
ADMM for Efficient Deep Learning with Global Convergence
Junxiang Wang, Fuxun Yu, Xiang Chen and Liang Zhao

George Mason University

{jwang40,fyu2,xchen26,lzhao9}@gmu.edu

ABSTRACT
Alternating Direction Method of Multipliers (ADMM) has been

used successfully in many conventional machine learning appli-

cations and is considered to be a useful alternative to Stochastic

Gradient Descent (SGD) as a deep learning optimizer. However,

as an emerging domain, several challenges remain, including 1)

The lack of global convergence guarantees, 2) Slow convergence

towards solutions, and 3) Cubic time complexity with regard to

feature dimensions. In this paper, we propose a novel optimization

framework for deep learning via ADMM (dlADMM) to address

these challenges simultaneously. The parameters in each layer are

updated backward and then forward so that the parameter infor-

mation in each layer is exchanged efficiently. The time complexity

is reduced from cubic to quadratic in (latent) feature dimensions

via a dedicated algorithm design for subproblems that enhances

them utilizing iterative quadratic approximations and backtracking.

Finally, we provide the first proof of global convergence for an

ADMM-based method (dlADMM) in a deep neural network prob-

lem under mild conditions. Experiments on benchmark datasets

demonstrated that our proposed dlADMM algorithm outperforms

most of the comparison methods.

CCS CONCEPTS
•Theory of computation→Nonconvex optimization; •Com-
puting methodologies → Neural networks.

KEYWORDS
Deep Learning, Global Convergence, Alternating Direction Method

of Multipliers

ACM Reference Format:
Junxiang Wang, Fuxun Yu, Xiang Chen and Liang Zhao. 2019. ADMM

for Efficient Deep Learning with Global Convergence. In The 25th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’19),
August 4–8, 2019, Anchorage, AK, USA. ACM, New York, NY, USA, 9 pages.

https://doi.org/10.1145/3292500.3330936

1 INTRODUCTION
Deep learning has been a hot topic in the machine learning com-

munity for the last decade. While conventional machine learning

techniques have limited capacity to process natural data in their

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD ’19, August 4–8, 2019, Anchorage, AK, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6201-6/19/08. . . $15.00

https://doi.org/10.1145/3292500.3330936

raw form, deep learning methods are composed of non-linear mod-

ules that can learn multiple levels of representation automatically

[11]. Since deep learning methods are usually applied in large-scale

datasets, such approaches require efficient optimizers to obtain a

feasible solution within realistic time limits.

Stochastic Gradient Descent (SGD) and many of its variants are

popular state-of-the-art methods for training deep learning models

due to their efficiency. However, SGD suffers from many limitations

that prevent its more widespread use: for example, the error signal

diminishes as the gradient is backpropagated (i.e. the gradient van-

ishes); and SGD is sensitive to poor conditioning, which means a

small input can change the gradient dramatically. Recently, the use

of the Alternating Direction Method of Multipliers (ADMM) has

been proposed as an alternative to SGD. ADMM splits a problem

into many subproblems and coordinates them globally to obtain the

solution. It has been demonstrated successfully for many machine

learning applications [3]. The advantages of ADMM are numerous:

it exhibits linear scaling as data is processed in parallel across cores;

it does not require gradient steps and hence avoids gradient van-

ishing problems; it is also immune to poor conditioning [19].

Even though the performance of the ADMM seems promising,

there are still several challenges at must be overcome: 1. The lack
of global convergence guarantees. Despite the fact that many

empirical experiments have shown that ADMM converges in deep

learning applications, the underlying theory governing this conver-

gence behavior remains mysterious. This is because a typical deep

learning problem consists of a combination of linear and nonlinear

mappings, causing optimization problems to be highly nonconvex.

This means that traditional proof techniques cannot be directly ap-

plied. 2. Slow convergence towards solutions.AlthoughADMM

is a powerful optimization framework that can be applied to large-

scale deep learning applications, it usually converges slowly to

high accuracy, even for simple examples [3]. It is often the case that

ADMM becomes trapped in a modest solution and hence performs

worse than SGD, as the experiment described later in this paper in

Section 5 demonstrates. 3. Cubic time complexity with regard
to feature dimensions. The implementation of the ADMM is very

time-consuming for real-world datasets. Experiments conducted

by Taylor et al. found that ADMM required more than 7000 cores

to train a neural network with just 300 neurons [19]. This com-

putational bottleneck mainly originates from the matrix inversion

required to update the weight parameters. Computing an inverse

matrix needs further subiterations, and its time complexity is ap-

proximately O(n3), where n is a feature dimension [3].

In order to deal with these difficulties simultaneously, in this pa-

per we propose a novel optimization framework for a deep learning

Alternating Direction Method of Multipliers (dlADMM) algorithm.

Specifically, our new dlADMM algorithm updates parameters first

in a backward direction and then forwards. This update approach

propagates parameter information across the whole network and

accelerates the convergence process. It also avoids the operation of

Table 1: Important Notations and Descriptions

Notations Descriptions

L Number of layers.

Wl The weight matrix for the l -th layer.

bl The intercept vector for the l -th layer.

zl The temporary variable of the linear mapping for the l -th layer.

fl (zl) The nonlinear activation function for the l -th layer.

al The output for the l -th layer.

x The input matrix of the neural network.

y The predefined label vector.

R(zL, y) The risk function for the l -th layer.

Ωl (Wl) The regularization term for the l -th layer.

nl The number of neurons for the l -th layer.

matrix inversion using the quadratic approximation and backtrack-

ing techniques, reducing the time complexity from O(n3) to O(n2).
Finally, to the best of our knowledge, we provide the first proof of

the global convergence of the ADMM-based method (dlADMM)

in a deep neural network problem. The assumption conditions are

mild enough for many common loss functions (e.g. cross-entropy

loss and square loss) and activation functions (e.g. rectified linear

unit (ReLU) and leaky ReLU) to satisfy. Our proposed framework

and convergence proof are highly flexible for fully-connected deep

neural networks, as well as being easily extendable to other popu-

lar network architectures such as Convolutional Neural Networks

[10] and Recurrent Neural Networks [13]. Our contributions in this

paper include:

• We present a novel and efficient dlADMM algorithm to han-

dle the fully-connected deep neural network problem. The

new dlADMM updates parameters in a backward-forward

fashion to speed up the convergence process.

• We propose the use of quadratic approximation and back-

tracking techniques to avoid the need for matrix inversion

as well as reducing the computational cost for large scale

datasets. The time complexity of subproblems in dlADMM

is reduced from O(n3) to O(n2).
• We investigate several attractive convergence properties

of dlADMM. The convergence assumptions are very mild

to ensure that most deep learning applications satisfy our

assumptions. dlADMM is guaranteed to converge to a critical

point globally (i.e., whatever the initialization is) when the

hyperparameter is sufficiently large. We also analyze the

new algorithm’s sublinear convergence rate.

