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Abstract Temperature provides important physio-
logical constraints that can influence the distribution
of an invasive species. Gypsy moth (Lymantria
dispar L.) is a generalist defoliator in North America
and supraoptimal temperatures (above the optimal for
developmental rate) have been implicated in range
dynamics at the southern invasion front in West
Virginia and Virginia. We sourced egg masses from
the Appalachian Mountains (AM), where the gypsy
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moth range is expanding, from the Coastal Plain (CP),
where range retraction is occurring, and from a long-
established population in New York (NY) and con-
ducted a reciprocal transplant experiment to compare
development and fitness components among these
populations at two sites along the southern invasion
front. We found evidence of sublethal effects from
rearing in the CP, with decreased pupal mass and
fewer eggs compared to individuals reared in the AM,
but little difference between source populations in
developmental traits. The AM and NY populations did
experience reductions in egg viability under a southern
winter at the CP site compared to control wintering
conditions, while the CP egg masses had equivalent
survival. This study provides empirical support for
negative fitness consequences of supraoptimal
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temperatures at the southern range edge, consistent
with patterns of range retraction and spread in the
region, as well as suggesting the potential for local
adaptation through variation in egg survival. Our work
illustrates that sublethal effects from high temperature
can be an important factor determining the distribution
of invasive species under current and future climates.

Keywords Lymantria dispar - Forest defoliator -
Common garden experiment - Local adaptation -
Supraoptimal temperatures

Introduction

Invasive species can expand across wide regions in an
introduced range, where environmental extremes can
impose geographic and physiological limits on future
spread (Chown and Gaston 1999; Hill et al. 2011;
Sinclair et al. 2012; Vanhanen et al. 2007). Temper-
ature is perhaps the most important environmental
constraint for terrestrial poikilothermic organisms
because it directly influences rates of physiological
processes and performance (e.g., Addo-Bediako et al.
2000; Deutsch et al. 2008). Thermal performance is
typically quantified in controlled laboratory settings
(e.g., Ayres and Scriber 1994; Kingsolver and Woods
1997; Logan et al. 1991), and can then be applied to
models that predict suitable environments for invasive
species in novel habitats (e.g., Gray 2004; Venette
et al. 2010). Field studies in natural environments can
test these predictions and increase our understanding
of the interactions between temperature, organismal
performance, and, ultimately, current and future
distributional limits.

Experiments using common garden and reciprocal
transplant study designs provide insights into local
adaptation and the role of environmental variation in
driving phenotypic change (Kawecki and Ebert 2004;
Savolainen et al. 2013). Peripheral populations occupy
environments at extremes relative to the rest of a
range, thus, the ability of a population situated at a
range margin to perform in its local environment can
determine whether a species continues to expand
beyond its current range boundary (Antonovics 1976;
Kawecki 2008; Kirkpatrick and Barton 1997; Sheth
and Angert 2018). Understanding the relative role of
plastic versus adaptive responses in range edge

@ Springer

populations is also important for quantifying the
spread potential of an invasive species. These pro-
cesses are not mutually exclusive because plasticity
itself can respond to selection when its genetic basis
varies across individuals and this variation has fitness
consequences (e.g., Chevin et al. 2010; Lande
2009, 2015). Given their prevalence and ease of
experimentation, a majority of common garden and
reciprocal transplant experiments on invasive species
focus on plants (e.g., Eckert et al. 2008; Gibson et al.
2016; Pahl et al. 2013). These experimental
approaches may also provide important insights in
invasive insect systems, particularly given that local
adaptation in range edge populations has been shown
for several species, with significant change occurring
in some systems after only a few decades (e.g., Huey
and Pascual 2009; Preisser et al. 2008).

The spread of the gypsy moth in North America is
perhaps one of the best-documented biological inva-
sions. Since its introduction in 1869 to Medford,
Massachusetts, USA from Europe, the gypsy moth has
spread north into Canada, as far west as Minnesota,
and as far south as North Carolina (Tobin et al.
2012, 2016). Detailed spatiotemporal rates of spread
are available from data collected by the Slow-the-
Spread program, which has deployed an extensive
trapping grid across the invasion front over the last 2
decades (Grayson and Johnson 2018; Sharov et al.
2002). These data have revealed dynamic spread rates
as the gypsy moth has encountered climatically
diverse regions across Eastern North America (Tobin
et al. 2007). While gypsy moth is classically used as a
study system in invasion biology, few studies have
considered the potential for population variation
across the invasive range of gypsy moth in North
America.

