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Abstract

Temporal autocorrelation in demographic processes is an important aspect of population dynam-
ics, but a comprehensive examination of its effects on different life-history strategies is lacking.
We use matrix population models from 454 plant and animal populations to simulate stochastic
population growth rates (log ks) under different temporal autocorrelations in demographic rates,
using simulated and observed covariation among rates. We then test for differences in sensitivities,
or changes of log ks to changes in autocorrelation among two major axes of life-history strategies,
obtained from phylogenetically informed principal component analysis: the fast-slow and repro-
ductive-strategy continua. Fast life histories exhibit highest sensitivities to simulated autocorrela-
tion in demographic rates across reproductive strategies. Slow life histories are less sensitive to
temporal autocorrelation, but their sensitivities increase among highly iteroparous species. We
provide cross-taxonomic evidence that changes in the autocorrelation of environmental variation
may affect a wide range of species, depending on complex interactions of life-history strategies.
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INTRODUCTION

Most natural populations are exerted to environmental fluc-
tuations (Tuljapurkar 1990; Boyce et al. 2006; Morris et al.
2008). Such fluctuations typically cause temporal variation in
vital rates of individuals (i.e. survival, growth and reproduc-
tion), and the effects of such variation on population dynam-
ics have been assessed in a number of theoretical and
empirical studies using population models (Tuljapurkar 1990;
reviewed in Ehrl�en et al. 2016). However, temporal variation
in environmental conditions has most often been modelled as
independent and identically distributed (i.i.d.; e.g. Cohen
1979), which assumes an unrealistic lack of temporal autocor-
relation in environmental fluctuations (Halley & Inchausti
2004; Ruokolainen et al. 2009; Buckley et al. 2010).
A better understanding of how autocorrelated environmen-

tal perturbations of vital rates may determine current popula-
tion dynamics is critical for eco-evolutionary questions and
conservation management (Tuljapurkar 1982; Metcalf &
Koons 2007; Ruokolainen et al. 2009; Smallegange et al.
2014). Temporally autocorrelated vital-rate variation may be
an adaptation to non-independent phases of the environment,
for example, high recruitment cued to extreme weather or dis-
turbances (Morris et al. 2006; Stige et al. 2007), favouring a
selection of trait polymorphism (Orzack 1985; Uller 2008) and

therefore increasing viability under a more variable climate
(Nadeau et al. 2016). In particular, positive autocorrelation,
which increases the likelihood of an environment remaining in
one particular state (e.g. drought), may benefit species tolerant
of climatic extremes and has been shown to increase invasive-
ness of aliens (Fey & Wieczynski 2016). Therefore, trait selec-
tion and population dynamics in taxa sensitive to temporal
autocorrelation may directly influence their potential to
respond or adapt to environmental change (Morris et al.
2006; Koons et al. 2009; Engen et al. 2013; Nadeau et al.
2016).
Population-level responses to temporal autocorrelation are

mediated by vital rates with the relatively strongest effect on
the population growth rate (Franco & Silvertown 1996, 2004;
Tuljapurkar & Haridas 2006). The relative effects of survival,
growth and reproduction on population dynamics meanwhile
determine differences in life-history traits such as generation
time and strategies, that is, the combination of traits (Stearns
1992; Gaillard et al. 2016; Salguero-G�omez et al. 2016b).
These interactions between vital rates, life histories and envi-
ronmental variation have been studied extensively in stochas-
tic population analyses assuming i.i.d. Various studies have
shown that long-lived species with slow life histories are gener-
ally buffered from increased environmental variation (Morris
et al. 2008, 2011; Sæther et al. 2013; but see Jongejans et al.
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2010; McDonald et al. 2017). Unlike long-lived species, short-
lived species with fast life histories, where reproduction con-
tributes greatly to population dynamics, are expected to show
increasing fluctuations in population sizes with increasing
environmental variation (Morris et al. 2008; McDonald et al.
2017).
Although changes in the patterning of environmental noise

may have significant implications for population viability
worldwide (Heino & Sabadell 2003; Ruokolainen et al. 2009;
Fey & Wieczynski 2016), it remains largely unknown whether
the proposed link between life-history strategies and resilience
to environmental fluctuations (Morris et al. 2008) holds in
autocorrelated environments. Theory predicts that populations
that recover slowly from past perturbations should be more
sensitive to temporal autocorrelation than those that are more
resilient (Tuljapurkar & Haridas 2006). Low resilience has
been shown for iteroparous, long-lived plant species in con-
stant environments (Salguero-G�omez et al. 2016b). However,
the limited empirical evidence shows weak support for
increased sensitivities, or greater absolute changes, of popula-
tion growth rates of long-lived species to changes in temporal
autocorrelation. For example, studies on 11 terrestrial mam-
mal species (Morris et al. 2011; Engen et al. 2013) did not
detect significant patterns, while others have concluded that
long-lived species in autocorrelated environments, both ani-
mals and plants, are buffered from environmental variation
regardless of reproductive strategy (e.g. Metcalf & Koons
2007; Morris et al. 2008).
To determine which life-history strategies are most sensitive

