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Abstract
1. Traditionally, trait-based studies have explored single-trait-fitness relationships.

However, this approximation in the study of fithess components is often too simplistic,
given that fitness is determined by the interplay of multiple traits, which could even

lead to multiple functional strategies with comparable fitness (i.e. alternative designs).

. Here we suggest that an analytical framework using boosted regression trees

(BRT) can prove more informative to test hypotheses on trait combinations com-
pared to standard linear models. We use two published datasets for compari-
sons: a botanical garden dataset with 557 plant species (Herben, 2012, Journal
of Ecology, 100, 1522) and an observational dataset with 83 plant species (Adler,
2014, Proceedings of the National Academy of Sciences, 111, 740).

. Using the observational dataset, we found that BRTs predict the role of traits

on the relative importance of survival, growth and reproduction for population
growth rate better than linear models do. Moreover, we split species cultivated in
different habitats within the botanical garden and observed that seed and vegeta-
tive reproduction depended on trait combinations in most habitats. Our analyses
suggest that, while not all traits impact fitness components to the same degree, it

is crucial to consider traits that represent different ecological dimensions.

4. Synthesis. The analysis of trait combinations, and corresponding alternative de-

signs via BRTs, represent a promising approach for understanding and managing
functional changes in vegetation composition through measurement of suites of

relatively easily measurable traits.
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1 | INTRODUCTION

Trait-based approaches are extensively used in ecology to examine
species interactions (Kunstler et al., 2016; Schob, Macek, Piston,
Kikvidze, & Pugnaire, 2017) and species response to environmental
change (Cornwell & Ackerly, 2009; Kimball et al., 2016). However,
although the link between traits and fitness is essential for the
definition of functional traits (Violle et al., 2007; Salguero-Gémez,
Violle, Gimenez, & Childs, 2018), evidence linking traits and fitness
proxies remains scarce (but see Adler et al., 2014; Martinez-Vilalta,
Mencuccini, Vayreda, & Retana, 2010; Poorter et al., 2008; Shipley
et al., 2016; Visser et al., 2016).

One possible reason for the limited evidence is that most studies
examining trait-fitness relationships consider individual traits (Adler
et al., 2014; Marks, 2007). These analytical strategies contrast with
the fact that fitness is determined by the integrated phenotype
(Laughlin & Messier, 2015). Approximations such as ordination axes
that do not explicitly account for interactive effects between traits
(de Bello, Leps, & Sebastia, 2005), are also not a satisfactory solution
since the effects of traits can also be non-additive. Either by additive
or non-additive effects, it is likely that the interplay of multiple traits
could lead to single or multiple performance peaks with compara-
ble fitness, the latter called alternative designs. Alternative designs
are recognised as an important mechanism behind the evolution and
maintenance of trait diversity (Marks & Lechowicz, 2006) and are
expected within and across biological communities (e.g. Pivovaroff
et al., 2016; Valladares, Skillman, & Pearcy, 2002). Considering mul-
tiple traits from different ecological dimensions (Laughlin, 2014) can
help us to uncover the relationship between traits and fitness com-
ponents, and to examine the existence of single optima (i.e. a single
performance peak) versus alternative designs. However, open ques-
tions still remain on how to explore alternative designs and whether
they could improve the predictability of trait-fitness relationships
within an environment.

Considering multiple dimensions of plant traits (e.g. in leaf
traits, stem traits, seed traits, etc; Diaz et al., 2016; Wright et al.,
2004) is essential for exploring the relationship between the en-
vironment, traits and fitness (Marks & Lechowicz, 2006) and to
predict community assembly (Laughlin, 2014) or life history evo-
lution (Salguero-Gémez et al., 2018). This task, however, is not a
straightforward one. A current advantage that allows robust con-
clusions is the increased availability of trait data in databases (e.g.
Cordlandwehr et al., 2013; Kazakou et al., 2014). Moreover, linear
regression models have been the most common approach so far
(Adler et al., 2014; but see Kleyer et al., 2012). Linear models, how-
ever, are limited when exploring the complex effects of multiple

traits on fitness, arising from their lack of flexibility in dealing with

incomplete datasets or nonlinear responses among predictors.
Recently, alternative methods that address this complexity have
been suggested (Carmona, Bello, Mason, & Leps, 2016; Laughlin
& Messier, 2015). Among these, regression trees are a useful tool
to account for interactions among different traits (de Bello et al.,
2005) although they tend to have low predictive performance
(Schulz, Cayuela, Rey-Benayas, & Schroder, 2011). Boosted regres-
sion trees methods (BRT; Friedman, Hastie, & Tibshirani, 2000,
Elith, Leathwick, & Hastie, 2008) solve this problem by combining
a large number of regression trees added together in sequence.
This confers several advantages such as automatically accounting
for nonlinearities, including interactions according to the size of
trees used (Elith et al., 2006), which traditional regression models
do not. BRTs also fit all possible combinations of exploratory vari-
ables, allowing for the potential to generate hypotheses on trait
combinations.