The southern invasion front of gypsy moth in North
America is particularly notable for its spatial variation
in spread rates across a narrow region over the last
25 years with steady progression in the Appalachian
Mountains, stasis in the Piedmont region, and net
range retraction in the Coastal Plain region (Tobin
et al. 2014; Fig. 1). However, spread rates in the
Coastal Plain are temporally variable, shifting
between years of spread and retraction, even though
the overall range has contracted significantly in this
region. Correlational analyses showed a negative
association between spread rate and the frequency of
temperatures above the developmental rate optimum
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Fig. 1 Geographic variation in gypsy moth spread across the
southern invasive range edge from 1995 to 2015. Range extents
are the boundaries estimated from the Slow-the-Spread trap
catch abundance data (Sharov et al. 1995), shown as smoothed

(supraoptimal) occurring during larval and pupal
stages, suggesting that heat may be imposing limits
on further southward spread in this region (Tobin et al.
2014). This work highlights the opportunity to further
study the mechanisms behind range dynamics seen in
this region to understand the factors that determine the
range edge for an invasive species and limit the
relative invasion risks for portions of this area.

The majority of empirical work on thermal limits in
gypsy moth has focused on the requirements for
overwintering egg survival. Northern range expansion
is limited by cool spring and summer temperatures that
slow egg hatch and larval development, as well as the
early onset of winter temperatures before embryos
have entered the cold-tolerant diapause phase (Gray
2004; Régniere and Nealis 2002). The predicted

isoclines where the mean abundance is 0.5—1 moths/trap. These
patterns in spread dynamics were originally reported by Tobin
et al. (2014) and redrawn with updated data by Laura Blackburn
(US Forest Service)

southern limits of the invasive gypsy moth range in
North America have been based on the occurrence of
winter temperatures of sufficient cold and duration for
entering and terminating the obligatory diapause
(Allen et al. 1993; Gray 2004). Less is known about
gypsy moth larval performance at high temperatures,
and previous work used a laboratory strain to quantify
the temperature-dependence of development rate
under constant temperature conditions (Logan et al.
1991, but see Casagrande et al. 1987). Thompson et al.
(2017) expanded our understanding of the effects of
heat on laboratory and wild sourced gypsy moth
populations by showing that prolonged larval expo-
sure to constant supraoptimal temperatures
(> ~ 29 °C) consistently resulted in reduced survival
and mass, with the response dependent on population
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origin. It is unclear, however, if these results can be
replicated in natural settings where temperatures
fluctuate and supraoptimal temperatures may only be
experienced for short durations.

Here, we empirically compare southern invasion
front populations and their respective thermal regimes
for gypsy moth growth and development over a
complete life-cycle using a reciprocal transplant
design between the Appalachian Mountains and
Coastal Plain regions of Virginia. We reared popula-
tions from both regions, in addition to a long-
established population from New York, at two field
sites located at this southern invasion front. Our study
was initiated with egg masses that overwintered at
each location, and we measured development time,
body mass, and survival during larval and pupal life
stages during the subsequent spring and summer. To
more directly compare fitness outcomes for each
population at each site, egg production and overwin-
tering success were quantified through to hatching the
following spring. Our study provides the opportunity
to assess whether changes in ecologically important
life history traits have occurred during the gypsy moth
invasion, specifically, along an invasion front experi-
encing highly variable spread rates. The presence of
population-based adaptive shifts in physiological
tolerance has important impacts for species establish-
ment and invasion. Testing for these changes can give
a critical insight into the process of range expansion,
as well as our ability to make accurate predictions
about subsequent spread.

