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Summary: Drawing inferences for high-dimensional models is challenging as regular asymptotic
theories are not applicable. This paper proposes a new framework of simultaneous estimation and
inferences for high-dimensional linear models. By smoothing over partial regression estimates based
on a given variable selection scheme, we reduce the problem to a low-dimensional least squares
estimation. The procedure, termed as Selection-assisted Partial Regression and Smoothing (SPARES),
utilizes data splitting along with variable selection and partial regression. We show that the SPARES
estimator 1s asymptotically unbiased and normal, and derive its variance via a nonparametric delta
method. The utility of the procedure is evaluated under various simulation scenarios and via
comparisons with the de-biased LASSO estimators, a major competitor. We apply the method to
analyze two genomic datasets and obtain biologically meaningful results. This article is protected by

copyright. All rights reserved

Key words: Confidence intervals; High-dimensional inference; Hypothesis testing; Multisample-

splitting; Selection-assisted Partial Regression and Smoothing (SPARES).

This article is protected by copyright. All rights reserved 2



Inference for High-dimensional Linear Models

1. Introduction

Consider the classical linear model:
Y =Xp3"+¢ (1)

where Y = (y1,92, ..., Yn) T is the n-vector of the response variable; X = (X, Xy, ..., X)) is
the n x p design matrix that consists of p covariate vectors X;’s; X can also be written as
X = (xi,x],.,x5)T, where x; = (i1, ..., Tip) represents the p-vector of covariates for the
it" individual; £° = (B?, ...,BS)T is the true parameter vector of interest; € = (q, &, ...,6,)T
is the random noise vector and E(e) = 0,,.

In the traditional low-dimensional setting when n > p, it is well known that least squares
estimator BLS = (XTX)"'XTY converges to a normal distribution centered at 8°, which
provides exact estimation and inferences through explicitly computable p-values and con-
fidence intervals. On the other hand, when n < p, the least squares estimation would fail
because the sample covariance matrix ¥=XTX /n is singular. However the n < p problem
has become increasingly relevant over the past two decades with the common availability of
high-throughput data. The goal is often to find a parsimonious model to explain the response
in the presence of massive covariates. A number of selection and estimation methods including
LASSO (Tibshirani, 1996), Adaptive LASSO (Zou, 2006), SCAD (Fan and Li, 2001), ISIS
(Fan and Lv, 2008), among others, are available.

More recently, interest in the statistical community has shifted to making reliable inferences
in high-dimensional models. Researchers have been trying to tackle the problem from differ-
ent angles. One direction is to make inferences based on the selected model, i.e. the one that
is chosen by a given variable selection procedure. Wasserman and Roeder (2009) proposes a
multi-stage procedure that is based on data splitting to separate selection and inference; Berk
et al. (2013) provides conservative confidence intervals for the selected variables by defining

a set of candidate models; Lee and Taylor (2014); Lee et al. (2016) develops the conditional
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asymptotics of the coefficient estimates, given the selected model. The second direction is
to estimate and make inferences of the low-dimensional parameters in the high dimensional
models. Belloni et al. (2013, 2014) propose a double selection procedure instead of a single
selection step to estimate and construct confidence regions for a regression parameter of
primary interest. Some other works propose estimators and inferences based on penalized
estimation. A typical example is the bias correction method based on LASSO (Zhang and
Zhang, 2014; Van de Geer et al., 2014; Javanmard and Montanari, 2014), which provides
point estimation and confidence intervals for the model parameters. There is also work by
Ning and Liu (2017) that proposes hypothesis tests and confidence regions based on the
decorrelated score function and test statistic.

These approaches have their merits and demerits. While Wasserman and Roeder (2009);
Lee and Taylor (2014); Lee et al. (2016) aim at exact inference for post-selection estimates,
it is confined to the selected model from the “first step.” Thus, flaws in the initial model-
selection step, cannot be rectified in subsequent steps. The limitation of requiring perfect
model selection is improved in Belloni et al. (2014), meanwhile, Wasserman and Roeder
(2009); Meinshausen et al. (2009) recommend not performing selection and estimation on
the same data set. On the other hand, the performance of the original de-biased LASSO
estimator relies heavily on the accuracy of estimating the precision matrix, i.e. X!, which
plays an unduly crucial role in the estimation and inference subsequently. In Javanmard and
Montanari (2014), they relaxed the required accuracy of estimating ¥~ (the matrix M in
their paper), instead they set M as to minimize the error term and the variance of the target
Gaussian limit.