to temporal autocorrelation, we carried out stochastic simula-
tions using matrix population models (MPMs hereafter) from
327 plant, 3 algae and 124 animal populations. We ask
whether species with slow life histories show low sensitivities
of stochastic population growth rates (log ks) to temporal
autocorrelation because of a low effect of environmental vari-
ation on these life histories (Morris et al. 2008). We also
explore whether sensitivities differ between habitat types, as
expected from the selection to distinct environmental noise
patterns associated with them (e.g. Steele 1985; Vasseur &
Yodzis 2004; Ruokolainen et al. 2009). We classify species
according to main life-history strategies by performing a phy-
logenetically informed principal component analysis (PCA) on
life-history traits derived from MPMs. We then simulate
stochastic population dynamics of each species’ population by
perturbing vital rates that define the MPMs based on serial
autocorrelation in presumed environmental states. Our
approach allows us to assess whether the effects of temporal
autocorrelation on a given species’ demography can be pre-
dicted from its life-history strategy, habitat type or both.

MATERIALS AND METHODS

Matrix population models and vital rates

We used the COMPADRE Plant Matrix Database (Sal-
guero-G�omez et al. 2015) and COMADRE Animal Matrix
Database (Salguero-G�omez et al. 2016a) to obtain demo-
graphic data. These two databases provide high-quality
MPMs representing a wide range of life histories, growth

forms and habitat types (Jones et al. 2014; Salguero-G�omez
et al. 2016b). We limited our study to species that were stud-
ied in natural (i.e. unmanipulated) environments as we were
interested in naturally occurring patterns of life histories. For
studies with > 2 years of data and/or > 1 population, we
obtained the arithmetic element-by-element mean of all
MPM entries to represent the average MPM across all stud-
ied years (Tuljapurkar & Haridas 2006). If several studies
described the demography of one species, we kept MPMs of
both studies only if they described distinct population
dynamics from different ecoregions, for example, species in
the invaded vs. natural range. Otherwise, we chose the study
with greater temporal or spatial resolution. Using these and
other selection criteria (Appendix S1), we retained MPMs for
449 species and a total of 454 populations, including 330
plant/red algae and 124 animal populations (Appendix S1).
All MPMs contained information on stage- or age-specific
survival, transitions (progression/retrogression) and reproduc-
tion (Fig. 1).

Life-history patterns

To characterise variation in life-history strategies among the
populations studied, that is, variation in the pace of life (fast
vs. slow) and reproductive strategy (spread of reproduction
across the lifespan), we derived five life-history traits from
each MPM (Appendix S2). The chosen traits are commonly
used in comparative demographic studies for plants and ani-
mals (e.g. Franco & Silvertown 1996; Tuljapurkar et al. 2009;
Salguero-G�omez et al. 2016b): generation time (T), age at sex-
ual maturity (La), annual sexual reproduction (/), degree of
iteroparity (S) and net reproductive rate (Ro). Details on the
calculation of the traits can be found in Appendix S2 (see also
Caswell 2001).
To define main life-history strategies and relate them to sen-

sitivities of log ks to temporal autocorrelation in vital rates,
we performed a varimax-rotated, phylogenetically informed
PCA on the derived life-history traits (Revell 2012; Salguero-
G�omez et al. 2016b). The traits were log-transformed and
scaled to l = 0 and SD = 1 to agree with PCA assumptions.
To correct for phylogenetic relatedness among species in the
PCA, we constructed a species-level phylogenetic tree coercing
different populations of the same species as dichotomous
branches at the five species’ tips. In the tree, branch length
informed about phylogenetic relatedness (Appendix S2). The
phylogenetically informed PCA then linked the phylogeny to
life-history traits via a modified covariance matrix and esti-
mated Pagel’s k, a scaling parameter for the phylogenetic cor-
relation between species (Freckleton et al. 2002; for details see
Appendix S2).

Defining environmental states

To incorporate temporal autocorrelation into stochastic simu-
lations of population dynamics of the 454 populations, we
defined a discrete Markov chain consisting of two states, (1)
favourable or good environmental conditions and (2) unfa-
vourable or bad conditions. The transitions between the two
states were defined using the transition matrix:
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(a)

(b)

(c)

(d)

Figure 1 Simulations to test patterns of sensitivity of the stochastic growth rate, log ks, to temporal autocorrelation across life histories. From each matrix

population model (MPM), obtained from COMADRE/COMPADRE, we extracted stage/age-specific vital rates as shown in (a) for survival (r2) of the

second stage of an example MPM. We then perturbed each vital rate as a function of different coefficients of variation (CV) to obtain distributions of a

vital rate above and below its average value (orange) and assembled MPMs for good and bad environmental states (b). Lastly, we used a Markov chain

defined by the frequency of the good state (f) and autocorrelation coefficient (v1) to create environmental sequences (n time steps) as shown by two

examples in (c). We then simulated stochastic population dynamics where at each iteration t the environment was associated with one representative MPM

(d). Grey boxes show analysis outputs; c/q/φ – stage-specific progression/retrogression/reproduction respectively.
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pg pb
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Here, pg and pb are the probabilities of transitioning to the
good environment at time t + 1 when the environment was
good or bad at t respectively. These transitions can be derived
from the long-term frequency of the good environment (f)
and temporal autocorrelation, v1 (Tuljapurkar & Haridas
2006), where pb = f (1�v1) and pg = (v1 + pb).