Here, we propose the use of BRTs to include interactions be-
tween traits when examining trait-fitness relationships. To show the
possible advantages of this approach, we reanalysed two published
datasets to answer two questions: (a) does considering interactions
between traits by using BRTs result in a higher predictive ability as
compared to linear models? and (b) can one use BRTs to identify dis-
tinct combinations of traits that result in similar fitness (i.e. alterna-
tive designs)? To that end, first, we compared the ability of BRTs with
linear models to predict the full life cycle of a species reanalysing
data from Adler et al. (2014). Second, we used a dataset with species
cultivated in different habitats within a botanical garden (Herben,
Novakova, Klimesova, & Hrouda, 2012) to test whether functional
alternative designs play a key role in shaping fitness components
within a given habitat. We chose these datasets because they are
key references in this field of research, include a high number of spe-
cies and, despite that they might not be ideal to characterise trait-fit-
ness relationship, they can serve as a clear benchmark for comparing
new approaches. Although we focus on plants because trait and fit-
ness information is currently much more extensive in this kingdom
(Hortal et al., 2015), we highlight how our proposed framework can

span to other taxa.

2 | MATERIALS AND METHODS

Data were obtained from two published studies: Adler et al. (2014)
and Herben et al. (2012), which collectively used information from
the COMPADRE Plant Matrix Database (Salguero-Gémez et al,,
2015), TRY (Kattge et al., 2011), LEDA (Kleyer et al., 2008), CLO-
PLA3 (Klimesova, Danihelka, Chrtek, Bello, & Herben, 2017) and
Herben, Suda, and Klimesova (2017).
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2.1 | Comparing BRT versus linear models

Adler et al. (2014) used five traits describing the anatomy and
physiology, and calculated elasticities of three vital rates (survival,
growth and reproduction) of 222 plant species worldwide. They
used elasticities, which express the effect that a relative change in
a given vital rate would have on population growth rate (de Kroon,
Plaisier, Groenendael, & Caswell, 1986). Elasticities are often used
in ecology and conservation to interpret the demographic pro-
cesses that are most important to the performance of a popula-
tion (Caswell, 2001; de Kroon, Groenendael, & Ehrlén, 2000). The
authors obtained the demographic information from matrix popu-
lation models available in the COMPADRE Plant Matrix Database
v. 3.0.0 (Salguero-Gomez et al., 2015). Elasticities were calculated
per species by an arithmetic element-by-element average of the
matrix population models available for each population per spe-
cies, a standard procedure in comparative demography (Salguero-
Gdmez et al., 2016; Silvertown & Franco, 1993). Information on
leaf lifespan, leaf N, specific leaf area (SLA), seed mass and wood
density was obtained from the TRY database (Kattge et al., 2011;
references for the original sources of TRY data used in Adler et
al., 2014 are included in the Supporting Information). The overlap
between TRY and COMPADRE spanned a global range of biomes
(i.e. artic, desert, temperate forest, temperate grassland, tropi-
cal forest and tropical savannah) and growth forms (i.e. perennial
herbs, palms, shrubs, succulents and trees). The trait data corre-
sponded to mean values for each trait for each species, after du-
plicated sources information and outliers (>3 SD from mean) had
been discarded.

Because not all traits were available for all species, we ex-
cluded species with information for fewer than two traits. Leaf
lifespan and wood density were excluded altogether because
information for them was lacking for a high proportion of spe-
cies, and, unlike BRT models, linear models cannot handle miss-
ing observations. These criteria resulted in 80, 83 and 83 plant
species for reproduction, survival and growth, respectively.
To evaluate the ability of functional traits to explain variation
across vital rate elasticities, we fitted a separate model for each
of the three elasticities for a total of six models (three linear
and three BRT models; see “Analysis” section below). Vital rate
elasticities were logit-transformed prior to modelling, whereas
traits were log-transformed. An extended summary including
range and number of predictors per species is shown in Table
S1 in Appendix S1.

