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Abstract
With the emergence of new computed tomography (CT) machines, 
polyenergetic image reconstruction has become increasingly popular in recent 
years. By solving a nonlinear equation, we can obtain not only the visual 
structure of the object, but also quantitative information about the materials in 
the object. In this paper, we revisit the multi-material polyenergetic model and 
transform it into a nonlinear optimization problem that involves both equality 
and inequality constraints. In order to keep the second-order derivative positive 
semi-definite, we propose a modified Hessian. In addition to the modified 
Hessian, a problem-specific nonlinear interior-point method is implemented 
to solve this problem. Moreover, total variation regularization is applied to 
stabilize the solutions. Both for full CT and limited angle cases, we can obtain 
images of high quality with this method. Numerical experiments illustrate the 
convergence, effectiveness, and significance of the proposed method.

Keywords: digital image reconstruction, multi-material polyenergetic model, 
interior-point method, generalized Tikhonov regularization
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1. Introduction

In imaging sciences, polyenergetic image reconstruction has gained tremendous popularity in 
the past few years. It is based on the physically meaningful assumption that x-rays are made 
up of a spectrum of energies rather than a single energy. In addition, if we consider the com-
position of the object as a mixture of a small number of known materials, the corresponding 
multi-material mathematical model can be written as

b = K (X) s+ η, (1)

where b is a vector of projection data, s is a vector containing spectral information of the 
corresponding energies of the source x-ray, and η is the noise term. K (X) = exp

(
−AXCT), 

where exponentiation is done element-wise, A is a matrix that is related to the quantitative 
information of the ray trace, C is a matrix of (known) material specific attenuation coeffi-
cients, and X is a matrix of unknowns, whose columns correspond to the weights of each of 
the known materials of the object being imaged. The forward operator is bounded, so it does 
not have a continuous inverse in infinite-dimensional space, and the discrete problem inherits 
this property of ill-posedness. Therefore, computing an accurate approximation of X is a chal-
lenging problem.

In order to solve this problem, we could make the incorrect assumption that the x-ray beam 
is emitted at a single energy, and substitute the vector s with a scalar approximation, such as 
an average value s̄. Accordingly, the attenuation coefficients, C, are chosen corresponding 
to the single energy s̄. In this case, we can divide the scalar s̄ on both sides of equation (1), 
apply a natural logarithm to the data and model, to obtain a linear system. This results in a 
significantly simplified model on which various well studied algorithms for linear ill-posed 
inverse problems can be used. However, there exist two problems. First, it is not fundamen-
tally true that the x-ray is single-energy, which can cause so-called beam hardening artifacts 
[1, 2]. Second, we cannot reconstruct the composition of materials of the object with a single 
set of monoenergetic measurements. Because of these problems, Elbakri and Fessler [3] and 
Chung et al [4] suggest that we could use a 2-material model with a polyenergetic assumption 
on the source x-ray. Moreover, Mejia-Bustamante et al [5] extended this idea, and provided a 
GPU implementation [6]. We remark that the problem can be reformulated in terms of mass 
attenuation coefficients (see, e.g. [3]), which encodes density information into the mathemati-
cal model. This can be important in cases when materials have the same chemical composition 
but different densities. However, it does not fundamentally change our proposed optimization 
approach, so in the remainder of the paper we use the model based on linear attenuation coef-
ficients. To solve the nonlinear inverse problem in [5, 6], a maximum likelihood function was 
used to represent the evidence with respect to parameters X. The gradient descent method is 
used to solve the resulting optimization problem, with an implicit enforcement of the con-
straint that in each voxel, the weights across all materials should sum to one. In this condi-
tion, the algorithm is easy to implement and we can reconstruct the weights corresponding 
to different materials. However, the numerical experiments are not in favor of this method. 
The Poisson likelihood function is nonlinear, is likely to have multiple local minimizers and 
the convergence speed might be slow. In addition, while it includes the equality constraints, 
it ignores bound constraints and does not explicitly enforce regularization, which limits its 
effectiveness.

From the physical point of view, the Poisson likelihood function tends to put more weight 
on higher measurements, whereas a least square loss function puts equal weights on all 
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measurements [7]. In this paper, we use the Poisson likelihood function as loss function and 
total variation as regularization. Basically, we assume that

b ∼ Poisson (K (X) s) , (2)

and build the negative log-likelihood function f (X). The goal is to solve the regularized non-
linear optimization problem

min
X∈P

f (X) + αR (X) , (3)

where R (X) is the regularization term and α is the regularization parameter. P =
{X | X1Nm = 1Nv , 0 ! X ! 1} represents the set of constraints, and the variable X is both 
restricted by equality and inequality constraints. That is, we require that the entries of the 
weight matrix X are bounded below by zero and bounded above by one. We also impose that 
the summation of different materials in each voxel (pixel if 2D) should be one, which means 
that the row sum of matrix X is one. In general, the original problem has been transformed 
into a large-scale nonlinear optimization problem under equality and inequality constraints.

Solving this inverse problem is challenging. In addition to the ill-posedness that results 
from the objective function, we should be concerned about the equality and inequality con-
straints. In this paper, we use a problem-specific nonlinear interior-point method. Moreover, 
we provide a modified Hessian that is close to the true Hessian and is also positive semi-
definite. The interior-point method has proven to be efficient and stable for solving nonlinear 
optimization problems, and with the implementation of our modified Hessian, we can simul-
taneously obtain an accurate approximation of the true Hessian and avoid negative curvature. 
Numerical experiments have shown very promising results for this method.

