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ABSTRACT

Alternating Direction Method of Multipliers (ADMM) has been
used successfully in many conventional machine learning appli-
cations and is considered to be a useful alternative to Stochastic
Gradient Descent (SGD) as a deep learning optimizer. However,
as an emerging domain, several challenges remain, including 1)
The lack of global convergence guarantees, 2) Slow convergence
towards solutions, and 3) Cubic time complexity with regard to
feature dimensions. In this paper, we propose a novel optimization
framework for deep learning via ADMM (dIADMM) to address
these challenges simultaneously. The parameters in each layer are
updated backward and then forward so that the parameter infor-
mation in each layer is exchanged efficiently. The time complexity
is reduced from cubic to quadratic in (latent) feature dimensions
via a dedicated algorithm design for subproblems that enhances
them utilizing iterative quadratic approximations and backtracking.
Finally, we provide the first proof of global convergence for an
ADMM-based method (dIADMM) in a deep neural network prob-
lem under mild conditions. Experiments on benchmark datasets
demonstrated that our proposed dIADMM algorithm outperforms
most of the comparison methods.
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1 INTRODUCTION

Deep learning has been a hot topic in the machine learning com-
munity for the last decade. While conventional machine learning
techniques have limited capacity to process natural data in their
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raw form, deep learning methods are composed of non-linear mod-
ules that can learn multiple levels of representation automatically
[11]. Since deep learning methods are usually applied in large-scale
datasets, such approaches require efficient optimizers to obtain a
feasible solution within realistic time limits.

Stochastic Gradient Descent (SGD) and many of its variants are
popular state-of-the-art methods for training deep learning models
due to their efficiency. However, SGD suffers from many limitations
that prevent its more widespread use: for example, the error signal
diminishes as the gradient is backpropagated (i.e. the gradient van-
ishes); and SGD is sensitive to poor conditioning, which means a
small input can change the gradient dramatically. Recently, the use
of the Alternating Direction Method of Multipliers (ADMM) has
been proposed as an alternative to SGD. ADMM splits a problem
into many subproblems and coordinates them globally to obtain the
solution. It has been demonstrated successfully for many machine
learning applications [3]. The advantages of ADMM are numerous:
it exhibits linear scaling as data is processed in parallel across cores;
it does not require gradient steps and hence avoids gradient van-
ishing problems; it is also immune to poor conditioning [19].

Even though the performance of the ADMM seems promising,
there are still several challenges at must be overcome: 1. The lack
of global convergence guarantees. Despite the fact that many
empirical experiments have shown that ADMM converges in deep
learning applications, the underlying theory governing this conver-
gence behavior remains mysterious. This is because a typical deep
learning problem consists of a combination of linear and nonlinear
mappings, causing optimization problems to be highly nonconvex.
This means that traditional proof techniques cannot be directly ap-
plied. 2. Slow convergence towards solutions. Although ADMM
is a powerful optimization framework that can be applied to large-
scale deep learning applications, it usually converges slowly to
high accuracy, even for simple examples [3]. It is often the case that
ADMM becomes trapped in a modest solution and hence performs
worse than SGD, as the experiment described later in this paper in
Section 5 demonstrates. 3. Cubic time complexity with regard
to feature dimensions. The implementation of the ADMM is very
time-consuming for real-world datasets. Experiments conducted
by Taylor et al. found that ADMM required more than 7000 cores
to train a neural network with just 300 neurons [19]. This com-
putational bottleneck mainly originates from the matrix inversion
required to update the weight parameters. Computing an inverse
matrix needs further subiterations, and its time complexity is ap-
proximately O(n®), where n is a feature dimension [3].

In order to deal with these difficulties simultaneously, in this pa-
per we propose a novel optimization framework for a deep learning
Alternating Direction Method of Multipliers (AIADMM) algorithm.
Specifically, our new dIADMM algorithm updates parameters first
in a backward direction and then forwards. This update approach
propagates parameter information across the whole network and
accelerates the convergence process. It also avoids the operation of



Table 1: Important Notations and Descriptions

Notations Descriptions
L Number of layers.
w; The weight matrix for the I-th layer.
by The intercept vector for the [-th layer.
z] The temporary variable of the linear mapping for the I-th layer.
fi1(z1) The nonlinear activation function for the I-th layer.
aj The output for the [-th layer.
x The input matrix of the neural network.
y The predefined label vector.
R(zr, y) The risk function for the I-th layer.
Q(wy) The regularization term for the I-th layer.
n; The number of neurons for the I-th layer.

matrix inversion using the quadratic approximation and backtrack-
ing techniques, reducing the time complexity from O(n?) to O(n?).
Finally, to the best of our knowledge, we provide the first proof of
the global convergence of the ADMM-based method (dIADMM)
in a deep neural network problem. The assumption conditions are
mild enough for many common loss functions (e.g. cross-entropy
loss and square loss) and activation functions (e.g. rectified linear
unit (ReLU) and leaky ReLU) to satisfy. Our proposed framework
and convergence proof are highly flexible for fully-connected deep
neural networks, as well as being easily extendable to other popu-
lar network architectures such as Convolutional Neural Networks
[10] and Recurrent Neural Networks [13]. Our contributions in this
paper include:

e We present a novel and efficient dIADMM algorithm to han-
dle the fully-connected deep neural network problem. The
new dIADMM updates parameters in a backward-forward
fashion to speed up the convergence process.

e We propose the use of quadratic approximation and back-
tracking techniques to avoid the need for matrix inversion
as well as reducing the computational cost for large scale
datasets. The time complexity of subproblems in dIADMM
is reduced from O(n3) to O(n?).

e We investigate several attractive convergence properties
of dAIADMM. The convergence assumptions are very mild
to ensure that most deep learning applications satisfy our
assumptions. dIADMM is guaranteed to converge to a critical
point globally (i.e., whatever the initialization is) when the
hyperparameter is sufficiently large. We also analyze the
new algorithm’s sublinear convergence rate.

e We conduct experiments on several benchmark datasets to
validate our proposed dIADMM algorithm. The results show
that the proposed dIADMM algorithm performs better than
most existing state-of-the-art algorithms, including SGD and
its variants.