• We conduct experiments on several benchmark datasets to

validate our proposed dlADMM algorithm. The results show

that the proposed dlADMM algorithm performs better than

most existing state-of-the-art algorithms, including SGD and

its variants.

The rest of this paper is organized as follows. In Section 2, we

summarize recent research related to this topic. In Section 3, we

present the new dlADMM algorithm, quadratic approximation, and

the backtracking techniques utilized. In Section 4, we introduce the

main convergence results for the dlADMM algorithm. The results

of extensive experiments conducted to show the convergence, effi-

ciency, and effectiveness of our proposed new dlADMM algorithm

are presented in in Section 5, and Section 6 concludes this paper by

summarizing the research.

2 RELATEDWORK
Previous literature related to this research includes optimization

for deep learning models and ADMM for nonconvex problems.

Optimization for deep learning models: The SGD algorithm

and its variants play a dominant role in the research conducted by

deep learning optimization community. The famous back-propagation

algorithm was firstly introduced by Rumelhart et al. to train the

neural network effectively [17]. Since the superior performance

exhibited by AlexNet [10] in 2012, deep learning has attracted a

great deal of researchers’ attention and many new optimizers based

on SGD have been proposed to accelerate the convergence process,

including the use of Polyak momentum [14], as well as research on

the Nesterov momentum and initialization by Sutskever et al. [18].

Adam is the most popular method because it is computationally

efficient and requires little tuning [9]. Other well-known meth-

ods that incorporate adaptive learning rates include AdaGrad [6],

RMSProp [20], and AMSGrad [15]. Recently, the Alternating Direc-

tion Method of Multipliers (ADMM) has become popular with re-

searchers due to its excellent scalability [19]. However, even though

these optimizers perform well in real-world applications, their con-

vergence mechanisms remain mysterious. This is because conver-

gence assumptions are not applicable to deep learning problems,

which often require non-differentiable activation functions such as

the Rectifier linear unit (ReLU).

ADMMfornonconvexproblems: The good performance achieved

by ADMM over a range wide of convex problems has attracted the

attention of many researchers, who have now begun to investigate

the behavior of ADMM on nonconvex problems and made signif-

icant advances. For example, Wang et al. proposed an ADMM to

solve multi-convex problems with a convergence guarantee [22],

while Wang et al. presented convergence conditions for a coupled

objective function that is nonconvex and nonsmooth [23]. Chen et

al. discussed the use of ADMM to solve problems with quadratic

coupling terms [4] and Wang et al. studied the convergence behav-

ior of the ADMM for problems with nonlinear equality constraints

[21]. Even though ADMM has been proposed to solve deep learning

applications [7, 19], there remains a lack theoretical convergence

analysis for the application of ADMM to such problems.

3 THE DLADMM ALGORITHM
We present our proposed dlADMM algorithm in this section. Sec-

tion 3.1 formulates the deep neural network problem, Section 3.2

introduces how the dlADMM algorithm works, and the quadratic

approximation and backtracking techniques used to solve the sub-

problems are presented in Section 3.3.

3.1 Problem Formulation
Table 1 lists the important notation utilized in this paper.

Even though there are many variants of formulations for deep neu-

ral networks, a typical neural network is defined by multiple linear

mappings and nonlinear activation functions. A linear mapping for

the l-th layer is composed of a weight matrixWl ∈ R
nl×nl−1 and an

intercept vector bl ∈ R
nl , where nl is the number of neurons for

the l-th layer; a nonlinear mapping for the l-th layer is defined by a

Figure 1: The dlADMM framework overview: update param-
eter backward and then forward.

continuous activation function fl (•). Given an input al−1 ∈ R
nl−1

from the (l − 1)-th layer, the l-th layer outputs al = fl (Wlal−1 +bl).
Obviously, al−1 is nested in al = fl (•). By introducing an auxiliary

variable zl , the task of training a deep neural network problem is

formulated mathematically as follows:

Problem 1.

minWl ,bl ,zl ,al R(zL ;y) +
∑L

l=1
Ωl (Wl)

s .t .zl =Wlal−1 + bl (l = 1, · · · ,L), al = fl (zl)(l = 1, · · · ,L − 1)

In Problem 1, a0 = x ∈ Rn0
is the input of the deep neural

network where n0 is the number of feature dimensions, and y is a

predefined label vector. R(zL ;y) is a risk function for the L-th layer,

which is convex, continuous and proper, and Ωl (Wl) is a regular-

ization term for the l-th layer, which is also convex, continuous,

and proper. Rather than solving Problem 1 directly, we can relax

Problem 1 by adding an ℓ2 penalty to address Problem 2 as follows:

Problem 2.

minWl ,bl ,zl ,al F (W, b, z,a) = R(zL ;y)+
∑L

l=1
Ωl (Wl)

+ (ν/2)
∑L−1

l=1
(∥zl −Wlal−1 − bl ∥

2

2
+ ∥al − fl (zl)∥

2

2
)

s .t . zL =WLaL−1 + bL

where W = {Wl }
L
l=1, b = {bl }

L
l=1, z = {zl }

L
l=1, a = {al }

L−1
l=1 and

ν > 0 is a tuning parameter. Compared with Problem 1, Problem 2

has only a linear constraint zL =WLaL−1 + bL and hence is easier

to solve. It is straightforward to show that as ν →∞, the solution
of Problem 2 approaches that of Problem 1.

3.2 The dlADMM algorithm
We introduce the dlADMM algorithm to solve Problem 2 in this

section. The traditional ADMM strategy for optimizing parameters

is to start from the first layer and then update parameters in the

following layer sequentially [19]. In this case, the parameters in

the final layer are subject to the parameter update in the first layer.

However, the parameters in the final layer contain important infor-

mation that can be transmitted towards the previous layers to speed

up convergence. To achieve this, we propose our novel dlADMM

framework, as shown in Figure 1. Specifically, the dlADMM algo-

rithm updates parameters in two steps. In the first, the dlADMM

begins updating from the L-th (final) layer and moves backward

toward the first layer. The update order of parameters in the same

layer is al → zl → bl → Wl . In the second, the dlADMM re-

verses the update direction, beginning at the first layer and moving

forward toward the L-th (final) layer. The update order of the pa-

rameters in the same layer isWl → bl → zl → al . The parameter

information for all layers can be exchanged completely by adopting

this update approach.

Now we can present our dlADMM algorithm mathematically.

