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Abstract: We propose a strategy for computing estimators in some non-
standard M-estimation problems, where the data are distributed across dif-
ferent servers and the observations across servers, though independent, can
come from heterogeneous sub-populations, thereby violating the identically
distributed assumption. Our strategy fixes the super-efficiency phenomenon
observed in prior work on distributed computing in (i) the isotonic regres-
sion framework, where averaging several isotonic estimates (each computed
at a local server) on a central server produces super-efficient estimates that
do not replicate the properties of the global isotonic estimator, i.e. the iso-
tonic estimate that would be constructed by transferring all the data to a
single server, and (ii) certain types of M-estimation problems involving op-
timization of discontinuous criterion functions where M-estimates converge
at the cube-root rate. The new estimators proposed in this paper work
by smoothing the data on each local server, communicating the smoothed
summaries to the central server, and then solving a non-linear optimization
problem at the central server. They are shown to replicate the asymptotic
properties of the corresponding global estimators, and also overcome the
super-efficiency phenomenon exhibited by existing estimators.
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1. Background

Distributed computing has now become significant in the practice of statistics
as well as other branches of data science. Large volumes of data, often relat-
ing to the same or closely related studies or experiments, are no longer stored
on one single computer; rather, they are distributed across a number of plat-
forms in some structured manner, owing partly to natural memory constraints
on individual machines, and partly for convenience. This, typically, poses prob-
lems for computing optimal estimates of parameters of interest from the data
at hand. Conventional statistical estimates are generally obtained under the
premise that the totality of the data is accessible to a single computing device
and can be processed at one stroke, yielding estimates that are optimal in some
quantitatively defined sense. However, this is not automatically the case in a
distributed environment. The calculation of global estimates that require simul-
taneous processing of all available data then entails transferring the entire bulk
of data from different computers to a central machine, which in itself can be
both time and resource consuming, followed by a potentially complex computa-
tion on the aggregated data (of massive volume), which may be infeasible under
many circumstances.

Divide and conquer algorithms are a standard approach to addressing these
issues in a distributed computing environment. The idea behind this is as follows:
suppose the entire data set is stored across a number of machines. On each
machine, calculate a natural estimate of the parameter of interest from the
data on it and transfer this estimate to a central machine. Next, combine the
estimators thus obtained, at the central machine in a judicious way to produce
a final estimate, the so-called pooled estimate, which replicates the properties of
the natural global estimate, i.e. the one we could have computed were it feasible
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to store and analyze all available data on one machine. The term ‘replicates the
properties’ can be understood in various ways and is often specific to the problem
at hand: one might be able to show that the pooled and the global estimates
have the same rate of convergence, or are comparable, up to constants, in terms
of a certain measure of risk, or it might even be possible to demonstrate that the
pooled estimate and the global estimate have the same limit distributions under
appropriate conditions. The other important factor is computational burden:
one would expect that the divide and conquer algorithm is not substantially
more computationally onerous than the global estimator. As the literature on
distributed computing is enormous, here we provide a selection of instances of
research on distributed computing problems in a variety of statistical/machine-
learning contexts: see, e.g. [10], [12], [26], [27], [6], [19], [24]. The above papers
illustrate that the sample splitting approach buys computational dividends, yet
statistical optimality [in the sense that the resulting estimator is as efficient (or
minimax rate optimal) as the global estimate based on applying the estimation
algorithm to the entire data set] is retained.

In the nonparametric function estimation context, most results of the divide
and conquer (DC) type focus on estimation under smoothness constraints, where
the essence of the strategy is to compute a smoothed estimator of the unknown
function at each server and combine the estimators at the central server, by av-
eraging; this strategy is employed, for example, in [12], [26], [27]. However, the
averaging strategy leads to highly problematic pooled estimators in non-regular
function estimation problems, e.g. function estimation under a monotonicity
constraint, where the least squares estimates under the monotonicity constraint
are non-standard/non-regular in the sense that they are non-linear in the data,
and have non-Gaussian limit distributions. This is the core content of the recent
work by [3] [henceforth BDS] where it is demonstrated that in monotone function
estimation, the ‘pooled-by-averaging’ estimator [henceforth, generally referred
to as BDSE] becomes super-efficient : its ARE (asymptotic relative efficiency
in terms of MSE) with respect to the global monotone least squares estimator
computed at any single model goes to infinity, whereas, in the uniform sense,
the ARE goes to 0, i.e. the maximal MSE of BDSE over a collection of models
relative to that of the global least squares estimator goes to ∞. Furthermore,
BDSE has a normal limit distribution different from that of the global estima-
tor which converges to a Chernoff limit, discussed in details below. In related
work, [20] study M-estimation in non-standard cube-root problems of the type
considered originally by [11] and show that the pooled-by-averaging estimator
in a distributed computing framework has a different (in fact, normal) asymp-
totic distribution, as compared to the global M-estimator which converges to the
unique maximizer of an appropriate mean 0 Gaussian process minus a quadratic
drift.

Our goal in this paper is to propose new estimators under the DC framework
in both the monotone function estimation problem as well as in certain versions
of the M-estimation setting of [20] which do not suffer from the super-efficiency
problem of the pooled-by-averaging estimators and which also recover the lim-
iting properties of the corresponding global estimators. To this end, we first
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provide some details of the problem considered in BDS and the results obtained
therein, as well as those dealt with in [20], as they are crucial to understanding
the goal and the approach of the current work.

Consider a sample of size N (very large) from the model Yi = μ(Xi) + εi
which is distributed across m different servers, each server containing a sub-
sample of size n, and m = o(N). The function μ is known to be monotone
and the Xi come from a density on [0, 1]. The residual εi is assumed to satisfy
E(εi|Xi) = 0. Computing the global isotonic estimate at a point t0 ∈ (0, 1) in-
volves moving all the data to a central server and performing the isotonization
on all N data-points on the central server. This can be time-consuming when
N is really large. The construction of BDSE involves computing the isotonic
estimate of μ, say μ̂j , on the j’th server, and then obtaining the average of
these isotonic estimates. Hence, the pooled estimate at the point t0 is given
by: μ(t0) := m−1

∑m
j=1 μ̂j(t0). Computing BDSE at a particular point only

requires transferring m numbers (from the m machines) to the central server,
where m = o(N).

One can compare the computational burden involved in the calculation of the
global estimator to that for BDSE. For the global estimator, once all the data-
points have been transferred to the central machine, sorting of theXi’s (resulting
in an induced sorting of the Yi’s) can be accomplished typically in O(N logN)
time. Post-sorting, one can implement isotonic regression via the PAVA algo-
rithm [17] (Chapter 1) which takes O(N) time. Thus, the total computational
burden is O(N logN) computing time plus the transferring of N bivariate pairs
to the central machine. On the other hand, for the pooled estimator, on each ma-
chine, the isotonic estimate based on the subsample stored in that machine takes
O(n log n) computing time, leading to a total computing time of O(mn log n). At
the central server, averaging takes O(m) time. If n ∼ Nγ for some 0 < γ < 1,
this gives a total computing time of order O(N logN), and in addition, one
transfers m ∼ N1−γ scalars (the values μ̂j(t0) for j = 1, 2, . . . ,m) to the central
machine. Thus, the pooled estimator is computationally less burdensome than
the global estimator. Similar considerations apply to the computation of the
global and pooled isotonic estimators of the inverse function μ−1.

BDS showed that their pooled-by-averaging estimator (BDSE) of the inverse
function has dichotomous behavior. We briefly revisit this important result. For
convenience and the sake of completeness, we state these results essentially in
their entirety.

Consider a nonincreasing and continuously differentiable function μ0 on [0, 1]
with 0 < c < |μ′

0(t)| < d < ∞ for all t ∈ [0, 1]. For an x0 ∈ (0, 1), define a
neighborhood M0 of μ0 as the class of all continuous nonincreasing functions μ
on [0, 1] that are continuously differentiable on [0, 1], coincide with μ0 outside
of (x0 − ε0, x0 + ε0) for some (small) ε0 > 0, satisfy 0 < c < |μ′(t)| < d < ∞ for
all t ∈ [0, 1], and such that μ−1(a) ∈ (x0 − ε0, x0 + ε0) where a = μ0(x0). Now,
consider N i.i.d. observations {(Xi, Yi)}Ni=1 from (X,Y ) where Yi = μ0(Xi) + εi
and Xi ∼ Uniform(0, 1) is independent of εi ∼ N(0, v2). Then, the isotonic
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estimate θ̂N of θ0 := μ−1
0 (a) (which is x0) satisfies

N1/3 (θ̂N − θ0)
d→ G,

as N → ∞, where G =d κ̃Z, with Z following the Chernoff distribution, and
κ̃ > 0 being a constant. Writing N = m × n, where m and n are as defined
above, as N → ∞, the BDSE of μ−1(a), say θm satisfies:

N1/3(θm − θ0) →d m−1/6H ,

where H has the same variance as G but is distributed differently from G.
Furthermore,

Eμ0

[
N2/3(θ̂N − θ0)

2
]
→ Var(G) and Eμ0

[
N2/3(θm − θ0)

2
]
→ m−1/3 Var(G),

as N → ∞. Hence, BDSE outperforms the global inverse isotonic regression
estimator in terms of point wise MSE.

This phenomenon is reversed when one looks at the maximal MSEs of the
two estimators over the class of models defined by M0, as described in Theorem
5.1 of BDS.

Theorem 1.1 (Theorem 5.1 of BDS). Let

E := lim sup
N→∞

sup
μ∈M0

Eμ

[
N2/3(θ̂N − μ−1(a))2

]
and

Em := lim inf
N→∞

sup
μ∈M0

Eμ

[
N2/3(θm − μ−1(a))2

]
where the subscript m indicates that the maximal risk of the m-fold pooled es-
timator (m fixed) is being considered. Then E < ∞ while Em ≥ m2/3 c0, for
some c0 > 0. When m = mn diverges to infinity,

lim inf
N→∞

sup
μ∈M0

Eμ

[
N2/3(θmn − μ−1(a))2

]
= ∞ .

Therefore, from Theorem 1.1 it follows that the asymptotic maximal risk of
BDSE diverges to ∞ at rate (at least) m2/3. Thus, the better off we are with
BDSE for a fixed function, the worse off we are in the uniform sense over the
class of functions M0. Hence, unfortunately, while maintaining a computational
burden that is better than the global estimator, BDSE has undesirable statistical
properties as seen above.

As discussed above, similar phenomena arise in the cube-root M-estimation
problems of the Kim and Pollard type [11], studied in [20]. In [11] the M-
estimator is defined as the location of the maximum of an empirical process

PN (g, θ) =
1

n

∑
i≤N

g(Xi, θ)
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where θ ∈ Θ ⊂ R
d, X1, . . . , XN are i.i.d. random variables and g(·, θ) is the

criterion function that is optimized. The maximizer θ̂, say, is estimating θ0, the
unique maximizer of P g(X1, θ) where P is the common distribution of the Xi’s.
The cube-root convergence rate is an outcome of the so-called ‘sharp-edge effect’
– the fact that the g’s are discontinuous in θ, coupled with a quadratic decline in
‖θ − θ0‖2 of P g(X1, θ) around θ0. In the distributed computing setting of [20],
the N observations are stored across m servers with the j’th server containing
nj observations, and the M-estimator θ̂(j) on the j’th server maximizes

P
(j)
nj

g(·, θ) ≡ 1

nj

nj∑
i=1

g(X
(j)
i , θ) ,

where {X(j)
i }nj

i=1 are the data on the j’th server. The pooled estimator θ̂0 :=∑m
j=1 ωj θ̂

(j), where ωj = n
2/3
j /

∑
k n

2/3
k , reduces to the simple average when

all subsamples have the same size. Theorem 2.1 of [20] provides the asymptotic
distribution of the pooled estimator: it is seen that the estimator converges at
rate m−1/2 n−1/3 to a normal distribution, faster than the N−1/3 rate of the
global estimator. This parallels the results established in Sections 3 and 4 of
BDS in the isotonic regression context.

As in BDS, [20] also encounter the super-efficiency phenomenon, which is
discussed in Section B of their supplement for the location estimator (Section
B.1) and the value-search estimator (Section B.2), two of the examples treated
in their paper. They demonstrate in both problems that the maximal MSE of
the pooled-by-averaging estimator over a collection of models in a neighborhood
of a fixed model diverges to ∞ with N , while the maximal MSE of the global
estimator remains bounded.

In both BDS and [20], super-efficiency results from computing the non-
standard estimator at each local machine and then averaging these estimators
at the central server. To avoid this undesirable phenomenon, the key idea is to
reverse these steps, i.e., first average the data on each local server in an appro-
priate manner (which will typically depend on the structure and the dimension
of the problem) to obtain essentially sufficient summary statistics which are
then transferred to the central server. The summary statistics are now used
to compute a non-standard ‘pooled estimator’ (via an adaptation of the M-
estimation procedure used to solve for the global estimator) that replicates
the properties of the global estimator and manages to avoid super-efficiency.
The term essentially sufficient is used in the sense that these summary statis-
tics are enough to compute an estimator that matches the performance of the
global estimator. We will illustrate the idea in details for the isotonic regres-
sion problem studied in BDS and the location search problem considered by
[20], but the prescription itself can be expected to work in a broader class
of problems, subject to appropriate fine-tuning. Furthermore, for our analy-
sis, we address a broader scenario beyond i.i.d. data. Since we are thinking of
large N problems, with the data being stored separately in different servers,
it is natural to allow heterogeneity across servers. Thus, while our N observa-
tions will be assumed to be independent, we will no longer consider them to
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be identically distributed ; rather, they will be assumed to come from a num-
ber of different (m) sub-populations with the data within each sub-population
being i.i.d. The different sub-populations will be linked by a common parame-
ter of interest. Furthermore, the N pairs will be scrambled across a number of
different servers (say L), with the same server hosting data from different sub-
populations, as well as data from the same sub-population potentially stored on
multiple servers1.

2. The isotonic regression problem

2.1. The new estimator for the regression function

Assume that we have m samples of respective sizes n1, . . . , nm and that for all
j = 1, . . . ,m, the j-th sample is composed of i.i.d. pairs of real valued random
variables (Xji, Yji), i = 1, . . . , nj , such that E(Yji|Xji) = μ(Xji) for all i, j
and an unknown regression function μ defined on [0, 1]. We denote by FXj the
common distribution function of the covariates Xji, i = 1, . . . , nj in the j-
th sample. The data are stored on several servers numbered 1, . . . , L for some
integer L ≥ 1. The allocation of data on the different servers is arbitrary in the
sense that a sample can be spread on several servers, a server can host data
from several different samples, and the number of stored observations can vary
across the different servers. The number L of different servers can even grow as
N → ∞. The total sample size is N =

∑m
j=1 nj .