Linking vital rates to environmental states

For most populations (85%) used in this study, < 5 annual
transitions were recorded (Appendix S1). This may limit the
reliability of estimates of vital-rate variability and, in particu-
lar, autocorrelation – both requiring long-term population
time series (Jongejans et al. 2010; Engen et al. 2013; Metcalf
et al. 2015). Therefore, while using real life histories described
by various combinations of mean vital rates, we perturbed
vital rates away from their means for all 454 MPMs based on
biologically relevant assumptions of environmental variation
and patterning (but see Empirical analyses for additional sim-
ulations using observed vital-rate covariation). At the same
time, our approach assumes that (a) transition probabilities
between environmental states remain constant through time
and (b) all vital rates potentially respond to changes in envi-
ronmental conditions (i.e. incomplete buffering), although
these responses are constrained as detailed below.
To link vital rates to the good and bad environment, we

derived above- and below-average distributions of each vital
rate across populations using three different coefficients of
variation (CV; Fig. 1). We determined a new average vital-
rate value for good (bad) environments by increasing (decreas-
ing) a given vital-rate value from the mean MPM as a func-
tion of the CV (Fig. 1; Appendix S3; Koons et al. 2008). For
vital rates describing reproduction, the three raw CV values
were used in simulations (see Appendix S3 for additional sim-
ulation using higher CV). Vital rates describing survival or
stage/age transitions, however, were assumed to have a bino-
mial distribution and therefore a maximum bound on their
variance and CV (CVmax; Morris & Doak 2004). We obtained
new average values of these vital rates for good and bad states
as a function of CV 9 CVmax. This constraint prevented vital
rates with high average values (e.g. adult survival in long-lived
species) to vary more extremely between good and bad envi-
ronmental states than vital rates with relatively lower average
values, making simulations more biologically realistic (Koons
et al. 2008; see Fig. S3.1 in Appendix S3 for distribution of
vital rates across environmental states). Such extreme varia-
tion would otherwise occur when the CV used in simulations
approached the maximum variance of binomial vital rates.
Using the new average vital-rate values for good and bad

environments, we simulated 100 vital rates from the beta (for
survival/transitions) and gamma (for reproduction) distribu-
tions for each environmental state, keeping the non-perturbed
vital rates at their mean and therefore assuming no vital-rate
covariation. We then assembled 100 MPMs per species and
vital rate for good and bad environments. Each of these

100 MPMs was picked at random during stochastic simula-
tions of population dynamics (Fig. 1).

Stochastic simulations of population dynamics

We performed one simulation run for each vital rate per
MPM using two long-term frequencies of the good environ-
ment (f = 0.35 and 0.65) 9 3 autocorrelations (v1 = �0.3, 0
and 0.3) 9 3 degrees of vital-rate variation between good and
bad environments (CV = 0.2, 0.5 and 0.8). For each parame-
ter combination, we obtained the stochastic population
growth rate, log ks, by projecting population dynamics for
500 000 time steps after discarding the initial 20 000 iterations
(see Tuljapurkar et al. 2003). For each species, we repeated 50
simulation runs to account for the stochastic process from
which MPMs for good and bad environmental states were
assembled (sampling from beta and gamma distributions;
Appendix S3). From all simulations, we obtained the sensitiv-
ity of log ks to autocorrelation, Sv1 ¼ jd log ksj

jdv1 j
the absolute

changes in the stochastic population growth rate as autocorre-
lation changed from 0 to positive (0.3) or negative (�0.3)
(Fig. 1). We quantified changes in absolute terms to focus on
the magnitude of Sv1 .

Sensitivities to temporal autocorrelation across life histories

We used generalised additive models (GAMs) to correlate
Sv1 , averaged across the 50 simulation runs, to simulation
parameters (f and CV) and life histories (PCA axes) while
accounting for nonlinear trends. We assumed a log-normal
distribution of Sv1 , which provided a better fit to the data
than a normal distribution (Appendix S3), and chose the
most parsimonious models based on AIC scores (Akaike
1971). First, we quantified differences in Sv1 across f and CV.
For each combination of f and CV, we then modelled Sv1

across distinct vital rates perturbed in simulations as a func-
tion of life-history strategies, that is, scores along the main
PCA axes. To increase statistical power and facilitate com-
parisons across species, we grouped perturbed vital rates prior
to modelling by

(1) assigning each stage/age class of an MPM to either the
propagule, pre-reproductive, reproductive or non-reproductive
class (Appendix S1) and
(2) summing Sv1 for survival, stage/age transitions and repro-
duction within each class (Appendix S3).