In this paper we propose a novel approach to consistently estimate 3°, provide p-values
for all covariates, and compute confidence intervals for any fixed subset of parameters in

high-dimensional linear models. The approach, coined Selection-assisted Partial Regression
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and Smoothing (SPARES), possesses asymptotic unbiasedness and asymptotic normality.
Our idea takes advantage of the multisample-splitting method in Meinshausen et al. (2009),
which defines a p-value for each predictor from each sample-splitting and then aggregates
these p-values to declare a single p-value per feature. One possible criticism of this approach
is that the p-values and the aggregation have a certain arbitrary angle to them: for example,
features not selected in each sample-split subsample are all assigned a p-value 1. In contrast,
our SPARES estimator utilizes partial regression to estimate 3° in each sample-split followed
by a natural smoothing step. In each data split, our procedure provides an estimate of

;-’, j = 1,2,..,p regardless of whether it was chosen by the selection procedure. Such idea
of attaching variable j to the selected variables is also used in Belloni et al. (2014). Then we
average over the variation of the selection and sample-split to obtain a smoothed estimator.
For these reasons, SPARES is not a post model-selection method. Furthermore, our approach
avoids the need to estimate the high-dimensional precision matrix.

Our approach stands out from the majority of related works (Wasserman and Roeder,
2009; Zhang and Zhang, 2014; Van de Geer et al., 2014; Javanmard and Montanari, 2014;
Belloni et al., 2014; Ning and Liu, 2017) in that it is neither restricted to a fixed realization of
the selected model nor limited to a certain selection procedure. The smoothing accomplished
through multisample-splitting ensures that the @’s are asymptotically normal with negligible
bias while the standard errors can be readily estimated via a nonparametric delta method
(Efron, 2014). Consequently, inferences can be made for each and every ﬁ?, 7 =12 ..p
without having to confront the curse of dimensionality. As shown in the data applications,
our method is advantageous in giving uncertainty measures (such as p-values) to all high
dimensional coefficients at once.

The rest of this paper is organized as follows. Section 2 describes the SPARES estimator

and Section 3 develops its theoretical properties. Section 4 shows how to draw inferences
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through SPARES, including confidence intervals and significance tests. Section 5 discusses the
extension to a subvector of 8° with a fixed dimension. In Section 6 we conduct simulations to
examine the performance of SPARES and present comparisons to de-biased LASSO methods.
Section 7 comprises two real data applications and Section 8 summarizes the merit of this

work and pinpoints future research.

2. Proposed Method

Let [p] = {1,2,..,p} denote the set of integers for any positive p. For a vector V of length
p, denote the entry corresponding to subscript j € [p] by V; or (V);; for a square matrix
> = X,p, denote the entry corresponding to subscripts j,k € [p| by Xji or (X);, for
clarity if necessary; for a subset S C [p], denote the sub-design matrix Xg = (X;);es and
the sub-covariance matrix Xg = (2;i)jkes. The projection matrix of Xg is denoted as
Hs = Xs(XIXs)7' XJ. The active set of 8% is So,, = {j € [p] : B # 0}.

One-time SPARE: We first introduce the estimation of 8° through Selection-assisted
Partial Regression (SPARE) on a single data-split. Given data D, = (X,Y ) as in model (1)
and a generic selection procedure S, with parameter A, we first split D, into two halves D,
and Dy, with |Dy| = |n/2|, |Ds| = [n/2], the floor and ceiling of it. Denote the subset of
variables selected by Sy on Dy as S = S\(Ds). Next on D; = (X', Y'!), the partial regression

estimator for 37, j € [p] is
B’,_ x. Txi )—1X1 Tyt 9
i =1 (Xsu Xsu; SUj ;7 (2)
which is the coeflicient estimate corresponding to X ; from the least squares regression of Y'!

on Xéuj. Moreover, (2) can be written as Blj = {X;T(IRKQ_HI

—1 41T
S\j)X:}} le (Iﬂﬁ_H;'\j)Yl

in the partial regression formulation.
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Let Sc = [p] \ S, we can write the one-time SPARE estimator compactly as

O X - ®
Bso)  \|ding{ XL, (T — HYXE}] X&,T (Lo — HYY

The rationale for SPARE to work is that given a subset of important predictors S C [p] that
is close to the active set Sy, the partial regression estimator (2) would be a fine estimator
that is close to the truth 7, for all j € [p|. In fact, as long as S D Son, (2) would be an
unbiased estimator for ﬁ?, regardless of j € S or not. However, given the large number of
predictors, the one-time SPARE estimator is highly variable, and heavily depends on the
selected S and the specific split of data.

SPARES: To overcome this difficulty, we introduce its smoothed version, the SPARES
estimator, which is derived from multisample-splitting and repeated applications of SPARE.
For a large enough B and each b = 1,2,.., B, we first draw a sample of size n/2, with
replacement, from the full data and denote it as D?. When n is odd, we interpret n/2 as
|n/2]. Let Iy = {i1,42,...,0ns2}, 1 < ix < n be the collection of indices of the observations
in D?. Next, we collect the observations that are not drawn in D? as D with index set
I, = [n]\ 1. Thus I; U I, = [n] and I; N I; = (. Now the application of SPARE by (3) is

Bb = B(D?, SP), where S® = S\(D?); the final step is to average over all B,

N 1
JBSPARES - E ;JB . (4)

In terms of the computational cost, each of the one-time SPARE has the same time
complexity as one run of LASSO (O(np?)), and the cost of the SPARES procedure is B
times that. But with the help of parallel computing, we could largely reduce the computation
time by any desired factor K depending on the computing tool. Thus the time complexity
of SPARES is O(Bnp?/K), a multiple of one-time LASSO proportional to the number of
re-samples. Empirically the total time cost of the SPARES procedure is linear in plogn.