For ease of exposition, when considering simultaneously all the samples, we re-
label the observations from the m samples to obtain independent pairs (Xi, Yi),
i = 1, . . . , N such that E(Yi|Xi) = μ(Xi), where the distribution function of Xi

is one of FX1, . . . , FXm. Let K be a positive integer that grows to infinity as
N → ∞, and for all k ∈ {1, . . . ,K}, let Ik = ((k − 1)/K, k/K]. Let S� denote
the set of indices i, such that (Xi, Yi) is stored in the �’th server. Now, for each
server � (1 ≤ � ≤ L) record

T�k =

N∑
i=1

Yi1i∈S�
1Xi∈Ik

and

C�k =

N∑
i=1

1i∈S�
1Xi∈Ik ,

for k ∈ {1, . . . ,K}. Next, for each �, transfer {(T�k, C�k)}Kk=1 to a central server.
Compute a regressogram estimate on the central server in the following manner:

1In BDS, the number of servers was designated by m, while in this paper we change
notation and call it L. As we will see below, it is the number of different sub-populations that
really enters into the properties of the pooled estimator in general and not the number of
servers. When each sub-population has its own server, then obviously L = m.
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for each k ∈ {1, . . . ,K},

yk =
1∑L

�=1 C�k

L∑
�=1

T�k

=
1∑N

i=1 1Xi∈Ik

N∑
i=1

Yi1Xi∈Ik .

Our final estimator of (μ(x1), . . . , μ(xK))T , where xk = k/K, is

ŷ = arg min
h∈RK :h1≥···≥hK

K∑
k=1

wk(yk − hk)
2 , (2.1)

where

wk =
1

N

N∑
i=1

1Xi∈Ik =

∑L
�=1 C�k

N
.

The estimator of the regression fuction μ is obtained by piecewise-constant
interpolation.

Note that the estimator does not depend on the way the observations were
stored across different servers.

2.2. Computational considerations

Consider the computational burden for the new estimator. Assume, for now,
that K ∼ N ζ for some 0 ≤ ζ < 1. First, focus on the computational time it
takes for calculating (T�k, C�k) for all � and 1 ≤ k ≤ K. For each Xi, one has to
determine in which interval Ik it falls, and then assign the pair (Xi, Yi) to the
interval Ik. This can be accomplished in O(logN ζ) = O(logN) time. Since there
are N such points (scrambled across the different servers), the total time taken
is O(N logN). Next, computing (C�k, T�k) for a fixed � involves less than 2n�k

additions, where n�k is the number of (Xi, Yi) pairs assigned to Ik on server �.
Hence, computing the vector {C�k, T�k}1≤k≤K takes O(

∑
k n�k) time. Summing

up across the different �’s, we are looking at a total of O(N logN)∨O(N) time,
i.e. O(N logN) time.

After the pairs {T�k, C�k}1≤k≤K have been transferred to the central server,
computing the vector {(wk, yk)}1≤k≤K takes O(LN ζ) time, and the final iso-
tonization step takes O(N ζ) time. Thus, the total computing time is O(LN ζ)∨
O(N logN) which is dominated by O(N logN) provided L (which could grow
withN) and ζ are not too large. In addition to the total computing time, the bur-
den also involves transferring about 2LK ∼ LNζ numbers between machines,
which is larger than the amount of data transferred in the construction of BDSE.
As shall be seen below, with K slightly larger than N1/3 – say K ∼ N1/3+η1

(η1 small) – and m of a smaller order than N1/3, the new estimator is able to
recover the properties of the global estimator: hence, so long as the number of
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machines is not too large – say L = N1/3−η2 – the total amount of data required
to be transferred is of order N2/3+η1−η2 = o(N2/3) when η2 > η1.

Note that the computation of the global isotonic estimator in this situation
would require transferring all data points to the central server which is exactly
O(N) and the isotonic algorithm at the central server would take O(N logN)
time. Note also that the minimum amount of data transferring needed for the
new estimator above is of order K (this happens when the number of servers L
is held fixed) and therefore of larger order than N1/3. On the other hand, in the
scenario of BDS, where L = m, the BDSE is constructed using m sub-samples
where m is of order at most N1/4: this corresponds to a data-transfer of order
at most N1/4 numbers to construct the super-efficient estimator at any given
point. The additional amount of data that needs to be transferred to construct
the new estimator can be viewed as the cost of alleviating the super-efficiency
phenomenon exhibited by BDSE.

2.3. Characterization of the new estimators

It is a standard result in isotonic regression that the minimum in (2.1) is
achieved at a unique vector (ŷ1, . . . , ŷK)T . We give below a characterization of
the minimizer. In the sequel, we consider the piecewise-constant left-continuous
estimator μ̂N that is constant on the intervals [0, x1], and (xk−1, xk] for all
k = 2, . . . ,K, and such that

μ̂N (xk) = ŷk

for all k = 1, . . . ,K. Let FN be the empirical distribution function corresponding
to X1, . . . , XN

FN (x) =
1

N

N∑
i=1

1Xi≤x, x ∈ R, (2.2)

and let ΛN be the piecewise-constant right-continuous process on [0, 1] that is
constant on the intervals [0, x1), and [xk−1, xk) or all k = 2, . . . ,K such that

ΛN (xj) =

j∑
k=1

wkyk =
1

N

N∑
i=1

Yi1Xi≤xj

for all j = 1, . . . ,K, and ΛN (0) = 0. Then,

FN (xj) =

j∑
k=1

wk

and μ̂N is the left-hand slope of the least concave majorant of the cumulative
sum diagram defined by the set of points {(FN (xk),ΛN (xk)), k = 0, . . . ,K}
where x0 = 0. We define the corresponding inverse estimator as follows:

UN (a) = argmax
u∈{x0,...,xK}

{ΛN (u)− aFN (u)} (2.3)
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where x0 = 0, argmax denotes the greatest location of the maximum, and where
we recall that for every nonincreasing left-continuous function h : [0, 1] → R,
the generalized inverse of h is defined as: for every a ∈ R, h−1(a) is the greatest
t ∈ [0, 1] that satisfies h(t) ≥ a, with the convention that the supremum of an
empty set is zero. To see that UN = μ̂−1

N , note that from the characterization
above of μ̂N as the slope of a least concave majorant, it follows that for all a ∈ R

and t ∈ (0, 1], we have the equivalences

μ̂N (t) < a ⇔ (∃xi < t) (∀xj ≥ t) :
ΛN (xj)− ΛN (xi)

FN (xj)− FN (xi)
< a

⇔ (∃xi < t) (∀xj ≥ t) : ΛN (xj)− aFN (xj) < ΛN (xi)− aFN (xi)

⇔ argmax
u∈{x0,...,xK}

{ΛN (u)− aFN (u)} < t

whereas for t = 0, we have the equivalence

μ̂N (0) < a ⇔ argmax
u∈{x0,...,xK}

{ΛN (u)− aFN (u)} = 0.

We study below the asymptotic properties of UN (a) for arbitrary a and use
these to deduce the asymptotic properties of μ̂N (t) for a fixed t ∈ (0, 1) using
the switch relation

μ̂N (t) ≥ a ⇐⇒ t ≤ UN (a), (2.4)

that holds for all t ∈ (0, 1] and a ∈ R.
It will be useful to also record similar characterizations of the global estimator

μ̂N,G of μ, for the sake of completeness. Recall that the global estimator is
the isotonic estimator that we would compute if all the data {Xi, Yi}Ni=1 could
have been brought over (or were already there) on a central server. Letting

ΛN,G(t) = N−1
∑N

i=1 Yi1Xi≤t, for a ∈ R, define

UN,G(a) = argmax
u∈[0,1]

{ΛN,G(u)− aFN (u)} . (2.5)

Then UN,G(a) = μ̂−1
N,G(a) and similar to the pooled estimator, we have the

following characterization:

μ̂N,G(t) ≥ a ⇐⇒ t ≤ UN,G(a), (2.6)

that holds for all t ∈ (0, 1] and a ∈ R.

3. Asymptotic properties of the new estimators

3.1. Notation and assumptions

In the sequel, we denote by g the generalized inverse of μ and by E
X the con-

ditional expectation given X1, . . . , XN . Being the inverse of μ, g is only defined
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on the interval [μ(1), μ(0)]. In the sequel, we expand g to the whole real line by
setting g(a) = 0 for all a > μ(0) and g(a) = 1 for all a < μ(1).

Furthermore, for all x ≥ 0, [x] denotes the integer part of x. We denote by
FX the mixing distribution function

FX(x) =

m∑
j=1

nj

N
FXj(x). (3.1)

Note that the function depends on N but for notational convenience, this is not
made explicit in the notation.

To develop the asymptotic properties of the proposed estimator, we will im-
pose some further conditions on the model. These are:

A1. Assume that FX has a density function fX on [0, 1] that satisfies

C1 < inf
t∈[0,1]

fX(t) ≤ sup
t∈[0,1]

fX(t) ≤ C2 (3.2)

for some positive numbers C1 and C2 that do not depend on N .
A2. With εi = Yi − μ(Xi) for all i = 1, . . . , N , assume that there exists σ > 0

such that E[ε2i |Xi] ≤ σ2 for all i, with probablity one.
A3. The regression function μ satisfies:

C3 <

∣∣∣∣μ(t)− μ(x)

t− x

∣∣∣∣ < C4 for all t �= x ∈ [0, 1] , (3.3)

for positive numbers C3 and C4.
A4. The number of bins K satisfies K−1 = o(N−1/3) and there exists λ ∈ (0, 1]

that may depend on N and satisfies

min
1≤j≤m

nj

N
≥ λ > 0 and lim inf

N→∞
N1/3λ(logN)−3 = ∞. (3.4)

Remarks on the assumptions: Assumption (A1) is fulfilled for instance if
each FXj , j = 1, . . . ,m has a density function fXj such that C1 < fXj(x) <
C2 for all x ∈ [0, 1]. Note that Assumption (A3) is weaker than differentiability,
it implies that μ is both Lipschitz and so to speak inverse Lipschitz. It also
implies that the inverse function g defined above is continuous. Assumption (A4)
is critical to recovering the Chernoff-type asymptotics for the pooled estimator;
that K grows faster than N1/3 ensures that the data are averaged over bins of
length smaller than N−1/3, so that the isotonic algorithm operating on these
averages at the central machine can still recover the N−1/3 convergence rate. If
K were to grow exactly at the rateN1/3 or slower, the pooled estimator would no
longer demonstrate Chernoff-type cube-root asymptotics. Furthermore, in (A4),
we assume that the proportion nj/N of observations from the j-th sample is at
least of order N−1/3(logN)3. This also plays a critical role in the subsequent
analysis. Since,

1 =

m∑
j=1

nj

N
≥ m min

1≤j≤m

nj

N
,



Distributed computing in non-standard problems 1937

the conditions in (3.4) imply that the number m of different sub-samples cannot
grow to fast: we must have m � N1/3(logN)−3.

3.2. Uniformly bounded MSE property of the new estimators

The Inverse Problem: We first demonstrate that the new estimator in the
inverse problem exhibits uniformly bounded maximal risk (MSE) over an appro-
priate class of models, as N grows to ∞. This is an analogue of the first result
in Theorem 4.1 of BDS for the global isotonic estimator of the inverse function,
though it is established here under weaker conditions. For this task, we denote
by F1 the class of non-increasing functions μ on [0, 1] that satisfy (3.3) and
supt |μ(t)| ≤ C5, where C5 > 0 is a positive number. The proof of the following
theorem is given in Section 6.

Theorem 3.1. Under assumptions (A1) through (A4), there exists C > 0 that
depends only on σ2, C1, C2, C3, C4 such that for all a ∈ R,

lim sup
N→∞

sup
μ∈F1

N2/3
Eμ(UN (a)− μ−1(a))2 ≤ C.

The Direct Problem: An analogue of the second result in Theorem 4.1 of BDS
that demonstrates that the new estimator fixes the super-effciency phenomenon
in the direct problem as well, i.e. μ̂N has bounded uniform MSE as N → ∞ over
the class F1, can also be established. As it involves some additional technical
fine-tuning we relegate its proof to the Appendix.

Theorem 3.2. Fix δ ∈ (0, 1/2). Then, there exists C > 0 that depends only on
σ, p, C1, C2, C3, C4, C5, δ such that for all t ∈ [δ, 1− δ]

lim sup
N→∞

sup
μ∈F1

N2/3
Eμ(μ̂N (t)− μ(t))2 ≤ C.

We show next that under a fixed μ, the new estimator recovers the asymptotic
distribution of the global estimator with the same convergence rate.

3.3. Asymptotic distributions

To establish asymptotic distributions for our new estimators, we make additional
assumptions in the case that the number m of different samples goes to infinity,
and we clarify the asymptotic setting further.

When considering the case where m is allowed to grow to infinity as N → ∞,
we assume that there is a sequence of unknown distinct distributions {Pj}j≥1

such that our set of observations is part of an infinite sequence of pairs
{(Xi, Yi)}i≥1, where for all i the distribution of (Xi, Yi) takes the form Pj for
some j ≥ 1. Hence, m = mN is the number of different distributions that appear
across the first N observations (X1, Y1), . . . , (XN , YN ). To fix ideas, possibly re-
arranging the probabilities in the sequence {Pj}j≥1, we assume without loss of
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generality in the sequel that for all N , the m = mN distributions that appear
across the first N observations are P1, . . . , Pm. Note that the setting does not
exclude that mN = 1 for all N , i.e. that all observations are drawn from the
same distribution P1. In the case where mN > 1 for sufficiently large N , it is
not excluded that mN remains bounded. In the sequel, for all j ≥ 1, we denote
by σj the function such that

σ2
j (u) = E[(Y − μ(X))2|X = u]

for all u ∈ [0, 1] and by fj the density function of X, which is assumed to exist,
where (X,Y ) has distribution Pj . Then, the distribution function FX in (3.1)
has a density function fX on [0, 1] given by

fX(u) =

m∑
j=1

nj

N
fj(u) (3.5)

for all u ∈ [0, 1].
We next make the following technical assumptions.

Ã0. The functions {fj} are uniformly bounded in j on the interval [0, 1].

Ã1. Let

ω(δ) = sup
j≥1

max{ sup
|u−v|≤δ

|σ2
j (u)− σ2

j (v)|, sup
|u−v|≤δ

|fj(u)− fj(v)|}

for all δ ≥ 0. Then, ω(δ) → 0 as δ → 0.
Ã2. The density function fX converges pointwise [and hence, uniformly] on

[0, 1] as N → ∞ to a continuous function f∞ that is bounded away from
zero. This implies that (3.2) holds for some positive numbers C1, C2 that
do not depend on N , provided that N is sufficiently large.

