `1-norm regularization[7]:

(β∗, β∗0)=arg minβ,β0

∑
u∈U
−Yu logpu−(1−Yu)log(1−pu)

+ λ‖β‖1

s.t. pu = logit(Xu;β;β0)

where U is the user set, since U = U1.
2. Generalization of logistic regression combined with

semi-supervised learning. Let nu = 1. The model is then re-
duced to a logistic regression combined with semi-supervised
learning with `1-norm regularization[1].

(β∗, β∗0) = arg minβ
∑

u∈U1

−Yu log pu − (1− Yu) log(1− pu)

− ν
∑

u∈U2

min(log pu, log(1− pu)) + λ‖β‖1

s.t. pu = logit(Xu;β;β0)
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3. Generalization of logistic regression combined with
multi-instance learning. Let U2 = ∅. The model is then
reduced to a logistic regression combined with multi-instance
learning[37].

(β∗, β∗0)=arg minβ
∑

u∈U1

−Yulog pu−(1−Yu)log(1−pu)

+λ‖β‖1

s.t. pu = maxi=1,··· ,nu logit(Xu,i;β;β0)

V. MODEL OPTIMIZATION

In this section, two optimization algorithms based on Al-
ternating Direction Method of Multipliers (ADMM)[7], are
designed to solve the nSSM model and the sSSM model,
respectively.

A. the nSSM Algorithm

Equation (5) remains difficult to solve because the non-
smooth max(·) appears in the objective function. By in-
troducing auxiliary variables S and ε, Equation (5) can be
transformed into the following problem.

β∗ = arg minβ
∑

u∈U1

(log(1 + exp(εu))− Yuεu)

+ν
∑

u∈U2

(log(1 + exp(εu))−min(εu, 0))+λ‖β‖1 (7)

s.t. Su,i = Xu,iβ + β0, εu = maxi=1,··· ,nu(Su,i)

The Alternating Direction Method of Multipliers (ADMM)[7]
is therefore utilized to decompose it into subproblems via the
following Augmented Lagrangian function of Equation (7):

Lρ(β,β0,ε,S,y) = F (ε)+G(β)+yT1(ε−maxS)+yT2(S−Xβ−β0)

+ ρ/2(‖ε−maxS‖22 + ‖S −Xβ − β0‖22)

where ρ > 0 is a penalty parameter, F (ε) =
∑
u∈U1

(log(1 +
exp(εu))−Yuεu) +ν

∑
u∈U2

(log(1 + exp(εu))−min(εu, 0))
and G(β) = λ‖β‖1.

Define scale variables v1 = y1
ρ and v2 = y2

ρ . The nSSM
algorithm is shown in Algorithm 1. Concretely, Lines 9-
14 calculates residuals and Lines 4-8 update each parameter
alternately by solving the sub-problems described below.
1. Update ε.

The auxiliary variable ε is updated as follows:

εk+1 ← arg minε F (ε) + (ρk+1/2)‖ε−maxSk + vk1‖22

which is a logistic regression with an `2-penalty term. A
fast iterative shrinkage-thresholding algorithm (FISTA)[5] is
applied to solve this problem because it converges much faster
than general gradient descent methods.
2. Update (β, β0).

The variables β and β0 are updated as follows:

(βk+1, βk+10 )←arg minβ,β0
G(β)+(ρk+1/2)‖Sk−Xβ−β0+vk2‖22

Updating (β, β0) is a square loss function with `1-
regularization, which is easily solved by FISTA[5].

Algorithm 1 the nSSM Algorithm
Require: X , Y , λ.
Ensure: β, β0

1: Initialize β, β0, ε, S, ρ = 1, r = 0, s = 0, k = 0.
2: repeat
3: Update ρk+1 if necessary.
4: εk+1 ← argminε F (ε) + (ρk+1/2)‖ε−maxSk + vk1‖

2
2.

5: (βk+1, βk+1
0 )← argminβ,β0 G(β)+(ρk+1/2)‖Sk−Xβ−β0+v

k
2‖

2
2.

6: Sk+1 ← argminS ‖ εk+1 −maxS + vk1‖
2
2 + ‖S −Xβk+1 − βk+1

0 +
vk2‖

2
2.