In the rest of the paper, we will always use B for the one-time SPARE estimator and a for
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the SPARES estimator. Both the one-time SPARE and the SPARES possess the asymptotic
unbiasedness and normality, but SPARES is much more stable due to the smoothing effect

from multisample-splitting, which we will explore in depth throughout the rest of this paper.

3. Theoretical Results
3.1 One-time SPARFE

We first establish the asymptotic property of the one-time SPARE estimator under the

following assumptions.

(A1). Randomness of Data: In model (1), &; L x;; €;’s are i.i.d. random errors with mean zero,
finite variance o2 and finite third absolute moment E|¢;|* < po; X = (xT,...,x1)T, x;’s are
i.i.d. mean zero sub-Gaussian random vectors in R? with covariance matrix ¥,y,, whose

eigenvalues are bounded,
0 < emin < )\min(E) < )\ma.x(z) < Cmax < 00.

x;’s also have finite component-wise third absolute moments V5, E|z;;|* < p1.

(A2). Order of Model Parameters: There exist constants 0 < ¢; < 1,¢g > 0 such that sp =
(ol = O(n"), max; [89] < cs.

(A3). Sure Screening Property: There exists a sequence {\,},>1 and constants 0 < 7 < 1,

¢a > 2¢; such that |§n,)\n|/n < 7, and
P(Spx, D Son) = 1—0(n™27) as n— oco. (5)

Here §n,)\n denotes the selected set of variables with sample size n and tuning parameter

An.

REMARK 1: The sure screening property is met in Fan and Lv (2008); Fan and Song
(2010), and is guaranteed with the right order of tuning parameter A using LASSO (Bach,

2008). More specifically, by Fan and Lv (2008); Fan and Song (2010), in addition to assump-
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tions (A1) and (A2), the following conditions are required for the sure screening property to

hold:

e Var(Y') = O(1), and for some > 0 and co, c; > 0, minjeg, |57 > ¢o/n" and
gl}é%‘cov B; Y. X, )l cs;
e logp = O(nf) for some 0 < £ < 1 — 2k.

When & > 1/3, the sparsity requirement implied by Fan and Lv (2008), so = o(n?) for some
0 < 0 < 1 — 2k, is stronger than that in Javanmard and Montanari (2018), which is so =
o(n/(logp)?). When x < 1/3, the comparison between the two conditions are inconclusive.

Please see conditions 1-4 in Fan and Lv (2008) for more details.

In (A1), only a moment condition is required on the error terms and a sub-Gaussian
distribution for the covariates. For comparisons, while the asymptotic normality of the
whole p—dimensional de-biased estimator is not guaranteed for non-Gaussian errors, a central
limit theorem argument can be used to obtain approximate Gaussianity of components of
fixed dimension (Biithlmann et al., 2014). Thus the inference for any fixed low-dimensional
parameter is still valid for these types of methods under sub-Gaussian errors with finite
moment conditions. In (A2), there is no direct assumption on the order of p, however, it
is implied through (A3), a condition made directly on the selection method. One reason
for such an assumption, instead of more basic ones like the order of p or the covariance
structure of the predictors, is that selection only plays an assistive role in our method; the
estimation part is in fact low-dimensional and therefore does not directly require typical

high-dimensional conditions.

THEOREM 1: Given model (1) and assumptions (A1)-(A83), consider the one-time SPARE

estimator B = (By, Ba, .., B,)T as defined in (3). Denotem = |n/2], or=o0 ( suj Suj/m)
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Then Vj € [p], as m — oo,

vm(B; — B])/3; — N(0,1). (6)

REMARK 2: Note that we could always let the quantity of interest in (6) to be zero
whenever Sy ¢ S, whose probability goes to zero by (A3). Thus we only need to show the

convergence when the event Sy C S holds.

The proof is presented in the Web Appendix A.

3.2 SPARES

Given the high volume of predictors in the model (1), the one-time estimator is expected to
be noisy and unstable, especially for all the j ¢ Sp,, that are the majority of the p—vector
(3°. In contrast, the SPARES estimator is more stable as it smooths over both estimation and
selection. As the SPARES introduces extra dependency between the selections S%’s and the
partial regression estimates, the following condition, which is stronger than “sure screening”,

is required for the desired theoretical property.

(B3). Selection Consistency: There exists a sequence {A, }n>1 and constants 0 <7 < 1, ¢; > 2¢

such that |S,.,|/n < 7, and
P(§n,)\n =Son)=1—0o(n 2 ") as n— oo (7)
The selection consistency is often met under certain sparsity conditions depending on the
selection method (Zhao and Yu, 2006; Zhang, 2010). Take LASSO for example, the selection

consistency property is guaranteed under s = O(n) and sglogp = o(n®) for some 0 <

¢ < c3 < 1, along with irrepresentable condition and others.