Methods
Study populations and field locations

Gypsy moth has a single non-overlapping generation
per year, where eggs laid in the summer overwinter
and hatch the following spring. As larvae, gypsy moth
feeds on nearly 300 different species of host plants
(Liebhold et al. 1995). Adult moths are non-feeding,
and the flightless females attract males with a sex
pheromone, mate once, and then deposit their entire
egg compliment in a single mass. Collecting egg
masses from wild populations to test for life history
differences can be confounded by variation in local
resource availability and population densities, which
can impact egg and larval traits (Rossiter 1991).
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Therefore, individuals were reared under consistent
dietary and temperature conditions for at least one
generation to remove potential site and maternal
effects before being used in our experiment (detailed
in Supplement). After mating, selected egg masses
were given 60-80 days to enter diapause before being
placed outdoors at one of the two sites in the reciprocal
transplant experiment. To reduce relatedness and
maximize genetic diversity, 20 egg masses from each
population were lightly separated by hand to detach
individual eggs from the mass and all eggs were mixed
together. Approximately half of the eggs from each
population were placed in petri dishes within a
breathable protective housing and attached to a
Northern red oak tree (Quercus rubra L.) at each site
to experience local overwintering conditions.

Our reciprocal transplant experiment used wild-
sourced populations from Kirkville, New York (des-
ignated as the NY population representing a long-
established population of gypsy moth that dates to the
1970s, US Code of Federal Regulations, Title 7,
Chapter III, Section 301.45), Raleigh County in West
Virginia (designated as the AM population represent-
ing the Appalachian Mountains region), and the Great
Dismal Swamp in Suffolk County, Virginia (desig-
nated as the CP population representing the Coastal
Plain region). Gypsy moth populations were estab-
lished at the AM and CP sites by 2007 and 1987,
respectively (US Code of Federal Regulations, Title 7,
Chapter III, Section 301.45). We selected a represen-
tative experimental rearing site in the AM and CP
regions based on proximity to the egg collection sites,
available facilities, and logistical considerations. The
AM site was located at Mountain Lake Biological
Station (University of Virginia, Giles County, Vir-
ginia, USA; 37.376347°N, 80.522053°W; elevation:
1184 m) in the southwestern region of Virginia,
64 km from the egg collection area in West Virginia.
The CP site was located at University of Richmond
(Richmond, Virginia, USA; 37.573084°N,
77.542114°W; elevation: 61 m), which is on the
western edge of the Coastal Plain region in Virginia
and is located 139 km from the egg collection area for
the CP population (Fig. 1).

Experimental design

Overwintering eggs were removed from the trees in
early spring and kept in short-term cold storage to
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synchronize hatch across populations with budburst of
local Q. rubra at each site. Hatched larvae from each
population were haphazardly selected and placed on
host foliage in 1-1, unwaxed, paper cups with a plastic
lid containing pin holes for air exchange at densities of
10 larvae/cup with 15 replicates per population. All
populations were started on host foliage within 24 h at
each site (CP site initiation: 16—17 April 2015, AM
site initiation: 14 May 2015). When the majority of
individuals were third instar (28 days for CP site,
30 days for AM site), larvae from each population
were consolidated into 11 replicate 7.6-1 plastic
buckets and covered with a mesh fabric at densities
of 10 larvae/bucket. Smaller rearing containers were
initially used to better locate and enumerate larvae
during early development and establish enough indi-
viduals at a consistent density in bucket replicates. All
larvae were fed fresh foliage on the same day every
3—4 days by placing Q. rubra stems with leaves inside
each rearing container in either a floral water tube
(cup) or 1-1 plastic flask (bucket) to maintain foliage
quality. Foliage harvested for each feeding at each
location was sourced from a single tree, however, leaf-
collections were made from different trees across
feeding dates to minimize damage to individual trees.
Gypsy moth larvae have diurnal rhythms with vertical
movement into the canopy to feed (Leonard 1970).
Limits on the extent of vertical movement and the
potential range of microhabitat temperatures available
to larvae were necessary constraints of our bucket
rearing design. Each experiment was conducted in a
screened outdoor insect rearing pavilion shaded by full
canopy cover. Thus, larvae experienced conditions
that approximated ambient forest floor temperatures.
Larvae were checked daily and pupation date was
recorded on the day of pupal formation. Fully
sclerotized pupae were weighed within 24 h of the
onset of pupal formation and stored individually in
paper-lined 74-ml plastic cups with snap-on lids
containing pinholes for air exchange. Pupae were
checked daily for adult emergence, at which point sex
and date were recorded. Within 24 h of adult emer-
gence, males and females from within a single
population at a rearing location were randomly paired.
No individual was used in more than one pairing and
individuals that failed to mate (no discrete egg mass)
were excluded from analysis. The life history traits
measured were larval development time (hatch to
pupation), pupal development time (pupation to adult

emergence), pupal mass, and female fecundity (total
number of eggs laid by each female, see below).
Survival was assessed as percentage surviving from
hatch to adult emergence.