The augmented Lagrangian function of Problem 2 is shown in the

following form:

Lρ (W,b,z,a,u)= R(zL ;y)+
∑L

l=1
Ωl (Wl)+ ϕ(W,b,z,a,u) (1)

whereϕ(W,b,z,a,u) = (ν/2)
∑L−1
l=1(∥zl−Wlal−1−bl ∥

2

2
+∥al − fl (zl)∥

2

2
)+

uT (zL −WLaL−1 − bL) + (ρ/2)∥zL −WLaL−1 − bL ∥
2

2
, u is a dual

variable and ρ > 0 is a hyperparameter of the dlADMM algo-

rithm. We denote W
k+1
l , b

k+1
l , zk+1l and ak+1l as the backward

update of the dlADMM for the l-th layer in the (k + 1)-th iter-

ation , whileW k+1
l , bk+1l , zk+1l and ak+1l are denoted as the for-

ward update of the dlADMM for the l-th layer in the (k + 1)-th

iteration. Moreover, we denote Wk+1
l = {{W k

i }
l−1
i=1, {W

k+1
i }Li=l },

b
k+1
l = {{bki }

l−1
i=1, {b

k+1
i }Li=l }, z

k+1
l = {{zki }

l−1
i=1, {z

k+1
i }Li=l },

ak+1l = {{aki }
l−1
i=1, {a

k+1
i }L−1i=l },W

k+1
l = {{W k+1

i }li=1, {W
k+1
i }Li=l+1},

bk+1l = {{bk+1i }li=1, {b
k+1
i }Li=l+1}, z

k+1
l = {{zk+1i }li=1, {z

k+1
i }Li=l+1},

ak+1l = {{ak+1i }li=1, {a
k+1
i }L−1i=l+1}, W

k+1
= {W

k+1
i }Li=1, b

k+1
=

{b
k+1
i }Li=1, z

k+1 = {zk+1i }Li=1, a
k+1 = {ak+1i }L−1i=1 ,W

k+1 = {W k+1
i }Li=1,

bk+1 = {bk+1i }Li=1, z
k+1 = {zk+1i }Li=1, and a

k+1 = {ak+1i }L−1i=1 . Then

the dlADMM algorithm is shown in Algorithm 1. Specifically, Lines

5, 6, 10, 11, 14, 15, 17 and 18 solve eight subproblems, namely, ak+1l ,

zk+1l , b
k+1
l ,W

k+1
l ,W k+1

l , bk+1l , zk+1l and ak+1l , respectively. Lines

21 and 22 update the residual rk+1 and the dual variable uk+1, re-
spectively.

3.3 The Quadratic Approximation and
Backtracking

The eight subproblems in Algorithm 1 are discussed in detail in

this section. Most can be solved by quadratic approximation and

the backtracking techniques described above, so the operation of

the matrix inversion can be avoided.

1. Update ak+1l
The variables ak+1l (l = 1, · · · ,L − 1) are updated as follows:

ak+1l ←argminal Lρ (W
k+1
l+1 , b

k+1
l+1 , z

k+1
l+1 , {a

k
i }

l−1
i=1,al , {a

k+1
i }

L−1
i=l+1,u

k)

The subproblem is transformed into the following form after it

is replaced by Equation (1).

ak+1l ←argminalϕ(W
k+1
l+1 , b

k+1
l+1 , z

k+1
l+1 , {a

k
i }

l−1
i=1,al , {a

k+1
i }

L−1
i=l+1,u

k) (2)

Because al andWl+1 are coupled in ϕ(•), in order to solve this

problem, we must compute the inverse matrix of W
k+1
l+1 , which

Algorithm 1 the dlADMM Algorithm to Solve Problem 2

Require: y , a0 = x , ρ , ν .
Ensure: al (l = 1, · · · , L − 1),Wl (l = 1, · · · , L), bl (l = 1, · · · , L), zl (l = 1, · · · , L).
1: Initialize k = 0.

2: while Wk+1, bk+1, zk+1, ak+1 not converged do
3: for l = L to 1 do
4: if l < L then
5: Update ak+1l in Equation (3).

6: Update zk+1l in Equation (4).

7: Update b
k+1
l in Equation (6).

8: else
9: Update zk+1L in Equation (5).

10: Update b
k+1
L in Equation (7).

11: end if
12: UpdateW

k+1
l in Equation (9).

13: end for
14: for l = 1 to L do
15: UpdateW k+1

l in Equation (11).

16: if l < L then
17: Update bk+1l in Equation (12).

18: Update zk+1l in Equation (14).

19: Update ak+1l in Equation (16).

20: else
21: Update bk+1l in Equation (13).

22: Update zk+1L in Equation (15).

23: rk+1 ← zk+1L −W k+1
L ak+1L−1 − b

k+1
L .

24: uk+1 ← uk + ρrk+1 .
25: end if
26: end for
27: k ← k + 1.
28: end while
29: OutputW, b, z, a.

involves subiterations and is computationally expensive [19]. In

order to handle this challenge, we defineQl (al ;τ
k+1
l) as a quadratic

approximation of ϕ at akl , which is mathematically reformulated as

follows:

Ql (al ;τ
k+1
l) = ϕ(Wk+1

l+1 , b
k+1
l+1 , z

k+1
l+1 , a

k+1
l+1 ,u

k)

+ (∇akl
ϕ)T (Wk+1

l+1 , b
k+1
l+1 , z

k+1
l+1 , a

k+1
l+1 ,u

k)(al − a
k
l)

+ ∥τk+1l ◦ (al − a
k
l)
◦2∥1/2

where τk+1l > 0 is a parameter vector, ◦ denotes the Hadamard prod-

uct (the elementwise product), and a◦b denotes a to the Hadamard

power of b and ∥ • ∥1 is the ℓ1 norm. ∇akl
ϕ is the gradient of al at a

k
l .

Obviously, Ql (a
k
l ;τ

k+1
l) = ϕ(Wk+1

l+1 , b
k+1
l+1 , z

k+1
l+1 , a

k+1
l+1 ,u

k). Rather

than minimizing the original problem in Equation (2), we instead

solve the following problem:

ak+1l ← argminal Ql (al ;τ
k+1
l) (3)

Because Ql (al ;τ
k+1
l) is a quadratic function with respect to al , the

solution can be obtained by

ak+1l ← akl − ∇akl
ϕ/τk+1l

given a suitable τk+1l . Now the main focus is how to choose τk+1l .

Algorithm 2 shows the backtracking algorithm utilized to find a

suitable τk+1l . Lines 2-5 implement a while loop until the condi-

tion ϕ(Wk+1
l+1 , b

k+1
l+1 , z

k+1
l+1 , a

k+1
l ,uk) ≤ Ql (a

k+1
l ;τk+1l) is satisfied.

As τk+1l becomes larger and larger, ak+1l is close to akl and akl sat-

isfies the loop condition, which precludes the possibility of the

infinite loop. The time complexity of Algorithm 2 is O(n2), where
n is the number of features or neurons.

Algorithm 2 The Backtracking Algorithm to update ak+1l

Require: Wk+1
l+1 , b

k+1
l+1 , z

k+1
l+1 , a

k+1
l+1 , u

k
, ρ , some constant η > 1.

Ensure: τ k+1l ,ak+1l .

1: Pick up t and β = akl − ∇akl
ϕ/t

2: while ϕ(Wk+1
l+1 , b

k+1
l+1,z

k+1
l+1 , {a

k
i }

l−1
i=1, β, {a

k+1
i }L−1i=l+1, u

k) > Q l (β ; t) do
3: t ← tη .
4: β ← akl − ∇akl

ϕ/t .