The rest of this paper is organized as follows. In Section 2, we
summarize recent research related to this topic. In Section 3, we
present the new dIADMM algorithm, quadratic approximation, and
the backtracking techniques utilized. In Section 4, we introduce the
main convergence results for the dIADMM algorithm. The results
of extensive experiments conducted to show the convergence, effi-
ciency, and effectiveness of our proposed new dIADMM algorithm

are presented in in Section 5, and Section 6 concludes this paper by
summarizing the research.

2 RELATED WORK

Previous literature related to this research includes optimization
for deep learning models and ADMM for nonconvex problems.
Optimization for deep learning models: The SGD algorithm
and its variants play a dominant role in the research conducted by
deep learning optimization community. The famous back-propagation
algorithm was firstly introduced by Rumelhart et al. to train the
neural network effectively [17]. Since the superior performance
exhibited by AlexNet [10] in 2012, deep learning has attracted a
great deal of researchers’ attention and many new optimizers based
on SGD have been proposed to accelerate the convergence process,

including the use of Polyak momentum [14], as well as research on
the Nesterov momentum and initialization by Sutskever et al. [18].

Adam is the most popular method because it is computationally
efficient and requires little tuning [9]. Other well-known meth-
ods that incorporate adaptive learning rates include AdaGrad [6],
RMSProp [20], and AMSGrad [15]. Recently, the Alternating Direc-
tion Method of Multipliers (ADMM) has become popular with re-
searchers due to its excellent scalability [19]. However, even though
these optimizers perform well in real-world applications, their con-
vergence mechanisms remain mysterious. This is because conver-
gence assumptions are not applicable to deep learning problems,
which often require non-differentiable activation functions such as
the Rectifier linear unit (ReLU).

ADMM for nonconvex problems: The good performance achieved
by ADMM over a range wide of convex problems has attracted the
attention of many researchers, who have now begun to investigate
the behavior of ADMM on nonconvex problems and made signif-
icant advances. For example, Wang et al. proposed an ADMM to
solve multi-convex problems with a convergence guarantee [22],
while Wang et al. presented convergence conditions for a coupled
objective function that is nonconvex and nonsmooth [23]. Chen et
al. discussed the use of ADMM to solve problems with quadratic
coupling terms [4] and Wang et al. studied the convergence behav-
ior of the ADMM for problems with nonlinear equality constraints
[21]. Even though ADMM has been proposed to solve deep learning
applications [7, 19], there remains a lack theoretical convergence
analysis for the application of ADMM to such problems.

3 THE DLADMM ALGORITHM

We present our proposed dIADMM algorithm in this section. Sec-
tion 3.1 formulates the deep neural network problem, Section 3.2
introduces how the dIADMM algorithm works, and the quadratic
approximation and backtracking techniques used to solve the sub-
problems are presented in Section 3.3.

3.1 Problem Formulation

Table 1 lists the important notation utilized in this paper.
Even though there are many variants of formulations for deep neu-
ral networks, a typical neural network is defined by multiple linear
mappings and nonlinear activation functions. A linear mapping for
the [-th layer is composed of a weight matrix W; € R™>*"-1 and an
intercept vector b; € R™, where n; is the number of neurons for
the [-th layer; a nonlinear mapping for the I-th layer is defined by a
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Figure 1: The dIADMM framework overview: update param-
eter backward and then forward.

continuous activation function fj(e). Given an input q;_; € R™-1
from the (I — 1)-th layer, the I-th layer outputs a; = f;(Wja;_ + by).
Obviously, a;_; is nested in a; = fj(e). By introducing an auxiliary
variable zj, the task of training a deep neural network problem is
formulated mathematically as follows:

PROBLEM 1.

. L
mle,bl,zl,al R(ZL;y) + Zl=l QI(VVI)
stzp =Wy +b(l=1,---,L), ay = fi(z))(l=1,--- ,L-1)

In Problem 1, a9 = x € R™ is the input of the deep neural
network where ng is the number of feature dimensions, and y is a
predefined label vector. R(zp; y) is a risk function for the L-th layer,
which is convex, continuous and proper, and Q;(W)) is a regular-
ization term for the I-th layer, which is also convex, continuous,
and proper. Rather than solving Problem 1 directly, we can relax
Problem 1 by adding an £ penalty to address Problem 2 as follows:

PROBLEM 2.
. L
miny, b, z,.q, F(W, b,2,@) = R@zpsy)+ )~ (W)

L-1
+0/2) Yz = Woapg = byl + llag = fiz0)l15)
s.t.zp = Wrarp_1 + bt

where W = {W;}_ b = {b}]_ ,z={z}_,a={a}] ] and
v > 0 is a tuning parameter. Compared with Problem 1, Problem 2
has only a linear constraint z; = Wyay—1 + by and hence is easier
to solve. It is straightforward to show that as v — oo, the solution
of Problem 2 approaches that of Problem 1.