Ã3. The function σ2
X defined by

σ2
X(u) :=

m∑
j=1

nj

N
σ2
j (u)fj(u)

for all u ∈ [0, 1] converges pointwise [and hence, uniformly] to a continuous
function σ2

∞, bounded away from 0, as N → ∞.
Ã4. With εi := Yi − μ(Xi) for all i = 1, . . . , N , there exists σ > 0 such that

E[|εi|p|Xi = t] ≤ σp for all i, t and some p > 2.
Ã5. The function μ is decreasing and has a continuous first derivative on [0, 1]

such that infu∈[0,1] |μ′(u)| > 0

For notational convenience, we do not make it explicit in the notation that
FX , fX , σX ,m may depend on N .

Remark: The pointwise convergence of fX to f∞ implies uniform convergence
because by assumption Ã1, the class of functions {fj} is uniformly equicontin-
uous, which then implies that the class {fX} is also uniformly equicontinuous.
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Also, the pointwise convergence of σ2
X to σ2

∞ guarantees uniform convergence,
because the class of functions {σ2

X} is uniformly equicontinuous: this follows
from the uniform boundedness of the class {fj} assumed in Ã0, the uniform

boundedness of {σ2
j }, which is a consequence of Ã4, and the uniform equiconti-

nuity of the classes {fj} and {σ2
j } assumed in Ã1.

Theorem 3.3. With t ∈ (0, 1) fixed, and a = μ(t) + N−1/3x for some fixed
x ∈ R, under Assumptions Ã1 through Ã4 and A4, we have

N1/3(UN (a)− g(a)) →d

(
2σ∞(t)

|μ′(t)|f∞(t)

)2/3

Z as N → ∞,

where Z := argmaxu∈R
{W (u) − u2}, W being a standard two-sided Brownian

motion starting at 0, has the so-called Chernoff’s distribution.

An interesting feature of the estimator UN is that its asymptotic behavior
does not depend on the way the N data are allocated on the different servers.
The direct estimator μ̂N shares this feature, as is shown in the next result.

Theorem 3.4. Under the same assumptions as in Theorem 3.3, with t ∈ (0, 1)
fixed, we have

N1/3(μ̂N (t)− μ(t)) →d

(
4σ2

∞(t)|μ′(t)|
f2
∞(t)

)1/3

Z as N → ∞,

where Z is as defined in Theorem 3.3.

Remark: The estimators μ̂N (t) and UN (a) have the same asymptotic distribu-
tions (when centered around their respective estimands and scaled by the factor
N1/3) as the corresponding global isotonic estimators, μ̂N,G and UN,G defined
in (2.6) and (2.5) respectively. In other words, the asymptotic distributions of
the estimators N1/3(UN,G− g(a)) and N1/3(μ̂N,G(t)−μ(t)) are those arising in
Theorems 3.3 and 3.4 respectively. The limit distributions of the global estima-
tors can be established by the same set of techniques as used in the proofs of
Theorems 3.3 and 3.4. Thus, the new estimators proposed in this paper not only
circumvent the super-efficiency phenomenon but recover the asymptotic prop-
erties of their corresponding global versions. We note that the global isotonic
estimators μ̂N,G(t) and UN,G(a) also possess the uniformly bounded maximal
MSE property for their respective estimands, i.e. exact analogues of the results
in Theorems 3.2 and 3.1 hold for N1/3(UN,G − g(a)) and N1/3(μ̂N,G(t)− μ(t))
respectively, and can be established by similar techniques as used in the proofs
of these two theorems.

Remark: The setting of the theorems in this section with a growing sequence
of sub-populations such that conditions Ã1 through Ã5 hold is not difficult to
satisfy. Consider, for example, m = �N1/4� and Pj has density fj(u) = (1 −
εj)f0(u) + εjf1(u) where f0 and f1 are Lipschitz continuous densities bounded
away from 0 and ∞ on [0, 1], 0 < εj < 1 for all j, the sequence {εj} is decreasing
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to 0 and
∑m

j=1 εj = o(m), which is easy to arrange. Let the distribution of
the Xi’s be P1 for i = 1, 2, . . . , �N/m�, P2 for �N/m� + 1 ≤ i ≤ 2�N/m�,
. . ., and Pm for (m − 1)�N/m� ≤ i ≤ N . For each i, the regression model
is Y = μ(Xi) + εi where the εi’s are i.i.d. N(0, σ2) (say) and independent of
the Xi’s, which are also mutually independent, and μ satisfies all the desired
conditions in this manuscript, in particular Ã5. Then, it is easy to check that
all the five conditions at the beginning of this section hold, with f∞ = f0 and
σ2
∞(u) = σ2 f∞(u).
The proof of Theorem 3.3 is in the Appendix. The proof of Theorem 3.4

follows.

Proof of Theorem 3.4. It follows from the switch relation (2.4) that for all fixed
t ∈ (0, 1), with a = μ(t) +N−1/3x we have

P

(
N1/3(μ̂N (t)− μ(t)) < x

)
= P

(
μ̂N (t) < μ(t) +N−1/3x

)
= P (t > UN (a))

= P

(
N1/3(UN (a)− g(a)) < N1/3(t− g(a))

)
.

Now, N1/3(t − g(a)) = xg′(μ(t)) + o(1) = x|μ′(t)|−1 + o(1), so it follows from
Theorem 3.3 that

lim
N→∞

P

(
N1/3(μ̂N (t)− μ(t)) < x

)
= P

((
2σ∞(t)

|μ′(t)|fX(t)

)2/3

Z <
x

|μ′(t)|

)
,

using that the Chernoff distribution Z is continuous (see e.g. [9]).

4. The location parameter problem

The location parameter problem is one of the examples studied by [20] (Section
3.1) and falls in the genre of general cube-root M-estimation problems intro-
duced by [11]. As discussed in Section 1, in the framework of [11], a generic
estimator maximizes an empirical process PN (g, θ) = 1

n

∑
i≤N g(ξi, θ) over θ ∈

Θ ⊂ Θ with Θ ⊂ R
d, the ξi’s being i.i.d. random variables. Consider the case

d = 1, Θ = [0, 1] and assume that the ξi’s assume values in [0, 1]. One particular
recipe which (or embellishments of which) works in a variety of cases, e.g. the
location parameter problem, where the global estimator is obtained by search-
ing over the values of the ξi’s, is to define xk = k/K for k = 1, . . . ,K, compute∑

i≤N g(ξi, xk)1(i ∈ S�) on each server l ∈ {1, . . . , L}2, transfer each summary
to the central server, and sum up to obtain

∑
i≤N g(ξi, xk) for each k. The final

estimator is computed as the argmax of
∑

i≤N g(ξi, θ) over θ ∈ {x1, . . . , xK}.
For this ‘pooled estimator’ to recover the properties of the global estimator,
we would expect that N1/3 = o(K), as in the isotonic regression problem. We
present the detailed analysis below for location estimation.

2Sl is the set of indices i such that the corresponding ξi are on the l’th server.
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4.1. The set-up, the estimator and assumptions

Assume that we have m samples of respective sizes n1, . . . , nm and that for
all j = 1, . . . ,m, the j-th sample is composed of i.i.d. random variables Xji,
i = 1, . . . , nj , with common distribution Pj , such that for a fixed bandwidth r0,
there exists a unique θ0 such that both θ0 − r0 and θ0 + r0 are in (0, 1) and

θ0 = argmax
θ

Pj([θ − r0, θ + r0]).

One special case of the above is the situation that each Pj is unimodal with a
common mode (across j). We denote by FXj the common distribution function
of the variables Xji, i = 1, . . . , nj in the j-th sample. The data are stored
on several servers numbered 1, . . . , L for some integer L ≥ 1, and we allow the
possibility that L grows with N ≡

∑m
j=1 nj , the total sample size. The allocation

of data on the different servers is arbitrary in the sense that a sample can be
spread on several servers, a server can host data from several different samples,
and the number of stored observations can vary across the different servers.

For ease of exposition, when considering simultaneously all the samples, we
relabel the observations from the m samples to obtain independent variables Xi,
i = 1, . . . , N whose the distribution function is one of FX1, . . . , FXm. Let K be
a positive integer that grows to infinity as N → ∞, and for all k ∈ {1, . . . ,K},
let Ik = ((k − 1)/K, k/K]. Let S� denote the set of indices i, such that Xi is
stored in the �’th server. Now, for each server � (1 ≤ � ≤ L) record

T�k =

N∑
i=1

1i∈S�
1Xi∈Ik

for k ∈ {1, . . . ,K}. Next, for each �, transfer {T�k}Kk=1 to a central server.
Compute an empirical distribution function on the central server in the following
manner: ΛN is the piecewise-constant right-continuous process on [0, 1] that is
constant on the intervals [xk−1, xk) or all k = 1, . . . ,K where xk = k/K, such
that

ΛN (xj) =
1

N

j∑
k=1

L∑
�=1

T�k =
1

N

N∑
i=1

1Xi≤xj

for all j = 1, . . . ,K, and ΛN (0) = 0. We define the estimator θN of θ0 as follows:

θN = argmax
θ

{ΛN (θ + r0K)− ΛN (θ − r0K)}

where r0K = [Kr0]/K, argmax denotes the greatest location of the maximum
and where the maximum is taken over {x̄0, . . . , x̄K}∩ [r0K , 1− rr0K ]. Note that
both θN − r0K and θN + r0K belong to the set {x̄0, . . . , x̄K}.

In the sequel, we use the same notation FX as in (3.1) and we make the
following assumption:

S. The number of bins K satisfies K−1 = o(N−1/3) and there exists λ ∈ (0, 1]
that may depend on N and satisfies

min
1≤j≤m

nj

N
≥ λ > 0 and lim inf

N→∞
N1/3λ(logN)−3 = ∞. (4.1)
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4.2. Theoretical properties of the pooled estimator

We demonstrate below that the new estimator in the location parameter prob-
lem exhibits uniformly bounded maximal risk (MSE) over an appropriate class
of models, as N grows to ∞. An asymptotic distributional result under some
further assumptions along the lines of the results in Section 3.3 can also be
established, but is skipped.

For fixed positive numbers C1, C2, C3, a, ε, δ that do not depend on N , we
denote by F1 the class of functions fX on [0, 1] that satisfy

fX =

m∑
j=1

nj

N
fXj

where
C1 < inf

t∈[0,1]
fXj(t) ≤ sup

t∈[0,1]

fXj(t) ≤ C2 for all j , (4.2)

fX is differentiable in neighborhoods of θ0 − r0 and θ0 + r0 with derivative that
satisfies

f ′
X(θ0 − r0)− f ′

X(θ0 + r0) > ε, sup
u∈(0,1)

|f ′
X(u)| ≤ C3 (4.3)

and for u0 ∈ {θ0 − r0, θ0 + r0},

sup
|u−u0|≤a

|f ′
X(u)− f ′

X(u0)| ≤ ε/3, (4.4)

and for the primitive FX of fX we have

sup
|u−θ0|≥a/2

{FX(u+ r0)− FX (θ0 + r0)− FX(u− r0) + FX (θ0 − r0)} < −δ.

(4.5)
It follows from the definition of θ0 and FX that θ0 is the unique location of the
maximum

θ0 = argmax
θ

{FX(θ + r0)− FX(θ − r0)}. (4.6)

Hence, the supremum in (4.5) is stricty negative for all a > 0, and we consider a
class F1 of functions where it is uniformly negative. The first condition on (4.3)
is satisfied with some (small) ε for instance if fX is increasing on [0, θ0] and
decreasing on [θ0, 1], whereas (4.4) holds if f ′

X is continuous in neighborhoods
of both θ0 − r0 and θ0 + r0, and a is chosen sufficiently small.

We denote by Ef the underlying expectation when the distributions of the
observations are such that the true density fX of FX defined in (3.1) is equal
to f .

Theorem 4.1 (Theorem 3.1 equivalent). Under the assumptions made in this
section,

lim sup
N→∞

sup
f∈F1

N2/3
Ef (θN − θ0)

2 < ∞.
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5. Discussion

We have proposed new estimators for distributed computing in the isotonic re-
gression problem and a prototypical cube-root estimation problem of the genre
considered in [11] that preserve the convergence rates of the corresponding global
estimators and do not suffer from the super-efficiency phenomenon. The key
change from the BDS procedure or the procedure in [20] lies in smoothing
the data on local servers followed by solving a non-linear optimization prob-
lem on the central server. In the isotonic setting, this is referred to as an ‘SI’
(smoothing-isotonization) procedure. We note here that such ‘SI’ procedures
and their converse (‘IS’) procedures have been studied in monotone function
problems, though not in distributed computing environments and not under the
heterogeneity setting of our paper. See, for example, [16], [14], [22], [1] and [8].
An interesting topic for future work is to understand distributed computing
and inference for non-standard problems in higher dimensions, e.g. the maxi-
mum score estimator treated in both [11] and [20] where the parameter is a
p-dimensional vector (p > 1). For example, the partitioning into bins strategy
used above that works well for 1-dimensional problems has a downside in larger
dimensions, since the bins become hyper-cubes whose number increases quickly
with p. This entails increased levels of communication among the different ma-
chines that an effective distributed computing strategy would seek to avoid.

Reverting to the isotonic regression problem, the ideas in this paper also
have connections to other work in the monotone function literature that are
worth mentioning. [25] study isotonic estimation of a decreasing density with
histogram-type data based on i.i.d. data under a once differentiable assumption
on the density. The domain of the density is split into bins, and the counts in
each bin are available. When the number of bins grows at a rate faster than n1/3,
Theorem 4.6 of this paper shows that the isotonic estimate based on binned data
recovers the Chernoff-type asymptotic distribution of the classical Grenander
estimator. A similar phenomenon transpires in our problem. The (C�k, T�k) pair
records the number of observations in the bin Ik and the sum of the responses
in that bin respectively, for the �’th server. Once these are transferred to the
central server, we sum across � to find the total number of observations in Ik and
the sum of the responses corresponding to all those observations and construct
our isotonic estimator using these statistics. In our problem, K grows faster
than N1/3 and we obtain a Chernoff limit for the pooled estimator.

This naturally raises the question as to how the number of bins K for the
smoothing step on the local servers would influence the distribution of the es-
timators developed in this paper. When N1/3 = o(K), the grid is sufficiently
dense and the corresponding bins sufficiently small, so that our isotonized regres-
sogram estimator recovers the asymptotics of the classical, i.e. global isotonic
regression estimator, but this will no longer be the case when K ∼ N1/3 or
K = o(N1/3). When K ∼ N1/3, the results of [25] (Theorem 3.3 and Corollary
4.4) and [21] (Theorem 3.7) who study monotone function estimation with co-
variates supported on a grid indicate that the limit distribution of the isotonized
regressogram estimator at a point will neither be normal, nor will it be given
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by Chernoff’s distribution. When K = o(N1/3), the grid is sparse enough and
therefore, the regressogram estimates are ordered with probability increasing to
one, so that the isotonized regressogram estimator agrees with the original esti-
mator with increasing probability, and the results in [25] (Theorem 4.1) and [21]
(Theorem 3.1) suggest an asymptotic normal distribution for our proposed esti-
mator. We do not go into a full investigation of the details of these asymptotics
in the distributed setting, since this is not relevant to the goal of the current
work: produce a pooled estimator whose properties mimic the global estimator.