5: end while
6: Output τ k+1l ← t .

7: Output ak+1l ← β .

2. Update zk+1l
The variables zk+1l (l = 1, · · · ,L) are updated as follows:

zk+1l ← argminzl Lρ (W
k+1
l+1 , b

k+1
l+1 , {z

k
i }

l−1
i=1, zl , {z

k+1
i }Li=l+1, a

k+1
l ,uk)

which is equivalent to the following forms: for zk+1l (l = 1, · · · ,L −
1),

zk+1l ←argminzlϕ(W
k+1
l+1,b

k+1
l+1,{z

k
i }

l−1
i=1,zl , {z

k+1
i }

L
i=l+1, a

k+1
l ,u

k) (4)

and for zk+1L ,

zk+1L ← argminzLϕ(W
k,bk,{zki }

L−1
i=1 ,zL , a

k,uk) + R(zL ;y) (5)

Equation (4) is highly nonconvex because the nonlinear activa-

tion function f (zl) is contained in ϕ(•). For common activation

functions such as the Rectified linear unit (ReLU) and leaky ReLU,

Equation (4) has a closed-form solution; for other activation func-

tions like sigmoid and hyperbolic tangent (tanh), a look-up table is

recommended [19].

Equation (5) is a convex problem because ϕ(•) and R(•) are con-
vex with regard to zL . Therefore, Equation (5) can be solved by Fast

Iterative Soft-Thresholding Algorithm (FISTA) [1].

3. Update b
k+1
l

The variables b
k+1
l (l = 1, · · · ,L) are updated as follows:

b
k+1
l ← argminbl Lρ (W

k+1
l+1 , {b

k
i }
l−1
i=1,bl , {b

k+1
i }

L
i=l+1, z

k+1
l , ak+1l ,uk)

which is equivalent to the following form:

b
k+1
l ← argminblϕ(W

k+1
l+1 , {b

k
i }
l−1
i=1,bl , {b

k+1
i }

L
i=l+1,z

k+1
l ,ak+1l ,uk)

Similarly to the update of ak+1l , we defineU l (bl ;B) as a quadratic

approximation of ϕ(•) at bkl , which is formulated mathematically

as follows [1]:

U l (bl ;B) = ϕ(Wk+1
l+1 , b

k+1
l+1 , z

k+1
l , ak+1l ,uk)

+ (∇bkl
ϕ)T (Wk+1

l+1 , b
k+1
l+1 , z

k+1
l , ak+1l ,uk)(bl − b

k
l)

+ (B/2)∥bl − b
k
l ∥

2

2
.

where B > 0 is a parameter. Here B ≥ ν for l = 1, · · · ,L − 1 and

B ≥ ρ for l = L are required for the convergence analysis [1].

Without loss of generality, we set B = ν , and solve the subsequent

subproblem as follows:

b
k+1
l ← argminbl U l (bl ;ν)(l = 1, · · · ,L − 1) (6)

b
k+1
L ← argminbL U L(bL ; ρ) (7)

Equation (6) is a convex problem and has a closed-form solution

as follows:

b
k+1
l ← bkl − ∇bkl

ϕ/ν .(l = 1, · · · ,L − 1)

b
k+1
L ← bkL − ∇bkL

ϕ/ρ .

4. UpdateW k+1
l

The variablesW
k+1
l (l = 1, · · · ,L) are updated as follows:

W
k+1
l ←argminWl Lρ ({W

k
i }

l−1
i=1,Wl , {W

k+1
i }

L
i=l+1, b

k+1
l , z

k+1
l , a

k+1
l ,u

k)

which is equivalent to the following form:

W
k+1
l ←argminWlϕ({W

k
i }

l−1
i=1,Wl , {W

k+1
i }

L
i=l+1, b

k+1
l , z

k+1
l , a

k+1
l ,u

k)

+Ω(Wl) (8)

Due to the same challenge in updatingak+1l , we define P l (Wl ;θ
k+1
l)

as a quadratic approximation of ϕ atW k
l . The quadratic approxi-

mation is mathematically reformulated as follows [1]:

P l (Wl ;θ
k+1
l) = ϕ(Wk+1

l+1 , b
k+1
l , zk+1l , ak+1l ,uk)

+ (∇W k
l
ϕ)T (Wk+1

l+1 , b
k+1
l , zk+1l , ak+1l ,uk)(Wl −W

k
l)

+ ∥θ
k+1
l ◦ (Wl −W

k
l)
◦2∥1/2

where θ
k+1
l > 0 is a parameter vector, which is chosen by the

Algorithm 3. Instead of minimizing the Equation (8), we minimize

the following:

W
k+1
l ← argminWl P l (Wl ;θ

k+1
l) + Ωl (Wl) (9)

Equation (9) is convex and hence can be solved exactly. If Ωl is

either an ℓ1 or an ℓ2 regularization term, Equation (9) has a closed-

form solution.

Algorithm 3 The Backtracking Algorithm to updateW
k+1
l

Require: Wk+1
l+1 ,b

k+1
l , zk+1l ,ak+1l ,uk , ρ , some constant γ > 1.

Ensure: θ
k+1
l ,W

k+1
l .

1: Pick up α and ζ =W k
l − ∇Wk

l
ϕ/α .

2: while ϕ({W k
i }

l−1
i=1, ζ , {W

k+1
i }

L
i=l+1, b

k+1
l , zk+1l , ak+1l , uk) > P l (ζ ;α) do

3: α ← α γ .
4: Solve ζ by Equation (9).

5: end while
6: Output θ

k+1
l ← α .

7: OutputW
k+1
l ← ζ .

5. UpdateW k+1
l

The variablesW k+1
l (l = 1, · · · ,L) are updated as follows:

W k+1
l ←argminWl Lρ({W

k+1
i }

l−1
i=1,Wl , {W

k+1
i }

L
i=l+1,b

k+1
l−1 , z

k+1
l−1,a

k+1
l−1,u

k)

which is equivalent to

W k+1
l ←argminWlϕ({W

k+1
i }

l−1
i=1,Wl , {W

k+1
i }

L
i=l+1,b

k+1
l−1 ,z

k+1
l−1 ,a

k+1
l−1,u

k)

+Ω(Wl) (10)

Similarly, we define Pl (Wl ;θ
k+1
l) as a quadratic approximation

of ϕ atW
k+1
l . The quadratic approximation is then mathematically

reformulated as follows [1]:

Pl (Wl ;θ
k+1
l) = ϕ(Wk+1

l−1 , b
k+1
l−1 , z

k+1
l−1 , a

k+1
l−1 ,u

k)

+ (∇
W

k+1
l

ϕ)T (Wk+1
l−1 , b

k+1
l−1 , z

k+1
l−1 , a

k+1
l−1 ,u

k)(Wl −W
k+1
l)

+ ∥θk+1l ◦ (Wl −W
k+1
l)◦2∥1/2

where θk+1l > 0 is a parameter vector. Instead of minimizing the

Equation (10), we minimize the following:

W k+1
l ← argminWl Pl (Wl ;θ

k+1
l) + Ωl (Wl) (11)

The choice of θk+1l is discussed in the supplementary materials
1
.