This paper is organized in the following way. In section 2, we present the general multi-
material polyenergetic model for computed tomography. In section 3, we show how to derive 
the specific multi-material model from the general model. The discretization of this model is 
included in section 3 as well. In section 4, we revise this model to one that is more amenable to 
numerical implementation and formulate an optimization problem that is based on this model. 
The standard form of this optimization problem and the method to solve it are discussed in 
section 5. Moreover, numerical experiments and comparison with existing method is pre-
sented in section 6. In section 7, we conclude with merits and limitations about the model and 
the optimization method.

2. General model for polyenergetic computed tomography

In computed tomography, x-ray beams are emitted (usually in a cone) from a source at 
known energies and are directed to pass through an object under investigation, after which 
the remaining energy of the x-ray beams are measured at a detector. See figure 1 for a 2D 
illustration. The amount of energy lost as the x-ray beams pass through the object is referred 
to as attenuation. The amount of attenuation depends on the energy of the x-ray beams, and 
on the material through which it penetrates; low dose energies are more easily attenuated, and 
denser mat erials have higher attenuation properties. The detector is typically partitioned into 
a grid of bins; in a full 3D model, these are often loosely referred to as detector pixels. If the 
3D object is discretized into a grid of small volume elements (called voxels), then each voxel 
can be associated with a particular attenuation value, referred to as an attenuation coefficient. 
The problem of CT image reconstruction is to determine these attenuation coefficients from a 
sequence of measured projection data, which is obtained by rotating the source (at least par-
tially) around the object; again, we refer to figure 1 for a 2D illustration of the data collection 
process.

Y Hu et alInverse Problems 35 (2019) 064004
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Using Beer’s law [8], the energy integrating detector model can be written as

b(θ)i =

∫

E
S(e) exp

(
−
∫

t∈ℓ
µ (⃗x (t) , e) dt

)
de+ η(θ)i ,

{
i = 1, 2, · · · ,Np,
θ = 1, 2, · · · ,Nθ,

 

(4)

where

 •  Np  is the number of pixels in the detector.
 •  Nθ is the number of projection angles.
 •  S(e) represents the system spectral response, which is a product of x-ray energy with the 

number of incident photons at that energy.
 •  The outer integral is over all x-ray energies emitted from the source, and the inner integral 

is along lines that follow the x-ray beam paths through the object.
 •  µ (⃗x (t) , e) denotes the attenuation coefficient, which is related to the position function 

x⃗ (t) and the energy level e.
 •  η(θ)i  represents unknown errors in the measurements, which can include x-ray scatter and 

electronic noise.

If we discretize the model (4) over the a range of energies E and along a ray traced by ℓ, we 
obtain the discrete version of the previous equation as

b(θ)i =
Ne∑

e=1

se exp

⎛

⎝−
Nv∑

j=1

a(θ)i,j µj,e

⎞

⎠+ η(θ)i ,

{
i = 1, 2, · · · ,Np,
θ = 1, 2, · · · ,Nθ,

 

(5)

Detector

Object

Source

Detector

Object

Source

Source
Source

Source

Source

Figure 1. Illustration of a 2D CT imaging setup. The left illustrates how x-ray beams 
are emitted from the source in a cone, pass through an object of interest, and are then 
measured at the detector. The right illustrates how the source might be rotated around 
the object to collect additional data. In this illustration we assume the detector remains 
stationary, which is often the case in limited angle tomography applications such as 
tomosynthesis, but it should be obvious how the illustration would be modified if the 
detector rotates with the source.
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where

 •  a(θ)i,j  denotes the length of the x-ray beam that passes through voxel j  of the object and is 
incident onto ith bin in the detector, with source at angle θ.

 •  µj,e is the unknown variable that we want to reconstruct, which represents the attenuation 
coefficient for composite (mixture) materials, in voxel j  and at energy level e.

The traditional methods to solve this inverse problem are mostly based on filtered back-pro-
jection (FBP) [9]. If we assume the source to be monoenergetic and the source energy is se, 
then we can build a linear inverse problem by dividing se on both sides and by applying the 
natural logarithm function to the data and to the model. Other approaches can be used to solve 
this linear inverse problem, such as incorporating different regularization schemes. These usu-
ally involve applying appropriate iterative optimization methods, such as the conjugate gradi-
ent method [10].

However, the images obtained from traditional methods on the simplified linear model 
might lead to significant beam hardening artifacts when the object is made up of several very 
distinct materials, such as bone and soft tissue. In addition, the linear models cannot be used 
to recognize the the actual types materials from the results, nor can they separate different 
materials when they are mixed [11]. Moreover, the traditional methods are unstable when it 
comes to the limited angle cases. For these reasons, we consider the full nonlinear polyener-
getic model.

3. Multi-material model for polyenergetic computed tomography

In reality, x-rays are composed of a spectrum of energies rather than a single energy. 
Meanwhile, the object is often made up of more than just one material and these materials are 
usually mixed in several areas of the object. Because of the restrictions of this basic model, 
a model that combines multiple materials with distinct energy fluences has been considered; 
see, for example, [4] and the references therein.