When fitting GAMs, we excluded vital-rate classes (mostly
non-reproductive class) that were present in < 20% of popula-
tions (Appendix S3).
Lastly, to explore global trends in Sv1 , we modelled Sv1

across different vital-rate classes as a function of major habitat
type. To allow for statistical comparisons, we summed Sv1 for
survival, transitions (progression/retrogression) and reproduc-
tion for all stages/ages. Information on major habitat types
was obtained from COMADRE and COMPADRE. We col-
lapsed habitat types from the original 39 types to five: temper-
ate, tropical & subtropical, arid, alpine & arctic and aquatic
(see Appendix S1). We accounted for the effect of MPM
dimension and population on the variation in Sv1 by fitting the
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latter two as random effects in the GAMs (see Appendix S3
for discussion on the relevance of MPM dimension).

Empirical analyses

To test the robustness of simulating different CV against nat-
ural vital-rate variation, we extracted vital rates for a subset
of 109 populations with at least three annual MPMs and used
the observed vital-rate correlation to estimate population
dynamics in good and bad environmental states
(Appendix S4). That is, we assembled 1000 MPMs for good
and bad environments from a multivariate vital-rate distribu-
tion, using copulas to combine marginal gamma (for repro-
duction) and beta (for survival/transitions) distributions based
on vital-rate correlations (Koons et al. 2008; Jongejans et al.
2010; Appendix S4). Simulation and statistical analyses of Sv1

then followed the steps outlined above, although we collapsed
the habitats to two categories, temperate (n = 63) and other
(n = 46) to allow for statistical comparisons.
We used two approaches to test the robustness of simulating

temporal autocorrelation. First, we compared our Sv1 obtained
from simulations of temporal autocorrelation (for the subset of
109 species modelling observed vital-rate CV) with empirical
evidence for the contribution of temporal autocorrelation to
vital-rate variation. To obtain the latter, we identified 13 species
where MPMs were available for ≥ 10 consecutive annual transi-
tions within a given site. We then regressed all vital rates at time
t against vital-rate values at t-1, fitting first-order autoregressive
models using a quasi-binomial (for survival/transitions) and
gamma (for reproduction) error distributions. Lastly, we corre-
lated average deviance explained by the models across vital
rates, a measure of the importance of temporal autocorrelation
in explaining vital-rate variation, to Sv1 . Second, we compared
our simulated Sv1 using the full set of 454 populations with pub-
lished information, noting whether autocorrelated environmen-
tal variation was explicitly examined in previous studies, and
whether it significantly affected stochastic population dynamics
(Appendix S4).

RESULTS

Life-history patterns

The life histories of the 449 studied species (454 populations)
were adequately captured by two main PCA axes that together
explained 67% of variation in key life-history traits (Fig. 2).
Following the Kaiser criterion (Appendix S2), we kept these
first two PCA axes for subsequent analyses, since their associ-
ated eigenvalues were > 1. PCA axis 1 largely captured the posi-
tion of the species’ populations along the fast–slow continuum,
with greatest positive loadings for age at sexual maturity (La)
and generation time (T), and negative loadings of annual sexual
reproduction (/), depicting a trade-off between survival and
reproduction (Gaillard et al. 2016; Salguero-G�omez et al.
2016b). PCA 2 largely captured variation in reproductive strate-
gies, with largest positive loadings corresponding to highly iter-
oparous (S) species with a high net reproductive rate (Ro) and /
(Fig. 2). The positive loading of / onto PCA 2 was explained
by a strong association between annual reproduction and

iteroparity in plants (Salguero-G�omez et al. 2016b). When con-
sidering plants/algae and animals separately, / loadings onto
PCA 2 were negligible for the latter (Figure S2.1), which is con-
sistent with previous studies on animals (reviewed in Gaillard
et al. 2016). Similarly, Ro loaded onto PCA 1 because of the
presence of long-lived plants with high Ro in the data (Fig. 2;
Fig. S2.1). Therefore, the fast-slow and reproductive-strategies
axes were not entirely represented by unique traits when consid-
ering both plants and animals. The phylogenetic relationships
of the examined species moderately shaped their relative posi-
tioning along the life-history strategy space with Pagel’s
k = 0.61 (�0.1 SD).