The effect of rearing location on fecundity was
measured by counting the total number of eggs within
an egg mass laid by an individual female, regardless of
hatching or fertilization. We used 22 egg masses per
population and site for these fecundity measurements.
To account for variation across bucket replicates, we
selected two egg masses, each with unique parents,
from each bucket replicate for each population, with a
random substitution was from another bucket when
two were not available.

To determine if overwintering location affected egg
viability, we compared hatching success for eggs that
experienced a natural winter at the two experimental
sites and those that overwintered under optimal
laboratory conditions. Egg masses were allowed to
embryonate in their respective experimental site for
60 days and then were split in half. One half was
returned to the outdoor insect rearing facility to
complete overwintering, and hatch under natural
conditions. The other was overwintered in a 4-6 °C
laboratory refrigerator for 160 days, brought to room
temperature (~ 23 °C), and allowed to hatch. Neo-
nates were counted periodically until no larvae
hatched for more than 1 week, after which the
remaining numbers of fertilized and unfertilized
unhatched eggs were recorded.

Site temperatures

Temperature data loggers (TidbiT v2 Temp Logger
UTBI-001, Onset Computer Corp.) within the rearing
pavilion at each site were used to quantify the thermal
regime experienced by gypsy moth during develop-
ment. Hours of supraoptimal temperature exposure
were estimated according to Tobin et al. (2014), where
temperatures > 29.0 °C are considered above optimal
for development based on empirical development rate
functions in Logan et al. (1991). We calculated the
number of hours of supraoptimal temperature for each
degree > 29.0 °C during larval development (hatch—
95% pupation) and total development (hatch—95%
adult emergence). We also calculated the number of
hours near the optimum developmental temperature
(26-29 °C) and the number of hours < 10 °C. We
used 10 °C as a lower threshold given past work
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reporting negligible development at this temperature
(Casagrande et al. 1987; Logan et al. 1991).

To compare the frequency of supraoptimal temper-
atures in the study year (2015) with the previous
25 years (1990-2014), we used similar methods as
Tobin et al. (2014). Daily minimum and maximum air
temperatures (for the entire 26 year period:
1990-2015) were generated with BioSIM v.11
(Régniere et al. 2017) using the combined records of
six weather stations nearest the egg collection sites of
the two southern populations (National Centers for
Environmental Information 2017; Table S1). Egg
collection sites were chosen instead of experimental
sites in order to best estimate the phenology and source
environments of these populations. Hourly tempera-
tures were generated from these daily minimum and
maximum temperatures using 24 h sine wave-inter-
polation (Allen 1976). The predicted dates of life
history transition points (50% hatch, 95% pupation,
and 95% adult emergence) for each year and location
were determined using the gypsy moth life stage
model (Gray 2004). The hours of supraoptimal
temperatures between these predicted life history
transition points were calculated from the hourly
temperatures generated at each location in each year,
providing a relative measure of the amount of heat in
2015 compared to previous years.

Data analysis

All analyses were conducted separately for males and
females in this sexually dimorphic species (Leonard
1981). Only individuals that survived until adulthood
were included in the analysis of larval and pupal
characteristics. To avoid pseudoreplication, analyses
were conducted using means for each container
replicate using a two-way generalized linear mixed
effects model including population and treatment as
fixed effects and the number of individuals measured
within each container as a random effect. Independent
statistical analyses were performed for each response
variable (pupal mass, larval development time, and
pupal development time) using a Satterthwaite
approximation for degrees of freedom due to unequal
sample sizes based on mortality. Statistical signifi-
cance was assessed using o = 0.05.

Paired a priori comparisons of female fecundity
between sites for the AM and NY populations were
carried out by generalized mixed linear models.
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Statistical significance was assessed with o = 0.05/2
tests, using a Bonferroni multiple test correction. The
CP population was excluded from this analysis due to
low female survival at the AM site.