3.2 The dIADMM algorithm

We introduce the dIADMM algorithm to solve Problem 2 in this
section. The traditional ADMM strategy for optimizing parameters
is to start from the first layer and then update parameters in the
following layer sequentially [19]. In this case, the parameters in
the final layer are subject to the parameter update in the first layer.
However, the parameters in the final layer contain important infor-
mation that can be transmitted towards the previous layers to speed
up convergence. To achieve this, we propose our novel dIADMM
framework, as shown in Figure 1. Specifically, the dIADMM algo-
rithm updates parameters in two steps. In the first, the IADMM

begins updating from the L-th (final) layer and moves backward
toward the first layer. The update order of parameters in the same
layer is a; — z; — b; — W;. In the second, the dIADMM re-
verses the update direction, beginning at the first layer and moving
forward toward the L-th (final) layer. The update order of the pa-
rameters in the same layer is W; — b; — z; — a;. The parameter
information for all layers can be exchanged completely by adopting
this update approach.

Now we can present our dIADMM algorithm mathematically.
The augmented Lagrangian function of Problem 2 is shown in the
following form:

Lo(Whzau)=Rezp:y)+ Y 1 QW)+ $(Whzau) (1)

where §(Wb,z,a,u) =(v/2) £ 17 (lzr-Wiars=bi 13+ llag - fiz)I5)+

T 2 :
u' (zp — Wrap—1 — br) + (p/2)||lz — Wrar—1 — br)|5, u is a dual
Varialble and p 1> 0is a h@perparameter of1 the (HADMM algo-
— k1 —k
rithm. We denote Wf“, bl+1, E;‘H and E;‘“ as the backward
update of the dIADMM for the I-th layer in the (k + 1)-th iter-
ation , while I/\/lk+l, b;‘“, ZK*1 and af“ are denoted as the for-

ward update of the dIADMM for the I-th layer in the (k + 1)-th

. . —k+1 1 —k+1
iteration. Moreover, we denote Wl+ = {{Wlk}f:% W, }iL:l}’

—k+1 1 Tk+1 _ T
b = (BRI Yt = {{zf}ﬁzi,{z{f“}i:é},
—k+1

i=1’

=k+1 _ k l-1 g=k+1\L-1 k+1 _ k+1y1 L
At = (N1 @S wh = (el W T E
—k+1

k+1 _ k+1y1 L k+1 _ k+141 —k+1\L
bl —{{bi }i:p{bi }i:l+1 2 Z; —{{Z,' }i:I’{Zi }i:l+1}’
—k+1

—k+1yL— —k+1 —k+1
aftl = ({aF ) (@ L LW = Wy b =

i=1’
Tk+1 —k+1 _ (=k+1 = —k+1yL—

{I;i }iL=1’Z +1 _ {Zi+ }iLzl’ak+l — {ai+ }iLzll’Wk+l — {M/ik+l}L
b +1 _ {bll'c+l}lL:1’Zk+1 — {zf?”}{“zl,and ak+1 — {a;chl}lL:fll.Then

the dIADMM algorithm is shown in Algorithm 1. Specifically, Lines

5,6, 10, 11, 14, 15, 17 and 18 solve eight subproblems, namely, Ef“,
— —k+1 —k+1
Z;Hl, +

by L w; o, Wlk“, bf“, z;‘“ and a?‘“, respectively. Lines

21 and 22 update the residual rk*+1 and the dual variable uk+1, re-
spectively.

3.3 The Quadratic Approximation and
Backtracking

The eight subproblems in Algorithm 1 are discussed in detail in

this section. Most can be solved by quadratic approximation and

the backtracking techniques described above, so the operation of
the matrix inversion can be avoided.

—k+1
1. Update g,

The variables E;‘H(l =1,---,L— 1) are updated as follows:
— k1 . e viy SN G ST R Ay B k1 k
ay” «argming Ly(Wyy . by .20 {a; Y. a {ay F . v0)

The subproblem is transformed into the following form after it
is replaced by Equation (1).

—keH . ok TR e kv ok Ik
alJr «—argming, Wy, , by ,zlJ:'l Aai Yo arn {aiJr Faapu) ()

Because a; and Wy, are coupled in ¢(e), in order to solve this

. . —k+1 .
problem, we must compute the inverse matrix of W;,;, which

i=1



Algorithm 1 the dIADMM Algorithm to Solve Problem 2

Require: y,ap = x, p, v.
Ensure: q;(I=1,---,L-1), Wi(I=1,---
1: Initialize k = 0.

2: while Wk+1, bk+1, zk+1, ak+1 not converged do

L), by(l=1,---,L), zj(I=1,---,L).

3: forl=Ltoldo
4: if [ < L then
5: Update akJr1 in Equation (3).
6: Update Zk+1 in Equation (4).
7: Update hl in Equation (6).
8: else
9: Update zk+1 in Equation (5).
10: Update bL in Equation (7).
11: end if
Tkt .
12: Update W in Equation (9).
13:  end for
14: forl=1toLdo
15: Update ‘/Vlk” in Equation (11).
16: if [ < L then
17: Update ka in Equation (12).
18: Update Zk+1 in Equation (14).
19: Update ak+1 in Equation (16).
20: else
21: Update ka in Equation (13).
22: Update Zk+1 in Equation (15).
. rk+l k+1 k+1  k+1 k+1
23: -Wrtart - bpt
24: uk+l uk + pri+t,
25: end if
26:  end for

27 ke—k+1
28: end while
29: Output W, b, z, a.

involves subiterations and is computationally expensive [19]. In
order to handle this challenge we define Q;(ay; ?;CH) as a quadratic
approximation of ¢ at a , which is mathematically reformulated as
follows:
= WL pErl ket 2ke1 K
Ql(al§ = P(Wipr bz ay L u)
TRvETl pEHl g+l gk+1 K k
+ (V k¢) (Wl+1 ’bl+1 ’Zl-:—l ) al-:—l 5 )(al - al )
+||r’<+1 o (a — af)* /2

where Ff *1 5 0 is a parameter vector, o denotes the Hadamard prod-

uct (the elementwise product), and a°? denotes a to the Hadamard
power of b and || e ||; is the 1 norm. V ¢ is the gradient of a; at a;‘.
a

—k+1 Thk+1 _ _
Obviously, Ql(ak k+1) = ¢(Wl++1 ,brq ,zﬁ'll, ;‘:11, k). Rather

than minimizing the original problem in Equation (2), we instead
solve the following problem:

—k+1 1

alJr < argming, Ql(al Tl+ ) 3)
Because @l(al;?;”l) is a quadratic function with respect to a;, the
solution can be obtained by

—k+1 —k+1
a " <—al k¢/ +

given a suitable ?;‘H. Now the main focus is how to choose 7K +1.