6. Update bk+1l
The variables bk+1l (l = 1, · · · ,L) are updated as follows:

bk+1l ← argminbl Lρ (W
k+1
l , {bk+1i }

l−1
i=1,bl , {b

k+1
i }

L
i=l+1, z

k+1
l−1 , a

k+1
l−1 ,u

k)

which is equivalent to the following formulation:

bk+1l ← argminblϕ(W
k+1
l , {bk+1i }

l−1
i=1,bl , {b

k+1
i }

L
i=l+1, z

k+1
l−1 , a

k+1
l−1 ,u

k)

Ul (bl ;B) is defined as the quadratic approximation of ϕ at b
k+1
l as

follows:

Ul (bl ;B) = ϕ(Wk+1
l , bk+1l−1 , z

k+1
l−1 , a

k+1
l−1 ,u

k)

+ ∇
b
k+1
l

ϕT (Wk+1
l , bk+1l−1 , z

k+1
l−1 , a

k+1
l−1 ,u

k)(bl − b
k+1
l)

+ (B/2)∥bl − b
k+1
l ∥2

2
.

where B > 0 is a parameter. We set B = ν for l = 1, · · · ,L − 1 and
B = ρ for l = L, and solve the resulting subproblems as follows:

bk+1l ← argminbl Ul (bl ;ν)(l = 1, · · · ,L − 1) (12)

bk+1L ← argminbL UL(bL ; ρ) (13)

. The solutions to Equations (12) and (13) are as follows:

bk+1l ← b
k+1
l − ∇

b
k+1
L

ϕ/ν (l = 1, · · · ,L − 1)

bk+1L ← b
k+1
L − ∇

b
k+1
L

ϕ/ρ

7. Update zk+1l
The variables zk+1l (l = 1, · · · ,L) are updated as follows:

zk+1l ←argminzl Lρ (W
k+1
l , b

k+1
l , {z

k+1
i }

l−1
i=1, zl , {z

k+1
i }

L
i=l+1, a

k+1
l−1 ,u

k)

which is equivalent to the following forms for zl (l = 1, · · · ,L − 1):

zk+1l ←argminzlϕ(W
k+1
l ,b

k+1
l ,{z

k+1
i }

l−1
i=1,zl , {z

k+1
i }

L−1
i=l+1,a

k+1
l−1,u

k) (14)

and for zL :

zk+1L ← argminzL ϕ(W
k+1
L , bk+1L , {zk+1i }L−1i=1 , zL , a

k
L−1,u

k)

+ R(zL ;y) (15)

1
The supplementary materials are available at http://mason.gmu.edu/~lzhao9/

materials/papers/dlADMM_supp.pdf

Solving Equations (14) and (15) proceeds exactly the same as solving

Equations (4) and (5), respectively.

8. Update ak+1l
The variables ak+1l (l = 1, · · · ,L − 1) are updated as follows:

ak+1l ← argminal Lρ (W
k+1
l , b

k+1
l , zk+1l , {a

k
i }

l−1
i=1,al , {a

k+1
i }

L−1
i=l+1,u

k)

which is equivalent to the following form:

ak+1l ←argminalϕ(W
k+1
l , b

k+1
l , z

k+1
l , {a

k
i }

l−1
i=1,al , {a

k+1
i }

L−1
i=l+1,u

k)

Ql (al ;τ
k+1
l) is defined as the quadratic approximation of ϕ at ak+1l

as follows:

Ql (al ;τ
k+1
l) = ϕ(Wk+1

l , bk+1l , zk+1l , ak+1l−1 ,u
k)

+ (∇ak+1l
ϕ)T (Wk+1

l , bk+1l , zk+1l , ak+1l−1 ,u
k)(al − a

k+1
l)

+ ∥τk+1l ◦ (al − a
k+1
l)◦2∥1/2

and we can solve the following problem instead:

ak+1l ← argminal Ql (al ;τ
k+1
l) (16)

where τk+1l > 0 is a parameter vector. The solution to Equation

(16) can be obtained by

ak+1l ← ak+1l − ∇ak+1l
ϕ/τk+1l

To choice of an appropriate τk+1l is shown in the supplementary

materials
1
.

4 CONVERGENCE ANALYSIS
In this section, the theoretical convergence of the proposed dlADMM

algorithm is analyzed. Before we formally present the convergence

results of the dlADMM algorithms, Section 4.1 presents necessary

assumptions to guarantee the global convgerence of dlADMM. In

Section 4.2, we prove the global convergence of the dlADMM algo-

rithm.

4.1 Assumptions
Assumption 1 (Closed-form Solution). There exist activation

functions al = fl (zl) such that Equations (4) and (14) have closed

form solutions zk+1l =h(W
k+1
l+1, b

k+1
l+1 ,a

k+1
l) and z

k+1
l =h(W

k+1
l , b

k+1
l ,a

k+1
l−1),

respectively, where h(•) and h(•) are continuous functions.

This assumption can be satisfied by commonly used activation

functions such as ReLU and leaky ReLU. For example, for the ReLU

function al = max(zl , 0), Equation (14) has the following solution:

zk+1l =

{
min(W k+1

l ak+1l−1 + b
k+1
l , 0) zk+1l ≤ 0

max((W k+1
l ak+1l−1 + b

k+1
l + ak+1l)/2, 0) zk+1l ≥ 0

Assumption 2 (Objective Function). F (W, b, z,a) is coercive
over the nonempty setG = {(W, b, z,a) : zL −WLaL−1 −bL = 0}. In
other words, F (W, b, z,a) → ∞ if (W, b, z,a) ∈ G and ∥(W, b, z, a)∥ →
∞. Moreover, R(zl ;y) is Lipschitz differentiable with Lipschitz con-
stant H ≥ 0.

The Assumption 2 is mild enough for most common loss func-

tions to satisfy. For example, the cross-entropy and square loss are

Lipschitz differentiable.

4.2 Key Properties
We present the main convergence result of the proposed dlADMM

algorithm in this section. Specifically, as long as Assumptions 1-2

hold, then Properties 1-3 are satisfied, which are important to prove

the global convergence of the proposed dlADMM algorithm. The

proof details are included in the supplementary materials
1
.

Property 1 (Boundness). If ρ > 2H , then {Wk , bk , zk ,ak ,uk }
is bounded, and Lρ (Wk , bk , zk ,ak ,uk) is lower bounded.

Property 1 concludes that all variables and the value of Lρ have

lower bounds. It is proven under Assumptions 1 and 2, and its proof

can be found in the supplementary materials
1
.