Some limited simulation results illustrating the role of K are presented in the
Appendix. As noted above, for the pooled estimator to recover the properties
of the global isotonic estimator, we need K to be of larger order than N1/3,
but to keep data-transfer costs low we would also like K to be not much larger.
Since issues with distributed computing are only important for substantially
large N , we investigated how our proposed estimator behaves in terms of K
when N is in the order of millions or larger. It turns out that even a logarithmic
adjustment, i.e. K ∼ N1/3 logN performs very well: the resolution of the bins
is good enough that the pooled estimator replicates the behavior of the global
estimator to a high level of precision. In sum, the choice of K does not appear
to be a critical issue in a really ‘big data’ setting. This is fortunate, as a heavy-
duty tuning algorithm to determineK would enhance computational costs which
one is trying to avoid in the first place. We also noted that changing to K ∼
N1/3 induces significant bias in our estimators (which is compatible with our
observations in the previous paragraph).

As far as inference on the parameters of interest is concerned, the limit distri-
butions, especially in the heterogeneous data setting contain several nuisance pa-
rameters which need to be estimated. Specifically the estimation of μ

′
in the iso-

tonic regression problem is known to be difficult. One possibility in the isotonic
regression problem is to use the likelihood ratio test for testing H0 : μ(t0) = θ0
using the data at the central server, along the lines of the ideas developed in
[5] and [4]. We believe that at least in the homogeneous setting, i.e. when the
data across the different servers are i.i.d., this likelihood ratio statistic will be
asymptotically pivotal. It is possible that pivotality also holds under the general
heterogeneous framework of this paper, but this would require further investi-
gation. A comprehensive treatment of effective inference strategies would be an
exciting topic for future research. We note that likelihood ratio statistics in het-
erogeneous massive data settings, albeit in a different genre of problems have
been studied elsewhere in the literature, see e.g. [13].

We believe that similar estimators can be proposed for distributed convex
regression. For convex regression, a BDS type estimator is expected to fail com-
pletely, since the global convex least squares estimator is itself asymptotically
biased, as suggested by the extensive simulation experiments in [2]. However,
a convexified regressogram estimator in the spirit of the one considered in this
paper, ought to be able to recover the properties of the global convex LS estima-
tor provided K is selected appropriately: we conjecture that in the convex case
K should be taken to be N1/5 = o(K). This could provide a possible avenue for
future research.
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6. Proof of Theorem 3.1

The proof of the above theorem relies on a number of preliminary results which
are presented, next. In the remainder of this section, we assume that assumptions
(A1) to (A4) are always satisfied (though some results may require only a subset
of these assumptions). Additional assumptions will be imposed when required.

Lemma 6.1. Let θ > 0 be arbitrary. Then, there exist (i) a number c > 0
that depends only on C1, C3, (ii) an integer N0 > 0 that depends only on
C1, C2, C3, C4, θ and (iii) an event EN that depends only on C2, such that for
all N ≥ N0, we have P(EN ) ≥ 1−N−θ and on EN ,

EXΛN (u)−EXΛN

(
[Kg(a)]

K

)
−a

(
FN (u)− FN

(
[Kg(a)]

K

))
≤ −c(u−g(a))2

for all a ∈ R and all u ∈ {x0, . . . , xK} such that |u− g(a)| ≥ N−1/3.

The proof of this lemma is long and technical and is available in the Appendix.
The next result gives a polynomial tail bound on the estimation error UN (a)−
g(a) over a high-probability set that is eventually used to bound the MSE.

Lemma 6.2. With EN and N0 taken from Lemma 6.1, there exists C > 0 that
depends only on σ2, C1, C2, C3, C4 such that for all a ∈ R and x > 0,

P (|UN (a)− g(a)| ≥ x, EN ) ≤ C

Nx3
(6.1)

for all N ≥ N0.

Proof of Lemma 6.2. The inequality in the lemma is obvious for x ∈ (0, N−1/3)
since for such x’s, it suffices to choose C ≥ 1 so that the right hand side is
larger than one. Hence, in the sequel we consider x ≥ N−1/3. For all a ∈ R and
all u ∈ {x0, . . . , xK} such that |u − g(a)| ≥ x, define e(a, u) as in (A.21) and
MN (u) = ΛN (u) − EX(ΛN (u)). The characterization in (2.3) proves that the
event {UN (a)− g(a) ≥ x} is included in the event{

max
u∈{x0,...,xK}, u−g(a)≥x

{ΛN (u)− aFN (u)} ≥ ΛN

(
[Kg(a)]

K

)
− aFN

(
[Kg(a)]

K

)}
=

{
max

u∈{x0,...,xK}, u−g(a)≥x

{
MN (u)−MN

(
[Kg(a)]

K

)
+ e(a, u)

}
≥ 0

}
.

Since x ≥ N−1/3, combining this with Lemma 6.1 shows that there exists c > 0
that depends only on C1, C3 such that with X = {x0, . . . , xK},

P (UN (a)− g(a) ≥ x, EN )

≤ P

(
max

u∈X , u−g(a)≥x

{
MN (u)−MN

(
[Kg(a)]

K

)
− c(u− g(a))2

}
≥ 0

)
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for N ≥ N0. The above probablity is less than or equal to∑
k≥0

P

(
max

u∈X , u−g(a)∈[x2k,x2k+1]

{
MN (u)−MN

(
[Kg(a)]

K

)
− c(u− g(a))2

}
≥ 0

)

≤
∑
k≥0

P

(
max

u∈X , u−g(a)∈[0,x2k+1]

{
MN (u)−MN

(
[Kg(a)]

K

)}
≥ c(x2k)2

)
.

(6.2)

Let PX denote the conditional probability given X1, . . . , XN . By definition, for
all u ∈ {x0, . . . , xK} we have

MN (u) =
1

N

N∑
i=1

εi1Xi≤u (6.3)

where εi = Yi − μ(Xi). The process Mn can be extended to all u ∈ R using the
same definition as above. Then, MN is a centered martingale under P

X that
satisfies

E
X (MN (u)−MN (v))

2
=

1

N2

N∑
i=1

E
X(ε2i )1u<Xi≤v ≤ σ2

N
(FN (u)−FN (v)) (6.4)

for all u ≤ v, using that EX(ε2i ) ≤ σ2 for all i by assumption. Hence, it follows
from the Doob inequality that for all k ≥ 0,

P
X

(
max

u∈{x0,...,xK}, u−g(a)∈[0,x2k+1]

{
MN (u)−MN

(
[Kg(a)]

K

)}
≥ c(x2k)2

)

≤ σ2
FN

(
g(a) + x2k+1

)
− FN

(
[Kg(a)]

K

)
c2N(x2k)4

.

Taking the expectation on both sides of the preceding inequality yields for large
enough N that

P

(
max

u∈{x0,...,xK}, u−g(a)∈[0,x2k+1]

{
MN (u)−MN

(
[Kg(a)]

K

)}
≥ c(x2k)2

)

≤
σ2

{
FX

(
g(a) + x2k+1

)
− FX

(
[Kg(a)]

K

)}
c2N(x2k)4

≤ σ2C2(x2
k+1 +K−1)

c2N(x2k)4

≤ 2σ2C2x2
k+1

c2N(x2k)4
,

where C2 is taken from (3.2). For the penultimate inequality, we used that
x2k+1 ≥ N−1/3 for all k whereas K−1 = o(N−1/3), implying that K−1 ≤ x2k+1

for all k provided that N is sufficiently large. Putting the previous inequality in
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(6.2) we obtain that for sufficiently large N ,

P (UN (a)− g(a) ≥ x, EN ) ≤
∑
k≥0

4σ2C2

c2N(x2k)3
.

Since C :=
∑

k≥0 2
−3k is finite, we conclude that

P (UN (a)− g(a) ≥ x, EN ) ≤ 4σ2C2C

c2Nx3
.

Similar arguments show that

P (g(a)− UN (a) ≥ x, EN ) ≤ 4σ2C2C

c2Nx3
,

and therefore,

P (|g(a)− UN (a)| ≥ x, EN ) ≤ 8σ2C2C

c2Nx3
.

The lemma follows.

We are now ready to prove the theorem.

Proof of Theorem 3.1. Fix μ ∈ F1 arbitrarily. Since both UN and μ−1 take
values in [0, 1], we have |UN (a) − μ−1(a)| ≤ 1 for all a and therefore, with EN

the complementary event to EN taken from Lemma 6.1, where we set θ = 2/3,
we have

Eμ

(
|UN (a)− μ−1(a)|21EN

)
≤ Pμ

(
EN

)
≤ N−2/3 (6.5)

for N sufficiently large. On the other hand, it follows from the Fubini theorem
that

Eμ

(
|UN (a)− μ−1(a)|21EN

)
=

∫ ∞

0

Pμ

(
|UN (a)− μ−1(a)| >

√
x, EN

)
dx

=

∫ ∞

0

2yPμ

(
|UN (a)− μ−1(a)| > y, EN

)
dy

≤
∫ ∞

0

2y

(
C

Ny3
∧ 1

)
dy.

For the last inequality, we used (6.1) together with the fact that a probability
cannot be larger than one. Hence,

Eμ

(
|UN (a)− μ−1(a)|21EN

)
≤

∫ N−1/3

0

2ydy +

∫ ∞

N−1/3

2C

Ny2
dy

≤ N−2/3 (1 + 2C) .
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Combining with (6.5) yields

Eμ

(
|UN (a)− μ−1(a)|2

)
≤ N−2/3 (2 + 2C) ,

which completes the proof of the Theorem (by taking C to be 2+ 2C) where C
is the constant from Lemma (6.2).

7. Proof of Theorem 4.1

In the sequel we denote θ0K = [Kθ0]/K.

Lemma 7.1 (Lemma 6.1 equivalent). Under Condition (S), there exist c > 0
and N0 > 0 such that for all N ≥ N0, we have

FX(u+ r0K)−FX(θ0K + r0K)−FX(u− r0K) + FX(θ0K − r0K) ≤ −c(u− θ0)
2

(7.1)

for all fX ∈ F1 with corresponding primitive FX , u ∈ [0, 1] and |u−θ0| ≥ N−1/3.

Proof of Lemma 7.1. By definition, both θN − r0K and θN + r0K belong to the
set {x̄0, . . . , x̄K} and we have

|r0K − r0| ≤ K−1. (7.2)

Moreover, all fX ∈ F1 are bounded in supremum norm by C2 so we have

FX(u+ r0K)− FX (θ0K + r0K)− FX(u− r0K) + FX (θ0K − r0K)

= FX(u+ r0)− FX (θ0 + r0)− FX(u− r0) + FX (θ0 − r0) + o(1)

uniformly for all u such that |u − θ0| ≥ a/2. Hence, it follows from (4.5) that
we can find c > 0 such that

sup
|u−θ0|≥a/2

{FX(u+ r0K)− FX (θ0K + r0K)− FX(u− r0K) + FX (θ0K − r0K)}

< −ca2

for sufficiently large N , which proves that the inequality in (7.1) holds for all u
with |u− θ0| ≥ a/2.

Now, consider u such that N−1/3 ≤ |u−θ0| ≤ a/2. It follows from the Taylor
expansion that

FX(u+ r0K)− FX (θ0K + r0K)− FX(u− r0K) + FX (θ0K − r0K)

= (u− θ0K) fX (θ0K + r0K) +
(u− θ0K)2

2
f ′
X(ξ1)

−(u− θ0K)fX (θ0K − r0K)− (u− θ0K)2

2
f ′
X(ξ2)
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where ξ1 and ξ2 depend on u and are such that |ξ1−(θ0+r0)| ≤ a/2+2K−1 ≤ a
and similarly, |ξ2 − (θ0 − r0)| ≤ a. Using (4.2) and (4.3), we arrive at

FX(u+ r0K)− FX (θ0K + r0K)− FX(u− r0K) + FX (θ0K − r0K)

≤ (u− θ0K) fX (θ0K + r0K)− (u− θ0K)fX (θ0K − r0K)− (u− θ0K)2

6
ε

for all u with N−1/3 ≤ |u − θ0| ≤ a/2. Since N−1/3 � K−1 we conclude that
for sufficiently large N and all u with N−1/3 ≤ |u− θ0| ≤ a/2,

FX(u+ r0K)− FX (θ0K + r0K)− FX(u− r0K) + FX (θ0K − r0K)

≤ (u− θ0K) fX (θ0 + r0)− (u− θ0K)fX (θ0 − r0)−
(u− θ0)

2

12
ε.

By (4.5), θ0 maximizes θ �→ FX(θ + r0) − FX(θ − r0) and the maximum is
achieved in the open interval (r0, 1− r0) so the derivative vanishes at θ0:

fX(θ0 + r0)− fX(θ0 − r0) = 0. (7.3)

Combining the previous two displays yields the result.

Lemma 7.2. There exists C > 0 and N0 > 0 such that for all fX ∈ F1 with
corresponding primitive FX , all x > N−1/3, u0 ∈ [0, 1], and N ≥ N0,

EfX

(
sup

|u−u0|≤x

|FN (u)− FN (u0)− FX(u) + FX(u0)|2
)

≤ Cx

N
. (7.4)

The proof is available in the Appendix.
In the sequel, we denote by Pf the underlying probability when the distri-

butions of the observations are such that the true density fX of FX defined in
(3.1) is equal to f .

Lemma 7.3. There exists C > 0 and N0 > 0 such that for all f ∈ F1, a ∈ R,
x > 0, and N ≥ N0

Pf (|θN − θ0| ≥ x) ≤ C

Nx3
. (7.5)

Proof of Lemma 7.3. The inequality in the lemma is obvious for x ∈ (0, N−1/3)
since for such x’s, it suffices to choose C ≥ 1 so that the right hand side is
larger than one. Hence, in the sequel we consider x ≥ N−1/3. It follows from
the definition of θN and Lemma 7.1 that the event {θN − θ0 ≥ x} is included in
the event that there exists u ∈ [0, 1] such that both u− r0K and u+ r0K belong
to the set {x̄0, . . . , x̄K}, u− θ0 ≥ x and

ΛN (u+ r0K)− ΛN (u− r0K)− ΛN (θ0K + r0K) + ΛN (θ0K − r0K)

−FX(u+ r0K) + FX(u− r0K) + FX (θ0K + r0K)− FX (θ0K − r0K)

≥ c(u− θ0)
2.
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As ΛN matches FN on the set {x̄0, . . . , x̄K}, the function ΛN can be replaced by
FN in the above display. We have (7.2) where K−1 � N−1/3 ≤ x and therefore,
we can assume without loss of generality that |r0K−r0| ≤ x/2. Hence, the event
{θN − θ0 ≥ x} is included in the event that there exist u, v ∈ [0, 1] such that
u− θ0 ≥ x/2, v − θ0 ≥ x/2 and

FN (u+ r0)− FN (v − r0)− FN (θ0K + r0K) + FN (θ0K − r0K)

−FX(u+ r0) + FX(v − r0) + FX (θ0K + r0K)− FX (θ0K − r0K)

≥ c(u− θ0)
2.