7: vk+1
1 ← vk1 + ρk+1(εk+1 −maxSk+1).

8: vk+1
2 ← vk2 + ρk+1(Sk+1 −Xβk+1 − βk+1

0 ).
9: r1 = ‖εk+1 −maxSk+1‖2.

10: r2 = ‖Sk+1 −Xβk+1 − βk+1
0 ‖2.

11: s1 = ‖ρk+1(maxSk −maxSk+1)‖2.
12: s2 = ‖ρk+1XT (Sk+1 − Sk)‖2.
13: r =

√
r21 + r22 . #Calculate prime residual

14: s =
√
s21 + s22. #Calculate dual residual

15: k = k + 1.
16: until convergence.
17: Output β.

3. Update S.
The auxiliary variable S is updated as follows:

Sk+1←arg minS‖εk+1−maxS+vk1‖22+‖S−Xβk+1−βk+1
0 +vk2‖22

This is the most difficult among all sub-problems because it
contains a non-smooth max function. We propose a linear
search method to solve this problem, which is similar to
updating D in the MREF-II optimization algorithm[41] and
updating Q in the DHML algorithm[42].
4. Update v1, v2.

The Lagrangian multipliers v1, v2 are updated as follows:

vk+1
1 ← vk1 + ρk+1(εk+1 −maxSk+1).

vk+1
2 ← vk2 + ρk+1(Sk+1 −Xβk+1).

B. The sSSM Algorithm

Even though the nSSM algorithm can solve Equation (5),
the nonsmooth terms max(·) and min(·) may slow down the
speed of convergence. This is because the nSSM may oscillate
among nondifferentiable points[46]. Therefore, the alternative
algorithm sSSM is proposed to deal with this challenge and
accelerate convergence.

By introducing an auxiliary variable η, Equation (6) can be
transformed into

(β∗, β∗0) = arg minβ,β0

∑
u∈U1

−Yu log pu − (1− Yu) log(1− pu)

+ν
∑

u∈U2

log(e−B log(pu)+e−Blog(1−pu))/B+λ‖η‖1

s.t. pu=1/(1 + (
∑nu

j=1
eA(βXu,i+β0))−1/A),β − η = 0 (8)

Similar to the non-smooth problem, the ADMM was utilized
to solve this problem. The Augmented Lagrangian of Equation
(8) is:

Lρ(β, β0, η, y) = h(β;β0) + g(η) + yT (β − η) + ρ/2‖β − η‖2

where ρ > 0 is a penalty parameter, h(β;β0) =∑
u∈U1

−Yu log pu − (1 − Yu) log(1 − pu) +

ν
∑
u∈U2

log(e−B log(pu) + e−B log(1−pu))/B and
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g(η) = λ‖η‖1.
Let the scale variable v = y

ρ . The sSSM algorithm is shown
in Algorithm 2. It is proved to converge[7] and contains fewer
and easier sub-problems than the nSSM algorithm. Lines 7-8
calculate the residuals and Lines 4-5 optimize each parameter
alternately.

Algorithm 2 the sSSM Algorithm
Require: X , Y , λ.
Ensure: β, β0

1: Initialize β, β0, η, ρ = 1, r = 0, s = 0, k = 0.
2: repeat
3: Update ρk+1 if necessary.
4: (βk+1, βk+1

0 )← argminβ,β0 h(β; β0) + ρk+1/2‖β − ηk + vk‖2.
5: ηk+1 ← argminη g(η) + ρk+1/2‖βk+1 − η + vk‖2.
6: vk+1 ← vk + ρk+1(βk+1 − ηk+1).
7: r = ‖βk+1 − ηk+1‖2. #Calculate prime residual
8: s = ‖ρ(ηk − ηk+1)‖2. #Calculate dual residual
9: k = k + 1.

10: until convergence.
11: Output β.

1. Update (β, β0).
The parameters β and β0 are updated as follows:

(βk+1, βk+1
0 )← arg minβ,β0

h(β;β0) + ρk+1/2‖β − ηk + vk‖2

This sub-problem is a convex function combined with `2-
penalty, which is easily solved by FISTA.
2. Update η.