It is hard to solve µj,e directly from the equation  (5) because it has a large amount of 
unknown variables. The subindex j  ranges from 1 to number of voxels and e is within the 
scope of number of energies. To facilitate the process of finding solutions, we can think about 
how to reduce the size of unknown variables. To shrink the number of unknown variables, we 
can exploit material decomposition [11] by expressing each attenuation coefficient, µj,e, as 
a sum of product of weights wj ,m and known material specific attenuation coefficients, um,e; 
that is,

µj,e =
Nm∑

m=1

wj,mum,e. (6)

By assumption, the attenuation coefficient for the mth material and energy level e is already 
known and the only unknown variable is weight wj ,m. By using this expression, we have trans-
formed the goal of solving µj,e to the target of solving for wj ,m, which is dependent on the 
number of voxels and number of materials. Usually, the number of materials is 2 or 3 and it is 
significantly fewer than the number of energies. To simplify the problem, we also assume that 
the sum of weights inside each voxel is equivalent to 1. That is to say,

Nm∑

m=1

wj,m = 1. (7)

Y Hu et alInverse Problems 35 (2019) 064004
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In this paper, we limit the discussion to two to three materials, but note that for energy dis-
criminating detectors, separating more materials is feasible. With equations (6) and (7), the 
equation (5) is approximately equivalent to

b(θ)i =
Ne∑

e=1

se exp

⎛

⎝−
Nv∑

j=1

Nm∑

m=1

a(θ)ij wj,mum,e

⎞

⎠+ η(θ)i . (8)

We can collect all variables in terms of vectors and matrices as

b =

⎡

⎢⎢⎢⎢⎣

b(1)

b(2)
...

b(θ)

⎤

⎥⎥⎥⎥⎦
, A =

⎡

⎢⎢⎢⎢⎣

A(1)

A(2)

...
A(θ)

⎤

⎥⎥⎥⎥⎦
, s =

⎡

⎢⎢⎢⎢⎣

s1
s2
...
sNe

⎤

⎥⎥⎥⎥⎦
,

η =

⎡

⎢⎢⎢⎢⎣

η(1)

η(2)

...
η(θ)

⎤

⎥⎥⎥⎥⎦
, X =

⎡

⎢⎢⎢⎢⎣

w1,1 w1,2 · · · w1,Nm

w2,1 w2,2 · · · w2,Nm

...
...

. . .
...

wNv,1 wNv,2 · · · wNv,Nm

⎤

⎥⎥⎥⎥⎦

and C =

⎡

⎢⎢⎢⎢⎣

µ1,1 µ1,2 · · · µ1,Nm

µ2,1 µ2,2 · · · µ2,Nm

...
...

. . .
...

µNe,1 µNe,2 · · · µNe,Nm

⎤

⎥⎥⎥⎥⎦
.

 

(9)

By using these notations, the discrete model (8) can be expressed as

b = exp
(
−AXCT) s+ η. (10)

We have so far obtained the standard form of the polyenergetic multi-material model. Based 
on equation  (10), the goal is to solve for the unknown weight matrix X such that X ∈ P , 
where P = {X | X1Nm = 1Nv , 0 ! X ! 1}. 1Nm and 1Nv  are vectors of ones of length Nm and 
Nv, respectively.

With different energy levels, the forward model is nonlinear and it is not possible to trans-
form it into an equivalent linear model. Mejia-Bustamante et al [5] use the assumption that 
each entry in b follows a Poisson distribution:

b ∼ Poisson
(
exp

(
−AXCT) s

)
. (11)

With this assumption, one can formulate a maximum likelihood (MLE) function based on the 
Poisson distribution. Moreover, if the measurements strictly follow the Poisson distribution, 
then it is naturally included with this model. In [5], a negative log-likelihood is used as the 
objective function and approximations of X are computed using a gradient descent method, 
with equality constraints on weights implicitly incorporated.

However, they do not provide a clear matrix-vector form for the optimization problem. In 
the next session, we will discuss how to use Kronecker product and its properties to derive the 
log-likelihood function as well as the gradient and modified Hessian. Moreover, we want to 
obtain faster convergence and robust reconstruction so we use a nonlinear interior point trust 
region method to solve it. It has superlinear convergence speed and is prone to large-scale 
problems.

Y Hu et alInverse Problems 35 (2019) 064004
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4. Mathematical model revisited

In this section we revise the previous model so that it will be easier to include bound con-
straints and additional regularization operators. First note that if the weights (unknowns) are 
stored as a matrix, then differentiation results in tensors, requiring tedious bookkeeping in the 
computations. In this work we instead rewrite the function to put the unknowns in vector form, 
and differentiate the objective function with respect to this vector. Notice that

vec(AXCT) = (C⊗ A) vec (X) , (12)

where vec(·) reshapes a given matrix into a vector by stacking the columns on top of each 
other. Therefore, we can rewrite (10) as

b = (sT ⊗ I) exp [− (C⊗ A) vec (X)] + η. (13)

If we let

x = vec (X) and K (x) = exp {− (C⊗ A) x} , (14)

then equation (13) is equivalent to

b = (sT ⊗ I)K (x) + η. (15)

In this problem, we assume that each element of measured data, bi, follows a Poisson distribu-
tion with mean 

[(
sT ⊗ I

)
K(x)

]
i. That is to say,

bi ∼ Poisson
([(

sT ⊗ I
)
K(x)

]
i

)
. (16)

Based on this assumption, the corresponding probability density function can be expressed as

fb (b; x) =
Np×Nθ∏

i=1

[(sT ⊗ I)K(x)]bii exp
(
[−

(
sT ⊗ I

)
K(x)]i

)

bi!
. (17)

If we ignore the constant term, the corresponding likelihood function is

L (x; b) =
Np×Nθ∏

i=1

[(sT ⊗ I)K(x)]bii exp
(
[−

(
sT ⊗ I

)
K(x)]i

)
. (18)

The log-likelihood function can be represented as

l (x; b) =
Np×Nθ∑

i=1

{
bi log[(sT ⊗ I)K(x)]i − [

(
sT ⊗ I

)
K(x)]i

}
. (19)

To maximize the log-likelihood function, it is equivalent to minimizing the negative log-like-
lihood function. So the objective function is

l (x; b) =
Np×Nθ∑

i=1

{
[
(
sT ⊗ I

)
K(x)]i − bi log[(sT ⊗ I)K(x)]i

}
.