THEOREM 2: Given model (1) and assumptions (A1,A2,B3), consider the SPARES es-

timator ESPARES = (Bl, ...,BP)T as defined in (). For each j, there exist random variables

This article is protected by copyright. All rights reserved
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Z:?,Aj such that as n, B — oo,

VB =) =Z0+ A, Z9)o; = N(0,1), A;=o0,(1), (8)
where 0:_,2 = Q(Egol,nuj)jj s bounded.

The proof is presented in the Web Appendix along with some useful lemmas. The difficulties
in deriving the theoretical properties of the SPARES estimator arise primarily from the
randomness of S%’s, the selected subsets of variables from subsamples of the original data. It
is unclear whether a standard bootstrap theorem can be applied to such random sets since the
uniform control that one obtains under Donsker-type conditions in empirical process theory
is absent. Consequently, assumptions weaker than selection consistency are not effective in
controlling the randomness of the S®s. Meanwhile our simulations suggest the validity of
SPARES when only (A3) holds instead of (B3). Under assumption (B3), the asymptotic
variance of ours converges to the best variance of an unbiased estimator of ﬁ;,] under the

reduced model
Y — XSOUjﬁgouj + E. (9)

Such bound is smaller than the semiparametric information bound that involves all p covari-
ates (Belloni et al., 2014; Van de Geer et al., 2014). Nevertheless the sets of conditions for the

mentioned works and ours are quite different that they might not be directly comparable.

4. Inference by SPARES
4.1 Estimator of Standard Errors

As shown in Theorem (2), 1,3’; converges to a normal distribution whose variance depends
on the unknown active set Sp,. We propose an implementable approach to estimating
the standard error of B} using Theorem 1 of Efron (2014), see also Wager et al. (2014)
and Theorem 9 of Wager and Athey (2018). We denote the estimator as s?éf . For the b

bootstrap data, D%, we re-write the index set as I? = (b1, b2, -y iny2). For i = 1,2,...,n

This article is protected by copyright. All rights reserved



10 Biometrics, December 2018

define I; = #{is = i}, the number of times that the i'® observation appears in the b
re-sample. The vector I° = (I, Iys, ..., I,) then follows a multinomial distribution with n/2
draws on n outcomes each having probability 1/n, whose mean vector and covariance matrix

are

1, 1 1
b - - _ ~ 4T
I (21n, 5T innl“) (10)

where 1, the (column) vector of n 1’s and I, the n x n identity matrix. The nonparametric
delta method estimator of the standard error is then given by:
n 1/2
el = (Z cﬁfj) , (11)
i=1

where
B —_ o~
vy = (I~ T2)(B — B))/B (12)
b=1

is the bootstrap covariance between [;; and B\?, and I; = Eszl Iy;/B.
As emphasized in Efron (2014), the merit of smoothing the SPARE estimator is to convert

a “jumpy” selection-based estimator B\b

into a smooth version of E It is pointed out in
Wager et al. (2014) that the nonparametric delta method standard error estimator tends to
be biased upwards when the number of bootstraps is small. They proposed an alternative
bias-corrected version of (11):

B 1/2

@l = {(s’“éB):’ L 3)2} (13)

b=1
Note that (13) converges to (11) as B — oo. The original version (11) would require B =
O(n'?®) to reduce Monte Carlo noise down to the level of sampling noise, while (13) only

requires B = O(n). Moreover, our experience shows that the unbiased version does converge

to the empirical standard error faster than the original one.
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4.2 Confidence Intervals and P-values

Following previous discussion, the asymptotic 1 — a confidence interval for each ,6’:? is given

by
(B - 7' (1 - a/2)] | B+ @711 - a/2)]), (14)

where ! is the inverse CDF of the standard normal distribution. The p-value of testing

Ho:ﬁj:[}is

pj:2x{1—rb(|;’§j|/s’éf)}. (15)

5. Extension of SPARES to a Subvector ) with a Fixed Dimension

It is natural to extend our procedure to a subvector B(!) of 8° with a fixed dimension p; > 2.
Without loss of generality, assume that g1 = ﬁg_(l) = (8,3, .., SI)T with |SM)| = p,.

Accordingly, we modify the SPARE estimator in (2) to be
ab T _ T
Bsay = {(ngus(l) ngus(l)) 1X§bugm Yb}sm ) (16)
which gives a corresponding SPARES estimator for B(1:
_ 1
B = E;Bgm_ (17)

The corresponding extension of Theorem 2 is stated below.

THEOREM 3: Consider model (1) under assumptions (A1,A2,B3), and a fized finite
subset SV c {1,2,..,p} with |SY| = p,. Let BW be the SPARES estimator for BV = Bow

as defined in (17). There exist random vectors ZM), AW | such that as n, B — oo,
VAW - g0) =20+ A0, 50T Z0 L N(0,L,,), AY =0,(1,),  (18)

and X1 = o2 (Egnl‘nUSm)S(l) 18 positive definite.