The auxiliary variable η is updated as follows:

ηk+1 ← arg minη g(η) + ρk+1/2‖βk+1 − η + vk‖2.

This is a square loss function with a `1-penalty. Fortunately,
it has a closed-form solution which is given by:

ηk+1 = Sλ/ρ(β
k+1 + vk)

where Sκ(a) is a soft thresholding operator:

Sκ(a) = (a− κ)+ − (−a− κ)+

3. Update v.
The Lagrangian multiplier v is updated as follows:

vk+1 ← vk + ρk+1(βk+1 − ηk+1).

VI. EXPERIMENT

In this section, we evaluate the nSSM and sSSM using a
synthetic dataset and a real Twitter dataset. The effectiveness
and the efficiency of the nSSM and the sSSM are assessed
against several existing methods for different amounts of
unlabeled data. All experiments were analyzed in compliance
with the Twitter policies3. They were conducted on a 64-bit
machine with Intel(R) core(TM) processor (i7-6820HQ CPU@
2.70GHZ) and 16.0GB memory.

3https://dev.twitter.com/overview/terms/agreement-and-policy

A. Experimental Setup

1) Synthetic Dataset: The domain-free synthetic dataset
is used to illustrate the effectiveness of the nSSM and the
sSSM. The synthetic dataset consisted of 10, 000 bags which
contained 55, 195 instances. Each bag was composed of at
most 10 instances. These instances were generated either
by N (µ1, I) or N (µ2, I). N (µ1, I) and N (µ2, I) both
denote the multivariate normal distribution with mean and
convariance of a 100-dimensional identity matrix I . However,
their means are different: the mean of N (µ1, I) or µ1 is a
100-dimensional zero vector while that of N (µ2, I) or µ2

is a 100-dimensional vector where every element is 0.3. One
bag was labeled as positive if at least one of its instances was
generated by N (µ2, I). Otherwise, if all its instances were
generated by N (µ1, I), the bag was negative. We kept the
proportion of positive labels as about 20% and hence 8026
bags were negative and the remaining 1974 were positive.
They were evaluated by 5-fold cross validation.

2) Twitter Dataset: The Twitter data in this paper were
retrieved by the following process[34]. First, we queried the
Twitter API to obtain the tweets that were potentially related
to the topic of flu shot by the query consisting of 113
keywords including “flu”, “h1n1” and “vaccine”. A total of
11,993,211,616 tweets for the period between Jan 1, 2011 and
Apr 15, 2015 in the United States were retrieved. Second,
from the retrieved tweet sets, the Twitter users who had
indicated flu vaccination were identified by their tweets using
the LibShortText[39] text filter that was trained on 10,000
positive and another 10,000 negative tweets provided by Lamb
et.al.[22]. The training accuracy of the LibShortText was 92%
by the 3-fold cross validation. The full text representation was
used as the features in LibShortText. Then, we queried the
Twitter API again for those users identified in the second
step to obtain their tweets posted within 60 days since their
vaccination were identified. Finally, this tweet set formed the
Twitter data in this paper, which contained 3,139 users and
their 90,185 tweets in total, including 41,438 tweets from
1,572 labeled users where 566 were positive users and 1,006
were negative. The labels of Twitter users provided by[33]
were annotated by domain experts. They were evaluated by
5-fold cross-validation. The remaining 1,567 users with their
48,847 tweets were unlabeled, which were used together
with our labeled data for model training based on our semi-
supervised strategy.

3) Parameter Settings and Metrics: We considered both the
nSSM and the sSSM for comparison. Two tuning variables ν
and λ are included in two algorithms, which were both set
to 1 based on 5-fold cross validation on the training set. Two
parameters A and B in the sSSM algorithm were both set to
10. In addition, we highlighted the choice of ρ, which denotes
the step size for each iteration. Here we chose three kinds of
ρ: (1) ρk = 1; (2) if rk > 4sk, ρk+1 = 2ρk, if 4rk < sk,
ρk+1 = ρk