Algorithm 2 shows the backtracking algorithm utilized to find a

suitable ?k“ Lines 2-5 implement a while loop until the condi-
k 1 —k+1 _, _ _

tion ¢(Wl:1 ,bryq ,zﬁf,af“, ky < Ql(akJrl +1) is satisfied.

As T;C *1 becomes larger and larger, a;C is close to a¥ and a* sat-

isfies the loop condition, which precludes the possibility of the

infinite loop. The time complexity of Algorithm 2 is O(n?), where
n is the number of features or neurons.

Algorithm 2 The Backtracking Algorithm to update E;‘ +1

—hk+1 _piq
Require: WIJrl briq. zﬁ’l,a;‘:ll,

Ensure: T]lc+1 ;ﬁl

1: Plckuptandﬁ:ak—V kg{)/?

uk, p, some constant 77 > 1.

—k+1 +k+1 _ — —_
: while $(Wp,y, by,12 f:ll, (@Yol B @y L ub) > 0,(BiT) do

2

3 Te1m

4 Beaf- Vaf /1.
5: end while

—k+1

6: Output 7, ™" 1.

7: Output ak — ﬂ

2. Update Ek“

The variables zk *l=1,---,L)are updated as follows:

—kt okt TR —k+1\L  =k+1 Kk
Zl+ HargmanlLP(wl-H’bl-%—l’{z }1 1’zl {Z 1 } =+ 1sal+ s U )
which is equivalent to the following forms: for Z;C“(l =1,---,L—
1),
zk+1 —ar W b —k+1 I+ k 4
1 gmlnzl‘ﬂ l+17 l+1a{z },—19zl {Z }J+1’al u) o (4)
—k+1
and for zZr,

EIEH «— arg mmZLqﬁ(kak {z }1—1 \ZL, ak,uk) +R(zr;y)  (5)

Equation (4) is highly nonconvex because the nonlinear activa-
tion function f(z;) is contained in ¢(e). For common activation
functions such as the Rectified linear unit (ReLU) and leaky ReLU,
Equation (4) has a closed-form solution; for other activation func-
tions like sigmoid and hyperbolic tangent (tanh), a look-up table is
recommended [19].

Equation (5) is a convex problem because ¢(e) and R(e) are con-
vex with regard to zy . Therefore, Equation (5) can be solved by Fast
Iterative Soft-Thresholding Algorithm (FISTA) [1].

—k+1
3. Update b,
The variables E;CH(I =1,---,L) are updated as follows:

—k+1 —k+1 k)

Tk+1 k+1
by (_argmlnblLP(Wl+17{bk}l—1vbl P Yz,

which is equivalent to the following form:

+1 N BETOL gkl 2kt k
bl — argmlnbl¢(Wl+1 {b }t=1’ bl {b }_l+1a * > l+ ’ )

Similarly to the update of Ef *1 we define U;(b;; B) as a quadratic
approximation of ¢(e) at b¥, which is formulated mathematically
as follows [1]:

—k+1 Thk+1 _piq _
Uy(bp:B) = g(Wis1 . brey .2y 1 a1 uk)

—k+1 Thk+1 _ _
+ (V)T (Wi b 202 )by = )
+(B/2)by - b 115
where B > 0is a parameter. Here Bxvforl= 1,---,L—1and

B > pfor [ = L are required for the convergence analysis [1].



Without loss of generality, we set B = v, and solve the subsequent
subproblem as follows:

E;CH « argminy, Ujbv)i=1,---,L-1) 6)
—k+1 . —
by« argmin,, Ur(br;p) 7)

Equation (6) is a convex problem and has a closed-form solution
as follows:

By e B -V =1, L)
I
—k+1
by bk - vy dlp.
4. Update W;CH
The variables Wf“(l =1,---,L) are updated as follows:

—k+1 1, k+1 —k 1 —k 1 k
Wi, Wi Yo br o7 art et

—k+
w; <—argmleLp({W} ,z; A

=1’
which is equivalent to the following form:

Tkt Ky L Trk+ L —kH =kt k
W —argminy, g(W/ . Wy, (W; _1+1,b1 ,1+ hut)

+Q(Wp) )

- —k+1
*1 we define P;(W;; 6, " )
as a quadratic approximation of ¢ at Wlk. The quadratic approxi-
mation is mathematically reformulated as follows [1]:

Due to the same challenge in updating 5?

—k+1 Thk+1 _ _
)_¢(Wl:1’bl k+1 ak+1 k)

I_JI(WBGI 2] 1

—k+1 Thk+1 _ _
(V) Wi by 2zt w - W)
ko2
18 0 (W~ W22

—k+1
where 0, s 0isa parameter vector, which is chosen by the
Algorithm 3. Instead of minimizing the Equation (8), we minimize
the following:

N+ W) )

Equation (9) is convex and hence can be solved exactly. If Q; is
either an ¢; or an {3 regularization term, Equation (9) has a closed-
form solution.