Sensitivity to temporal autocorrelation across life histories

The stochastic population growth rate, log ks, did not change
significantly in magnitude when positive (from 0 to 0.3) vs.
negative (from 0 to �0.3) changes in temporal autocorrelation
were simulated (Fig. S3.5). Thus, here we present results of
Sv1 , the sensitivity of log ks to positive perturbations of auto-
correlation. Sv1 increased > 10-fold as the coefficients of varia-
tion (CV) used for perturbing vital rates increased from 0.2 to
0.8, but differed little among the two frequencies of the good
environmental state, f (Table 1; but see Appendix S3 for the
strong effect of f on log ks).
For the examined CV and f, a significant interaction between

the fast-slow (PCA 1) and reproductive-strategies (PCA 2) con-
tinua and vital-rate classes perturbed described Sv1 patterns
(Table 1; Fig. 3a). For most vital-rate classes, faster life histo-
ries showed high Sv1 across a wide range of reproductive strate-
gies. Highest Sv1 were found for pre-reproductive survival and
transitions (Table 1; Fig. 3a). Populations with slower life his-
tories, on the other hand, showed increased Sv1 only when they
also had a high reproductive output (Fig. 3a). When including
the effect of habitat, populations were most sensitive to tempo-
ral autocorrelation when the perturbations happened in sur-
vival (S) and transitions (T) rather than in reproduction (R)
across all habitats considered (Fig. 3b). Perturbations of the
latter vital-rate class had the highest effect in aquatic habitats.
Removing outliers both in simulated Sv1 and PCA scores did
not significantly affect GAM relationships (Appendix S3).

Empirical analyses

The additional empirical analyses validated our simulations.
Sv1 based on naturally observed vital-rate covariation for 109
populations showed very similar patterns of variation along
life-history strategies and habitat types as Sv1 based on simu-
lated CV (Table 1; Fig. 4a; Fig. S4.1). In addition, Sv1 were
significantly correlated (using a log scale; R2 = 0.63; P < 0.05)
with the contribution of autocorrelation to observed vital-rate
variance from 13 populations (Fig. 4b). Lastly, we obtained
significantly higher Sv1 for populations where previous studies
included temporal autocorrelation in stochastic population
models than for populations modelled assuming only i.i.d.
environments (t65 = 2.3, P = 0.01; Fig. 4c; Appendix S4).
However, the effects of temporal autocorrelation on popula-
tion dynamics have been assessed for only 8% of the 454 pop-
ulations simulated here and have been omitted for many
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species with high Sv1 (Appendix S4). Our simulations indicate
that c. 44% of populations affected by environmental varia-
tion may also be affected by changes in the patterning of envi-
ronmental states (Fig. 4c; Appendix S4).

DISCUSSION

Identifying life-history strategies associated with high sensitivi-
ties of demographic processes to temporal autocorrelation
may allow for a much needed inference on species affected by
predicted changes in the patterning of environmental noise
(Heino & Sabadell 2003; Laakso et al. 2003; Engen et al.
2013). Using data on 454 naturally occurring plant/algae and
animal populations (449 species), we provide global empirical
evidence that the fast–slow continuum of life-history varia-
tion, interacting with a species’ reproductive strategy, help
predict the demographic vulnerability to temporal autocorre-
lation (Table S2.2). In addition, our results highlight that life-
history responses to temporal autocorrelation may be strongly
mediated by vital rates and habitat types affected by changes
in environmental patterning.
Although, generally, long-lived species have been predicted

to be more sensitive to perturbations in population structure
than short-lived species (Franco & Silvertown 2004; Salguero-
G�omez et al. 2016b; but see Gamelon et al. 2014) and hence
potentially to temporal autocorrelation (Tuljapurkar & Hari-
das 2006), our simulations indicate that most long-lived

organisms are buffered not only against increases in vital-rate
variation (e.g. Morris et al. 2008; Tuljapurkar et al. 2009;
McDonald et al. 2017) but also against changes in its tempo-
ral patterning. Our results agree with theory showing a nega-
tive correlation between generation time and magnitude of the
effect of serial vital-rate correlations on fitness in age-struc-
tured populations (Tuljapurkar et al. 2009; Sæther et al.
2013). In empirical studies, low sensitivities to both interan-
nual vital-rate variation and temporal autocorrelation have
been found for several mammal species, for example,
Brachyteles hypoxanthus and Gorilla beringei (Morris et al.
2011; Engen et al. 2013). Most of these species were located
at the slow end of life-history strategies in our analyses and
exhibited, along with most long-lived aquatic (e.g. Para-
muricea clavata) and tree and herbaceous species (e.g. Caloce-
drus decurrens) low simulated sensitivities of their growth
rates to temporal autocorrelation (Fig. 2).
The low sensitivities of population growth rates to temporal

autocorrelation in long-lived species may be explained by
vital-rate specific responses to changes in environmental pat-
terning (Ezard & Coulson 2010). Species with slow life histo-
ries are characterised by high juvenile and adult survival
(Franco & Silvertown 2004; Morris et al. 2008, 2011), which
are typically less affected by environmental variation (Morris
& Doak 2004; McDonald et al. 2017) or autocorrelation
(Morris et al. 2008, 2011). Our simulations replicated such
buffering by constraining the variation in binomial vital rates

Figure 2 Life histories of study species’ populations (points) are characterised by life-history traits representing the pace of life (fast–slow continuum) and

lifetime reproduction (reproductive strategies). To characterise life histories, a phylogenetically informed PCA was performed on five traits: generation time