This implies that the event {θN − θ0 ≥ x} is included in the event that there
exist u, v ∈ [0, 1] such that u− θ0 ≥ x/2, v − θ0 ≥ x/2 and either

FN (u+ r0)− FN (θ0K + r0K)− FX(u+ r0) + FX (θ0K + r0K)

≥ c

2
(u− θ0)

2

or

−FN (v − r0) + FN (θ0K − r0K) + FX(v − r0)− FX (θ0K − r0K)

≥ c

2
(u− θ0)

2.

Hence,

Pf (θN − θ0 ≥ x) ≤
∑
k≥0

Pf (Ak) +
∑
k≥0

Pf (Bk) (7.6)

where for all k ≥ 0, Ak is the event that there exist u ∈ [0, 1] such that u− θ0 ∈
[x2k/2, x2k+1/2], and

FN (u+ r0)− FN (θ0K + r0K)− FX(u+ r0) + FX (θ0K + r0K)

≥ c

2
x222(k−1)

and Bk is the event that there exist v ∈ [0, 1] such that v−θ0 ∈ [x2k/2, x2k+1/2],
and

−FN (v − r0) + FN (θ0K − r0K) + FX(v − r0)− FX (θ0K − r0K)

≥ c

2
x222(k−1).

We will deal with the first sum in the right hand side of (7.6), the second sum
being similar. Since |θ0K − r0K − (θ0 − r0)| ≤ 2K−1 where K−1 � N−1/3 ≤ x,
we have for all k ≥ 0 that Pf (Ak) is bounded from above by

2Pf

(
sup

u≤θ0+x2k+1

{
FN (u+ r0)− FN (θ0 + r0)− FX(u+ r0) + FX(θ0 + r0)

}
≥ c

4
x222(k−1)

)
.
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Combining this with Lemma 7.2 and the Markov inequality, we conclude that

Pf (Ak) ≤
32Cx2k+1N

c2x424(k−1)
=

C210−3k

Nc2x3
.

Since
∑

k≥0 2
−3k is finite, we conclude that there exists C > 0 such that

∑
k≥0

Pf (Ak) ≤
C

Nx3
.

Similar arguments show that the same inequality holds with Ak replaced by Bk

so we conclude from (7.6) that there exists C > 0 such that

Pf (θN − θ0 ≥ x) ≤ C

Nx3
.

It can be proved similarly that

Pf (θN − θ0 ≤ −x) ≤ C

Nx3
,

and the lemma follows.

Proof of Theorem 4.1. It follows from the Fubini theorem that for all f ∈ F1

and N ≥ N0,

Ef

(
|θN − θ0|2

)
=

∫ ∞

0

Pf

(
|θN − θ0| >

√
x
)
dx

=

∫ ∞

0

2yPf (|θN − θ0| > y) dy

≤
∫ ∞

0

2y

(
C

Ny3
∧ 1

)
dy.

For the last inequality, we used (7.5) together with the fact that a probability
cannot be larger than one. Hence,

Ef

(
|θN − θ0|2

)
≤

∫ N−1/3

0

2ydy +

∫ ∞

N−1/3

2C

Ny2
dy

≤ N−2/3 (1 + 2C) ,

which completes the proof of the Theorem (by taking C to be 1 + 2C).
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Appendix

A.1. Preparatory lemmas

Lemma A.1. Assume that the distribution function FX taken from (3.1) has
a density function fX on [0, 1] that satisfies (3.2) for some positive numbers
C1, C2. Let FN be the empirical distribution function taken from (2.2) and let
F−1
N be the corresponding empirical quantile function. We then have

P

(
sup

t∈[0,1]

|FN (t)− FX(t)| > x

)
≤ 2

m∑
j=1

exp(−2njx
2) (A.1)

and

P

(
sup

t∈[0,1]

|F−1
N (t)− F−1

X (t)| > x

)
≤ 4

m∑
j=1

exp(−2njC
2
1x

2) (A.2)

for all N and x > 0.

Proof. Let FXj denote the common distribution function of the Xi’s from sam-
ple j and denote by (Xji, Yji), i = 1, . . . , nj the observations from sample j. It
follows from the triangle inequality that

sup
t∈[0,1]

|FN (t)− FX(t)| ≤
m∑
j=1

nj

N
sup

t∈[0,1]

∣∣∣∣∣ 1nj

nj∑
i=1

1Xji≤t − FXj(t)

∣∣∣∣∣
where we recall that

∑m
j=1 nj = N . Hence, for all x > 0 we have

P

(
sup

t∈[0,1]

|FN (t)− FX(t)| > x

)

≤ P

(
sup

t∈[0,1]

∣∣∣∣∣ 1nj

nj∑
i=1

1Xji≤t − FXj(t)

∣∣∣∣∣ > x for some j ∈ {1, . . . ,m}
)

≤
m∑
j=1

P

(
sup

t∈[0,1]

∣∣∣∣∣ 1nj

nj∑
i=1

1Xji≤t − FXj(t)

∣∣∣∣∣ > x

)
.

Since for all fixed j, the random variables Xji, i = 1, . . . , nj are i.i.d. with
distribution function FXj , it follows from Corollary 1 in [15] that

P

(
sup

t∈[0,1]

∣∣∣∣∣ 1nj

nj∑
i=1

1Xji≤t − FXj(t)

∣∣∣∣∣ > x

)
≤ 2 exp(−2njx

2).

Combining the two preceding displays completes the proof of (A.1).
Now, consider (A.2). Since fX is supported on [0, 1], both F−1

N and F−1
X

take values in [0, 1] so the sup-distance between those functions is less than or
equal to one. This means that the probability on the left hand side of (A.2) is
equal to zero for all x ≥ 1. Hence, it suffices to prove (A.2) for x ∈ (0, 1). As is
customary, we use the notation y+ = max(y, 0) and y− = −min(y, 0) for all real
numbersy. This means that |y| = max(y−, y+). Recall the switching relation
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for the empirical distribution and empirical quantile functions: for arbitrary
a ∈ [0, 1] and t ∈ [0, 1], we have

FN (a) ≥ t ⇐⇒ a ≥ F−1
N (t). (A.3)

For all x ∈ (0, 1) we then have

P

(
sup

t∈[0,1]

(F−1
N (t)− F−1

X (t))+ > x

)
= P

(
∃t ∈ [0, 1] : F−1

N (t) > x+ F−1
X (t)

)
= P

(
∃t ∈ [0, 1] : t > FN (x+ F−1

X (t))
)
.

Using t = FX(F−1
X (t)) together with the change of variable u = x+ F−1

X (t) we
obtain

P

(
sup

t∈[0,1]

(F−1
N (t)− F−1

X (t))+ > x

)
≤ P (∃u ≥ x : FX(u− x) > FN (u))

= P (∃u ∈ (x, 1) : FX(u− x) > FN (u)) .

For the last equality, we use the fact that FX(u− x) ≤ 1 = FN (u) for all u ≥ 1,
and FX(u − x) = 0 ≤ FN (u) for all u ≤ x. With C1 taken from (3.2) we have
FX(u − x) < FX(u) − C1x for all x ∈ (0, 1) and u ∈ (x, 1). Combining this to
the previous display yields

P

(
sup

t∈[0,1]

(F−1
N (t)− F−1

X (t))+ > x

)
≤ P (∃u ∈ (x, 1) : FX(u)− FN (u) > C1x)

≤ P

(
sup
u∈R

|FX(u)− FN (u)| > C1x

)
≤ 2

m∑
j=1

exp(−2njC
2
1x

2). (A.4)

For the last inequality, we used (A.1). On the other hand, for all x ∈ (0, 1) we
have

P

(
sup

t∈[0,1]

(F−1
N (t)− F−1

X (t))− > x

)
≤ P

(
∃t ∈ [0, 1] : F−1

N (t) < F−1
X (t)− x

)
≤ P

(
∃u ∈ (x, 1) : F−1

N (FX(u)) ≤ u− x
)
,

using the change of variable u = F−1
X (t). Hence, with the switching relation we

obtain

P

(
sup

t∈[0,1]

(F−1
N (t)− F−1

X (t))− > x

)
≤ P (∃u ∈ (x, 1) : FX(u) ≤ FN (u− x))

≤ P (∃u ∈ (x, 1) : FX(u− x) + C1x < FN (u− x)) ,



1954 M. Banerjee and C. Durot

using that FX(u − x) < FX(u) − C1x for all x ∈ (0, 1) and u ∈ (x, 1). Using
again (A.1) together with the change of variable v = u− x, we arrive at

P

(
sup

t∈[0,1]

(F−1
N (t)− F−1

X (t))− > x

)
≤ P

(
sup
v∈R

|FX(v)− FN (v)| > C1x

)

≤ 2

m∑
j=1

exp(−2njC
2
1x

2).

Combining the previous display with (A.4) completes the proof of (A.2) since
|y| ≤ y− + y+ for all y ∈ R.

Lemma A.2. Under the assumptions of Theorem 3.3, for all p > 0 there exists
Kp > 0 such that for all N ,

E

(
sup

t∈[0,1]

|FN (t)− FX(t)|p
)

≤ KpN
−p/2. (A.5)

Proof. It follows from the Fubini theorem that

E

(
sup

t∈[0,1]

|FN (t)− FX(t)|p
)

=

∫ ∞

0

P

(
sup

t∈[0,1]

|FN (t)− FX(t)|p > x

)
dx

=

∫ ∞

0

pxp−1
P

(
sup

t∈[0,1]

|FN (t)− FX(t)| > x

)
dx.

Combining this with (A.1) and the fact that a probability cannot be larger than
one then yields

E

(
sup

t∈[0,1]

|FN (t)− FX(t)|p
)

≤ N−p/3 + 2

m∑
j=1

∫ ∞

N−1/3

pxp−1 exp(−2njx
2)dx

≤ N−p/3 + 2N

∫ ∞

N−1/3

pxp−1 exp(−2N2/3(logN)3x2)dx

for sufficiently large N , where we used (3.4) for the last inequality. The result
follows by computing the integral on the right-hand side.

A.2. Proof of Theorem 3.2

Denote by F̃N the step function on [0, 1] such that F̃N (xk) = FN (xk) for all

k = 0, . . . ,K, and F̃N is constant on all intervals [xk−1, xk) for k = 1, . . . ,K.

We denote by F̃−1
N the corresponding inverse function:

F̃−1
N (t) = inf{x ∈ [0, 1] such that F̃N (x) ≥ t}.
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Since F̃−1
N ◦F̃N (xk) = xk for all k = 0, . . . ,K, it follows from the characterization

in (2.3) that

UN (a) = F̃−1
N (VN (a)) (A.6)

for all a ∈ R, where

VN (a) = argmax
u∈{F̃N (x0),...,F̃N (xK)}

{ΛN ◦ F̃−1
N (u)− au}.

The following lemma provides tail bound probabilities for VN .

Lemma A.3. With εi = Yi − μ(Xi) for all i = 1, . . . , N , assume that there
exists σ > 0 such that E[εpi |Xi] ≤ σp for all i and some p ≥ 2, with probablity
one. Assume that FX has a density function fX on [0, 1] that satisfies (3.2) for
some positive numbers C1, C2. Then, there exists C > 0 that depends only on
p, C2 and σ such that

P (VN (a) ≥ x) ≤ C

Np/2xp−1(a− μ(0))p

for all a > μ(0) and

P (1− VN (a) ≥ x) ≤ C

Np/2xp−1(μ(1)− a)p
.

for all a < μ(1).

A proof of this lemma follows the proof the main theorem.

Proof of Theorem 3.2. Similar to the proof of Theorem 3.1 for the inverse prob-
lem, we would like to restrict ourselves to the event EN from Lemma 6.1, where
θ can be chosen arbitrarily large. However, we do not have an analogue of (6.5)
for the direct problem since μ̂N is not bounded as is UN . Hence, we first prove
that μ̂N remains bounded by a power of N apart possibly on a negligible set.
For this task, consider an arbitrary A > 0 such that A + μ(0) > 0, and note
that for all t ∈ [0, 1], and all non-increasing functions μ on [0, 1], we have

Eμ

[
μ̂2
N (t)1μ̂N (t)>A+μ(0)

]
≤ Eμ

[
μ̂2
N (0)1μ̂N (0)>A+μ(0)

]
.

Hence, it follows from the Fubini theorem that for all non-increasing μ ∈ F1,

Eμ

[
μ̂2
N (t)1μ̂N (t)>A+μ(0)

]
≤

∫ ∞

0

Pμ(μ̂n(0)1μ̂N (0)>A+μ(0) >
√
y)dy

= (A+ μ(0))2Pμ(μ̂N (0) > A+ μ(0)) +

∫ ∞

A+μ(0)

2yPμ(μ̂N (0) > y)dy.

Note that if μ̂N (0) > y for some y ∈ R, then for the inverse we must have
UN (y) > 0. Since UN can only assume values in the set of jump points of μ̂N

it is of the form xk = k/K for some k ≥ 1. Next, μ̂N can have jumps only

at those xk where F̃N has a jump, i.e. F̃N (xk) > F̃N (xk−1). Since the size of

a jump of F̃N is at least N−1, we must have F̃N (xk) ≥ N−1 and therefore,
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FN (xk) = F̃N (xk) ≥ N−1. Thus,

VN (y) = F̃N (UN (y)) = FN (UN (y)) = FN (xk) ≥ N−1,

implying that for all μ ∈ F1,

Eμ

[
μ̂2
N (t)1μ̂N (t)>A+μ(0)

]
≤ (A+ μ(0))2Pμ(VN (A+ μ(0)) ≥ N−1) +

∫ ∞

A+μ(0)

2yPμ(VN (y) ≥ N−1)dy.

With C taken from Lemma (A.3) where it is assumed that p > 2, we arrive at

Eμ

[
μ̂2
N (t)1μ̂N (t)>A+μ(0)

]
≤ CN−1+p/2(A+ μ(0))2A−p + 2CN−1+p/2

∫ ∞

A+μ(0)

y(y − μ(0))−pdy

= CN−1+p/2(A+ μ(0))2A−p + 2CN−1+p/2

{
A2−p

p− 2
+ μ(0)

A1−p

p− 1

}
≤ CN−1+p/2(A+ C5)

2A−p + 2CN−1+p/2

{
A2−p

p− 2
+ C5

A1−p

p− 1

}
.