2 with ρ0 = 1; (3) ρk+1 = ρk + 2
MAX ITER with

ρ0 = 0 where MAX ITER is the maximal iteration. The
maximal iteration for the nSSM and the sSSM were set to
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2,000 and 20, respectively.
In the experiments, six metrics were utilized to evaluate

model performance: the Accuracy (ACC) is the ratio of accu-
rately labeled users to all users; the Precision (PR) is the ratio
of accurately labeled as positive users to all labeled as positive
users; the Recall (RE) defines the ratio of accurately labeled
as positive users to all positive users; the F-score (FS) is the
harmonic mean of precision and recall; the Receiver Operating
Characteristic (ROC) curve delineates the classification ability
of a model as its discrimination threshold varies; and the
Area Under ROC (AUC) is an important measurement of
classification ability; aside from ROC curve, the Precision
Recall (PR) curve is the other one to measure classification
performance in which recall and precision are listed as the X
axis and the Y axis, respectively; similar to AUC, The Area
Under PR curve (AUPR) evaluates classification performance
of a classifier.

4) Comparison Methods: The following methods were
utilized as baselines for the performance comparison, the first
four of which were multi-instance based learning approaches
and the last one was semi-supervised learning method. All
parameters were set by 5-fold cross-validation on the training
set.

1. Constructive Clustering based Ensemble (CCE) [45].
CCE adapted multi-instance learning problems to single-
instance learning ones. Each instance in the bag first was
clustered into some groups, then a classifier distinguished a
bag from others by group information. Many classifiers were
generated due to different group numbers. The final step was
to ensemble all classifiers together.

2. Multi-instance learning with graph (miGraph)[44]. The
miGraph treated instances in the bags as non-independently
and identically distributed. It constructed the graph in an
implicit manner by considering affinity matrices and defined
a new graph kernel which contained the clique information.

3. Multi-instance Learning based on the Vector of Locally
Aggregated Descriptors representation (miVLAD)[35].
Multiple instances were mapped into a high dimensional
vector by the Vector of Locally Aggregated Descriptors
(VLAD) representation. The SVM was applied to train a
classifier.

4. Multi-instance Learning based on Fisher Vector
representation (miFV)[35]. The miFV was similar to the
miVLAD except that multiple instances were encoded by the
Fisher Vector (FV) representation.

5. WEakly LabeLed Support Vector Machines
(WELLSVM)[24]. WELLSVM is proposed to solve the
problem of weakly labeled data by a label generation strategy.
As a convex relaxation of Mixed-Integer Programming
(MIP) problem, WELLSVM can be solved by a sequence of
subproblems to ensure scalability.

B. Performance

In this section, experimental results for both the nSSM and
the sSSM are analyzed for all the comparison methods.

1) Model Performance on the Synthetic Dataset: The first
part of Table II summarized prediction results of the nSSM and
sSSM compared with other methods on the synthetic dataset.
Six performance metrics (ACC, PR, RE, FS, AUC and AUPR)
were employed to quantify performance. Three choices of ρ
were test: ρ(1), ρ(2) and ρ(3) denote the first, second and
third choice of ρ, respectively.

The result demonstrated that the nSSM and the sSSM
dominated others in the synthetic dataset. Their AUC and
AUPR were around 0.94 and 0.85, respectively, whereas the
AUC and the AUPR of the miFV and the miVLAD were in
the vicinity of 0.78 and 0.56, respectively. The nSSM and
the sSSM were superior to others in ACC, which performed
0.07 better than CCE. When it came to the PR, the nSSM
and the sSSM attained scores 0.18 higher than that of miFV.
As for RE, the scores of the nSSM and the sSSM were
far better than others. This was because the max rule had
a preference for positive bags and hence reduced bias from
imbalanced labels even though positive bags only occupied
20% of the total. Thanks to excellent performance in the PR
and RE metrics, the nSSM and the sSSM scored highly in FS.
The choice of ρ had little effect on the performance of the
nSSM and the sSSM. This fact showed that our nSSM and
sSSM were robust to parameter change. The CCE performed
the best among the comparison methods in every metric. The
performance of the miGraph was unexpected: it suffered from
bias from imbalanced labels and all predictions were negative.
The WELLSVM achieved an inferior performance compared
with four multi-instance learning methods: its ACC was below
0.8 while all four multi-instance learning methods attained
ACCs higher than 0.8.