(T), age at sexual maturity (La), sexual reproduction (/), iteroparity (S) and net reproductive rate (Ro). Arrow lengths are proportional to the loadings of

each trait onto the two axes. Red points show populations with propagule (P) stages. Point sizes are proportional to the sensitivity of the stochastic

population growth rate to temporal autocorrelation, Sv1 , summed across all vital rates (for simulations at CV = 0.5 and f = 0.65). Locations along the axes

of some populations for which the effect of temporal autocorrelation on population dynamics has been assessed are shown; populations are coloured based

on relatively low (< 25th percentile; grey) and high (> 50th percentile; black) Sv1 .
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by the maximum coefficients of variation (CVmax; Morris &
Doak 2004; Koons et al. 2008). Therefore, slow life histories
vulnerable largely to changes in adult survival, which varied
little if the average value was high (Appendix S3), responded
overall weakly to changes in temporal autocorrelation. On the
other hand, perturbing adult survival resulted in highest sensi-
tivities for populations where this vital rate showed more vari-
ation but remained of relatively high importance for life-cycle
dynamics, that is, for shorter lived semelparous species (Met-
calf & Koons 2007). Similarly, some short-lived species, such
as the invasive plant Brassica napus, where annual reproduc-
tion dominates life-cycle dynamics (Garnier & Lecomte 2006),
may be little affected by environmental patterning in growth
or survival (Fig. 4b). These patterns of vital-rate specific sensi-
tivities remained when omitting a maximum bound on vital-
rate variation to allow for extreme life histories (Fig. S3.4 in
Appendix S3; Jongejans et al. 2010; McDonald et al. 2017) or
when increasing the CV in reproduction perturbations
(Fig. S3.5 in Appendix S3). This indicates that our results
were not an artefact of the CV used. Most importantly, our
simulations highlight that interpreting a population’s

responses to temporal autocorrelation requires detailed knowl-
edge of the variation in underlying vital rates (Morris & Doak
2004; Ezard & Coulson 2010).
In addition to its location along the fast–slow continuum, a

species’ reproductive strategy (Salguero-G�omez et al. 2016b;
Salguero-G�omez 2017) was also critical to capture its sensitiv-
ity to temporal autocorrelation. In fact, some long-lived spe-
cies showed relatively high sensitivities to temporal
autocorrelation (Fig. 2). Most of these species were plants, for
example, the invasive big-sage (Lantana camara) or the tropi-
cal, seed-bank-producing tree, Ardisia elliptica, and were char-
acterised by relatively large net reproductive rates (R0) and
degree of iteroparity. These species explain the positive load-
ing of R0 onto the first life-history strategy axis, otherwise
dominated by life span and total annual reproduction. They
show that slow life histories may be highly susceptible to envi-
ronmental patterning if they also spread their reproduction
over many years (McDonald et al. 2017). Examples may
include species that “track” changes in the environment by
opportunistically recruiting in gap openings in forests or coral
reefs. For such species, predictable, high-recruitment events,

Table 1 Across simulations of vital-rate variation (i), sensitivity of the stochastic growth rate, log ks, to temporal autocorrelation (Sv1 ) is affected by simula-

tion parameters (CV and f) and differs between vital rates, life histories (defined by PCA scores in Figure 2; see also Table S2.1) and major habitat types.

Sv1 also differ among habitat types when observed vital-rate covariation is modelled (simulating only f; ii). Parameter estimates from the most parsimonious

GAM models are shown (see Appendix S3 for all models considered and details on parameters). Models fit at CV = 0.5 and f = 0.65 are indicated by

arrows

Response variable Explanatory variables Best model

% Sv1 variation

explained

(i) Simulated CV log (Sv1 ) f, CV �8.30(0.08) + 1.77(0.05)CV0.5 + 2.85(0.05)CV0.8

– 0.21(0.04) f0.65 + s(MatDim df:6.3) + s(population df:391.1)

41.8

log(Sv1 )

?CV0.5; f0.65

vital rate,

PCA 1, PCA 2

�6.89(0.27) + 1.15(0.28)Survival PR + 0.5(0.29)
Survival R + 1.1(0.29)Transitions PR + 0.11(0.30)
Transitions R – 2.17(0.77)Reproduction

P – 1.79(0.29)Reproduction PR + te(PCA 1,

PCA 2, Survival P df:3.0) + te(PCA 1, PCA 2,

Survival PR df:7.2) + te(PCA 1, PCA 2, Survival

R df:3.0) + te(PCA 1, PCA 2, Transitions

PR df:6.0) + te(PCA 1, PCA 2, Transitions

R df:6.4) + te(PCA 1, PCA 2, Reproduction

P df:6.4) + te(PCA 1, PCA 2, Reproduction

PR df:6.1) + s(MatDim df:6.3) + s(population df:50.8)

56.3

log (Sv1 )