Property 2 (Sufficient Descent). If ρ > 2H so that C1 =

ρ/2 − H/2 − H2/ρ > 0, then there exists

C2=min(ν/2,C1, {θ
k+1
l }Ll=1,{θ

k+1
l }

L
l=1, {τ

k+1
l }

L−1
l=1 , {τ

k+1
l }

L−1
l=1) such that

Lρ (Wk ,ak , zk ,ak ,uk) − Lρ (Wk+1,ak+1, zk+1,ak+1,uk+1)

≥ C2(
∑L

l=1
(∥W

k+1
l −W k

l ∥
2

2
+ ∥W k+1

l −W
k+1
l ∥2

2

+ ∥b
k+1
l − bkl ∥

2

2
+ ∥bk+1l − b

k+1
l ∥2

2
)

+
∑L−1

l=1
(∥ak+1l − akl ∥

2

2
+ ∥ak+1l − ak+1l ∥2

2
)

+ ∥zk+1L − zkL ∥
2

2
+ ∥zk+1L − zk+1L ∥2

2
) (17)

Property 2 depicts the monotonic decrease of the objective value

during iterations. The proof of Property 2 is detailed in the supple-

mentary materials
1
.

Property 3 (Subgradient Bound). There exist a constantC > 0

and д ∈ ∂L(Wk+1, bk+1, zk+1,ak+1) such that

∥д∥ ≤ C(∥Wk+1 −Wk+1
∥ + ∥bk+1 − b

k+1
∥

+ ∥zk+1 − zk+1∥ + ∥ak+1 − ak+1∥ + ∥zk+1 − zk ∥) (18)

Property 3 ensures that the subgradient of the objective function

is bounded by variables. The proof of Property 3 requires Property

1 and the proof is elaborated in the supplementary materials
1
. Now

the global convergence of the dlADMM algorithm is presented. The

following theorem states that Properties 1-3 are guaranteed.

Theorem 4.1. For any ρ > 2H , if Assumptions 1 and 2 are satisfied,
then Properties 1-3 hold.

Proof. This theorem can be concluded by the proofs in the

supplementary materials
1
. □

The next theorem presents the global convergence of the dlADMM

algorithm.

Theorem 4.2 (Global Convergence). If ρ > 2H , then for the
variables (W, b, z,a,u) in Problem 2, starting from any (W0, b0, z0,a0,u0),
it has at least a limit point (W∗, b∗, z∗,a∗,u∗), and any limit point
(W∗, b∗, z∗,a∗,u∗) is a critical point of Problem 2. That is, 0 ∈
∂Lρ (W∗, b∗, z∗,a∗,u∗). Or equivalently,

z∗L =W
∗
La
∗
L−1 + b

∗
L

0 ∈ ∂W∗Lρ (W∗, b∗, z∗,a∗,u∗) ∇b∗Lρ (W
∗, b∗, z∗,a∗,u∗) = 0

0 ∈ ∂z∗Lρ (W∗, b∗, z∗,a∗,u∗) ∇a∗Lρ (W∗, b∗, z∗,a∗,u∗) = 0

Proof. Because (Wk , bk , zk , ak ,uk) is bounded, there exists a
subsequence (Ws , bs , zs , as ,us) such that (Ws , bs , zs , as ,us) →
(W∗, b∗, z∗, a∗,u∗) where (W∗, b∗, z∗, a∗,u∗) is a limit point. By

Properties 1 and 2, Lρ (Wk , bk , zk , ak ,uk) is non-increasing and

lower bounded and hence converges. By Property 2, we prove that

∥Wk+1
−Wk ∥ → 0, ∥b

k+1
−bk ∥ → 0, ∥ak+1−ak ∥ → 0, ∥Wk+1−

Wk+1
∥ → 0, ∥bk+1 − b

k+1
∥ → 0, and ∥ak+1 − ak+1∥ → 0, as k →

∞ . Therefore ∥Wk+1 −Wk ∥ → 0, ∥bk+1 − bk ∥ → 0, and ∥ak+1 −
ak ∥ → 0, as k →∞. Moreover, from Assumption 1, we know that

zk+1 → zk and zk+1 → zk+1 as k →∞. Therefore, zk+1 → zk . We

infer there existsдk ∈ ∂Lρ (Wk , bk , zk , ak ,uk) such that ∥дk ∥ → 0

as k → ∞ based on Property 3. Specifically, ∥дs ∥ → 0 as s → ∞.
According to the definition of general subgradient (Defintion 8.3

in [16]), we have 0 ∈ ∂Lρ (W∗, b∗, z∗, a∗,u∗). In other words, the

limit point (W∗, b∗, z∗, a∗,u∗) is a critical point of Lρ defined in

Equation (1). □

Theorem 4.2 shows that our dlADMM algorithm converges glob-

ally for sufficiently large ρ, which is consistent with previous liter-

ature [8, 23]. The next theorem shows that the dlADMM converges

globally with a sublinear convergence rate o(1/k).

Theorem 4.3 (Convergence Rate). For a sequence
(Wk , bk , zk ,ak ,uk), define ck = min

0≤i≤k (
∑L
l=1(∥W

i+1
l −W i

l ∥
2

2
+

∥W i+1
l −W

i+1
l ∥

2

2
+ ∥b

i+1
l −bil ∥

2

2
+ ∥bi+1l −b

i+1
l ∥

2

2
)+

∑L−1
l=1 (∥a

i+1
l −

ail ∥
2

2
+ ∥ai+1l − ai+1l ∥

2

2
) + ∥zi+1L − ziL ∥

2

2
+ ∥zi+1L − zi+1L ∥

2

2
), then the

convergence rate of ck is o(1/k).

Proof. The proof of this theorem is included in the supplemen-

tary materials
1
. □

5 EXPERIMENTS
In this section, we evaluate dlADMM algorithm using benchmark

datasets. Effectiveness, efficiency and convergence properties of

dlADMM are compared with state-of-the-art methods. All exper-

iments were conducted on 64-bit Ubuntu16.04 LTS with Intel(R)

Xeon processor and GTX1080Ti GPU.

5.1 Experiment Setup
5.1.1 Dataset. In this experiment, two benchmark datasets were

used for performance evaluation: MNIST [12] and Fashion MNIST

[24]. TheMNIST dataset has ten classes of handwritten-digit images,

which was firstly introduced by Lecun et al. in 1998 [12]. It contains

55,000 training samples and 10,000 test samples with 784 features

each, which is provided by the Keras library [5]. Unlike the MNIST

dataset, the Fashion MNIST dataset has ten classes of assortment

images on the website of Zalando, which is EuropeâĂŹs largest

online fashion platform [24]. The Fashion-MNIST dataset consists

of 60,000 training samples and 10,000 test samples with 784 features

each.

5.1.2 Experiment Settings. We set up a network architecture which

contained two hidden layers with 1, 000 hidden units each. The Rec-

tified linear unit (ReLU) was used for the activation function for

both network structures. The loss function was set as the deter-

ministic cross-entropy loss. ν was set to 10
−6
. ρ was initialized as

10
−6

and was multiplied by 10 every 100 iterations. The number

of iteration was set to 200. In the experiment, one iteration means

one epoch.