Egg hatching success after overwintering was
calculated as the proportion of total hatched larvae
out of the total number of fertilized eggs and was
arcsine transformed to conform to model assumptions.
For each site and population, we made a priori
comparisons of egg hatching success between over-
wintering at the reciprocal transplant site and in the
laboratory using the overwintering location as the
fixed effect and the maternal parent identification as a
random factor. Statistical significance was assessed
with oo = 0.05/5 tests, using a Bonferroni multiple test
correction. The CP population at the AM site was
excluded from this analysis, as were egg masses with
no or extremely low hatching success (< 1%), which
likely represent failed matings. All analyses were
conducted using the stats and lme4 libraries in R
version 3.3.1 (Bates et al. 2015; R Core Team 2016).

Results
Site temperatures

During the experiment in 2015, the mean (% SE)
temperature was 17.8 (£ 3.7 °C) at the AM site and
was 22.1 (£ 4.9 °C) at the CP site from larval hatch to
adult emergence. Temperature data loggers indicated
that while the CP site experienced 12 h of supraop-
timal development temperatures (> 29 °C) during
larval development and 77 h total during larval and
pupal development combined, the AM site experi-
enced none (Table 1). Temperatures at or below our
lower developmental threshold of 10 °C during the
larval period were greater for the CP site than the AM
site. The majority of air temperatures throughout
development were between 10 and 26 °C at the AM
site. The CP experimental site had 159 h and 230 h of
optimal temperature (26—28.99 °C) during larval and
total development, respectively, while the AM site had
only 5 h throughout development (Table 1).

When comparing the means (£ SE, median) in the
26 years between 1990 and 2015, the weather data
near the AM population source had 5.81 (& 1.83,0) h
of supraoptimal temperature and the CP population
source had 73.23 (£ 6.33, 78) h during the larval
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Table 1 Hours of < 10 °C, optimal, and supraoptimal tem-
perature during larval and total development for the AM and
CP experimental sites in 2015. Dates of the larval stage are

from the start of the experiment to 95% pupation and to 95%
adult emergence for total development

Experimental site AM CP
Larval Total Larval Total
Hours of < 10 °C 41 41 81 81
Hours of optimal temperature (26-28.99 °C) 5 5 159 230
Hours of supraoptimal temperature (> 29 °C)
+1 0 0 12 27
+2 0 0 0 19
+3 0 0 0 16
+4 0 0 0 15
Total 0 0 12 77
140 80 h of supraoptimal temperatures in the CP weather
data during larval development in 2015, making it an
120 . . . . .
intermediate year in comparison with the most
100 extreme years for this region (Fig. 2). However, early
é summer heat during the predicted period of pupal
s ¥ development, which is short in comparison to the
3 60 larval stage, in the CP weather data made this one of
5 the hotter years for total gypsy moth development
40 (Table S3).
20 .
’:1 Growth, development, and survival

AM Most (1993) CP Fewest (1997) CP (2015)
Degrees above 29°C: []+1°C [[+2°C [@+3°C M+>=4°C

CP Most (2004)

Fig. 2 The frequency of supraoptimal temperatures (above
29 °C) for gypsy moth in 2015 (the growing year of the study)
and the most extreme temperature years during the larval stage
from 1990 to 2015 (see methods for calculations). Weather data
represent locations nearest the egg collection site for each
southern population (AM, CP). The AM area had many years,
including 2015, with O h of supraoptimal temperatures during
larval development (not shown). Refer to Table S2 for the full
26-year supraoptimal temperature dataset

period (Fig. 2, Table S2 for all years). For total
development time, which includes pupal develop-
ment, there were 13.46 (£ 3.40, 8.5) h of supraoptimal
temperature for the AM and 137.50 (= 7.39, 144.5) h
for the CP associated weather data (Table S3 for all
years). In 2015, there were no hours of supraoptimal
temperature during the predicted larval stage for the
AM data, which also occurred in 8 of the 25 years
between 1990 and 2014 (Table S2, S3). There were

Survival from hatching to adulthood was greater at the
CP site (population: NY = 95%; AM = 94%; CP =
100%) than at the AM site (population: NY = 89%;
AM = 67%; CP = 36%). Differences in survival were
due to infection at the AM site by the gypsy moth
fungal pathogen Entomophaga maimaiga, which is
found throughout the invasive range (Hajek et al.
1996) and known to be linked to temperature and
precipitation during larval development (e.g. Hajek
et al. 1990; Siegert et al. 2008; Hajek and Tobin 2011).
Experimental site had a significant effect on all
developmental traits (larval and pupal development
time, and pupal mass) for both sexes from all source
populations (Ps < 0.0001, Fig. 3, Table 2). All indi-
viduals reared at the CP site had reduced pupal mass
and shorter larval and pupal development time in days
compared to the AM site (Fig. 3, summary statistics
see Table S4). There was no significant effect of
source population on pupal mass for either sex, but
source population did have a significant effect on
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Fig. 3 Phenotypic measurements for each environmental site,
population, and sex indicated by points as mean and standard
error bars. a Pupal mass measured in grams b larval develop-
ment time measured by time from hatch to pupation in days
¢ pupal development time measured by time from pupation to