=1TNp×Nθ
(sT ⊗ I)K(x)− bT log

[
(sT ⊗ I)K(x)

]
,

 

(20)

where 1Np×Nθ is a vector of all ones of length Np × Nθ. Meanwhile, both the bound constraint 
and the constraint (7) should be included. The bound constraint is equivalent to 0 ! x ! 1 and 
we can rewrite the constraint (7) in a matrix-vector form as

Aeqx = 1Nv , (21)

Y Hu et alInverse Problems 35 (2019) 064004
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where Aeq is a matrix of the form

Aeq = 1TNm
⊗ INv . (22)

1Nm is a vector of ones of length Nm. INv  is an identity matrix of size Nv × Nv. In the following 
sections, we use I  to represent the identity matrix if the size of this matrix is clear to identify.

With the objective function (20), we can construct an optimization problem by combining 
the regularization term and the constraints:

min
0!x!1

f (x) + R (x)

subject to Aeqx = 1Nv ,

Aeq = 1TNm
⊗ INv .

 (23)

In the problem (23), f (x) = l (x; b) and R (x) represents the regularization term, which 
is used to penalize the variable x. For this problem, we choose total variation regulariza-
tion to preserve the edges. Using these notations, we can express the set of constraints as 
Q = {x | Aeqx = 1Nv , 0 ! x ! 1}. So the notation can be simplified as

min
x∈Q

f (x) + R (x) . (24)

We let xk  be the kth column in matrix X and Xk  be the corresponding reshaped image of xk . 
The total variation regularization for the kth material can be represented as [12]:

R(Xk) =
n∑

i=1

n∑

j=1

((
XkDT)2

ij + (DXk)
2
ij

)1/2
, (25)

where D is either a forward, backward or central first-order finite difference matrix and n is the 
resolution. For all m materials, the regularization term can be expressed as

R (X) =
m∑

k=1

αk

2
R (Xk) , (26)

where αk is the regularization parameter. Other forms of regularization, such as the dis-
crete Laplacian, can also be used with this framework. For simplicity, we use zero boundary 
conditions when we construct the matrix D. The gradient to the objective function can be 
expressed as

∇l(x) = −
(
CT ⊗ AT) diag {K(x)} (s⊗ I)

{
1Np×Nθ − b⊘

[
(sT ⊗ I)K(x)

]}
.

 (27)
Differentiating the gradient with respect to x, the Hessian can be represented as a summation 
of two parts:

∇2l(x) = H1 (x) + H2 (x) , (28)

where

H1(x) =(CT ⊗ AT)diag {K(x)} diag
{
(s⊗ I)

(
1Np×Nθ − b⊘

[
(sT ⊗ I)K(x)

])}
(C⊗ A)

H2(x) =(CT ⊗ AT)diag {K(x)} (s⊗ I)
diag

{
b⊘ [(ST ⊗ I)K(x)].2

}
(sT ⊗ I)diag {K(x)} (C⊗ A).

 
(29)

From the previous expressions, we can see that H2 (x) is the Gauss–Newton approximation 
to the true Hessian and it is always positive semidefinite. Even if H1 (x) is indefinite, we can 
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transform it into a positive semi-definite matrix by setting a threshold. Specifically, let T (x) 
be defined as

T (x) = max
[
0, (s⊗ I)

(
1Np×Nθ − b⊘

[
(sT ⊗ I)K(x)

])]
. (30)

Then the new Ĥ1 (x) can be represented as

Ĥ1 (x) =
(
CT ⊗ AT) diag {K (x)} diag {T (x)} (C⊗ A) . (31)

Moreover, we define the modified Hessian as

Ĥ (x) = Ĥ1 (x) + H2 (x) . (32)

With the modified Hessian, we can include most information about the true Hessian as well 
as keep it positive semi-definite. However, direct implementation of Newton’s method is not 
effective. To guarantee the feasibility of each step, we need to project the current step onto 
the boundaries. The projected solution might be far away from the desired solution and hard 
to improve later. Furthermore, it is difficult to maintain the equality constraint in each step 
without changing the original model.