—k+1 . = —k+
Wl+ « arg miny, P;(W}; 0;

Algorithm 3 The Backtracking Algorithm to update W;ﬁl

k+1 -,
Require: Wlﬂlb k” k+1 uk

+1 —k+1
Ensure: 91 Wi

1: Pick upEandZ = Wk - Vwk ¢la.

, p, some constant y > 1.

kH
bl+ ,Z§c+1 k+1’

2 while p({WK}IZL T, {wk+1 u*) > By(T; @) do
3 ae—ay.

4:  Solve Z by Equation (9).

5: end while

6: Output E;CH —a.

—k+1
7: Output W *

=1’

5. Update WlkJrl

The variables Wk+1(l =1,---,L) are updated as follows:

—k+1
w,, {W }L bk+1 K+l k+1 k)

o ket
W™ e argminy; L({W, e P 2 A

=1’

which is equivalent to
kel fert GRENL  pkH ke ok k
W —argminw, d(W G Wi W5 Y b 2 alt)

+Q(Wp) (10)
Slmllarly, we define Pj(Wp; 9k+1) as a quadratic approximation

of ¢ at Wl ' The quadratic approximation is then mathematically
reformulated as follows [1]:

k+1 k+1 1.k+1 kl k+1 k
Py (W5 0,7) = g(W) 21 by 27 g7 u)

T xark+1 nk+1 _k+1 _k+1 Kk Trk+1
+ (Vgknn ) (Wb T ) (W = Wy )

k+1

+ 105+ o (W - ) /2

where Hlk“ > 0 is a parameter vector. Instead of minimizing the
Equation (10), we minimize the following:

WlkJrl «— arg miny;, Pj(Wj; 91k+1) +Q;(W)) (11)

The choice of 9;‘“ is discussed in the supplementary materials!.
6. Update b;‘“

The variables b;‘“(l =1,---,L) are updated as follows:

k+1 k+1 gkl GEHNL k1 okl k
b;"" « argming, L,(W; ", {b; }Fl,bl {b; }_l+1’ 1+1 s ,u)
which is equivalent to the following formulation:

k+1 k+1 gk+ly Lan'ys L1 gk+1 K
b (_argmlnbld)(w {b }l—libl {b }_l+17 1—1°3_1°U )

Uj(b;; B) is defined as the quadratic approximation of ¢ at El as
follows:

Ul(bl,B) — ¢(Wk+1 b;c+11, ;c-%—ll’ ;<+11’ k)
k+1
+V_ k+1¢T(Wk+1 b;c+11, ;c+117a;c+117 k)(b )
+(B/2)||b; - bl ||z‘
where B > 0 is a parameter. We set B=vfor/=1,--- ,L —1and

B = p for | = L, and solve the resulting subproblems as follows:

bF*!  argming, Uy(bysv)(I = 1,-+ L~ 1) (12)
b’f“ «— argming, Ur(br; p) (13)

The solutions to Equations (12) and (13) are as follows:

—k
b <y - Vorag/v(l =1, . L-1)
L

—k+1
b b = Vornd)p
L

7. Update z;”l

The variables zk+1(l =1,---

, L) are updated as follows:

I+l K+ 1 kH I+l —k+1 k1 k
z™ —argming, L,(W;™, bf", {z+}l:1,zl {Z+}_l+1’al+1’ )

which is equivalent to the following forms for z;(I = 1,--- ,L — 1):
K+l : kel pketl ¢ ket —kHN[-1 Kkl k
l+ <—argm1nzl¢(Wl+,ler {z;* }H,zl z:* }_l+1’al+1’ ) (14)
and for zy:
1 1 1 1
z’i* — argming, qﬁ(Wk+ bk+ Az e+ }1 1,zL,aL U ky

+R(zL5y) (15)

! The supplementary materials are available at http://mason.gmu.edu/~lzhao9/
materials/papers/dIADMM_supp.pdf



Solving Equations (14) and (15) proceeds exactly the same as solving
Equations (4) and (5), respectively.
8. Update a;‘“

The variables ak+1(l =1,---,L— 1) are updated as follows:

k+1 kel L k+1 k 1 k —k+l k
al+ «— argming, L,(W, + ,b) g Aa; }l a1, {a; + }_1+1, )
which is equivalent to the following form:
k+ : kH Lk 1 k 1 ¢ k —k+1 k
a/" —argming, g(W;™, by, 21, {a] }l_l,al {a’ }Jﬂ,u )

Oi(ay; k+1) is defined as the quadratic approximation of ¢ at ak +1

as follows

Ql(al’ k+1) _ ¢(Wk+1 bk+l k+1’ ;C+11’ )

+ (V k+1 ¢)T(Wk+1 bk+1 k+1’ ;<+11! uk)(al _ E;C+1)

k+1 k+1)02|| /2

and we can solve the following problem instead:

k+1 k+1
a;" < argming, Qi(ap; ;)

+l7 7 o (ay -

(16)

where 7K*1 > 0is a parameter vector. The solution to Equation
(16) can be obtained by

a;c+ - Ek+1

v_ k 1¢/Tk+1

To choice of an appropriate rl ! is shown in the supplementary

materials!.

4 CONVERGENCE ANALYSIS

In this section, the theoretical convergence of the proposed dIADMM
algorithm is analyzed. Before we formally present the convergence
results of the dIADMM algorithms, Section 4.1 presents necessary
assumptions to guarantee the global convgerence of dIADMM. In
Section 4.2, we prove the global convergence of the dIADMM algo-
rithm.