larval development time in days for both females
(Fp56 = 6.62, P =0.0027) and males (F,¢5 = 7.36,
P =0.0013). Development time of the NY population
was generally shorter than the AM and CP popula-
tions. Source population had a significant effect on
male pupal development time (F65=3.19,
P = 0.0476), but not female.

Effect of overwintering location on fecundity
and egg viability

Rearing location had a significant effect on female
fecundity (F 134 = 50.78, P < 0.0001, Fig. 4a). Total
egg count at the CP site compared to the AM site was
reduced by 32.7% on average for the AM and NY
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Pupal
Development Time (days)

N

AM site CP site

Population: ‘@ AM & CP 9 NY

adult emergence in days. Male and female (abbreviated as M
and F) are indicated by solid and dashed lines, respectively.
Populations are redundantly indicated by distinct point shape
and color to conserve inferential power if viewed in black and
white

populations. For all females used in this portion of the
study, egg number was correlated to female pupal
mass (R> = 0.5817, P < 0.0001).

Comparing hatching outcomes between eggs over-
wintered outdoors at the rearing sites and the labora-
tory, we found that overwintering at the AM site
yielded egg hatching success roughly equivalent to the
ideal laboratory conditions (AM population:
Fi14,=02237, P =0.6391; NY population:
Fi4 = 1.071, P = 0.3066). Overwintering at the CP
site had a significant effect on egg hatching success,
but only for the AM and NY population (AM
population: F; 4, =51.79, P < 0.0001; NY popula-
tion: Fy4p = 14.83, P =0.0003; CP population:
Fy40=1.005 P =0.3221). Specifically, the AM
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Table 2 Summary of analysis of variance (ANOVA) comparisons across developmental traits

Female Male
ANOVA MS F df MS F df P
Pupal mass (g)
Site 2.1662 129.5 1, 56 < 0.0001 0.1653 79.552 1, 65 < 0.0001
Population 0.0216 1.292 2,56 0.2827 0.0049 2.335 2,65 0.1048
Site:population 0.0025 0.152 2, 56 0.8596 0.0004 0.212 2,65 0.8093
Larval dev. time (d)
Site 1387.7 651.23 1, 56 < 0.0001 485.89 140.53 1, 65 < 0.0001
Population 14.10 6.62 2, 56 0.0027 15.18 4.390 2, 65 0.0163
Site:population 4.03 1.89 2, 56 0.1602 4.07 1.177 2,65 0.3146
Pupal dev. time (d)
Site 254.34 513.27 1, 56 < 0.0001 541.00 2743.8 1, 65 < 0.0001
Population 0.720 1.45 2, 56 0.2425 0.63 3.19 2,65 0.0477
Site:population 0.055 0.11 2, 56 0.8960 0.27 1.35 2, 65 0.2653

Results examine the effect of site/treatment, population, and their interaction on each of the three developmental traits for each sex
(pupal mass, larval development time, and pupal development time). Bolded values indicate significance

MS Mean squared

population showed a 19.4% decrease in egg hatching
success and the NY population showed a 10.9%
decrease after overwintering at the CP site when
compared to hatching success of eggs overwintered in
the laboratory (Fig. 4b). The 4.4% decrease in egg
hatching success for the CP population overwintered
at the CP site was not significant (Fig. 4b).