2.2 | Traits as predictors of reproductive output

Herben et al. (2012) used data for 951 species from the collection
of native plants of central European Flora, growing in the botani-
cal garden of the Faculty of Science in Prague (http://www.bz-uk.
cz; see also Herben et al.,, 2017). Since each species was grown
under abiotic conditions that resembled their natural habitats, re-

production in the garden should resemble that of the plants in their

natural settings. These habitats comprised (a) shaded and (b) open
calcareous steppes, (c) meadow habitat, (d) oak forest habitat, (e)
sandy habitat and (f) wet and humid habitat along a stream. Traits
for these species were collected from the LEDA (Kleyer et al., 2008)
and CLO-PLA3 databases (Klimesova et al., 2017). Selected above-
ground traits were total leaf area, maximum mature height, SLA and
seed mass, while vegetative bud banks traits were bud bank size and
depth (i.e. all inactive buds that can give rise to new shoots located
on the soil surface or belowground), and traits of clonal growth were
clonal multiplication, lateral spread, life history, shoot lifespan and
persistence of connections between ramets (Table S2).

As a proxy for demographic processes, the authors used spon-
taneous seed and vegetative reproduction, assessing the number of
times the new offspring had to be thinned by local gardeners (data
on seed and vegetative reproduction in Herben et al., 2017). To mea-
sure seed and vegetative reproduction, scores were assigned using
the same ordinal scale across species that were growing in the gar-
den for at least 10 years. Scores ranged from 1 to 5 with the lowest
for species that did not reproduce in the garden and the highest for
those that multiplied spontaneously and had to be thinned more
than once per year (Table 1 in Herben et al., 2012). For an extended
description of the methods see Methods S1. This approach to de-
fine fitness components can have limitations because (a) growth
and multiplication records are not fully quantitative, and (b) it comes
with lower control of environmental conditions than in a designed
experiment. Nonetheless, it allows comparison across many species
in different habitats rendering such dataset valuable for the present
study. We fitted separate BRT models for each habitat to study the
effect of trait interactions on different reproductive outputs: seed
(n = 538 species) and vegetative (n = 556 species; Table S3).

2.3 | Analysis

We fitted BRT models to analyse the effect of the considered traits
and their interactions on each fitness component (for the observa-
tional dataset) or reproductive output (botanical garden dataset). We
fitted these models using the function gbm.step in the dismo package
(Hijmans, Phillips, Leathwick, & Elith, 2017) in R v3.1.1. In order to
calibrate the models, we first adjusted the model parameters, which
included (a) the learning rate (Ir, determining the contribution of
each tree to the growing model. A slower learning rate, that is, small
value of Ir, increases the number of trees required and reduces the
amount by which the individual initial trees contribute to the final
model; Elith et al., 2008), (b) bag fraction, which controls the pro-
portion of the data that is randomly chosen to train each new tree.
This parameter introduces stochasticity and improves the predictive
performance by reducing the variance of the final model. Therefore,
final models will be slightly different each time they are run. The
default is bag fraction 0.5, which means that at each iteration, 50%
of the data are drawn at random, without replacement, from the full
training set; Elith et al., 2008), and (c) step size, the number of trees
to add at each cycle of the boosting algorithm, while we fixed (d) tree
complexity at 15 (tc controls the maximum level of interactions that
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can be achieved, see below for further explanations). We selected
the combination of these parameters that yielded the highest ex-
plained deviance based on a minimum of 1,000 trees, following Elith
et al. (2008). Further step-by-step details on the BRT method can be
found in Appendix S2.

Once learning rate, bag fraction and step size were selected,
we quantified improvements in BRT model predictive ability as
more complex interactions were added by running models with
increasing tree complexity. For each model, we used values of
tc ranging between 1 (where there is only one split in the tree,
and no interactions between studied traits), to 15 (which means
that the trees include several splitting rules allowing for highly
complex interactions among traits). This procedure is described
in depth in Tables S4 and S5 and Appendix S2. To provide confi-
dence intervals of our model predictions, we simulated 100 trees
for each model and tc value. We estimated the predictive capacity
via R? of each of these models, as well as the relative influence of
each predictor on each response variable. Afterwards, the 100
values of each combination of response variable and tc value were
averaged in order to have an estimation of R? mean and variability,
and the relative influence of variables (Carmona, Réder, Azcarate,
& Peco, 2013). In order to select an optimum tc value, we fitted
ANOVAs with R? as response variable and tc values as explanatory
variable and performed a Tukey test. We selected the lowest tc
value that did not show significant differences compared to the
largest tc value, indicating that model performance had reached
a plateau.