With A = N (3p−2)/(6(p−2)), this proves that there exists C ′ > 0 that depends
only on σ, p, C2 and C5 such that

Eμ

[
(μ̂N (t))21μ̂N (t)>A+μ(0)

]
≤ C ′N−2/3

for all t ∈ [0, 1] and μ ∈ F1. Now, with A = N (3p−2)/(6(p−2)),

Eμ

[
(μ̂N (t)− μ(t))21μ̂N (t)>A+μ(0)

]
≤ Eμ

[
2
(
μ̂2
N (t) + μ2(t)

)
1μ̂N (t)>A+μ(0)

]
≤ 2C ′N−2/3 + 2max{|μ(0)|, |μ(1)|}2P (μ̂N (0) > A+ μ(0))

≤ 2C ′N−2/3 + 2max{|μ(0)|, |μ(1)|}2P
(
VN (A+ μ(0)) ≥ N−1

)
,

similar as above, whence

Eμ

[
(μ̂N (t)− μ(t))21μ̂N (t)>A+μ(0)

]
≤ 2C ′N−2/3 + 2CC5

2N−1+p/2A−p

≤ C ′′N−2/3

where C ′′ depends only on σ, p, C2, and C5. This enables us to restrict to the
event EN of Lemma 6.1, provided that θ is chosen sufficiently large in the lemma.
Indeed, with θ > (5p− 6)/(3(p− 2)), the previous inequality implies that with
A = N (3p−2)/(6(p−2)) and N sufficiently large,

Eμ

[
{(μ̂N (t)− μ(t))+}21EN

]
≤ (A+ μ(0)− μ(t))2Pμ(EN ) + C ′′N−2/3

≤ (A+ 2C5)
2
Pμ(EN ) + C ′′N−2/3

≤ 2C ′′N−2/3
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for all t ∈ [0, 1] and all μ ∈ F1. It can be shown similarly that for N sufficiently
large,

Eμ

[
{(μ̂N (t)− μ(t))−}21EN

]
≤ 2C ′′N−2/3

for all t ∈ [0, 1] and all μ ∈ F1, implying that

lim sup
N→∞

sup
μ∈F1

N2/3
Eμ

[
(μ̂N (t)− μ(t))21EN

]
≤ 4C ′′

for all t ∈ [0, 1]. Hence, it now suffices to prove that there exists C > 0 that
depends only on σ, p, C1, C2, C3, C4, C5, δ such that

lim sup
N→∞

sup
μ∈F1

N2/3
Eμ

[
(μ̂N (t)− μ(t))21EN

]
≤ C. (A.7)

To prove this, fix μ ∈ F1 arbitrarily, and invoke the Fubini Theorem to obtain
that

Eμ

[
{(μ̂N (t)− μ(t))+}21EN

]
=

∫ ∞

0

2yPμ (μ̂N (t)− μ(t) ≥ y, EN ) dy

=

∫ ∞

0

2yPμ (UN (μ(t) + y) ≥ t, EN ) dy, (A.8)

using the switch relation (2.4) for the last equality. We split the above integral
into the sum of two integrals and first consider

I1 =

∫ μ(0)−μ(t)

0

2yPμ (UN (μ(t) + y) ≥ t, EN ) dy.

With C4 taken from the definition of F1 we have

t = μ−1(μ(t)) ≥ μ−1(μ(t) + y) + yC−1
4

for all t ∈ [0, 1] and y ∈ [0, μ(0) − μ(t)]. Combining Lemma 6.2 with the fact
that a probability cannot be larger than one then yields

I1 ≤ N−2/3 +

∫ μ(0)−μ(t)

N−1/3

2yPμ

(
UN (μ(t) + y)− μ−1(μ(t) + y) ≥ yC−1

4 , EN
)
dy

≤ N−2/3 +

∫ ∞

N−1/3

2CC3
4

Ny2
dy

≤ N−2/3
(
1 + 2CC3

4

)
. (A.9)

Next, Lemma 6.2 yields

I2 :=

∫ ∞

μ(0)−μ(t)

2yPμ (UN (μ(t) + y) ≥ t, EN ) dy

≤
∫ μ(0)−μ(t)+N1/6

μ(0)−μ(t)

2yPμ (UN (0) ≥ t, EN ) dy
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+

∫ ∞

μ(0)−μ(t)+N1/6

2yPμ (UN (μ(t) + y) ≥ t, EN ) dy

≤ C

Nt3

∫ μ(0)−μ(t)+N1/6

μ(0)−μ(t)

2ydy

+

∫ ∞

μ(0)−μ(t)+N1/6

2yPμ (UN (μ(t) + y) ≥ t, EN ) dy,

where the first term on the right-hand side is equal to

C

Nt3

(
(μ(0)− μ(t) +N1/6)2 − (μ(0)− μ(t))2

)
=

C

Nt3

(
2(μ(0)− μ(t))N1/6 +N1/3

)
≤ C

Nt3
(4C5N

−1/6 + 1)N1/3

≤ 2C

δ3
N−2/3

for sufficiently large N , for all t ≥ δ and μ ∈ F1. Using the connection (A.6)
between UN and VN yields

I2 ≤ 2C

δ3
N−2/3 +

∫ ∞

μ(0)−μ(t)+N1/6

2yPμ

(
VN (μ(t) + y) ≥ F̃N (t), EN

)
dy,

where F̃N (t) = F̃N ([Kt]K−1) = FN ([Kt]K−1) by definition of F̃N and FN .
Regarding the proof of Lemma 6.1, it can be seen that on EN we have

sup
t∈[0,1]

|FN (t)− FX(t)| ≤ C2N
−1/3

whence

I2 ≤ 2C

δ3
N−2/3

+

∫ ∞

μ(0)−μ(t)+N1/6

2yPμ

(
VN (μ(t) + y) ≥ FX([Kt]K−1)− C2N

−1/3
)
dy

≤ 2C

δ3
N−2/3

+

∫ ∞

μ(0)−μ(t)+N1/6

2yPμ

(
VN (μ(t) + y) ≥ C1(t−K−1)− C2N

−1/3
)
dy

≤ 2C

δ3
N−2/3 +

∫ ∞

μ(0)−μ(t)+N1/6

2yPμ (VN (μ(t) + y) ≥ C1δ/2) dy,

for all t ∈ [δ, 1− δ], provided that N is sufficiently large. Hence, it follows from
Lemma A.3 where it is assumed that p > 2, that

I2 ≤ 2C

δ3
N−2/3 +

2pC

(C1δ)p−1

∫ ∞

μ(0)−μ(t)+N1/6

yN−p/2

(y + μ(t)− μ(0))p
dy.
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For the integral on the right-hand side we have∫ ∞

μ(0)−μ(t)+N1/6

yN−p/2

(y + μ(t)− μ(0))p
dy

=

∫ ∞

μ(0)−μ(t)+N1/6

N−p/2

(y + μ(t)− μ(0))p−1
dy

+

∫ ∞

μ(0)−μ(t)+N1/6

(μ(0)− μ(t))N−p/2

(y + μ(t)− μ(0))p
dy

=

∫ ∞

N1/6

N−p/2

up−1
du+

∫ ∞

N1/6

(μ(0)− μ(t))N−p/2

up
du

≤ 1

p− 2
N (1−2p)/3 +

2C5

p− 1
N (1−4p)/6.

Hence, we can find C̃ that depends only on p, σ, C1 − C5 such that

I2 ≤ C̃N−2/3

for sufficiently large N , for all μ ∈ F1 and t ∈ [δ, 1− δ].
Combining this with (A.9) and (A.8) proves that there exists C > 0 that

depends only on σ, p, C1, C2, C3, C4, C5, δ such that

lim sup
N→∞

sup
μ∈F1

N2/3
Eμ

[
(μ̂N (t)− μ(t))2+1EN

]
≤ C.

It can be proved similarly that

lim sup
N→∞

sup
μ∈F1

N2/3
Eμ

[
(μ̂N (t)− μ(t))2−1EN

]
≤ C,

which completes the proof (A.7), and hence the proof of the theorem.

Proof of Lemma A.3. For all a �∈ [μ(1), μ(0)] and u ∈ {x0, . . . , xK}, define
e(a, u) as in (A.21). We then have (A.22) where

[Kg(a)]

K
= g(a) =

{
0 if a > μ(0)

1 if a < μ(1).

and f is given by (A.23). Note that (A.24) is no longer true for a �∈ [μ(1), μ(0)]
since in such a case, a �= μ ◦ g(a). Instead, we will use(

μ

(
[Kg(a)]

K

)
− a

)(
FN (u)− FN

(
[Kg(a)]

K

))
=

{
(μ(0)− a)FN (u) if a > μ(0)

(μ(1)− a)(FN (u)− 1) if a < μ(1),

using that FN (0) = 0 and FN (1) = 1. Since f(a, u) ≥ 0 for all a, u (A.22) yields

e(a, u) ≤
{
(μ(0)− a)FN (u) if a > μ(0)

(μ(1)− a)(FN (u)− 1) if a < μ(1)
(A.10)
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for all a �∈ [μ(1), μ(0)] and u ∈ {x0, . . . , xK}.
Since ΛN (x0) − aF̃N (x0) = 0, it follows from the definition of VN that the

following inequalities hold for all x > 0 and a > μ(0):

P (VN (a) ≥ x)

≤ P

(
max

u∈{F̃N (x0),...,F̃N (xK)}, u≥x
{ΛN ◦ F̃−1

N (u)− au} ≥ 0

)

= P

(
max

u∈{F̃N (x0),...,F̃N (xK)}, u≥x
{MN ◦ F̃−1

N (u) + e(a, F̃−1
N (u))} ≥ 0

)

where MN (u) = ΛN (u)− E
X(ΛN (u)) takes the form (6.3). The first inequality

in (A.10) then yields

P (VN (a) ≥ x)

≤ P

(
max

u∈{F̃N (x0),...,F̃N (xK)}, u≥x
{MN ◦ F̃−1

N (u) + (μ(0)− a)u} ≥ 0

)
≤

∑
k≥0

P

(
max

u∈{F̃N (x0),...,F̃N (xK)}, u∈[x2k,x2k+1]
{MN ◦ F̃−1

N (u)} ≥ (a− μ(0))x2k
)
.

Let p ≥ 2 and σ > 0 such that E[εpi |Xi] ≤ σp for all i, almost surely. The process
Mn is a centered martingale under P

X which, according to Theorem 3 in [18],
satisfies

E
X |MN (u)|p ≤ Ap

Np
max

⎧⎨⎩
N∑
i=1

E
X |εi|p1Xi≤u;

(
N∑
i=1

E
X |εi|21Xi≤u

)p/2
⎫⎬⎭

≤ Apσ
p

Np
max

{
NFN (u); (NFN (u))

p/2
}

≤ Apσ
pFN (u)

Np/2

for all u ∈ [0, 1] and Ap = (p/2)p/22p+p2/4. For the penultimate inequality, we
used that E

X |εi|2 ≤ (EX |εi|p)2/p thanks to the Holder inequality whereas for

the last inequality, we used that N ≤ Np/2 and F
p/2
N (u) ≤ FN (u). Combining

the two preceding displays with the Doob inequality yields that for all x > 0,
P (VN (a) ≥ x) is less than or equal to

∑
k≥0

E

[
P
X

(
max

u∈{F̃N (x0),...,F̃N (xK)}, u∈[x2k,x2k+1]
{MN ◦ F̃−1

N (u)} ≥ (a− μ(0))x2k
)]

≤
∑
k≥0

E

[
Apσ

pFN (x2k+1)

Np/2(a− μ(0))p(x2k)p

]
.
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With C2 taken from (3.2) we conclude that for all x > 0,

P (VN (a) ≥ x) ≤
∑
k≥0

Apσ
pFX(x2k+1)

Np/2(a− μ(0))p(x2k)p

≤
∑
k≥0

2ApC2σ
p

Np/2(a− μ(0))p(x2k)p−1
.

Since C := 2ApC2σ
p
∑

k≥0 2
−k(p−1) is finite, we conclude that

P (VN (a) ≥ x) ≤ C

Np/2(a− μ(0))pxp−1
,

which proves the first assertion. For the second assertion, since xK = F̃N (xK) =
1, we write for a < μ(1) and x > 0 that P (1− VN (a) ≥ x) is less than or equal to

P

(
max

u∈{F̃N (x0),...,F̃N (xK)}, 1−u≥x
{ΛN ◦ F̃−1

N (u)− au} ≥ ΛN (1)− a

)
= P

(
max

u∈{F̃N (x0),...,F̃N (xK)}, 1−u≥x
{MN ◦ F̃−1

N (u)−MN (1) + e(a, F̃−1
N (u))} ≥ 0

)
.

The first inequality in (A.10) then yields that P (1− VN (a) ≥ x) is less than or
equal to

P

(
max

u∈{F̃N (x0),...,F̃N (xK)}, 1−u≥x
{MN ◦ F̃−1

N (u)−MN (1)− (μ(1)− a)(1−u)}≥ 0

)
≤

∑
k≥0

P

(
max

u∈{F̃N (x0),...,F̃N (xK)}, 1−u≤x2k+1

{MN ◦ F̃−1
N (u)−MN (1)}

≥ (μ(1)− a)x2k
)
,

and we use the Doob inequality, similar as above. Details are omitted.