?CV0.5; f0.65

vital rate, habitat,

PCA 1, PCA 2

�4.55(0.24) – 0.30(0.09)Transitions – 3.62(0.09)
Reproduction – 0.19(0.23)Temperate – 0.02(0.24)
Tropical&Subtropical – 0.30(0.27)Arid + 0.04(0.5)
Aquatic + te(PCA 1, PCA 2, Survival df:6.1)

+ te(PCA 1, PCA 2, Transitions df:4.5) + te(PCA 1,

PCA 2, Reproduction df:13.2) + te(PCA 1, PCA 2,

Alpine&Arctic df:2.6) + te(PCA 1, PCA 2,

Temperate df:12.1) + te(PCA 1, PCA 2,

Tropical&Subtropical df:2.6) + te(PCA 1, PCA

2, Arid df:5.5) + te(PCA 1, PCA 2,

Aquatic df:4.8) + s(MatDim df:3.0)

72.8

(ii) Observed CV log(Sv1 ) f s(MatDim df:0.3) 39.4

log (Sv1 )

?f0.65

habitat,

PCA 1, PCA 2

�6.44(0.19) – 0.76(0.31)other + te(PCA 1,

PCA 2,Temperate df:1.9) + te(PCA 1, PCA 2,other df:1.0)

51.7

CV (categorical covariate with values 0.2, 0.5 or 0.8) – coefficient of variation used to perturb vital-rate classes (P)propagules, Pre-reproductive (PR), and

(R)eproductive; f – frequency of the good environmental state; MatDim/populations – dimension of the matrix population model and populations used in

the study respectively (fitted as nested random effects); Functions te(xdf) and s(xdf) are the tensor products and spline smoothing functions of x, respec-

tively, with the given degrees of freedom df. Significant smoothing terms are in bold.
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Figure 3 Fast life histories (along PCA 1) across reproductive strategies (along PCA 2) generally show highest sensitivities of the stochastic growth rate, log

ks, to temporal autocorrelation (Sv1 ). Raster plots show predictions of Sv1 across the two PCA axes after perturbing various classes of vital rates across all

habitats (a) and for five different habitat types (b). In (b), vital-rate classes include survival (S), stage/age transitions (T) and reproduction (R). Predictions

were limited to the range of observed PCA scores. Number of vital-rate samples in each habitat are shown in parentheses. Points are proportional to raw

Sv1 obtained from simulations. The results of vital-rate perturbations at CV = 0.5 and f = 0.65 are shown here (see Appendix S1 for all results and Table 1

for significance of predictions). Locations along the axes of example populations discussed in the main text are shown.
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accompanied by relatively low survival of offspring, define
population dynamics (Connell 1978; Metcalf et al. 2009). On
the other hand, slow life histories with semelparous reproduc-
tive strategies have been shown to be buffered from changes
in the patterning of environmental states (Metcalf & Koons
2007) and also exhibited lowest sensitivities in our simulations
(Fig. 3).
Apart from some slow life histories with a high reproductive

mode, a large number of taxa with a short life span and high
annual reproduction exhibited the highest simulated sensitivi-
ties to temporal autocorrelation. This was true across semel-
parous and iteroparous species. Short-lived aquatic, for
example, the clam Mya arenaria, and terrestrial animals, for
example, the rodent Tamiasciurus hudsonicus, many insect spe-
cies, for example, Scolytus ventralis, and numerous short-lived
plants, particularly invasive ones, for example, Cirsium vul-
gare, are highly sensitive to changes in vital rates other than
adult survival and also exhibit high variability in these vital
rates depending on the state of the environment (Meijden
et al. 1992; Morris et al. 2008; Koons et al. 2009). For such
taxa, assessing the patterning of environmental variation
would likely greatly improve knowledge on population
dynamics (Jongejans et al. 2010). However, such assessments
are lacking, as quantified in a thorough literature review here
(Appendix S4), particularly for aquatic species and insects.
A common life-cycle adaptation to track autocorrelated

environmental variation, for example, to recruit only under

favourable conditions, is dormancy (C�aceres 1997; Morris
et al. 2006). Plant species with dormant propagule stages (seed
banks), adapted to disturbance-prone habitats (Doak et al.
2002), exhibited the highest sensitivities of their growth rates
to temporal autocorrelation (Fig. 2a). For species like Mimu-
lus lewisii (Fig. 2b), whose populations are regularly exposed
to flooding, changes in disturbance regimes and patterns of
post-disturbance habitat succession may be detrimental to via-
bility (Angert 2006; Turner 2010). In addition, propagation of
many invasive plant species is aided by seed banks (Gioria
et al. 2012). Such species, for example, Ardisia elliptica or
Lantana camara, exhibited high sensitivities to temporal auto-
correlation, despite being relatively long-lived (Fig. 2).
Although environmental patterning may be critical for plant
invasion (Fey & Wieczynski 2016), its importance was only
considered in previous studies for 1 out of 10 invasive popula-
tions included in our analysis (Appendix S1). For animals,
MPMs do not typically include dormant propagule stages
(Salguero-G�omez et al. 2016a,b), such as cysts or larvae in
diapause (C�aceres 1997; Schiesari & O’Connor 2013). Such
species may be particularly vulnerable to predicted changes in
environmental condition or may constitute emerging pests
(C�aceres 1997), and must therefore be the focus of more
research.
In addition to species with dormant life cycles, habitat-spe-

cific population dynamics deserve a particular focus when
assessing potential ecological impacts of global changes in