Discussion

This study capitalized on a gradient of range spread,
stasis, and retraction across Virginia to test the roles of
thermal environment and population origin on gypsy
moth survival and performance at the southern inva-
sion front. Previous work found a correlation between
yearly range retraction and the hours of supraoptimal
temperature during the gypsy moth growing season in
this southern portion of the invasive range (Tobin et al.
2014). Overall, experimental site had much stronger
effects on gypsy moth performance than source
population, with the AM site providing a superior
climatic environment for gypsy moth development for
all populations in this study. While we found no lethal
effects of the warmer CP site during the growing
season, there was substantial evidence for sublethal
effects on larval and pupal development that resulted

in fitness costs. The warmer climate in the CP site had
negative consequences for overwintering egg survival
and hatching success the following spring, but this
difference was significant only for the AM and NY
populations. These results suggest that selective
pressures under warmer climates could lead to local
adaptation in traits, such as egg resilience to heat, in
gypsy moth populations at the southeastern invasion
front. Overall, our results not only add to our
understanding of organismal thermal performance,
but also support previous hypotheses regarding
regional range dynamics by providing empirical
evidence of the negative fitness consequences of
supraoptimal temperatures on gypsy moth.

The thermal regimes between the two experimental
sites were dramatically different, with the AM site
being much cooler overall than the CP site. The
majority of temperatures at the AM site were below
optimal for gypsy moth development (10-26 °C) with
no supraoptimal temperatures, while there were more
hours of optimal and supraoptimal temperatures at the
CP site throughout development. The heat that gypsy
moth experienced at the CP site was not lethal for any
of the three source populations. Using 25 years of
weather data from the egg collection sites to place the
hours of supraoptimal temperature exposure during
our study year (2015) in context, we found that the
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Fig. 4 Comparisons of fecundity for each site and population.
Reported are the means and standard errors of each treatment by
population within a site. Statistical analyses were performed for
a treatment effect within each environmental location and
population. Bolded bracket and stars indicate significant
differences under a generalized mixed linear model. a Total
number of eggs laid per female at each site for each population.
b Egg hatching success calculated as the percentage of total
hatched larvae of the total number of fertilized eggs. Each egg
mass was split in half and treatments are indicated based on their
storage/wintering location outside (eggs overwintered outdoors
in natural conditions, light green) and inside (eggs overwintered
indoors under known optimal conditions, dark blue)

temperatures occurring during larval development for
our experiment were within the average range of
temperatures for the CP region. When including
temperatures over the entirety of gypsy moth devel-
opment, more hours of high temperature during the
relatively short pupal stage made 2015 the second
hottest year compared to the historical weather data.
Despite these conditions, gypsy moth can complete
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development in the laboratory even when reared at a
constant 31-32 °C (Logan et al. 1991; Thompson et al.
2017) and gypsy moth can tolerate up to 40 °C when
exposed for shorter durations of up to 2 days (Bana-
hene et al. 2018). Thus, it is unlikely that range
retraction in this area is due to direct lethal effects of
high temperature and our results point to the impor-
tance of sublethal effects on growth and development
in a hotter environment.

We used our reciprocal transplant experimental
design to test for trait differences indicative of local
adaptation among populations from the southern
invasion front and the long-established range. While
we found no differences between populations in pupal
mass, there were significant differences in larval and
pupal duration among populations. These differences
were largely due to faster development in the NY
population. At northern latitudes, larval and pupal
development times can be constrained both by cooler
temperatures during the growing season and a short-
ened growing season compared to those at more
southerly latitudes (Roff 1980). Similar effects are
common in other studies examining the effects of
latitudinal and elevational clines on phenology and
development (e.g., Halbritter et al. 2015; gniegula
et al. 2016). Temperature and length of growing
season are well-known constraints for gypsy moth in
the northern portions of its invasive range (Gray 2004;
Tobin et al. 2016), thus it is reasonable that the NY
population in our study has experienced selection for
more rapid development compared to the AM and CP
populations. This is consistent with findings by
Friedline et al. (unpublished data) indicating selection
for development times to be shorter in northern
populations and longer in their southern counterparts.