2) Model Performance on the Twitter Dataset: The second
part of Table II summarized prediction results of the nSSM and
sSSM compared with other methods on the Twitter dataset.
1,567 unlabeled users were used for those semi-supervised
ones including the WELLSVM, the nSSM and the sSSM for
this comparison.

Similar to the performance in the synthetic dataset, the
nSSM and the sSSM performed better than any of the compar-
ison methods. They both exceeded 0.86 and 0.77 in the AUC
and AUPR, respectively, no matter what choice of ρ it was,
while none of the baseline methods attained over 0.841 and
0.757 in the AUC and AUPR, respectively. When it came to
the ACC, the nSSM and the sSSM achieved results that were
about 0.1 higher than the miGraph. This is because the max
rule eliminated most noisy non- representative tweets. They
also performed competitively in the PR metric, surpassing
0.73 while the miVLAD only achieved 0.67. As for the
RE, the performance of the nSSM and the sSSM was about
0.2 better than the CCE. High RE indicated that the max
rule counteracted the class imbalance from the dataset where
the ratio of the negative users to positive ones was 2 : 1.
When compared with the FS metric, their performance was
again competitive, reaching around 0.68, whereas that of the
miGraph was only 0.52. The ACCs of the miVLAD and CCE
were around 0.76 and their AUPRs were close to 0.71, which
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were superior to other baseline methods. The miGraph and the
miVLAD were the worst among all methods: their PRs were
below 0.7 and their AUCs achieved in the vicinity of 0.75.
The performance of the sSSM was similar to the nSSM in six
metrics. This fact showed that the smoothness of the objective
function had an unnoticeable effect on model performance.
Different choices for ρ had a limited effect on the model
performance, implying that the nSSM and the sSSM were
robust to different choices of ρ: all six measurements remained
stable whatever ρ they chose.

Figure 1 showed the ROC and the PR curve of the nSSM,
TABLE II

MODEL PERFORMANCE ON THE SYNTHETIC DATASET AND THE TWITTER
DATASET UNDER SIX METRICS: THE NSSM AND THE SSSM

OUTPERFORMED OTHERS.

Synthetic Dataset
Method ACC PR RE FS AUC AUPR

CCE 0.8408 0.8166 0.2494 0.3818 0.9067 0.6991
miGraph 0.8026 0 0 0 0.5 0

miFV 0.8380 0.6998 0.3179 0.4241 0.7875 0.5666
miVLAD 0.8364 0.6634 0.3458 0.4527 0.7796 0.5563

WELLSVM 0.7823 0.4804 0.2978 0.3125 0.7694 0.4284
nSSM(ρ(1)) 0.9124 0.8383 0.6893 0.7563 0.9442 0.8488
nSSM(ρ(2)) 0.9105 0.8631 0.6510 0.7411 0.9433 0.8471
nSSM(ρ(3)) 0.9125 0.8397 0.6883 0.7562 0.9441 0.8486
sSSM(ρ(1)) 0.9121 0.8610 0.6622 0.7481 0.9449 0.8504
sSSM(ρ(2)) 0.9125 0.8545 0.6718 0.7515 0.9446 0.8496
sSSM(ρ(3)) 0.9127 0.8551 0.6723 0.7521 0.9446 0.8496

Twitter Dataset
Method ACC PR RE FS AUC AUPR

CCE 0.7405 0.7616 0.4124 0.5308 0.8118 0.7136
miGraph 0.7188 0.6779 0.4229 0.5194 0.7415 0.6246

miFV 0.7761 0.7324 0.6010 0.6595 0.8405 0.7564
miVLAD 0.7538 0.6721 0.6217 0.6453 0.7841 0.6806