4.1 Assumptions

AssuMPTION 1 (CLOSED-FORM SOLUTION). There exist activation

functions aj = fi(z;) such that Equations (4) and (14) have closed

ZkH
l+1’bl+1 , k+1)andzk+1 h(Wk+1 bk+1 k+1)’

respectively, where h(e) and h(e) are continuous functions.

form solutionsE;c+1 =h(W

This assumption can be satisfied by commonly used activation
functions such as ReLU and leaky ReLU. For example, for the ReLU
function a; = max(z;, 0), Equation (14) has the following solution:

; k+1 k+1 k+1 k+1
k1 _ {mm(W a; "+ b ,0) z;7 <0

z
1 max((Wk+1 k+1 +bk+1 ;c-%—l)/z, 0) Z;ﬁ-l >0

ASSUMPTION 2 (OBJECTIVE FuncTION). F(W, b, 2, a) is coercive
over the nonempty set G = {(W, b, z,a) : z;, —Wrar—1 — by = 0}.In
other words, F(W, b, z, a) — o0 if(W, b, z, a) € G and ||(W, b, 2, a)|| —
o0, Moreover, R(zj;y) is Lipschitz differentiable with Lipschitz con-
stant H > 0.

The Assumption 2 is mild enough for most common loss func-
tions to satisfy. For example, the cross-entropy and square loss are
Lipschitz differentiable.

4.2 Key Properties

We present the main convergence result of the proposed dIADMM
algorithm in this section. Specifically, as long as Assumptions 1-2
hold, then Properties 1-3 are satisfied, which are important to prove
the global convergence of the proposed dIADMM algorithm. The
proof details are included in the supplementary materials'.

PROPERTY 1 (BOUNDNESS). If p > 2H, then {Wk, bk, P ak, uk}

is bounded, and Lp(Wk, bk, zk, ak, uk) is lower bounded.

Property 1 concludes that all variables and the value of L, have
lower bounds. It is proven under Assumptions 1 and 2, and its proof
can be found in the supplementary materials!.

PROPERTY 2 (SUFFICIENT DESCENT). If p > 2H so that C; =
p/2—H/2—H?/p > 0, then there exists

Cy=min(v/2, cl,{ef“}l l,{9’<+1}“,{-’<+1}“,{ FIYEL) such that
Lo (WK, aF, 2k, ak k) — L (WK*T gk+1 o1 gk+t ket
>0 1(||W§“+1 —WRIE + Wt -

liby T = B2 + 1 =B )
N - a1+ - g
R AR PR b ) (17)

Property 2 depicts the monotonic decrease of the objective value
during iterations. The proof of Property 2 is detailed in the supple-
mentary materials’.

PROPERTY 3 (SUBGRADIENT BOUND). There exist a constant C > 0
andg € AL(Wk+1, pitl gkl a**1) such that

—k+1 —k+1

lgll < CQWET =W gt -5
k+1 —Ek+1” + ”ak+1 _Ek+1|| + ||zk+1 _ Zk”) (18)

Property 3 ensures that the subgradient of the objective function
is bounded by variables. The proof of Property 3 requires Property
1 and the proof is elaborated in the supplementary materials®. Now
the global convergence of the dIADMM algorithm is presented. The
following theorem states that Properties 1-3 are guaranteed.

+ |2

THEOREM 4.1. Foranyp > 2H, if Assumptions 1 and 2 are satisfied,
then Properties 1-3 hold.

Proor. This theorem can be concluded by the proofs in the
supplementary materials!. O

The next theorem presents the global convergence of the IADMM
algorithm.

THEOREM 4.2 (GLoBAL CONVERGENCE). If p > 2H, then for the
variables (W, b, z, a, u) in Problem 2, starting from any(WO, b, 2, a", u%),
it has at least a limit point (W*, b*, z*, a*,u*), and any limit point
(W*, b*, 2%, a*,u") is a critical point of Problem 2. That is, 0 €
0Ly (W, b*, 2", a*,u*). Or equivalently,

zz = Wfaz_l + bz

0 € dwLp(W", b*, 2", a*, u")

0€dxLy(W', b, 2" a",u")

VyLp(W, b, 2", a",u™) =0
VaLp(W b, 2", a%,u") =0



ProOF. Because (Wk, bk, Zk, ak, uk) is bounded, there exists a
subsequence (W%, b%,z%,a%, u®) such that (W*,b%,z%,a%,u%) —
(W*,b*,z",a*,u*) where (W*,b*,z*,a*,u*) is a limit point. By
Properties 1 and 2, Lp(Wk,bk,zk, ak, uk) is non-increasing and

lower bounded and hence converges. By Property 2, we prove that

—k —k+1 —
WS —WE S 0l —bF|l — 0, 351 —ak|| — o, |[wk+1 -

—k+1 —k+1 —
W =0, bR b || — 0, and [|ak*! -2kt > 0,as k —

o0 . Therefore [WK*1 — WK|| = 0, |[b¥*! —=b¥|| — 0, and ||a**1 -
ak || = 0, as k — co. Moreover, from Assumption 1, we know that
Z51 s g2k and 2K 5 25 ask — oo Therefore, zZK™1 — z%. We
infer there exists gk € 6Lp(Wk, bk, z%, ak, u*) such that ||gk | —o0
as k — oo based on Property 3. Specifically, ||g°|| — 0 as s — co.
According to the definition of general subgradient (Defintion 8.3
in [16]), we have 0 € dL,(W*,b*,z*,a*,u*). In other words, the
limit point (W*,b*,z*,a*,u*) is a critical point of L, defined in
Equation (1). O

Theorem 4.2 shows that our dIADMM algorithm converges glob-
ally for sufficiently large p, which is consistent with previous liter-
ature [8, 23]. The next theorem shows that the IADMM converges
globally with a sublinear convergence rate o(1/k).