5. Implementation of nonlinear interior-point method

Recall that the optimization problem can be expressed as

min
0!x!1

f (x) + αR (x)

subject to Aeqx = 1,
 (33)

where f (x) = l (x; b) and R (x) is the regularization term.
To solve this constrained optimization problem, we use a nonlinear interior-point trust 

region method, which combines sequential quadratic programming, a trust region dogleg 
method, and a projected conjugate gradient algorithm [13, 14]. To apply this method, we 
firstly establish a barrier problem based on (33):

min
x,z

f (x) + αR (x)− µ
2Nv∑

i=1

ln (zi)

subject to Aeqx− 1 = 0,
Aieqx+ bieq + z = 0,

 

(34)

where

Aieq =

[
−I
I

]
and bieq =

[
−1
0

]
. (35)

µ is the barrier parameter that should decrease to 0 and z is the vector of slack variables that 
ensure all entries remain positive. The permuted KKT condition corresponding to (34) can be 
written as

∇f (x) + α∇R (x) + AT
eqλeq + AT

ieqλieq = 0,
Zλieq − µ1 = 0,
Aeqx− 1 = 0,

Aieqx+ bieq + z = 0,

 

(36)

Y Hu et alInverse Problems 35 (2019) 064004
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where λeq and λieq are the Lagrange multipliers corresponding to the equality and the inequal-
ity constraints, respectively. Furthermore, λieq  should be nonnegative. Z is a diagonal matrix 
and Z = diag {z1, z2, · · · , z2Ne}. Compared with the original KKT system, this permuted KKT 
system is preferred because the matrix Z is bounded when the entries of z are approaching 0. 
We can construct an error function based on this system:

E (x, z,λeq,λieq;µ) = max {∥ f (x) + α∇R (x)
+AT

eqλeq + AT
ieqλieq

∥∥
∞ ,

∥Zλieq − µ∥∞ , ∥Aeqx− 1∥∞ ,

∥Aieqx+ bieq + z∥∞
}
.

 

(37)

If the error function is less than a tolerance, for example, 10−8, then we assume that we have 
solved this system approximately. The Newton system corresponding to the permuted KKT 
system can be written as

D (x) p = −g (x) , (38)

where

D (x) =

⎡

⎢⎢⎢⎣

Ĥ (x) + α∇2R (x) 0 AT
eq AT

ieq

0 Λieq 0 Z
Aeq 0 0 0
Aieq I 0 0

⎤

⎥⎥⎥⎦
,

g (x) =

⎡

⎢⎢⎢⎣

∇f (x) + α∇R (x) + AT
eqλeq + AT

ieqλieq

Zλieq − µ1
Aeqx− 1

Aieqx+ bieq + z

⎤

⎥⎥⎥⎦

and p =

⎡

⎢⎢⎢⎣

px
pz

∆λeq

∆λieq

⎤

⎥⎥⎥⎦
.

 (39)

In the matrix D (x), Λieq is a diagonal matrix with λieq  in the diagonal: Λieq = diag { λieq}. 
However, both direct and iterative methods to solve this system are computationally expen-
sive, especially for large-scale problems. We therefore follow the strategy of Byrd et al [15] by 
transforming the original problem into a sequential quadratic programming problem and solve 
by separating it into two subproblems. The first subproblem is called the normal subproblem, 
which can be solved by trust-region dogleg method, while the second subproblem, the tan-
gential subproblem, can be solved by the projected conjugate gradient method. By applying 
the idea of sequential quadratic programming, we can construct an optimization problem as

min
px,pz

∇ [ f (x) + αR (x)]T px +
1
2
pTx

[
Ĥ (x) + α∇2R (x)

]
px

− µ1TZ−1pz +
1
2
pTz Σpz

subject to Aeqpx + Aeqx− 1 = req,
Aieqpx + pz + Aieqx+ bieq + z = rieq,
∥
[
pTx pTz Z−1] ∥2 ! ∆,

pz " −τz,

 

(40)
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where Σ = Z−1Λieq. For this primal-dual system, we regard Σ = Z−1Λieq as an approx-
imation to the second-order derivative µZ−2. req and rieq are auxiliary variables to the lin-
earized constraints. Moreover, the trust region constraint is used to guarantee a sufficient 
reduction in each step and stop the loop after a fixed number of iterations. The scale term Z−1 
in the trust region constraint is used to keep slack variables away from zero without enough 
iterations. Meanwhile, the bound constraint is applied to guarantee the positivity of slack vari-
ables z. That is to say, if the step is accepted, then we should have

z+ pz ! z− τz = (1− τ) z > 0. (41)

τ  is a constant that is close to 1, for example, τ = 0.98. If we let p̃z = Z−1pz, then we can 
rewrite (40) as

min
px,p̃z

∇ [ f (x) + αR (x)]T px +
1
2
pTx

[
Ĥ (x) + α∇2R (x)

]
px

− µ1T p̃z +
1
2
p̃Tz ZΣZp̃z

subject to Aeqpx + Aeqx− 1 = req,
Aieqpx + Zp̃z + Aieqx+ bieq + z = rieq,
∥
[
pTx p̃Tz

]
∥2 ! ∆,

p̃z " −τ .

 (42)

With the help of anxiliary variables, we can separate (42) into two subproblems, the normal 
subproblem and the tangential subproblem. The normal subproblem can be expressed as

min
vx,vz

∥Aeqvx + Aeqx− 1∥22

+ ∥Aieqvx + Zvz + Aieqx+ bieq + z∥22
subject to ∥

[
vTx vTz

]
∥2 ! ζ∆,

vz " −τ

2
,

 

(43)

where ζ is a constant and 0 < ζ < 1, for exmaple, ζ = 0.8. Without the bound constraint, the 
normal subproblem is a standard form trust region problem, which can be solved by the trust 
region dogleg method. So we solve it by ignoring the bound constraint and test if the solution 
satisfies this constraint. If not, we conduct backtracking to maintain feasibility [16]. After 
solving the normal subproblem approximately, we obtain the residuals as

req = Aeqvx + Aeqx− 1,
rieq = Aieqvx + Zvz + Aieqx+ bieq + z. (44)

By substituting the residuals for the same terms in (42), the original optimization problem can 
be represented as

min
px,p̃z

∇ [ f (x) + αR (x)]T px +
1
2
pTx

[
Ĥ (x) + α∇2R (x)

]
px

− µ1T p̃z +
1
2
p̃Tz ZΣZp̃z

subject to Aeq (px − vx) = 0,

Aieq (px − vx) + Z
(
p̃z − vz

)
= 0,

∥
[
pTx p̃Tz

]
∥2 ! ∆,

p̃z " −τ .