REMARK 3: There is also a direct extension of the one-dimensional nonparametric delta

This article is protected by copyright. All rights reserved
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-~ -~ ,.-"“--..T ——
method for estimating the variance-covariance matrix of (), (1) = COV(;)COV 1), where

— T
COVyy = (cﬁ?),cﬁg”,..,co"ar;”) (19)
B
vy =3 (I — L)(Bhey — BY)/B. (20)
b=1

The extension to a subvector 1) with a fixed dimension allows us to derive confidence

regions for a subset of variables of interest and test for contrasts of certain predictors.

6. Simulation Studies

We designed all simulation scenarios based on the linear model (1) with X = (X3,...X,) =
(xT, . xDT e = (e1,...,6,)7T, assuming x;’s i.i.d. ~ N(0,, X,,,) and ¢;’s i.i.d. ~ N(0,1). A
total of 200 simulated datasets were generated for each simulation configuration.

We first illustrate the advantage of using SPARES over one-time SPARE. We set sample
size n = 200, number of predictors p = 300, and sy = 3 nonzero signals with X¥,,, being
the identity matrix. As shown in Web Table (1), over 200 replications, the biases of both
approaches are negligible on average, but the standard errors of SPARES are much smaller
than those of one-time SPARE, which results in higher power and more accurate inferences.
Thus we recommend SPARES in practice.

In subsection 6.1, we explore the performance of SPARES under various settings, including
different correlation structures of X, strong and weak signals strength, and stress tests with
ultrahigh dimensionality. In subsection 6.2, we compare SPARES with two de-biased LASSO
estimators, LASSO-Pro from Van de Geer et al. (2014) and SSLASSO from Javanmard and

Montanari (2014).

6.1 Performance of SPARES under various settings

We will go over three examples, all of which assume the linear model (1) as truth, but with

different parameters.
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Example 1. Let sample size n = 150, number of predictors p = 300, number of nonzero
signals sy = 5, and a fixed realization of 3° where S, ,, = {66, 97,145, 166,173} was a fixed
realization of sy draws without replacement from [p|] and ﬁg,&n = (1,0.6,—1,—-0.6,1). We
examined three commonly used correlation structures: identity; first-order autoregressive
(AR(1)) with p = 0.5; compound symmetry (CS) with p = 0.5. LASSO was used as the
selection procedure Sy, while A was chosen by cross-validation. As summarized in Table
(1), for both nonzero signals and noise variables, the bias of SPARES estimator was well
controlled while the SE estimates were very close to the empirical ones. Consequently, the
coverage probabilities of the 95% confidence intervals were at the nominal level. In addition,
the variable selection frequency based on p-values of SPARES was higher for true signals
and much lower for noise variables compared to selection by LASSO. Notice that for identity
and AR(1) correlation structures, the selection frequencies of the true signals were uniformly
close to 1, suggesting “sure screening” condition was met and thus the better coverage
probabilities. Therefore the simulation result validates our claim that SPARES works under
“sure screening” assumption.

Example 2. Let n = 150, p = 500, and

e Example 2.1: 59 = 15, X, = diag(X1, ..., X10), where each ¥} was 50 x 50 with an AR(1)
correlation structure, (Xx);; = (0.1k — 0.1)l=9l, &k = 1,2,..,10. The active set Sy, was a
fixed realization of s, draws without replacement from [p], and 33, , was a fixed realization
of sy i.i.d. Uniform U[0, 2] variables;

e Example 2.2: sy = 20, ¥,,, = diag(Xy, ..., X10), where each X : (£;);; = (0.3)F7]. The

non-zero signals are assigned effect sizes g, 45 = 0.2k, 85, 15 = —0.2kfork =1,2,...,10.

We applied SPARES with LASSO (10-fold cross validation to choose A) as the model
selection procedure, and reported the simulation averages of BSPARES, along with confidence

intervals, mean biases, coverage probabilities, and type I errors for testing Hj : Bf = 0.

This article is protected by copyright. All rights reserved
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The results are summarized in Web Figures (1) and (2). For the true signals j € Sy,
the proposed method worked well regardless of the correlation, with negligible biases and
close-to-nominal coverage probabilities. On the other hand, the biases for the estimates of
noise variables were enlarged when they were highly correlated with non-zero signals. The
estimated coverage probabilities and type I errors deviated more from the nominal level
consequently. The type I error became negligible when the effect size was over 1. Coupled
with an observation that the bias was larger for the noise variables that were correlated with
moderate non-zero signals, our takeaway was that the magnitude of bias was a combination
of selection errors as well as correlations with true signals.