WELLSVM 0.6985 0.8635 0.1942 0.3111 0.8373 0.7271
nSSM(ρ(1)) 0.8015 0.7813 0.6236 0.6931 0.8804 0.7870
nSSM(ρ(2)) 0.8009 0.7790 0.6234 0.6924 0.8745 0.7827
nSSM(ρ(3)) 0.7977 0.7356 0.6872 0.7098 0.8755 0.7775
sSSM(ρ(1)) 0.7901 0.7497 0.6234 0.6802 0.8699 0.7761
sSSM(ρ(2)) 0.7913 0.7572 0.6200 0.6810 0.8696 0.7755
sSSM(ρ(3)) 0.7939 0.7535 0.6344 0.6876 0.8673 0.7726

the sSSM and baselines. In the ROC curve, the X axis and
the Y axis denote False Positive Rate and True Positive Rate,
respectively. In the PR curve, the X axis and the Y axis denote
Recall and Precision, respectively. Overall, the ROC curve of
the nSSM and the sSSM almost covered baselines in Figure
1(a), which was consistent with Table II. The miFV and the
CCE performed similarly, they both covered the miGrpah and
miVLAD. The similar patterns were displayed in Figure 1(b) :
the nSSM and the sSSM dominated in the PR curve. Different
from ROC curve, the CCE performed competitively compared
with the nSSM and the sSSM in the PR curve: they overlapped
in most regions. The miGraph and the miVLAD still achieved
the worst: they were surrounded by four other methods.

3) r and s for Three Choices of ρ: Four subfigures plotted
on the prime residual r and the dual residual s with three
choices of ρ for the nSSM and the sSSM (Figure 2). As for
the nSSM, in Figure 2(a), ρ=(1) reduced r into less than 10 at
the 50th iteration, while the r of either of two other choices
was higher than 20. The stage-like shape of ρ=(2) indicated
that ρ changed several times during iterations. at the the 2000th
iteration, three choices of ρ all reduced r into less than 3. In
Figure 2(b), things were different from Figure 2(a). s of ρ=(1)

(a) ROC curve (b) PR curve
Fig. 1. The ROC and PR curve of all methods on the Twitter dataset: the
nSSM and the sSSM outperformed others.

(a) nSSM: iteration versus r (b) nSSM: iteration versus s

(c) sSSM: iteration versus r (d) sSSM: iteration versus s
Fig. 2. r and s for the nSSM and the sSSM: different choices of ρ have
different convergence patterns.

was about 50 whereas the other two choices reduced s into
less than 10 at the 500th iteration. ρ=(2) and ρ=(3) balanced
the decline between r and s from the integration of the above
two figures, whereas there was a huge gap between r and s
of ρ=(1) before 500 iterations. When it came to the sSSM,
three choices of ρ performed similarly. In Figure 2(c) and (d),
three curves started where r and s were higher than 8 and
1, respectively, then dropped remarkably near 0 at the 10th
iteration. After some fluctuations they achieved convergence
at the 20th iteration.

4) Scalability analysis: To examine the scalability of the
nSSM and the sSSM, we measured training time of all
methods when varying number of users and keywords. The
training time was calculated by the average of running 20
times.

(a) Scalability on number
of users

(b) Scalability on number
of keywords

Fig. 3. Scalability on number of keywords and users: almost all methods
increased linearly with the number of keywords and users.
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TABLE III
TOP-10 MOST FREQUENT KEYWORDS FOR POSITIVE AND NEGATIVE

TWEETS ON THE TWITTER DATASET IDENTIFIED BY NSSM.
Rank Positive Tweets Negative Tweets

1 headache bad
2 sore feeling
3 sick cold
4 arm cause
5 throat face
6 swollen flu
7 bad shot
8 flu heart
9 shot sick

10 pain cool

Figure 3(a) compared the running time of all methods when
the number of users changed from 100 to 1500. Basically, the
running time of almost all methods except miGraph increased
linearly with the number of users. The miGraph performed
a quadratic-like shape and consumed the most running time.
The miFV and the miVLAD were the most efficient methods
of all: they completed within 30 seconds with 1500 users and
almost overlapped in curves. The CCE and the nSSM were
fast in implementation even though they exhausted twice as
much time as the miFV and the miVLAD. They overlapped
in curves by coincident. When it came to the sSSM, it needed
more time than the miGraph when the number of users was
less than 1, 000. However, the miGraph surpassed the sSSM
with more than 1, 000 users.