5.1.3 ComparisonMethods. Since this paper focuses on fully-connected
deep neural networks, SGD and its variants and ADMM are state-

of-the-art methods and hence were served as comparison methods.

For SGD-based methods, the full batch dataset is used for training

models. All parameters were chosen by the accuracy of the training

dataset. The baselines are described as follows:

1. Stochastic Gradient Descent (SGD) [2]. The SGD and its vari-

ants are the most popular deep learning optimizers, whose conver-

gence has been studied extensively in the literature. The learning

rate of SGD was set to 10
−6

for both the MNIST and Fashion MNIST

datasets.

2. Adaptive gradient algorithm (Adagrad) [6]. Adagrad is an im-

proved version of SGD: rather than fixing the learning rate during

iteration, it adapts the learning rate to the hyperparameter. The

learning rate of Adagrad was set to 10
−3

for both the MNIST and

Fashion MNIST datasets.

3. Adaptive learning rate method (Adadelta) [25]. As an improved

version of the Adagrad, the Adadelta is proposed to overcome

the sensitivity to hyperparameter selection. The learning rate of

Adadelta was set to 0.1 for both the MNIST and Fashion MNIST

datasets.

4. Adaptive momentum estimation (Adam) [9]. Adam is the most

popular optimization method for deep learning models. It estimates

the first and second momentum in order to correct the biased gra-

dient and thus makes convergence fast. The learning rate of Adam

was set to 10
−3

for both the MNIST and Fashion MNIST datasets.

5. Alternating Direction Method of Multipliers (ADMM) [19].

ADMM is a powerful convex optimization method because it can

split an objective function into a series of subproblems, which

are coordinated to get global solutions. It is scalable to large-scale

datasets and supports parallel computations. The ρ of ADMM was

set to 1 for both the MNIST and Fashion MNIST datasets.

5.2 Experimental Results
In this section, experimental results of the dlADMM algorithm are

analyzed against comparison methods.

0 25 50 75 100 125 150 175 200
Iteration

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

Ob
je

ct
iv

e
Va

lu
e(

lo
g)

MNIST
Fashion MNIST

(a). Objective value

0 25 50 75 100 125 150 175 200
Iteration

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Re
sid

ua
l(l

og
)

MNIST
Fashion MNIST

(b). Residual

Figure 2: Convergence curves of dlADMM algorithm for
MNIST and Fashion MNIST datasets when ρ = 1: dlADMM
algorithm converged.

0 25 50 75 100 125 150 175 200
Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ai

ni
ng

 A
cc

ur
ac

y

SGD
Adadelta
Adagrad
Adam
ADMM
dlADMM

(a). Training Accuracy

0 25 50 75 100 125 150 175 200
Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

SGD
Adadelta
Adagrad
Adam
ADMM
dlADMM

(b).Test Accuracy

Figure 5: Performance of allmethods for the FashionMNIST
dataset: dlADMM algorithm outperformed most of the com-
parsion methods.

0 25 50 75 100 125 150 175 200
Iteration

4

2

0

2

4

Ob
je

ct
iv

e
Va

lu
e(

lo
g)

MNIST
Fashion MNIST

(a). Objective value

0 25 50 75 100 125 150 175 200
Iteration

8

10

12

14

16

Re
sid

ua
l(l

og
)

MNIST
Fashion MNIST

(b). Residual

Figure 3: Divergence curves of the dlADMM algorithm for
the MNIST and the Fashion MNIST datasets when ρ = 10

−6:
dlADMM algorithm diverged.

5.2.1 Convergence. First, we show that our proposed dlADMM al-

gorithm converges when ρ is sufficiently large and diverges when ρ
is small for both the MNIST dataset and the Fashion MNIST dataset.

The convergence and divergence of dlADMM algorithm are

shown in Figures 2 and 3 when ρ = 1 and ρ = 10
−6

,respectively.

In Figures 2(a) and 3(a), the X axis and Y axis denote the number

of iterations and the logarithm of objective value, respectively. In

Figures, 2(b) and 3(b), the X axis and Y axis denote the number of

iterations and the logarithm of the residual, respectively. Figure 2,

both the objective value and the residual decreased monotonically

for the MNIST dataset and the Fashion-MNIST dataset, which vali-

dates our theoretical guarantees in Theorem 4.2. Moreover, Figure

3 illustrates that both the objective value and the residual diverge

when ρ = 10
−6
. The curves fluctuated drastically on the objective

value. Even though there was a decreasing trend for the residual, it

still fluctuated irregularly and failed to converge.

0 25 50 75 100 125 150 175 200
Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ai

ni
ng

 A
cc

ur
ac

y

SGD
Adadelta
Adagrad
Adam
ADMM
dlADMM

(a). Training accuracy

0 25 50 75 100 125 150 175 200
Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

SGD
Adadelta
Adagrad
Adam
ADMM
dlADMM

(b). Test accuracy

Figure 4: Performance of all methods for the MNIST dataset:
dlADMM algorithm outperformed most of the comparison
methods.

5.2.2 Performance. Figure 4 and Figure 5 show the curves of the

training accuracy and test accuracy of our proposed dlADMM al-

gorithm and baselines, respectively. Overall, both the training ac-

curacy and the test accuracy of our proposed dlADMM algorithm

outperformed most baselines for both the MNIST dataset and the

Fashion MNIST dataset. Specifically, the curves of our dlADMM

algorithm soared to 0.8 at the early stage, and then raised steadily to-

wards to 0.9 or more. The curves of the most SGD-related methods,

SGD, Adadelta, and Adagrad, moved more slowly than our pro-

posed dlADMM algorithm. The curves of the ADMM also rocketed

to around 0.8, but decreased slightly later on. Only the state-of-the-

art Adam performed better than dlADMM slightly.

MNIST dataset: From 200 to 1,000 neurons

ρ
neurons

200 400 600 800 1000

10
−6

1.9025 2.7750 3.6615 4.5709 5.7988

10
−5

2.8778 4.6197 6.3620 8.2563 10.0323

10
−4

2.2761 3.9745 5.8645 7.6656 9.9221

10
−3

2.4361 4.3284 6.5651 8.7357 11.3736

10
−2

2.7912 5.1383 7.8249 10.0300 13.4485

Fashion MNIST dataset: From 200 to 1,000 neurons

ρ
neurons

200 400 600 800 1000

10
−6

2.0069 2.8694 4.0506 5.1438 6.7406

10
−5

3.3445 5.4190 7.3785 9.0813 11.0531

10
−4

2.4974 4.3729 6.4257 8.3520 10.0728

10
−3

2.7108 4.7236 7.1507 9.4534 12.3326

10
−2

2.9577 5.4173 8.2518 10.0945 14.3465

Table 2: The relationship between running time per itera-
tion (in second) and the number of neurons for each layer
as well as value of ρ when the training size was fixed: gener-
ally, the running time increased as the number of neurons
and the value of ρ became larger.