Example 3 serves as a “stress test” to illustrate how SPARES handle large datasets
with a number of “weak signals”. We let n = 500, p = 1000, 5000 and 10000, and sy =
205. Within the 205 non-zero signals, 5 are of sizes 0.2,0.4,0.6,0.8,1, and the rest 200 are
fixed random realizations from the uniform distribution U[(—0.2,—0.1) U (0.1,0.2)]. The
multivariate normal distribution with mean zero and the AR(1) correlation structure with
p = 0.5 is applied to generate X’s. As summarized in Table (2), the SPARES estimator
remains nearly unbiased for both strong and weak signals. The coverage probabilities of
strong signals are close to the nominal level 0.95, while those for weak and zero signals are
above 0.9 on average. This demonstrates that SPARES is rather reliable and robust even for

large datasets with a number of weak signals.

6.2 Comparisons with De-biased LASSO FEstimators

We compared SPARES with different versions of de-biased LASSO estimators in Example
4, where the active set Sy, C {1,2,..,p} was a fixed random realization with size |Sp,| = 5,
and Bgo,n was a fixed realization of 5 i.i.d. random variables from uniform UJ0.5,2]. The
size of the active set is reduced to 5 for clearer comparison and display of the result. Three

correlation structures are considered for completeness:
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e Example 4.1: Identity X,,, = L,«p;
e Example 4.2: AR(1) X, : () = (0.8)57;

e Example 4.3: Compound symmetry Xpy, : (X);x = 0.5.

The estimated biases and coverage probabilities were shown in Table (3) and Web Figure
(3), where LASSO-Pro was proposed in Van de Geer et al. (2014) and SSLASSO was from
Javanmard and Montanari (2014).

Across the board, SPARES gave less biased point estimates for the true signals, and
provided reliable confidence intervals around the nominal level for both true signals and noise
variables. In contrast, both LASSO-Pro and SSLASSO had visible discrepancies between the
true signals and noise variables. While LASSO-Pro had lower-than-nominal level coverages
for the true signals, it performed even worse in Example 4.1, probably due to the fact that
the node-wise LASSO was not ideal when estimating the precision matrix when ., was
an identity matrix. As far as SSLASSO was concerned, the confidence intervals for the noise
variables were too conservative, while the coverages for the true signals in Example 4.2 were
considerably low.

In summary, the performance of SPARES aligned well with the theoretical expectations,
especially for the active set Sp,. We did observe, however, some false-positives when the
noise variables were highly correlated with those in the active set. Nevertheless, compared
with the de-biased LASSO methods, SPARES showed substantial improvement by providing

less biased estimates with more accurate coverage probabilities close to the nominal level.

7. Data Examples

7.1 Riboflavin Production Data

We applied our method to analyze a dataset on riboflavin (vitamin B;) production by bacillus

subtilis, made public by Biihlmann et al. (2014) and analyzed by Meinshausen et al. (2009),
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Biihlmann et al. (2014), Van de Geer et al. (2014) and Javanmard and Montanari (2014).
The data contained n = 71 samples and p = 4088 covariates, measuring the logarithm of the
expression levels of 4088 genes. The response variable was the logarithm of the riboflavin
production rate.

We related the response to the gene expressions using the linear model (1). We checked the
collinearity among the genes, and their pairwise correlations are plotted in the Web Figure
(4). We further normalized the genes so that their effect sizes are comparable. The LASSO
was used as the variable selection method, and we let B = 1000 be the number of re-samples.
Assisted by the LASSO selection, we derive the SPARES estimator E , the standard error
estimates as in (11), and the p-values as in (15). With a standard Bonferroni correction to
adjust FWER to the 5% significance level, we identified four genes that were significantly
associated with the response, namely YCKE_at, XHLA _at, YXLD_at, and YDAR_at. If the
FWER were set at 10%, one more gene, YCGN_at, would be included. The confidence
intervals for the top 5 genes are displayed on the right panel of Web Figure (5), with the
point estimates shown in Table (4). By contrast, the results from other methods were less
informative. For example, with a 5% FWER, the multisample-splitting method proposed in
Meinshausen et al. (2009) identified YXLD_at, Van de Geer et al. (2014) claimed none, and
Javanmard and Montanari (2014) only detected YXLD_at and YXLE_at, which are highly
correlated themselves.

Our results had biological interpretations that are confirmed by the literature. It was
reported that XHLA _at was involved in cell lysis upon induction of PbsX (Kunst et al., 1997),
increasing the capability to produce recombinant extracellular digestive enzymes that results
in riboflavin production (7.04 in Mander and Liu (2010)). YCKE_at, formally named as bglC,

was also responsible for the production of certain enzyme, Aryl-phospho-beta-D-glucosidase,
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and had extracellular protein secretory functions (Schallmey et al., 2004). YXLD_at, together

with YXLE_at, was important for negative regulation of sigma Y activity (Tojo et al., 2003).

7.2 Multiple Myeloma Genomic Data

We analyzed a cancer genomic data with n = 163 multiple myeloma patients. Our interest
lay in detecting the association between the $-2 microglobulin (B2M) and gene expressions.
B2M is a small membrane protein produced by malignant myeloma cells, indicating the
severity of disease. Identifying genes that are related to B2M is clinically important as it
helps construct molecular prognostic tools for early diagnosis of disease.