(a)

(b) (c)

Figure 4 Empirical patterns of the sensitivities of the stochastic growth rate, log ks, to temporal autocorrelation (Sv1 ) validate simulations. (a) Among 109

population for which observed vital-rate covariance was used to define good and bad environmental states, fast life histories (along PCA 1) across

reproductive strategies (along PCA 2) show highest Sv1 in temperate and other habitat types. (b) Sv1 obtained from simulations (a) for 13 species with the

longest time-series data (≥ 10 annual matrix population models) are significantly correlated, on a log scale, (R2 = 0.63; P < 0.05) with relative deviance

explained by first-order autoregressive vital-rate models for the same populations (deviances, �D2, shown are averaged over vital-rate models). (c) For the

454 populations used to simulate Sv1 log(Sv1 ; grey points) differ among published studies that determined v1 to be an important component of population

dynamics (yes) and ones that did not (no).
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environmental patterning. Our simulations show that sensitiv-
ities of stochastic growth rates to temporal autocorrelation
differ between major habitat types, particularly when per-
turbing reproduction. For the latter, sensitivities for fast life
histories were highest in aquatic habitats, although popula-
tions in aquatic habitats represent a narrow sample of the
total life-history PCA space (Fig. 3). Differences in sensitivi-
ties to temporal autocorrelation between terrestrial and aqua-
tic systems may be explained by the fact that the latter are
more strongly (positively) autocorrelated and therefore pre-
dictable (Steele 1985; C�aceres 1997; Vasseur & Yodzis 2004).
Therefore, species, such as the fish Sardina pilchardus, may
exhibit strong responses when environmental patterns change,
particularly because of anthropogenic influences (Ruoko-
lainen et al. 2009). However, MPMs on aquatic species are
still relatively scarce (Fig. 3b), and the effects of temporal
autocorrelation on population dynamics in aquatic systems
are rarely considered (Appendix S4). The same is true for
arctic and alpine habitats, where climate change is predicted
to have major effects on population dynamics (Post et al.
2009). At the same time, the relationship between the two
major life-history axes and the sensitivity to temporal auto-
correlation held in all habitats studied, indicating that future
changes in the patterning of environmental states may signifi-
cantly affect species globally (Vasseur & Yodzis 2004; Turner
2010).
Our results are robust to the choice of CV when per-

turbing vital rates and are in agreement with previous empir-
ical studies regarding the importance of temporal
autocorrelation in population dynamics (Fig. 4;
Appendix S4). However, five aspects need further attention.
First, the MPMs that were available to us represent a biased
subset of life histories, given the underrepresentation of cer-
tain habitat types and life cycle (Salguero-G�omez et al. 2015,
2016a). Our life-history framework must therefore be vali-
dated with future additions of little-studied taxa. Second,
density dependence was not considered in our study but is
known to interact with temporal autocorrelation to regulate
population responses (Levine & Rees 2004; Greenman &
Benton 2005; Engen et al. 2013). A recent study by Koons
et al. (2016) incorporated population structure and density
dependence to assess differences in vital-rate variation among
life-history strategies; future studies would benefit from
applying this approach to serial vital-rate correlations. Third,
our simulations of changes in environmental states may not
have reflected complex processes such as habitat succession
(e.g. Tuljapurkar & Haridas 2006). Fourth, we simulated
autocorrelated changes in environmental states on an annual
basis, potentially producing stronger effects for short-lived
species simply because of the temporal scale used (Vasseur &
Yodzis 2004; Stige et al. 2007). Lastly, our simulations of
vital-rate variation omitted complex demographic processes
such as strong buffering (no variation in vital rates among
years; e.g. Morris et al. 2011) and nuances in covariation
beyond the ones considered for the 109 species (Jongejans
et al. 2010). Therefore, while we provide a robust general
assessment of the role of autocorrelation across life histories
and habitats, we acknowledge that a more detailed assess-
ment must rely stronger on empirical data.

CONCLUSIONS

Temporal autocorrelation in demographic processes, histori-
cally rarely considered in demographic studies, may have
strong effects, across habitats, on fast and slow life histories
alike, depending on the reproductive strategy. Importantly, we
found that taxa exhibiting highest sensitivities to temporal
autocorrelation are also the ones least studied. With predicted
global changes in environmental patterning, we argue that
future demographic studies will only accurately predict impor-
tant population processes such as viability or invasiveness if
researchers explicitly consider the effects of these changes on
key underlying demographic rates like survival, stage/age-spe-
cific transitions and reproduction.
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