We used the observational dataset to compare the performance
of BRT versus linear models for predicting each of the three vital
rate elasticities. To do so, we performed models for survival, growth
and reproduction separately. A great deal of environmental hetero-
geneity exists both in COMPADRE and TRY, and most trait and vital
rate data for a given species come from multiple populations, making
estimations of trait-fitness relationships unreliable for biological in-
terpretations of within-environments species differentiations (con-
sidering that fitness landscapes change with environment; Laughlin
& Messier, 2015, Salguero-Gémez et al., 2018). However, environ-
mental heterogeneity is non-central to our first goal: to use these
data to perform a methodological test, comparing the predictive
abilities of both methods.

In the case of BRTs, for each of the three vital rate elasticities,
we selected the model parameters using the procedure described
above (Table S4 for details). Once the models were fitted, we es-
timated their predictions for all the species in the dataset. For lin-
ear models, we fitted a saturated model (considering the number
of observations) for each vital rate elasticity. This model included
the simple effects of the traits, their pairwise interactions and the
quadratic terms of the traits as predictors. We used the dredge
function (Barton, 2018) to evaluate all potential simpler models
nested within the saturated one, and calculated the AIC of each
model. From the AIC-ranked models, we selected the subset of
models within five AIC points of the most parsimonious one and av-
eraged their predicted values, giving more weight to the predictions

of the most plausible models as per their AIC weights. This way,
for each vital rate elasticity, we attained two predicted values for
each species: one given by the BRT approach, and one by the lin-
ear model approach. Finally, we compared BRTs and linear models
using Pearson correlation coefficients between the observed and
predicted values. Models with a high correlation between observed
and predicted values have higher predictive ability than models
with a low correlation.

To explain the role of functional traits as determinants of repro-
ductive outputs (botanical garden dataset), we fitted a BRT model
for each combination of reproductive output and habitat. For each
of these models we inspected R? mean values as well as the 95% Cls
for each tc to examine whether the explanatory capacity of the mod-
els improves as the tree complexity was increased (see above). BRT
models also report the relative influence of the different predictors,
which is an indicator of their contribution in reducing overall model
deviance. We calculated the relative influence of each predictor as
the mean of the influences of the 100 simulations for the selected tc
optimum value. We used tc optimum values and the function gbm.
interactions to test whether interactions were detected and mod-
elled, and for reporting the interaction magnitude of each pair of
predictors.

This function forms predictions for each considered pair of pre-
dictors while setting the rest of the variables to their means (Elith et
al., 2008). This function creates, for each possible pair of predictors,
a temporary grid of variables representing combinations of values
at fixed intervals along each of their ranges. Then, it uses a linear
model to relate the predictions to the two marginal predictors, fit-
ting them as factors. The residual variance in this linear model in-
dicates the relative strength of each interaction (Elith et al., 2008).
We represented these interactions plotting changes in reproductive
outputs across the phenotypic space using partial dependence plots
(function gbm.perspective) for each reproductive output and habitat
combination.

In addition, for plants of each habitat in the botanical garden,
we checked if phylogenetic relatedness influenced our results due
to species’ common ancestry. We accounted for phylogeny by using
residuals from regression models where the response variables, the
reproductive outputs, were regressed on the axes of a Principal
Coordinates Analysis (PCoA) of a species pairwise cophenetic dis-
tance matrix (a method equivalent to the first step in phylogenetic
eigenvector regression; Diniz-Filho, Sant'Ana, & Bini, 1998). The
obtained phylogenetic residuals for that model were used as a new
response variable in BRT models estimates, following the same
modelling process explained above. While it would be preferable to
directly include phylogeny into the BRT models, to our knowledge,
this is not possible with this kind of regression models, and it rep-
resents an advancement that falls beyond the scope of this manu-
script. For an extended description of the methods see Methods S2
in Appendix S1.

All statistical analyses were conducted in R v3.1.1 using the
dismo (Hijmans et al., 2017) and multcomp packages (Hothorn, Bretz,
& Westfall, 2017).
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3 | RESULTS

3.1 | BRTs versus linear models

BRT models systematically predicted trait-fitness relationships bet-
ter than linear models for the elasticities of population growth rate
to reproduction, survival and to growth (Figure 1). The correlations
between predicted versus observed values were 36.11%, 25.00%
and 22.67% greater for BRT models than linear models for reproduc-
tion, survival and growth, respectively. The results of the selection

of linear models are in Table S6 in Appendix S1.