To examine the scalability for an increasing number of
keywords, Figure 3(b) showed the running time of all methods
when the number of keywords ranged from 20 to 220. We also
found that running time of all methods increased linearly with
the number of keywords. However, the slopes of all curves
were much smaller than counterparts in Figure 3(a). This
implied that the effect of users on running time was more
obvious than that of keywords. Surprisingly, the running time
of the nSSM and the sSSM remained stable, which implied
that their running time was insensitive to the number of
keywords. Especially, the training time of the sSSM fluctuated
narrowly between 350 seconds and 400 seconds. The miGraph
was the most inefficient method again, which consumed 500
seconds with 220 keywords.

5) Case Studies: We found some interesting keyword
patterns which distinguished positive (i.e., adverse-relevant)
tweets from negative (i.e., adverse-irrelevant) ones. Table
III compared the top-10 most frequent keywords of posi-
tive tweets and negative ones identified by nSSM. Several
symptom-descriptive keywords such as ‘headache’, ‘sore’,
‘arm’ and ‘throat’ demonstrated that positive tweets identified
by our method were indeed adverse-event relevant. They
implied that several common adverse symptoms from flu shots
were headaches, arm pain, and throat pain. For negative tweets,
several keywords such as ‘cool’, ‘feeling’ and ‘cause’ were
general words, which were unrelated to flu shot adverse events.
We also found that several keywords such as ‘flu’,‘shot’ and
‘bad’ appeared both in positive tweets and negative tweets.
This implied that they were not useful for detecting flu shot
adverse events.

To further explore semantic patterns in a deep insight, Table

IV illustrated five symptoms found in adverse-relevant tweets
extracted by nSSM. The first and second column listed symp-
toms and examples of adverse-relevant tweets, respectively.
Keywords were highlighted in bold types. Most of them were
pain in a certain organ, such as arm pain, neck pain and
headache. Arm pain was the most common symptom because
flu shots were put in the arm. Five examples of arm pain
showed that these users suffered from pain for a long time.
Headache, neck pain and throat pain happened sometimes.
The tweet example of fever demonstrated that this user was
seriously affected by side effects from flu shots: he or she
displayed multiple symptoms including throat pain, nose clog
and coughing. Therefore, it is mandatory to detect such serious
adverse events in time to prevent the risk of side effects from
flu shots. TABLE IV
REPRESENTATIVE TWEETS AND SYMPTOMS FOUND IN POSITIVE TWEETS

EXTRACTED BY NSSM.
Symptoms Positive Tweets Extracted by nSSM

arm pain

Flu shot this afternoon = very sore arm this evening
My arm still sore from that flu shot
As soon as I walk in my apartment my arm decides to
remind me I got a flu shot today
I got my flu shot. Hate how it hurts when they give the
shot they do it slow arm hurts like hell. hate doctors and
shots.
How does a simple flu shot immobilize ones left arm? Im
weak as hell... sore

headache

got a flu shot yesterday and here comes a headache.
Oohh this headache... from flu shots?
Flu shot this morn. Now I have a headache. ARGH.

neck pain I got a flu shot. Body aches are real. The back of my neck
is killing me :(

throat pain
Flu shot update: My throat continues to feel tight and
clogged, although not so much that I can’t breathe.
Flu shot dooo Walnut in my throat I cant feel my face.

fever Receive a flu shot several days ago, now my nose is clogged,
my eyes are heavy, my throat is so sore that I can’t talk
and I’m so tired, I can’t stop coughing! small fever.

VII. CONCLUSION

Flu shot adverse surveillance is a crucial problem for health-
care. In contrast to traditional adverse event reporting systems
with a long time delay, social media provide a promising
alternative to detect flu shot adverse events due to timeliness
and comprehensiveness. This paper has presented a semi-
supervised multi-instance learning model that automatically
and effectively addresses noisiness and heterogeneity of the
data. Two optimization problems and their corresponding
algorithms, namely the nSSM and the sSSM, have been
developed to optimized parameters accurately and efficiently.
Experimental results demonstrated that the nSSM and the
sSSM outperformed other baseline models in six metrics. Case
studies showed that our proposed approaches effectively found
keyword patterns and five symptoms described in the adverse-
relevant tweets.
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