THEOREM 4.3 (CONVERGENCE RATE). For a sequence
(WK, bk, 25 ak u¥), define ¢, = minosisk(Zlel(HW;H - W;Hg +
W =W 2+ 1 = B2+ 16 =B 2) + SE A -
allly + lla*t = a2 + Iz - 20112 + 120+ = 25 [3), then the
convergence rate of ¢y is o(1/k).

Proor. The proof of this theorem is included in the supplemen-
tary materials'. O

5 EXPERIMENTS

In this section, we evaluate dIADMM algorithm using benchmark
datasets. Effectiveness, efficiency and convergence properties of
dIADMM are compared with state-of-the-art methods. All exper-
iments were conducted on 64-bit Ubuntu16.04 LTS with Intel(R)
Xeon processor and GTX1080Ti GPU.

5.1 Experiment Setup

5.1.1 Dataset. In this experiment, two benchmark datasets were
used for performance evaluation: MNIST [12] and Fashion MNIST
[24]. The MNIST dataset has ten classes of handwritten-digit images,
which was firstly introduced by Lecun et al. in 1998 [12]. It contains
55,000 training samples and 10,000 test samples with 784 features
each, which is provided by the Keras library [5]. Unlike the MNIST
dataset, the Fashion MNIST dataset has ten classes of assortment
images on the website of Zalando, which is EuropeaAZs largest
online fashion platform [24]. The Fashion-MNIST dataset consists
of 60,000 training samples and 10,000 test samples with 784 features
each.

5.1.2  Experiment Settings. We set up a network architecture which
contained two hidden layers with 1, 000 hidden units each. The Rec-
tified linear unit (ReLU) was used for the activation function for
both network structures. The loss function was set as the deter-
ministic cross-entropy loss. v was set to 107°. p was initialized as

107% and was multiplied by 10 every 100 iterations. The number
of iteration was set to 200. In the experiment, one iteration means
one epoch.

5.1.3  Comparison Methods. Since this paper focuses on fully-connected

deep neural networks, SGD and its variants and ADMM are state-
of-the-art methods and hence were served as comparison methods.
For SGD-based methods, the full batch dataset is used for training
models. All parameters were chosen by the accuracy of the training
dataset. The baselines are described as follows:

1. Stochastic Gradient Descent (SGD) [2]. The SGD and its vari-
ants are the most popular deep learning optimizers, whose conver-
gence has been studied extensively in the literature. The learning
rate of SGD was set to 10~ for both the MNIST and Fashion MNIST
datasets.

2. Adaptive gradient algorithm (Adagrad) [6]. Adagrad is an im-
proved version of SGD: rather than fixing the learning rate during
iteration, it adapts the learning rate to the hyperparameter. The
learning rate of Adagrad was set to 1073 for both the MNIST and
Fashion MNIST datasets.

3. Adaptive learning rate method (Adadelta) [25]. As an improved
version of the Adagrad, the Adadelta is proposed to overcome
the sensitivity to hyperparameter selection. The learning rate of
Adadelta was set to 0.1 for both the MNIST and Fashion MNIST
datasets.

4. Adaptive momentum estimation (Adam) [9]. Adam is the most
popular optimization method for deep learning models. It estimates
the first and second momentum in order to correct the biased gra-
dient and thus makes convergence fast. The learning rate of Adam
was set to 1073 for both the MNIST and Fashion MNIST datasets.

5. Alternating Direction Method of Multipliers (ADMM) [19].
ADMM is a powerful convex optimization method because it can
split an objective function into a series of subproblems, which
are coordinated to get global solutions. It is scalable to large-scale
datasets and supports parallel computations. The p of ADMM was
set to 1 for both the MNIST and Fashion MNIST datasets.

5.2 Experimental Results

In this section, experimental results of the dIADMM algorithm are
analyzed against comparison methods.
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Figure 2: Convergence curves of dIADMM algorithm for
MNIST and Fashion MNIST datasets when p = 1: dIADMM
algorithm converged.



1.0 1.0

5,09 0.9
Cos 308
=] ©
2 e
go7 SGD 307
906 +— Adadelta 2 0.6 “ / —=— Adadelta
£ —— Adagrad 2 I —— Adagrad
Sos —— Adam 2Qos f —— Adam
= 04 —+— ADMM 04 ¢ —— ADMM
: —— dIADMM ’ —— dIADMM
0.3 0.31-1F
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Iteration Iteration
(a). Training Accuracy (b).Test Accuracy

Figure 5: Performance of all methods for the Fashion MNIST
dataset: dIADMM algorithm outperformed most of the com-
parsion methods.
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Figure 3: Divergence curves of the dIADMM algorithm for
the MNIST and the Fashion MNIST datasets when p = 107:
dIADMM algorithm diverged.

5.2.1 Convergence. First, we show that our proposed dIADMM al-
gorithm converges when p is sufficiently large and diverges when p
is small for both the MNIST dataset and the Fashion MNIST dataset.

The convergence and divergence of dIADMM algorithm are
shown in Figures 2 and 3 when p = 1 and p = 107 respectively.
In Figures 2(a) and 3(a), the X axis and Y axis denote the number
of iterations and the logarithm of objective value, respectively. In
Figures, 2(b) and 3(b), the X axis and Y axis denote the number of
iterations and the logarithm of the residual, respectively. Figure 2,
both the objective value and the residual decreased monotonically
for the MNIST dataset and the Fashion-MNIST dataset, which vali-
dates our theoretical guarantees in Theorem 4.2. Moreover, Figure
3 illustrates that both the objective value and the residual diverge
when p = 107°. The curves fluctuated drastically on the objective
value. Even though there was a decreasing trend for the residual, it
still fluctuated irregularly and failed to converge.
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Figure 4: Performance of all methods for the MNIST dataset:
dIADMM algorithm outperformed most of the comparison
methods.