3.2 | Traits as predictors of reproductive outputs

For each habitat within the botanical garden, we quantified the
improvement in model predictive abilities as interactions between
traits were added. A lower degree of complexity of interactions
among traits was necessary to predict seed reproduction compared
to vegetative reproduction. In three out of five habitats, BRT models
predicted seed reproduction without interactions among trait pre-
dictors (model predictive ability stabilised at tc = 1), while vegetative
reproduction was better predicted by models including trait interac-
tions, with the exception of the sandy habitat (Table S7). Regardless
of the habitat, the proportion of variance explained for seed re-
production (from ~0.1 to ~0.4) was lower than that explained for
vegetative reproduction (ranging between ~0.2 and ~0.7; Figure 2).
The highest proportion of variance explained corresponded to the
meadow habitat (~0.4 and ~0.7 for seed and vegetative reproduc-
tions, respectively), while the shaded calcareous steppe showed
the lowest (~0.1 and ~0.2). We only found a relatively strong

phylogenetic signal for vegetative reproduction in the open calcare-
ous steppe (Table 1). After accounting for phylogeny in the analysis
of this habitat, the proportion of explained variance in vegetative
reproduction increased from 30% to 40%.

Belowground bud banks and traits of clonal growth were im-
portant predictors regardless of the type of reproduction output.
Seed reproduction decreased abruptly with high lateral spread (LS)
and small seed mass values (relative influences of ~30% and 20%
in the meadow, respectively). However, in the wet habitats seed
reproduction decreased abruptly with high seed mass (relative
influence ~20%; Figure 3 and Figure S1a). In the habitats where
seed reproduction was better predicted by single traits, the most
important traits varied depending on the habitat. In general, vege-
tative reproduction sharply increased with high LS for all habitats
where trait interactions were important (relative influence ~40%)
with the exception of the sandy habitat (LS with a relative influ-
ence ~0%), where the bud bank size was the most important pre-
dictor (Figure 4). In the case of the open calcareous steppe, and
accounting for phylogenetic relationships, vegetative reproduction
increased with large bud bank size and LS (both with relative in-
fluence ~30%) and decreased with SLA (relative influence ~10%;
Figures S1b and S2). Persistence of connections between mother
and daughter shoots, the number of offspring per parent shoot and
life history were consistently among the less important traits influ-
encing both seed and vegetative reproduction. The results of the
magnitude of the pairwise interactions among predictors for seed
and vegetative reproduction are in Tables S8 and S9.

Finally, we found functional alternative designs that yielded
equivalent vegetative reproduction values only in the meadow
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FIGURE 1 Boosted Regression Trees (BRT) models are better predictors of the relationship between traits and fitness than linear models
alone. We obtained observed versus predicted values for both types of models using data from three vital rates elasticities (survival, growth,
and reproduction) of plant species worldwide (observational dataset; Adler et al., 2014). For BRTs (orange lines), we calculated one model for
each of the three vital rate elasticities using SLA, leaf N content and seed mass using tree complexity (tc) optimum and selected parameters
(Table S3). For linear models (LM; green lines), we also performed a standard major axis regression for each of the three vital rate elasticities
including the same traits, their pairwise interactions and the quadratic terms of the traits. We show Pearson correlation coefficient on the
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FIGURE 2 Vegetative reproduction is better explained by interactions among functional traits than by single trait models in almost all
habitats. However, in three out of five habitats, single trait models explained seed reproduction better than trait interactions. Plots show the
relationship between R? and tree complexity (tc) for each response variable and reproductive output obtained from Boosted Regression Trees
(BRT). Dotted lines indicate +95% Cls. Different symbols indicate different habitats within the botanical garden (Herben et al., 2012). Cal.op
(w/p): open calcareous steppe (with phylogeny); Cal.op (w/op): open calcareous steppe (without phylogeny); Cal.sh: shaded calcareous steppe

TABLE 1 Summary statistics and

Shaded Cal. St. Open Cal. St. Meadow Oak

Seed rep.

n 75 92 147 70

Mean 2.667 2.685 2.741 2.685

SD 1.287 1.128 1.194 1.128

A 5.47E-05 6.61E-05 6.61E-05 NA

p 1 1 1 NA
Veg. rep.