We first used KEGG (Carlson, 2015) to identify gene pathways that are related to cancer
development and progression, as well as some identified upstream genes that may regulate
B2M. In total, there were p = 789 unique probes belonging to these pathways. We took
the logarithm transformation for both the B2M test value and the gene expressions as our
response and predictors for model (1). We applied SPARES with LASSO as the selection
method, and B = 500 re-samples were drawn for smoothing.

Our method offers additional biological insight compared to the other methods. As shown
in Table (5), it identified two significant probes at 5% FWER after the Bonferroni correction,
namely 204171 _at (RPS6KB1) and 202076 _at (BIRC2). In contrast, the two de-biased LASSO
estimators identified no significant probes. Both detected genes are highly associated with
malignant tumor cells: RPS6KB1, member of the ribosomal protein S6 kinase (RPS6K)
family, altercation/mutation has been related to numerous types of cancer including breast
cancer, colon cancer, non-small-cell lung cancer, and prostate cancer (Sinclair et al., 2003;
Van der Hage et al., 2004; Slattery et al., 2011; Zhang et al., 2013; Cai et al., 2015); BIRC2,
whose encoded protein is a member of inhibitors of apoptotic proteins (IAPs) that inhibits

apoptosis by binding to tumor necrosis factor receptor-associated factors TRAF1 and TRAF2
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(Saleem et al., 2013), has been related to lung cancer and lymphoma (Wang et al., 2010;

Rahal et al., 2014).

8. Conclusion

We have proposed a new framework of estimation and inference for the high-dimensional
linear models (1), and shown the proposed SPARES estimator is asymptotically unbiased
and normal, giving accurate and reliable component-wise inferences. The key improvement,
compared to the existing works, lies in these aspects. SPARES converts the high-dimensional
problem of estimating the p-vector B° to the low dimensional case by Selection-assisted
Partial Regression. Thus we avoid the curse of dimensionality on estimation and inference.
SPARES is applicable to general selection methods including LASSO, SCAD, screening,
boosting, and etc., as long as they possess the desired selection consistency property, which
is likely to be loosened to sure screening property in practice as suggested in the extensive
simulation study. SPARES is not sensitive to the tuning parameter A in S,, since it is
not directly used for estimation, but only involved in the selection. Hence, our method has
minimal requirements on extra model parameters and is almost robust toward selection of
tuning parameters. This framework can be naturally extended to other non-linear regression
models, such as generalized linear model and Cox model, through two general steps. First,
we perform data-splitting on the original data, and then do selection on one half of the
data followed by fitting low-dimensional model on the other half of the data using partial
regression; Second, we repeat the first step many times and average over all estimates to

form a smoothed estimate. We will report this work elsewhere.
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SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information
section at the end of the article, including Web Appendices, Tables, and Figures referenced

in Sections 2-7.
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Software R implementation of SPARES is available on-line at https://github.com/feizhe/

SPARES, along with the simulation examples.

[Table 1 about here.]
[Table 2 about here.]
[Table 3 about here.]
[Table 4 about here.]

[Table 5 about here.]
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Table 1: Performance of SPARES under simulation example 1 with three correlation struc-
tures: Identity, AR(1) and Compound Symmetry (CS). The last column “-” represents the
averages for all noise variables. Freq S, is the selection frequency by LASSO; Freq SPARES
is the selection frequency by p values of SPARES with 0.1 FDR control; Empirical SE is
the empirical standard error.

Index j 66 97 145 166 173 -
ﬁ? 1 0.6 -1 -0.6 1 0
Identity Bias (x107?) 16 -1 -2 2 7 -1

Pune:rag(e:s’é}fB 0.110 0.111 0.109 0.111 0.110 0.111

Empirical SE  0.117 0.109 0.104 0.113 0.124 0.109
Cov Prob (%) 91.5 940 95.0 96.0 91.5 9438

Freq Sy 1 0.956 1 0.965 1 0.059
Freq SPARES 1 097 1 0.99 1 0.003
AR(1) Bias (x1073) -6 2 710 -1 0

Pune:rag(e:s’é}fB 0.115 0.116 0.114 0.115 0.116 0.115

Empirical SE  0.125 0.108 0.114 0.120 0.108 0.114
Cov Prob (%) 935 96.0 95.0 925 96.5 94.5

Freq Sy 0.998 0.938 1.000 0.929 1.000 0.046
Freq SPARES 1 0.925 1 0.905 1 0.001
CS Bias (x1073)  -12  -30 6 7 14 T

Average s’éf 0.151 0.149 0.152 0.150 0.150 0.154
Empirical SE  0.165 0.161 0.168 0.162 0.163 0.154
Cov Prob (%) 925 915 894 920 920 945
Freq Sy 0.986 0.742 0.958 0.651 0.988 0.045

Freq SPARES 1 0.775 1 0.795 1 0.005
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Table 2: Performance of SPARES under simulation Example 3. Tables from top to bottom
correspond to p = 1000, 5000 and 10000. Last two columns are averages over small and zero
signals.