 

(45)
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If we ignore the last two constraints, this optimization problem is a standard form quadratic 
programming problem under linear equality constraints, which can be solved by the projected 
conjugate gradient method. In this situation, we ignore the bound constraint at first and stop 
the iteration when the desired tolerance is attained or the current step crosses the trust region. 
If the solution does not satisfy the bound constraint, then we backtrack and choose the last 
feasible step as the solution.

After we have obtained px  and pz, we need to decide if we should accept them and update 
the current step as well as the size of the trust region. To realize this idea, we can construct a 
merit function based on the objective function and constraints from the original barrier prob-
lem to decide the actual reduction. For example, a merit function can be expressed as

φν (x, z) =f (x) + αR (x)− µ
2Nv∑

i=1

ln (zi) + ν∥Aeqx− 1∥2

+ ν∥Aieqx+ bieq + z∥2,
 

(46)

where ν > 0 is a penalty parameter. The actual reduction can be expressed as

ared (p) = φν (x, z)− φν

(
x+ px, z+ pz

)
. (47)

The predicted reduction can be constructed in many ways, most of which are based on the 
SQP problem and its constraints. For example, we can set up a function as

qν (p) =∇ [ f (x) + αR (x)]T px +
1
2
pTx

[
Ĥ (x) + αR (x)

]
px

− µ1TZ−1pz +
1
2
pTz Σpz

+

∥∥∥∥

[
Aeqpx + Aeqx− 1

Aieqpx + pz + Aieqx+ bieq + z

]∥∥∥∥
2
.

 

(48)

For qν (p), the predicted reduction is the difference between not taking any step and taking the 
obtained step p, which can be indicated as

pred (p) = qν (0)− qν (p) , (49)

where the variable p is a concatenation of px  and pz. For a tiny constant η = 10−8, if 
ared(p) ! η pred(p), we accept p and update the current step. We will also update the trust 
region with a standard criteria based on the ratio ared (p) /pred (p).

In conclusion, we implement this problem-specific nonlinear interior-point method to 
solve the corresponding optimization problem (34). Equation (34) is a nonlinear optim ization 
problem under linear and bound constraints. The objective function contains a nonlinear log-
likelihood term and a regularization term. For the log-likelihood term, we calculate the gra-
dient and modified Hessian as (27) and (32). For the regularization term, the total variation 
regularization is chosen to stabilize the solution. The modified Hessian is close to the true 
Hessian and it is positive semidefinite so solutions to the argumented Newton system are 
robust. Furthermore, the problem is prone to large-scale application since it is unnecessary to 
save the modified Hessian. We only need Hessian-vector multiplication when we implement 
Newton-CG method to solve the argumented Newton system. The cost of memory in each 
conjugate gradient iteration is close to an iteration of gradient descent. Therefore, nonlinear 
interior point trust region method is a perfect match to this problem.
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6. Numerical experiments

To test the model and algorithm, we generate a 2D image of size 128 by 128 and assume that 
the object is made up of three simulated materials that arise in polyenergetic image reconstruc-
tion—adipose, air and bones. For bones, we use the main component, calcium, to represent it. 
One application of polyenergetic image reconstruction is breast imaging, which requires low 
dose radiation for patients. To realize this application, we generate an energy spectrum with 
potential 26 KeV with the help of function ‘spektrSpectrum’ [17]. We also select a low radia-
tion dose of 1e5 total photons for the x-ray energy spectrum. The corresponding spectrum is 
shown in figure 2. From figure 2, we can find that the photon flux density is above zero when 
the energy is between 3 KeV to 28 KeV. Based on this observation, the discrete energies for 
simulated source x-ray beam are chosen from 3 KeV to 28 KeV, with an interval of 1 KeV.

The plots of linear attenuation coefficients to materials adipose, air and calcium are shown 
in figure 3. In figure 3, the red, blue and black curves represent adipose tissue, air and calcium, 
respectively, and the gray patch corresponds to the area of energy flux that is not equivalent 
to zero. From figure 3, we can see that the curvatures of air and adipose are similar, while 
the curve of calcium has a K-edge. The similarity of curvatures between adipose and air 
might cause collinearity of linear attenuation coefficient matrix C and so as ill-conditioning of 
Hessian, while the K-edge might result in difficulty of reconstruction.