5.2.2  Performance. Figure 4 and Figure 5 show the curves of the
training accuracy and test accuracy of our proposed dIADMM al-
gorithm and baselines, respectively. Overall, both the training ac-
curacy and the test accuracy of our proposed dIADMM algorithm
outperformed most baselines for both the MNIST dataset and the
Fashion MNIST dataset. Specifically, the curves of our dIADMM
algorithm soared to 0.8 at the early stage, and then raised steadily to-
wards to 0.9 or more. The curves of the most SGD-related methods,
SGD, Adadelta, and Adagrad, moved more slowly than our pro-

posed dIADMM algorithm. The curves of the ADMM also rocketed
to around 0.8, but decreased slightly later on. Only the state-of-the-

art Adam performed better than dIADMM slightly.

MNIST dataset: From 200 to 1,000 neurons

0 neurons 1 a0 400 600 800 1000
10°° 19025 | 27750 | 3.6615 | 45709 | 57988
100 28778 | 46197 | 63620 | 82563 | 100323
107 22761 | 39745 | 58645 | 7.6656 | 9.9221
107 2.4361 | 43284 | 65651 | 8.7357 | 113736
1072 27912 | 51383 | 7.8249 | 10.0300 | 13.4485

Fashion MNIST dataset: From 200 to 1,000 neurons

» neurons 1 200 400 600 800 1000
10°° 20069 | 2.8694 | 4.0506 | 51438 | 6.7406
107 33445 | 54190 | 7.3785 | 9.0813 | 11.0531
1077 24974 | 43729 | 64257 | 83520 | 100728
103 27108 | 47236 | 7.1507 | 94534 | 123326
102 29577 | 54173 | 82518 | 100945 | 14.3465

Table 2: The relationship between running time per itera-
tion (in second) and the number of neurons for each layer
as well as value of p when the training size was fixed: gener-
ally, the running time increased as the number of neurons
and the value of p became larger.

MNIST dataset: From 11,000 to 55,000 training samples
size

11,000 22,000 33,000 44,000 55,000

p
1070 1.0670 2.0682 3.3089 4.6546 5.7709
1072 2.3981 | 3.9086 | 6.2175 | 7.9188 | 10.2741
1074 2.1290 | 3.7891 | 5.6843 | 7.7625 9.8843
1073 2.1295 4.1939 6.5039 8.8835 11.3368
1072 2.5154 4.9638 7.6606 10.4580 13.4021

Fashion MNIST dataset: From 12,000 to 60,000 training samples
size

12,000 24,000 36,000 48,000 60,000

P
1076 1.2163 2.3376 3.7053 5.1491 6.7298
107° 2.5772 4.3417 6.6681 8.3763 11.0292
1074 2.3216 4.1163 6.2355 8.3819 10.7120
1073 2.3149 4.5250 6.9834 9.5853 12.3232
1072 2.7381 5.3373 8.1585 11.1992 14.2487

Table 3: The relationship between running time per itera-
tion (in second) and the size of training samples as well as
value of p when the number of neurons is fixed: generally,
the running time increased as the training sample and the
value of p became larger.



5.2.3  Scalability Analysis. In this subsection, the relationship be-
tween running time per iteration of our proposed dIADMM algo-
rithm and three potential factors, namely, the value of p, the size
of training samples, and the number of neurons was explored. The
running time was calculated by the average of 200 iterations.

Firstly, when the training size was fixed, the computational result
for the MNIST dataset and Fashion MNIST dataset is shown in Table
2. The number of neurons for each layer ranged from 200 to 1,000,
with an increase of 200 each time. The value of p ranged from 10~°
to 1072, with multiplying by 10 each time. Generally, the running
time increased as the number of neurons and the value of p became
larger. However, there were a few exceptions: for example, when
there were 200 neurons for the MNIST dataset, and p increased
from 107> to 1074, the running time per iteration dropped from
2.8778 seconds to 2.2761 seconds.

Secondly, we fixed the number of neurons for each layer as 1, 000.
The relationship between running time per iteration, the training
size and the value of p is shown in Table 3. The value of p ranged
from 107 to 1072, with multiplying by 10 each time. The training
size of the MNIST dataset ranged from 11, 000 to 55, 000, with an in-
crease of 11, 000 each time. The training size of the Fashion MNIST
dataset ranged from 12, 000 to 60, 000, with an increase of 12,000
each time. Similiar to Table 3, the running time increased generally
as the training sample and the value of p became larger and some
exceptions exist.

6 CONCLUSION AND FUTURE WORK

Alternating Direction Method of Multipliers (ADMM) is a good
alternative to Stochastic gradient descent (SGD) for deep learning
problems. In this paper, we propose a novel deep learning Alter-
nating Direction Method of Multipliers (dIADMM) to address some
previously mentioned challenges. Firstly, the IADMM updates pa-
rameters from backward to forward in order to transmit parameter
information more efficiently. The time complexity is successfully
reduced from O(n?) to O(n?) by iterative quadratic approximations
and backtracking. Finally, the dIADMM is guaranteed to converge
to a critical solution under mild conditions. Experiments on bench-
mark datasets demonstrate that our proposed dIADMM algorithm
outperformed most of the comparison methods.

In the future, we may extend our dIADMM from the fully-connected
neural network to the famous Convolutional Neural Network (CNN)
or Recurrent Neural Network (RNN), because our convergence
guarantee is also applied to them. We also consider other nonlin-
ear activation functions such as sigmoid and hyperbolic tangent
function (tanh).
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