A.3. Proof of Theorem 3.3

It follows from (2.3) together with Lemma 6.2 that with probablity tending to
one,

N1/3(UN (a)− g(a)) = argmax
u∈HN

{ΛN (g(a) +N−1/3u)− aFN (g(a) +N−1/3u)}

where HN is the set of all u ∈ R such that g(a) +N−1/3u ∈ {x0, . . . , xK} and
|u| ≤ vN , where vN is an arbitrary sequence that diverges to infinity as N → ∞.
In the sequel, we consider a sequence vN such that vN ≤ logN for all N . Hence,
with probablity that tends to one, N1/3(UN (a) − g(a)) is the location of the
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maximum over u ∈ HN of

N2/3

(
MN (g(a) +N−1/3u)−MN

(
[Kg(a)]

K

))
+N2/3e(a, g(a) +N−1/3u)

where MN (u) = ΛN (u) − EX(ΛN (u)) for all u ∈ {x0, . . . , xK} and e is taken
from (A.21), that is

e(a, g(a) +N−1/3u) =
1

N

N∑
i=1

μ(Xi)
(
1Xi≤g(a)+N−1/3u − 1Xi≤[Kg(a)]K−1

)
− a

(
FN (g(a) +N−1/3u)− FN

(
[Kg(a)]

K

))
. (A.11)

We extend MN and e(a, . ) as constant functions in between two consecutive
points in HN so that

N1/3(UN (a)− g(a))

= argmax
|u|≤vN

{
N2/3

(
MN (g(a) +N−1/3u)−MN

(
[Kg(a)]

K

))
+N2/3e(a, g(a) +N−1/3u)

}
+ op(1). (A.12)

Now, since a = μ(t) + N−1/3x for some fixed x ∈ R and t ∈ (0, 1), and g′ =
1/μ′ ◦ g on (μ(1), μ(0)) is bounded by assumption, we have

g(a) = t+O(N−1/3). (A.13)

Hence, for sufficiently largeN , everyXi that lies between [Kg(a)]K−1 and g(a)+
N−1/3u for some |u| ≤ vN also lies in [t − N−1/3 logN, t + N−1/3 logN ]. This
implies that for all such Xi’s there exists θi ∈ [t−N−1/3 logN, t+N−1/3 logN ]
such that

μ(Xi) = μ

(
[Kg(a)]

K

)
+

(
Xi −

[Kg(a)]

K

)
μ′(θi)

= μ

(
[Kg(a)]

K

)
+

(
Xi −

[Kg(a)]

K

)
(μ′(t) + o(1)) (A.14)

where the small o-term is uniform, by continuity of μ′ over the compact interval
[t−N−1/3 logN, t+N−1/3 logN ]. Plugging this in (A.11), and using the notation
f in (A.23), yields

e(a, g(a) +N−1/3u)

= (μ′(t) + o(1)) f(a, g(a) +N−1/3u)

+

(
μ

(
[Kg(a)]

K

)
− a

)(
FN (g(a) +N−1/3u)− FN

(
[Kg(a)]

K

))
.
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It can be seen from the proof of Lemma 6.1 that (A.26) holds on the event EN ,
whose probability tends to one as N → ∞, implying that

FN (g(a) +N−1/3u)− FN

(
[Kg(a)]

K

)
= FX(g(a) +N−1/3u)− FX

(
[Kg(a)]

K

)
+Op(N

−1/3(logN)−1)

= Op(N
−1/3vN +K−1 +N−1/3(logN)−1)

= Op(N
−1/3vN )

uniformy over u ∈ HN . Since (A.24) holds for all a ∈ [μ(1), μ(0)], combining the
two preceding displays yields

e(a, g(a) +N−1/3u) = (μ′(t) + o(1)) f(a, g(a) +N−1/3u) +Op(K
−1N−1/3vN ).

Next, we invoke (A.31), that holds on the event EN uniformly over a and u, to
conclude that

e(a, g(a) +N−1/3u)

= (μ′(t) + o(1))

∫ g(a)+N−1/3u

g(a)

(z − g(a)) fX(z)dz + op(N
−2/3)

uniformly over u ∈ HN , provided that vN � min{logN ;N−1/3K}. By assump-
tion, N−1/3K diverges to infinity as N → ∞, so we can find a sequence vN
that satisfies the above condition and that diverges to infinity as N → ∞, as
required in the definition of HN . In the sequel, we consider a sequence vN that
satisfies the above conditions and in addition, the below condition:

vN �(
max

{
sup

|z−t|≤N−1/3 logN

|fX(z)− f∞(z)|, sup
|z−t|≤N−1/3 logN

|f∞(t)− f∞(z)|
})−1/2

.

(A.15)

Note that by assumption, the right-hand side of the inequality in the above dis-
play diverges to infinity as N → ∞, which ensures existence of such a sequence
vN . We then have

e(a, g(a) +N−1/3u)

= (μ′(t) + o(1))

∫ g(a)+N−1/3u

g(a)

(z − g(a)) f∞(z)dz + op(N
−2/3),
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using that for u ≥ 0 (and similarly for u ≤ 0),∣∣∣∣∣
∫ g(a)+N−1/3u

g(a)

(z − g(a)) (fX(z)− f∞(z))dz

∣∣∣∣∣
≤

∫ g(a)+N−1/3u

g(a)

(z − g(a)) |fX(z)− f∞(z)|dz

≤ N−2/3v2N
2

sup
|z−g(a)|≤N−1/3vN

|fX(z)− f∞(z)|

uniformly for all |u| ≤ vN , which implies∣∣∣∣∣
∫ g(a)+N−1/3u

g(a)

(z − g(a)) (fX(z)− f∞(z))dz

∣∣∣∣∣
≤ N−2/3v2N

2
sup

|z−t|≤N−1/3 logN

|fX(z)− f∞(z)|

= o(N−2/3)

thanks to (A.13), (A.15) and the assumption that vn � logN . Similarly,∣∣∣∣∣
∫ g(a)+N−1/3u

g(a)

(z − g(a)) (f∞(z)− f∞(t))dz

∣∣∣∣∣
≤ N−2/3v2N

2
sup

|z−g(a)|≤N−1/3vN

|f∞(z)− f∞(t)|

≤ N−2/3v2N
2

sup
|z−t|≤N−1/3 logN

|f∞(z)− f∞(t)|

= o(N−2/3)

and therefore,

e(a, g(a) +N−1/3u)

= (μ′(t) + o(1))

∫ g(a)+N−1/3u

g(a)

(z − g(a)) f∞(z)dz + op(N
−2/3)

= (μ′(t) + o(1)) f∞(t)

∫ g(a)+N−1/3u

g(a)

(z − g(a)) dz + op(N
−2/3).

Hence we obtain

N2/3e(a, g(a) +N−1/3u) = −(|μ′(t)|+ o(1))f∞(t)
u2

2
+ op(1). (A.16)

On the other hand, with

ZN (u) = N2/3

(
MN (g(a) +N−1/3u)−MN

(
[Kg(a)]

K

))
;
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where MN is as defined in (6.3) for all u ∈ {x0, . . . , xK}, we have

ZN (u) = N−1/3
m∑
j=1

nj∑
i=1

εji

(
1Xji≤g(a)+N−1/3u − 1Xji≤[Kg(a)]K−1

)
(A.17)

where we denote by (Xji, Yji), i = 1, . . . , nj the observations from sample j, for
j = 1, . . . ,m, and εji = Yji − μ(Xji). Note that the process ZN is centered and
has been extended to R by being constant in between two consecutive points in
HN . For all u ≥ v ≥ 0 in HN we have

N2/3
E [ZN (u)ZN (v)]

=

m∑
j=1

nj∑
i=1

E

[
ε2ji1[Kg(a)]K−1<Xji≤g(a)+N−1/3u1[Kg(a)]K−1<Xji≤g(a)+N−1/3v

]

=

m∑
j=1

nj∑
i=1

E

[
σ2
j (Xji)1[Kg(a)]K−1<Xji≤g(a)+N−1/3v

]
,

where the last equality is obtained by conditioning with respect to Xji and using
that u ≥ v ≥ 0. With u, v fixed, this implies that

E [ZN (u)ZN (v)] = N−2/3
m∑
j=1

nj∑
i=1

E

[
σ2
j (t)1[Kg(a)]K−1<Xji≤g(a)+N−1/3v

]
+ o(1)

using that for u, v ∈ HN∣∣∣∣∣∣E [ZN (u)ZN (v)]−N−2/3
m∑
j=1

nj∑
i=1

E

[
σ2
j (t)1[Kg(a)]K−1<Xji≤g(a)+N−1/3v

]∣∣∣∣∣∣
≤ N−2/3

m∑
j=1

nj∑
i=1

E

[
|σ2

j (Xji)− σ2
j (t)|1[Kg(a)]K−1<Xji≤g(a)+N−1/3v

]

≤ N−2/3ω(N−1/3 logN)

m∑
j=1

nj∑
i=1

E

[
1[Kg(a)]K−1<Xji≤g(a)+N−1/3v

]
where ω(δ) → 0 as δ → 0 by assumption, and

N−2/3
m∑
j=1

nj∑
i=1

E

[
1[Kg(a)]K−1<Xji≤g(a)+N−1/3v

]
= N1/3

∣∣∣FX(g(a) +N−1/3v)− FX([Kg(a)]K−1)
∣∣∣

= O(1).



1966 M. Banerjee and C. Durot

Hence,

E [ZN (u)ZN (v)]

= N−2/3
m∑
j=1

nj∑
i=1

σ2
j (t)P

(
[Kg(a)]K−1 < Xji ≤ g(a) +N−1/3v

)
+ o(1)

= N−2/3
m∑
j=1

njσ
2
j (t)

∫ g(a)+N−1/3v

[Kg(a)]K−1

fj(z)dz + o(1)

for all fixed real numbers u ≥ v ≥ 0. It follows that∣∣∣∣∣∣E [ZN (u)ZN (v)]−N−2/3
m∑
j=1

njσ
2
j (t)

∫ g(a)+N−1/3v

[Kg(a)]K−1

fj(t)dz

∣∣∣∣∣∣
≤ N−2/3

m∑
j=1

njσ
2
j (t)ω(N

−1/3 logN)
(
N−1/3v +O(K−1)

)
+ o(1)

≤ o(1)N−1
m∑
j=1

njσ
2
j (t) + o(1),

since ω(δ) → 0 as δ → 0. The Jensen inequality for conditional expectation com-
bined with Assumption Ã4 shows that σ2

j (t) ≤ σ2 for all i and t and therefore,

N−1
∑m

j=1 njσ
2
j (t) ≤ σ2. This implies that

E [ZN (u)ZN (v)] = N−2/3
m∑
j=1

njσ
2
j (t)fj(t)(N

−1/3v + o(N−1/3)) + o(1)

= σ2
X(t)v + o(1).

We conclude that for all u ≥ v ≥ 0, E [ZN (u)ZN (v)] = cov(ZN (u), ZN (v))
converges to σ2

∞(t)v. The case of negative u and v can be treated likewise
and therefore, cov(ZN (u), ZN (v)) converges to σ2

∞(t)(|u| ∧ |v|) if uv ≥ 0. It
can be seen similarly that it converges to zero if uv < 0 (hence u and v have
different signs). Hence, the covariance converges to σ∞(t)cov(W (u),W (v)), so
we conclude from the Lindeberg-Feller theorem that jointly,

(ZN (u1), . . . , ZN (uk)) →d σ∞(t)(W (u1), . . . ,W (uk)) (A.18)

for all fixed u1, . . . , uk ∈ R, as N → ∞. Now, consider the restriction of ZN to
the compact interval [−M,M ], for a fixed M > 0. For all δ > 0 and ε > 0 we
have

P

(
sup

|t−s|≤δ; s,t∈[−M,M ]

|ZN (s)− ZN (t)| ≥ ε

)

≤
M [δ−1]∑

k=−M [δ−1]−1

P

(
2 sup
|t−kδ|≤2δ

|ZN (kδ)− ZN (t)| ≥ ε

)
. (A.19)
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Let π be the permutation such that the Xπ(j) are ordered in j, that is Xπ(1) <
· · · < Xπ(N) a.s. Let PX denote the conditional probability given X1, . . . , XN .
Since επ(1), . . . , επ(N) are centered and independent under PX , the process
{ZN (kδ)−ZN (t), t ≥ kδ} is a forward centered martingale whereas {ZN (kδ)−
ZN (t), t ≤ kδ} is a reverse centered martingale conditionally on X1, . . . , XN ,
for all k. Hence, it follows from the Doob inequality that for all k,

P

(
2 sup
|t−kδ|≤2δ

|ZN (kδ)− ZN (t)| ≥ ε

)
≤ 2p

εp
(E|ZN (kδ)− ZN ((k − 2)δ)|p

+E|ZN (kδ)− ZN ((k + 2)δ)|p) . (A.20)

Note that the inequalities above are first obtained for the conditional probabil-
ities and then integrated over the distribution of X for the unconditional. Now,
it follows from the Rosenthal inequality, see [18], that for all k and a constant
C that depends only on p, we have

E|ZN (kδ)− ZN ((k + 2)δ)|p

≤ CN−p/3

⎛⎝ N∑
i=1

E(|εi|p1Xi∈Ik) +

(
N∑
i=1

E(|εi|21Xi∈Ik)

)p/2
⎞⎠ .

Here, Ik = (g(a)+N−1/3kδ, g(a)+N−1/3(k+2)δ] (at least if g(a)+N−1/3kδ, g(a)
and N−1/3(k + 2)δ both belong to HN ) and p is taken from Assumption Ã4.
Hence, with fX taken from (3.5) we have

E|ZN (kδ)− ZN ((k + 2)δ)|p

≤ CσpN−p/3

⎛⎝ N∑
i=1

E(1Xi∈Ik) +

(
N∑
i=1

E(1Xi∈Ik)

)p/2
⎞⎠

= CσpN−p/3

(
N

∫
Ik

fX(u)du+Np/2

[∫
Ik

fX(u)du

]p/2)
.

It follows from the Assumption Ã1 that fX is bounded by a constant A that
does not depend on N and therefore,

E|ZN (kδ)− ZN ((k + 2)δ)|p

≤ CσpN−p/3

(
2AN2/3δ +

[
2AN2/3δ

]p/2)
(1 + o(1))

≤ 2CσpN−p/3
[
2AN2/3δ

]p/2
= 2Cσp [2Aδ]

p/2

for N sufficiently large. Arguing similarly for E|ZN (kδ) − ZN ((k − 2)δ)|p we
conclude from (A.20) that there exists C > 0 that depends only on p and A
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such that

P

(
2 sup
|t−kδ|≤2δ

|ZN (kδ)− ZN (t)| ≥ ε

)
≤ Cσpε−pδp/2

for all k. Summing up this inequality over all k on the right-hand side of (A.19),
we obtain that there exists C > 0 that depends only on p and A such that for
all δ > 0 and ε > 0,

P

(
sup

|t−s|≤δ ; s,t∈[−M,M ]

|ZN (s)− ZN (t)| ≥ ε

)
≤ CMσpε−pδ−1+p/2.

Since p > 2, this converges to zero as δ → 0. Using (A.18), it follows from [7, The-
orem 7.5] that ZN converges weakly to σ∞W on all compact intervals [−M,M ].
Combining this with (A.12) and (A.16) we conclude that N1/3(UN (a) − g(a))
is the location of the maximum of a process that weakly converges to the con-
tinuous Gaussian process

σ∞(t)W (u)− |μ′(t)|f∞(t)

2
u2, u ∈ R.

The above process achieves its maximum at a unique point T by Lemma 2.6 of
[11], and it follows from Lemma 6.2 that N1/3(UN (a)− g(a)) is uniformly tight.
Hence, Corollary 5.58 in van der Vaart shows that N1/3(UN (a)−g(a)) converges
in distribution to T. Now, T is also the unique location of the maximum of the
process

W (u)− |μ′(t)|f∞(t)

2σ∞(t)
u2, u ∈ R.

Changing scale in the Brownian motion finally shows that(
|μ′(t)|f∞(t)

2σ∞(t)

)2/3

T

has the same distribution as Z, which completes the proof.