The simulations of the true object, shown in figure 4, contain four distinct regions: 100% 
adipose, 0% air, 0% calcium; 0% adipose, 100% air, 0% calcium; 0% adipose, 0% air, 100% 
calcium; 50% adipose, 50% air, 0% calcium4. The original images are available in figure 4. 
Yellow color represents regions that contain 100% of the corresponding material, the tur-
quoise color indicates regions that contain 50% of the adipose and air materials, the blue color 
indicates that the material does not exist in this area. Since we only have three materials, then 
the weights corresponding to these three plots in figure 4 should add to one. Moreover, since 
we are using a 2D object for the simulation, we use fan-beam (instead of cone beam) tomog-
raphy model to generate a projection matrix A using the AIR Tools software [21]. The distance 
between the source and detector is 70 cm, with 2.5 cm air gap between the object and detector. 
In order to keep the gauge of projection matrix the same under different size of images, we 
scale the projection matrix by the grid size and the dimension of images. For example, we 
choose the grid size as 2 cm and the dimension as 128 pixels so the scaling results in a pixel 
size of 2/128 cm/pixel.

To avoid inverse crimes, we use spectral energies discretized on a finer grid and images 
with higher resolution to build the forward problem, but then use a coarser grid and lower 
resolution when solving the inverse problem. In particular, we collect the photon flux density 
corresponding to energies from 3 KeV to 28 KeV, with an interval of 0.5 KeV in the forward 
problem, but then use an interval of 1 KeV when we solve the inverse problem. Moreover, 
the resolution of object is initially 256× 256 when we build the forward problem, and for 
the inverse problem, we solve (using a function included in the package IR Tools [18]) on a 
128× 128 grid. The number of x-rays used in building ray trace matrix A is scaled to match 
the projected data generated with higher resolution images. Both full CT and limited angle 
reconstructions are presented in the following sections.

4 We actually tested many different combinations of mixed materials, for example, 20% adipose, 60% air and 20% 
calcium. The results are are very similar to the one case considered in this experiment, thus to conserve space, we 
omit the results.
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6.1. Full angle reconstruction

At first, we only consider the full CT case, where the range of projection angle is from 0 to 
179 degrees in one degree increments. We use Poisson distribution to generate the measure-
ments as (11). The initial guess is a random vector whose entries are between 0 and 1 and 
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Figure 2. Photon flux density versus photon energy.
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Figure 3. The linear attenuation curves for adipose (red), air (blue) and calcium (black).
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it is not required to satisfy the equality constraint. Moreover, total variation regularization 
is introduced to preserve the edges; specifically, we use the central difference operator and 
zero boundary conditions for this regularization term. The regularization parameter is chosen 
among the set 

{
10−1, 10−2, 10−3, 10−4, 10−5

}
 and the most effective parameter is used to 

present the result. With our (un-optimized) MATLAB implementation on a laptop computer, 
we need around 20 min to finish 30 Newton iterations where the stationary point is achieved. 
For the full CT case, the reconstructed images are presented in figure 5. From figure 5, we can 
see that the reconstructed images are of high quality in general. It successfully separates the 
areas correponding to adipose, air and calcium as well as mixture of adipose and air. Edges 
of the reconstructed images are clear, which might be contributed from total variation regu-
larization. On the other hand, we can also find several artifacts that appear as blurred spots 
concentrating in the upper right corner, as well as other small artifacts scattered around the 
image. This results from measured data that are generated by Poisson distribution. With lower 
radiation dose, the relative noise level is higher compared with higher dose. Moreover, we can 
illustrate the convergence behavior by investigating the curves of relative errors. This plot is 
shown in figure 6.

From figure 6, we can find that the relative errors of materials air and adipose decrease in 
a similar way while the relative error of material calcium drops much faster. It is likely that 
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Figure 4. The true images for air (upper left), adipose (upper right) and calcium 
(middle). The turquoise colored regions are those areas in the object with a mixture of 
50% glandular and 50% adipose tissue.
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calcium is only composed of a small part of the area and it can achieve faster convergence 
and higher accuracy. We also observe that the relative errors of three materials decrease to 
a particular level and then stagnate. The relative error between the last step and true solu-
tion is about 19% for each material. Note that this stagnation occurs because of the regu-
larization—without regularization, the relative errors may actually increase as the iterations 
proceed, which is a well-known behavior of ill-posed inverse problems, referred to as semi-
conv ergence. We observe that when the relative errors stagnate, the current step approaches 
the first-order optimality condition, which is an approximate solution to the KKT system.

To further validate convergence behavior of the proposed algorithm, we plot the curve of 
function value in figure 7. From figure 7, we can clearly identify that the function value drops 
fast in the beginning and then it stops for two iterations. After that, it starts to drop again and 
then stagnate. It cannot achieve lower value when reaching a specific level.

6.2. Limited angle reconstruction

In addition to the full CT case, it is important to also consider the case of limited angle recon-
structions. Specifically, in the area of digital tomography, the limited angle technique known 
as tomosynthesis has become an important diagnostic tool in breast imaging. The motivation 
for using limited angle techniques are to reduce radiation dose to patients as well as to reduce 
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Figure 5. The reconstructed images for air (upper left), adipose (upper right) and 
calcium (middle) for full CT.
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the cost of the procedure. The limited angle situation provides significantly more challenges 
to image reconstruction because the mathematical problems is much more ill-posed than the 
full CT case. This means that the reconstruction quality is much more sensitive to the noise. In 
addition, the original objective function might have more stationary points and several of them 
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Figure 6. Plot of relative errors of air (magenta), adipose (blue) and calcium (red) for 
the full CT simulation.
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are likely to satisfy the KKT condition. Under this situation, when the problem is effectively 
underdetermined, a poor initial guess may lead to an undesirable local minimum.