Index 36 272 376 568 915 Small 0’s
B° 0.200 0.400 0.600 0.800 1.000 0.000

p = 1000

Bias 0.013 -0.006 0.014 -0.002 -0.014 0.005 0.004

Avg SE  0.093 0.093 0.093 0.093 0.093 0.093 0.093
Emp SE  0.099 0.098 0.098 0.093 0.097 0.094 0.094
Cov Prob 0960 0.920 0.930 0.930 0.940 0.907 0.908
Sel freq  0.045 0.418 0.930 1.000 1.000 0.021 0.002

p = 5000

Bias -0.005 0.009 0.010 0.003 0.004 0.004 0.000

Avg SE  0.093 0.093 0.095 0.094 0.094 0.094 0.094
Emp SE  0.092 0.096 0.098 0.099 0.112 0.095 0.096
Cov Prob 0960 0.930 0.960 0.910 0.920 0.905 0.935
Sel freq  0.022 0.390 0.906 0.999 1.000 0.015 0.001

p = 10000

Bias -0.003 0.003 0.006 0.008 -0.025 0.005 0.000

Avg SE  0.094 0.094 0.094 0.095 0.094 0.095 0.095
Emp SE  0.094 0.096 0.101 0.103 0.093 0.096 0.097
Cov Prob 0950 0.940 0.930 0.930 0.950 0.902 0.939
Sel freq  0.015 0.313 0.860 0.996 1.000 0.012 0.000
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Table 3: Comparisons of SPARES with LASSO-Pro and SSLASSO under Example 4. The
rows consist of 5 true signals and the average of zero signals. In each cell, top number is for

SPARES; middle number is for LASSO-Pro; lower number is for SSLASSO.

Example 4.1 Example 4.2 Example 4.3
Index fY Bias (x107%) Cov Prob (%) Bias (x107*) Cov Prob (%) Bias (x107®) Cov Prob (%)
-1.77 90.5 10.43 92.5 -0.35 96.5
-81.78 70.5 -44.09 36 -38.43 92.5
78 107 -79.33 90.5 -101.95 84.5 11372 925
-1.04 96.5 9.70 92 2.44 95
-80.28 76 -44.54 87 -32.42 89
102 1.04 -77.72 93.5 -99.66 82 -105.60 92
1.62 04 15.58 035 4,67 96.5
-80.43 71.5 47,57 88.5 -40.39 91.5
242 119  -88.60 875 10425 84 11551 92
-0.14 94 2.98 96.5 2.01 95
-75.87 31 -41.40 38 -30.61 91
359 143 -80.91 94 -98.14 85 -107.5 89
-3.57 95.5 0.54 93 5.88 91.5
-84.86 75 -60.80 38 -24.20 86.5
380 0.62 -85.73 89.5 -111.11 31.5 -99.26 90.5
-0.46 95 0.65 94.82 3.26 95.16
-0.40 97 3.16 96.46 5.24 96.34
- 0 -0.27 99.5 4.15 99.69 26.88 99.94
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Table 4: Analysis of the riboflavin genomic data. E is the SPARES estimator; p-values are
adjusted by Bonferroni correction (multiplied by p). The top 10 and bottom 10 most/least
significant genes are tabulated.

Gene E SE Adjusted p-value
YCKE_at 0.37 0.06 < 0.001
XHLA _at 0.48 0.09 < 0.001
YXLD_at -0.53 0.11 0.01
YDAR _at -0.28 0.06 0.01
YCGN_at -0.31 0.07 0.09
RPLJ at -0.26 0.06 0.10
YQIZ_ at -0.25 0.06 0.13
YCDH_at -0.27 0.07 0.15
SPOIISA _at 0.25 0.06 0.35
YRPE_at -0.25 0.07 0.63
YXAL_at —-2x 107 0.09 1
XPT_at —-1.6 x 107 0.07 1
YOZG_at —29x107* 0.14 1
YOJB_at 1.7x107* 0.10 1
YBCL_at —-1.8x107* 0.11 1
YJAX at 1.3 x107* 0.09 1
YOSE _at 1.1 x107* 0.11 1
YUNA _at 49 x107° 0.07 1
YISO_at 1.7 x 10™° 0.08 1
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Table 5: Analysis of the Multiple Myeloma genomic data. The top 6 and bottom 6 most/least
significant genes are tabulated.

Gene E SE Adjusted p
204171_at (RPS6KB1) -0.20 0.042 0.002
202076_at (BIRC2) -0.17  0.041 0.037
220414 _at -0.20 0.05 0.14
220394 _at -0.18  0.05 0.59
206493 _at -0.19  0.06 0.63
209878 s_at -0.17  0.05 0.69
207924 x_at 5x107%  0.07 1
205289 _at —4.4x 107 0.06 1
203591 s_at 4.7 x107*  0.07 1
224229 s at 24x107*  0.06 1
217576 x_at 2.5 x107*  0.07 1
201656 _at 2.5x107*  0.08 1
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