A.4. Proof of Lemma 6.1

For all a ∈ R and u ∈ {x0, . . . , xK} such that |u− g(a)| ≥ N−1/3, define

e(a, u) = EXΛN (u)− EXΛN

(
[Kg(a)]

K

)
− a

(
FN (u)− FN

(
[Kg(a)]

K

))
.

(A.21)

By definition of ΛN we have

e(a, u) =
1

N

N∑
i=1

μ(Xi)

(
1Xi≤u−1Xi≤[Kg(a)]K−1

)
−a

(
FN (u)−FN

(
[Kg(a)]

K

))
.
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Now, Xi �= [Kg(a)]K−1 for all i, almost surely since Xi has a continuous distri-
bution function, so (3.3) implies that∣∣∣∣μ(Xi)− μ

(
[Kg(a)]

K

)∣∣∣∣ ≥ ∣∣∣∣Xi −
[Kg(a)]

K

∣∣∣∣C3,

implying that

e(a, u) ≤
(
μ

(
[Kg(a)]

K

)
− a

)(
FN (u)− FN

(
[Kg(a)]

K

))
− C3f(a, u) (A.22)

with a decreasing function μ, where

f(a, u) =
1

N

N∑
i=1

(
Xi −

[Kg(a)]

K

)(
1Xi≤u − 1Xi≤[Kg(a)]K−1

)
. (A.23)

Using again (3.3), we obtain that for all a ∈ [μ(1), μ(0)],∣∣∣∣μ( [Kg(a)]

K

)
− a

∣∣∣∣ =

∣∣∣∣μ( [Kg(a)]

K

)
− μ ◦ g(a)

∣∣∣∣
≤ C4K

−1. (A.24)

On the other hand, since FX has a bounded derivative that satisfies (3.2) we
have ∣∣∣∣FX(u)− FX

(
[Kg(a)]

K

)∣∣∣∣
≤ |FX(u)− FX(g(a))|+

∣∣∣∣FX(g(a))− FX

(
[Kg(a)]

K

)∣∣∣∣
≤ C2

(
|u− g(a)|+K−1

)
≤ 2C2|u− g(a)| (A.25)

for sufficiently large N , using that K−1 = o(N−1/3) whereas |u−g(a)| ≥ N−1/3

for the last inequality. Next, since m ≤ N , it follows from (A.1) in the Appendix
that

P

(
sup

t∈[0,1]

|FN (t)− FX(t)| > x

)
≤ 2N exp

(
−2x2 min

1≤j≤m
nj

)
for all x > 0. With (3.4), we obtain

P

(
sup

t∈[0,1]

|FN (t)− FX(t)| > x

)
≤ 2N exp

(
−2x2Nλ

)
for all x > 0. With ẼN the event that

sup
t∈[0,1]

|FN (t)− FX(t)| ≤ C2N
−1/3(logN)−1 (A.26)
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we conclude from the previous display that

1− P(ẼN ) ≤ 2N exp
(
−2C2

2N
1/3λ(logN)−2

)
� N−θ, (A.27)

where we used (3.4) for the last claim. Combining (A.22), (A.24) and (A.25)

proves that on ẼN , we have

e(a, u)

≤ C4K
−1

(∣∣∣∣FX(u)− FX

(
[Kg(a)]

K

)∣∣∣∣+ 2 sup
t∈[0,1]

|FN (t)− FX(t)|
)

− C3f(a, u)

≤ 2C2C4K
−1(|u− g(a)|+N−1/3)− C3f(a, u) (A.28)

for all a ∈ [μ(1), μ(0)]. The inequality in (A.22) holds also for a �∈ [μ(1), μ(0)],
and in that case,

[Kg(a)]

K
= g(a) =

{
0 if a > μ(0)

1 if a < μ(1),

implying that(
μ

(
[Kg(a)]

K

)
− a

)(
FN (u)− FN

(
[Kg(a)]

K

))
≤ 0.

Hence, the inequality in (A.28) holds for all a ∈ R and u ∈ {x0, . . . , xK}. Using
that K−1 = o(N−1/3) whereas |u− g(a)| ≥ N−1/3, we conclude that on ẼN ,

e(a, u) ≤ o(u− g(a))2 − C3f(a, u)

uniformly over all a and u such that |u − g(a)| ≥ N−1/3. Hence, it suffices to
prove that with f(a, u) taken from (A.23), there exists c̃ > 0 that only depends
on C1 such that on an event EN whose probability is larger than 1−N−θ, and
such that EN ⊂ ẼN , we have

f(a, u) ≥ c̃(u− g(a))2 for all a ∈ R, u ∈ {x0, . . . , xK}
such that |u− g(a)| ≥ N−1/3. (A.29)

Similar to (A.27), if follows from (A.2) in the Appendix that

P

(
sup

x∈[0,1]

|F−1
N (x)− F−1

X (x)| > N−1/3

logN

)
≤ 4N exp

(
−2C2

1N
1/3(logN)−2λ

)
� N−θ. (A.30)

In the sequel, we consider

EN = ẼN ∩
{

sup
x∈[0,1]

|F−1
N (x)− F−1

X (x)| ≤ N−1/3(logN)−1

}
.

It follows from (A.27) and (A.30) that 1 − P(EN ) � N−θ so in particular,
P(EN ) ≥ 1−N−θ for sufficiently largeN . It remains to show that (A.29) holds on
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EN . Since X1, . . . , XN are independent with a continuous distribution function,
they are all distinct from each other and for all i, there exists a (unique) random
j such that Xi = F−1

N (j/N), where F−1
N is the empirical quantile function

corresponding to X1, . . . , XN . Hence, reordering the terms in the sum in (A.23),
we obtain that

f(a, u)

=
1

N

N∑
i=1

(
F−1
N (i/N)− [Kg(a)]

K

)(
1F−1

N (iN−1)≤u − 1F−1
N (iN−1)≤[Kg(a)]K−1

)
=

1

N

N∑
i=1

(
F−1
N (i/N)− [Kg(a)]

K

)(
1iN−1≤FN (u) − 1iN−1≤FN ([Kg(a)]K−1)

)
.

Using that F−1
N is constant on all intervals ((i− 1)N−1, iN−1] we arrive at

f(a, u) =

∫ FN (u)

FN ([Kg(a)]K−1)

(
F−1
N (x)− [Kg(a)]

K

)
dx.

Hence, on EN we have∣∣∣∣∣f(a, u)−
∫ FN (u)

FN ([Kg(a)]K−1)

(
F−1
X (x)− [Kg(a)]

K

)
dx

∣∣∣∣∣
≤

∣∣FN (u)− FN ([Kg(a)]K−1)
∣∣× sup

x∈[0,1]

|F−1
N (x)− F−1

X (x)|

≤ C2

(
|u− g(a)|+K−1 + 2N−1/3(logN)−1

)
N−1/3(logN)−1

for all a, u. Hence,∣∣∣∣∣f(a, u)−
∫ FX(u)

FX(g(a))

(
F−1
X (x)− g(a)

)
dx

∣∣∣∣∣
≤ C2

(
|u− g(a)|+K−1 + 2N−1/3(logN)−1

)
N−1/3(logN)−1

+

∣∣∣∣∣
∫ FN (u)

FN ([Kg(a)]K−1)

(
F−1
X (x)− [Kg(a)]

K

)
dx−

∫ FX(u)

FX(g(a))

(
F−1
X (x)− g(a)

)
dx

∣∣∣∣∣
It follows that∣∣∣∣∣f(a, u)−

∫ FX(u)

FX(g(a))

(
F−1
X (x)− g(a)

)
dx

∣∣∣∣∣
≤ C2

(
|u− g(a)|+K−1 + 2N−1/3(logN)−1

)
N−1/3(logN)−1

+K−1
∣∣FX(u)− FX(g(a))

∣∣
+

∣∣∣∣∣
∫ FN (u)

FN (
[Kg(a)]

K )

[
F−1
X (x)− [Kg(a)]

K

]
dx−

∫ FX(u)

FX(g(a))

[
F−1
X (x)− [Kg(a)]

K

]
dx

∣∣∣∣∣.
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Now, on EN we also have∣∣∣∣F−1
X (x)− [Kg(a)]

K

∣∣∣∣ = ∣∣∣∣F−1
X (x)− F−1

X ◦ FX

(
[Kg(a)]

K

)∣∣∣∣
≤ 1

C1

∣∣∣∣x− FX

(
[Kg(a)]

K

)∣∣∣∣
≤ 1

C1

(∣∣∣∣FN (u)− FN

(
[Kg(a)]

K

)∣∣∣∣+ C2N
−1/3(logN)−1

)
,

for all x lying between FN (u) and FN ([Kg(a)]K−1). For such x’s, we obtain on
EN that∣∣∣∣F−1

X (x)− [Kg(a)]

K

∣∣∣∣ ≤ 1

C1

(∣∣∣∣FX(u)− FX

(
[Kg(a)]

K

)∣∣∣∣+ 3C2N
−1/3(logN)−1

)
≤ 3C2

C1

(
|u− g(a)|+K−1 +N−1/3(logN)−1

)
for all a and u, for sufficiently large N . Therefore, with K ≥ 1 we obtain on EN
that ∣∣∣∣∣f(a, u)−

∫ FX(u)

FX(g(a))

(
F−1
X (x)− g(a)

)
dx

∣∣∣∣∣
≤ 2C2

(
|u− g(a)|+K−1 + 2N−1/3(logN)−1

)
N−1/3(logN)−1

+
3C2

C1

(
|u− g(a)|+K−1 +N−1/3(logN)−1

)
×
(
2 sup
u∈[0,1]

|FN (u)− FX(u)|+ C2K
−1)

)
= O

(
|u− g(a)|+K−1 +N−1/3(logN)−1

)(
N−1/3(logN)−1 +K−1

)
on EN , uniformly over a ∈ R and u ∈ {x0, . . . , xK}. Now, we can do the change
of variable t = F−1

X (x) to get on EN that

f(a, u)

=

∫ u

g(a)

(t− g(a)) fX(t)dt (A.31)

+O
(
|u− g(a)|+K−1 +N−1/3(logN)−1

)(
N−1/3(logN)−1 +K−1

)
uniformly over a ∈ R and u ∈ {x0, . . . , xK}. Here,∫ u

g(a)

(t− g(a)) fX(t)dt ≥ C1

∫ u

g(a)

(t− g(a)) dt

where C1 is taken from (3.2), for all a, u. Since it is assumed that K−1 =
o(N−1/3), we conclude that on EN ,

f(a, u) ≥ C1

2
(u− g(a))2 + o((g(a)− u)2),
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where the small o-term is uniform over all u and a such that |u−g(a)| ≥ N−1/3.
Hence, (A.29) holds on EN provided that c̃ < C1/2 and N is sufficiently large.

It follows that on EN , for all sufficiently large N ,

e(a, u) ≤ o((u− g(a))2 − C3c̃(g(a)− u)2

where in view of the above proof, the small-o term can be chosen of the form

o((u− g(a))2 = 2C2C4K
−1(|u− g(a)|+N−1/3).

Therefore, for any c < C3c̃, for all sufficiently large N , e(a, u) ≤ −c(g(a)− u)2

on EN . This completes the proof of the lemma. �

A.5. Proof of Lemma 7.2

The proof rests on the following proposition.

Proposition P. Let F be a class of functions from X to R and let X1, X2, . . . ,
Xn be independent (but not necessarily identically distributed) random vari-
ables defined on X . Let F be a measurable envelope for the class F and assume
that E(F 2(Xi)) < ∞ for each 1 ≤ i ≤ n. Define

Gn f :=
1√
n

n∑
i=1

(f(Xi)− Ef(Xi))

and let ‖Gn‖F := supf∈F |Gn f |. Then, for p ≥ 2, there exists Ap > 0 that
depends on p only such that

E∗ [‖Gn‖pF ] ≤ ApJ (1,F)
1

n

n∑
i=1

E(F p(Xi)),

where E∗ denotes outer expectation and J (1,F) is taken from Section 2.14.1
of [23].

The proof of the Proposition P is essentially the same as the proof of Theorem
2.14.1 in [23], by noting that the steps in the proof remain valid even if the Xi’s
are not i.i.d but are independent with potentially different distributions. Hence,
the proof is omitted.

We now apply the above proposition with n replaced by N , F := {fw(·) :
|w| ≤ x} where fw(t) = 1(t ≤ u0 + w) − 1(u ≤ u0) with envelope function
F (t) = 1(t ≤ u0 + x) − 1(t ≤ u0 − x), and p = 2. The supremum in ‖GN‖F is
taken over a finite set and hence, it is measurable. This implies that the outer
expectation can be replaced by an expectation in Proposition P. Moreover, the
class of functions under consideration is a VC class of dimension 3 and therefore
J (1,F) < ∞. Note that E(F 2(Xi)) ≤ C2x since the densities of the Xi’s satisfy
(4.2). The assertion of the lemma now follows directly from Proposition P upon
dividing both sides of the inequality in the proposition by N .
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A.6. Limited simulation results

Simulation results are presented for the following setting. The model is Y =
X2 + ε with X ∼ Unif(0, 1) and ε ∼ N(0, 1) independently of X. We are inter-
ested in estimating μ(x) ≡ x2 at the point x0 = 0.5. The limit distribution of
the global isotonic estimator, i.e. the limiting law of N1/3(μ̂G(x0) − μ(x0)) is
given, for example, in Equation (1.2) of BDSE. Note that the setting considered
in the simulations corresponds to the homogeneous case, i.e. the case where
m = 1.

We took N = 106 and generated 5000 replicates from the distribution of
the global isotonic estimator, and the isotonic estimator formed by the binning
procedure with K = N1/3 logN . Selected quantiles from the empirical distri-
butions of N1/3(μ̂G(x0) − μ(x0)) and N1/3(μ̂binned(x0) − μ(x0)) [based on the
5000 replicates] were then compared to the quantiles of the limit distribution
which were generated by plugging in the true value of κ that appears in (1.2)
of BDSE and using the numerical values of the quantiles of Chernoff’s distribu-
tion provided in [9]. The QQ-plots are given in the left and right panels of the
first figure respectively: both panels indicate close agreement of the empirical
distributions with the truth. In general, the prescription K = N1/3 logN does
quite well, when N is in the order of millions or larger. Smaller N ’s are not
terribly interesting from the big data perspective and were not considered. For
smaller N , like in the thousands, much more fine-tuning will be needed to find
an adequate K but this is not too relevant to the problem this paper seeks to
address.

The second figure shows that with binning of order N1/3 the limit distri-
bution deviates from the Chernoff limit. The second and third figures show
the QQ-plots when we use K = N1/3 and K = 2N1/3 respectively. In both
cases, the empirical distribution deviates systematically from the limit, with
the deviation in the former case much more pronounced owing to a larger
bias.
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