MNIST dataset: From 11,000 to 55,000 training samples

ρ
size

11,000 22,000 33,000 44,000 55,000

10
−6

1.0670 2.0682 3.3089 4.6546 5.7709

10
−5

2.3981 3.9086 6.2175 7.9188 10.2741

10
−4

2.1290 3.7891 5.6843 7.7625 9.8843

10
−3

2.1295 4.1939 6.5039 8.8835 11.3368

10
−2

2.5154 4.9638 7.6606 10.4580 13.4021

Fashion MNIST dataset: From 12,000 to 60,000 training samples

ρ
size

12,000 24,000 36,000 48,000 60,000

10
−6

1.2163 2.3376 3.7053 5.1491 6.7298

10
−5

2.5772 4.3417 6.6681 8.3763 11.0292

10
−4

2.3216 4.1163 6.2355 8.3819 10.7120

10
−3

2.3149 4.5250 6.9834 9.5853 12.3232

10
−2

2.7381 5.3373 8.1585 11.1992 14.2487

Table 3: The relationship between running time per itera-
tion (in second) and the size of training samples as well as
value of ρ when the number of neurons is fixed: generally,
the running time increased as the training sample and the
value of ρ became larger.

5.2.3 Scalability Analysis. In this subsection, the relationship be-

tween running time per iteration of our proposed dlADMM algo-

rithm and three potential factors, namely, the value of ρ, the size
of training samples, and the number of neurons was explored. The

running time was calculated by the average of 200 iterations.

Firstly, when the training size was fixed, the computational result

for the MNIST dataset and FashionMNIST dataset is shown in Table

2. The number of neurons for each layer ranged from 200 to 1,000,

with an increase of 200 each time. The value of ρ ranged from 10
−6

to 10
−2
, with multiplying by 10 each time. Generally, the running

time increased as the number of neurons and the value of ρ became

larger. However, there were a few exceptions: for example, when

there were 200 neurons for the MNIST dataset, and ρ increased

from 10
−5

to 10
−4
, the running time per iteration dropped from

2.8778 seconds to 2.2761 seconds.

Secondly, we fixed the number of neurons for each layer as 1, 000.

The relationship between running time per iteration, the training

size and the value of ρ is shown in Table 3. The value of ρ ranged

from 10
−6

to 10
−2
, with multiplying by 10 each time. The training

size of the MNIST dataset ranged from 11, 000 to 55, 000, with an in-

crease of 11, 000 each time. The training size of the Fashion MNIST

dataset ranged from 12, 000 to 60, 000, with an increase of 12, 000

each time. Similiar to Table 3, the running time increased generally

as the training sample and the value of ρ became larger and some

exceptions exist.

6 CONCLUSION AND FUTURE WORK
Alternating Direction Method of Multipliers (ADMM) is a good

alternative to Stochastic gradient descent (SGD) for deep learning

problems. In this paper, we propose a novel deep learning Alter-

nating Direction Method of Multipliers (dlADMM) to address some

previously mentioned challenges. Firstly, the dlADMM updates pa-

rameters from backward to forward in order to transmit parameter

information more efficiently. The time complexity is successfully

reduced fromO(n3) toO(n2) by iterative quadratic approximations

and backtracking. Finally, the dlADMM is guaranteed to converge

to a critical solution under mild conditions. Experiments on bench-

mark datasets demonstrate that our proposed dlADMM algorithm

outperformed most of the comparison methods.

In the future, wemay extend our dlADMM from the fully-connected

neural network to the famous Convolutional Neural Network (CNN)

or Recurrent Neural Network (RNN), because our convergence

guarantee is also applied to them. We also consider other nonlin-

ear activation functions such as sigmoid and hyperbolic tangent

function (tanh).

ACKNOWLEDGEMENT
This work was supported by the National Science Foundation grant:

#1755850.

REFERENCES
[1] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm

for linear inverse problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.
[2] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In

Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.
[3] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein.

Distributed optimization and statistical learning via the alternating direction

method of multipliers. Foundations and Trends® in Machine Learning, 3(1):1–122,
2011.

[4] Caihua Chen, Min Li, Xin Liu, and Yinyu Ye. Extended admm and bcd for nonsep-

arable convex minimization models with quadratic coupling terms: convergence

analysis and insights. Mathematical Programming, pages 1–41, 2015.
[5] Francois Chollet. Deep learning with python. Manning Publications Co., 2017.

[6] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods

for online learning and stochastic optimization. Journal of Machine Learning
Research, 12(Jul):2121–2159, 2011.

[7] Yuyang Gao, Liang Zhao, Lingfei Wu, Yanfang Ye, Hui Xiong, and Chaowei Yang.

Incomplete label multi-task deep learning for spatio-temporal event subtype

forecasting. 2019.

[8] Farkhondeh Kiaee, Christian Gagné, and Mahdieh Abbasi. Alternating direction

method of multipliers for sparse convolutional neural networks. arXiv preprint
arXiv:1611.01590, 2016.

[9] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.
[10] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

[11] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436, 2015.

[12] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based

learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[13] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khu-

danpur. Recurrent neural network based language model. In Eleventh Annual
Conference of the International Speech Communication Association, 2010.

[14] Boris T Polyak. Some methods of speeding up the convergence of iteration

methods. USSR Computational Mathematics and Mathematical Physics, 4(5):1–17,
1964.

[15] Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam

and beyond. In International Conference on Learning Representations, 2018.
[16] R Tyrrell Rockafellar and Roger J-B Wets. Variational analysis, volume 317.

Springer Science & Business Media, 2009.

[17] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning repre-

sentations by back-propagating errors. nature, 323(6088):533, 1986.
[18] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the

importance of initialization and momentum in deep learning. In International
conference on machine learning, pages 1139–1147, 2013.

[19] Gavin Taylor, Ryan Burmeister, Zheng Xu, Bharat Singh, Ankit Patel, and Tom

Goldstein. Training neural networks without gradients: A scalable admm ap-

proach. In International Conference on Machine Learning, pages 2722–2731, 2016.
[20] T Tieleman and G Hinton. Divide the gradient by a running aver-

age of its recent magnitude. coursera: Neural networks for machine learn-

ing. Technical report, Technical Report. Available online: https://zh. cours-

era. org/learn/neuralnetworks/lecture/YQHki/rmsprop-divide-the-gradient-by-

a-running-average-of-its-recent-magnitude (accessed on 21 April 2017).

[21] Junxiang Wang and Liang Zhao. Nonconvex generalizations of admm for nonlin-

ear equality constrained problems. arXiv preprint arXiv:1705.03412, 2017.
[22] Junxiang Wang, Liang Zhao, and Lingfei Wu. Multi-convex inequality-

constrained alternating direction method of multipliers. arXiv preprint
arXiv:1902.10882, 2019.

[23] Yu Wang, Wotao Yin, and Jinshan Zeng. Global convergence of admm in non-

convex nonsmooth optimization. Journal of Scientific Computing, pages 1–35,
2015.

[24] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset

for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747,
2017.

[25] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