In addition to pupal mass and development time,
which are indirect measures of fitness, we assessed
fitness directly using egg production and viability.
There were clear differences in total egg production
between sites where gypsy moths reared in the CP site
laid fewer eggs compared to those in the AM site.
Since size at pupation in gypsy moth was highly
correlated with fecundity in this study, as has been
found in other Lepidoptera (Calvo and Molina 2005;
Honék 1993), this difference was likely driven by the
sublethal effect of the warmer environment on growth
and pupal mass. When comparing our hatching
success in the natural overwintering environment to
the controlled laboratory conditions, we found that
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hatching success was generally lower for eggs over-
wintering in the natural environment at the CP site
compared to the ambient laboratory control, while
hatching in the AM site was equivalent. While the lack
of eggs from the CP population at the AM site weakens
our comparison, we observed equivalent hatching of
the CP population outside at the CP site and in
laboratory conditions. These differences found in
overwintering egg survival based on both source
population and experimental site show that eggs from
the CP population were less affected by the warmer
temperature conditions during the late summer and
winter at the CP site than the other two populations. As
an obligate univoltine species, overwintering egg
survival in the gypsy moth is strongly influenced by
conditions in the late summer during pre-diapause,
overwintering temperatures for diapause, and spring
conditions after breaking diapause. Eggs laid in the CP
region experience prolonged egg exposure to summer
heat compared to those laid in the Appalachian
Mountains and this high temperature exposure can
have detrimental physiological impacts on egg devel-
opment (Allen et al. 1993; Gray et al. 1991). The low
overall hatching success of the CP population suggests
that there is an overall fitness trade-off between egg
number and heat tolerance that could contribute to
local adaptation through selective pressure for heat
tolerance in eggs.

While the large trait differences between sites in
our study indicate a plastic response across the gypsy
moth populations, our data also provide some evi-
dence for local adaptation, particularly with regards to
reproductive capacity. In the warmer climate of the CP
site, we found a slight home-site advantage for the CP
population that suggests strong selective pressure in
the region, which was expected based on documented
patterns of recent range retraction (Tobin et al. 2014).
It is notable that the effects of the CP site were not
lethal, but caused reductions in fitness leading to
negative demographic consequences in the next gen-
eration. All three populations exhibited similar sub-
lethal effects in pupal size and egg number, which
could indicate that range retraction will continue
unless gypsy moth further adapts to a continually
warming climate. Additional work taking into account
genome-wide differences among populations that may
affect developmental traits and fecundity in natural
environments, particularly at a larger scale with more
populations in a quantitative genetic study design,

could provide useful insights to the adaptive potential
of gypsy moth populations at a dynamic range margin
with regards to increased exposure to warmer
temperatures.

Field experiments using common garden designs
have long been used for separating phenotypic differ-
ences based on genetics and the environment (Langlet
1971). Reciprocal transplant studies take the common
garden design further by testing for comparative
performance differences between two or more loca-
tions. Many studies of invasive species have used
these designs to elucidate differences in comparative
performance between native and introduced popula-
tions as a result of considerable abiotic and biotic
variation between the native and introduced ranges
(e.g., Keller and Taylor 2008). Because invasive
species undergo rapid population growth and range
expansion after successfully establishing, the novel
environment can have vast ecological and climatic
differences even within the invasive range. Reciprocal
transplant studies can also provide important insights
on variation in performance under varying selective
pressures in these scenarios. For example, a common
garden experiment with the invasive plant purple
loosestrife (Lythrum salicaria) has shown that indi-
viduals from southern populations within its invaded
range are consistently larger than all other populations
regardless of the latitude at which they were grown,
suggesting higher overall fitness. However, only
through a reciprocal transplant was it revealed that
viable reproduction of southern populations (accus-
tomed to a long growing season) was impeded when
grown under a northern (short-season) climate, imply-
ing local adaptation to latitudinal variation in the
length of growing season (Colautti and Barrett 2013).

Our study is one of the few common garden-type
studies that uses an invasive insect species (but see
Krehenwinkel and Tautz 2013) and our reciprocal
transplant design is notable in that it directly measures
reproductive success by quantifying egg viability
under divergent climatic conditions. The majority of
reciprocal transplant studies focus on plants, and the
design is rarely applied to invasive animal systems
(but see examples reviewed in Colautti and Lau 2015).
This study demonstrates the utility of natural field
experiments that take into consideration the recent life
history and ecology of the system in study and directly
tests fitness, rather than substitution of correlated traits
such as growth and dispersal. We found that
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supraoptimal temperatures at the range edge of the
gypsy moth have negative sublethal effects, but
provide some evidence that the population under the
strongest selective regime has increased heat resi-
lience in egg hatching. Continued selection for heat
tolerance providing differential fitness outcomes could
potentially alter spread rates patterns in the coastal
plain region and lead to further spread into novel
environments. Overall, this work adds to our knowl-
edge of the role of thermal limits in shaping the
geographic distribution of an invasive insect.
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