To test the limited angle reconstruction, the same test problem is used but with fewer pro-
jection angles. We shrink the projection angles from 180 degrees to 90 degrees, which ranges 
from 0 to 90 degrees. Furthermore, Poisson distribution is used to generate the projection 
data. After implementing the previous algorithm, the reconstructed images are presented in 
figure 8.

From figure 8, we can clearly see that the reconstructed images generated from the limited 
angle case are more blurred than the images from the full CT case. As expected, with fewer 
projection angles, the images are of poorer quality. For the 90 degree case, we can basically 
identify the distributions of materials roughly, while the details are more difficult to recognize. 
Only the material map of calcium is nearly fully separated from other materials. Moreover, 
we can see that the boundaries of different materials are not as clear as in the full CT case. In 
several areas, the pixels are surrounded by shadows, which means that the materials are not 
completely separated. In the area of mixture, several pixels are colorful and the results depart 
slightly from the true solution. However, it is well known that due to the limited angle data, 
there are fundamental limitations when computing reconstructions [19].

The plot of relative errors for 90 degree case is presented in figure 9. From figure 9, we 
can find that the relative error plots corresponding to air and adipose decrease slowly and then 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 8. The reconstructed images for air (upper left), adipose (upper right) and 
calcium (middle) with 90 degree projection.
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stagnate. On the other hand, the relative error curve corresponding to calcium drops fast and 
converge to a lower level. This observation matches the phenomenon we conclude from the 
reconstructed images. Compared with full CT figure 6, the relative errors corresponding to the 
flat steps are higher. Moreover, we can find that the speed of convergence is not as rapid as in 
the full CT case. However, we do observe that even if the regularization cannot completely 
compensate for the limited angles, it does help to stabilize the solution.

6.3. Comparison of previous work

In the paper [5], Mejia-Bustamante et al investigate a similar problem with only equality con-
straints. Under the assumption that projected data follow a Poisson distribution, they set up a 
likelihood function and obtain an optimization problem based on the negative log-likelihood, 
which is similar to the objective function used in this paper. Moreover, the use substitution to 
impose the equality constraints implicitly because the weights corresponding to each material 
can be represented by a linear combination of weights of other materials. On the other hand, 
Chung et al [4] compare the performance of different optimization methods, such as gradient 
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Figure 9. Plot of relative errors of air (magenta), adipose (blue) and calcium (red) for 
the 90 degree limited angle simulation.

Table 1. Statistics for projected gradient descent method.

Projected gradient descent

Iteration Rel. Grad. Num. Fun. Eval. Rel. Err. 1st Rel. Err. 2nd
1 1.00 19 0.7566 0.7291
5 0.6084 115 0.7389 0.7119
10 0.1502 209 0.7282 0.7016
25 0.0703 491 0.7079 0.6821
50 0.0416 943 0.6883 0.6632
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descent and Newton-CG under similar setup. Since we already include Newton-CG method 
in the trust region subproblem, we can compare gradient descent method with the method 
we use. To further impose the bound constraints, we add a line search scheme to the gradient 
descent method. We generate an object of only two materials, adipose and calcium, and they 
compensate each other. Using the method mentioned in [5], we can use the weights of calcium 
to represent the weights of adipose since they add to one. The original images are similar to 
the first two images in figure 4. The statistics are collected in tables 1 and 2.

From tables 1 and 2, we can clearly observe that the nonlinear interior point trust region 
method can achieve much faster convergence than the projected gradient descent method 
under similar costs. For example, with 50 iterations and 943 function evaluations, the pro-
jected gradient descent method can reduce the relative error to around 68%. However, with 15 
Newton iterations and 852 function evaluations, the relative error can be reduced to approxi-
mate 37 % by the nonlinear interior point trust region method.

7. Conclusions and remarks

By taking multiple materials into consideration, the reconstructed images can reveal the 
weights of materials that compose this object, providing substantially more useful informa-
tion to the clinician. Furthermore, the objective function and gradient are uncomplicated to 
implement and the modified Hessian is a sufficient and stable estimate to the true Hessian. 
In addition, the merits of using a nonlinear interior-point method are easy to identify. It is a 
globally convergent method with superlinear rate of convergence. It is also a stable and robust 
algorithm that can handle large-scale problems. Furthermore, there is substantial flexibility in 
choosing the initial guess because it does not need to satisfy the constraints. Moreover, as was 
illustrated in our numerical experiments, we can speed up the algorithm with the proposed 
scaling method.

Although it has many advantages, it still has several limitations. For example, implemen-
tation of nonlinear interior-point method is not straightforward for large-scale problems. It 
requires solving a normal subproblem as well as a tangential subproblem. Furthermore, we 
need to decide the size of trust region in each iteration. Meanwhile, this method involves 
many parameters that we need to choose manually. So far, we have only tested 2D images 
rather than 3D images. For 3D images, the evaluation of each part might be more complicated, 
which is likely to increase the expense of solving this problem. For further research, we might 
consider the gradient-based methods such as the scaled gradient descent method or splitting 
methods such as the alternating direction method of multipliers (ADMM) [20].

Table 2. Statistics for nonlinear interior point trust region method.

Nonlinear interior point trust region method

Iteration Rel. Grad. Num. Fun. Eval Rel. Err. 1st Rel. Err. 2nd CG Iter.
1 1.00 7 0.8022 0.7672 1
5 0.8052 49 0.6409 0.6179 2
10 0.1123 139 0.5499 0.5298 28
15 0.0117 852 0.3699 0.3564 264
20 0.0050 3752 0.3166 0.3051 372
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