n 76 92 147 69

Mean  2.500 2.087 2.639 2.232

SD 1.465 1.323 1.374 1.330

A 4.75E-05 0.552 7.24E-05 0.269

p 1 0.014 1 1

Sandy Wet estimate of phylogenetic signal (Pagel's A)
for each reproductive output and habitat

53 101 within the botanical garden

3.245 2911

1.017 1.167

6.65E-05 0.253

1 1

53 101

2.132 2.752

1.301 1.322

5.58E-05 4.75E-05

1 1

Abbreviations: Shaded Cal. St.: shaded calcareous steppe; Open Cal. St.: open calcareous steppe.

habitats. The interaction plot between SLA and LS showed two dis-
tinct peaks, for high and low values of SLA, separated by a valley
of low reproductive outputs in between (Figure 5 and Figure S3).
To check if these alternative designs were significantly different, we
extracted the predictions of the 100 performed models, fixing all
variables to their means, except SLA (values ranging between 10 and
40 mmz/mg) and LS, which was fixed at 0.2 cm (Figure 5). Then we
plotted the mean prediction and its confidence intervals along the
SLA gradient, revealing that there were indeed two different peaks

separated by a valley and hence alternative designs (Figure S3).

4 | DISCUSSION

This study, by using BRT, demonstrates that trait interactions can

matter for multiple trait effects on fitness. Models considering

single traits are therefore likely to provide an incomplete evaluation
of the trait-fitness relationship. In 83% of the cases in the botanical
garden dataset the values of vegetative reproduction were better
explained by models including interactions among traits. On the
other hand, the values of seed reproduction were better explained
by trait interactions for the meadow and wet habitats, but models
without trait interactions sufficed to explain seed reproduction for
the calcareous steppe and sandy habitats. Here we show the cru-
cial importance of considering interactions among traits that de-
pict different ecological dimensions (e.g. roots, branches, leaves,
etc.; Laughlin, 2014) to reliably assess trait-by-environment effects
on fitness, as well as to explore the existence of complex adap-
tive landscapes in community assembly and life history studies. We
demonstrate that demographic processes can be determined by
combinations of traits. Therefore, boosted regression trees appear

as a better alternative than traditional linear regressions to predict
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species’ fitness components and account for nonlinear relation-

ships and trait interactions.

4.1 | The potential of boosted regression
trees at pinpointing multiple trait interactions to
predict fitness

BRT models are a powerful tool to analyse complex ecological
datasets (Elith et al., 2008). We found that BRTs predict the role
of traits on the relative importance of survival, growth and repro-
duction for population growth rate (de Kroon et al., 1986) better
than linear models do. A growing body of literature quantifies this
difference in performance between models for several ecological
questions (e.g. Dortel et al., 2013; Elith et al., 2006; Leathwick,
Elith, Francis, Hastie, & Taylor, 2006; Moisen et al., 2006; Naghibi
& Pourghasemi, 2015). For any particular response variable, the
resulting linear model is the single, most parsimonious model that
describes the relationship between the response and predictors.
However, the BRT model is an ensemble method that fits many
models combining them to provide more robust estimates of the
response variable (Elith et al., 2008). Here, trying to ensure a fair
comparison between methods, we simulated a similar approach by

combining the predictions of the most parsimonious set of linear
models through model averaging techniques. Still, BRT clearly out-
performed linear models in our dataset.

The benefits of using BRT models for this kind of analyses go
beyond their superior predictive ability. Most importantly, linear
models assume additivity between predictors. This means that
they cannot properly account for the combined and interactive ef-
fect of traits, where, for instance, the positive effect of one trait
on fitness depends on the effect of other traits. Beside this bio-
logically superior property, BRT models can accommodate missing
values (Friedman et al., 2000). In our analysis, in order to fit BRT
and linear models to the same datasets, we had to remove spe-
cies for which we were lacking some predictors (since linear mod-
els fully disregard observations when there are missing values for
any of the predictors). This ultimately led us to completely discard
some traits with a relatively high proportion of missing informa-
tion. Considering the sparsity of information for some traits in the
existing databases, the ability of BRTs to predict for observations
with missing values appears as a major advantage for this kind of
models. Another important advantage is that BRTs automatically fit
interactions between predictors and nonlinear responses in a way
that could not be achieved with a linear model (Elith et al., 2008).
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Therefore, BRTs appear to be powerful for exploring trait-fitness
relationships and generating new hypotheses with respect to trait

interactions and fitness.

4.2 | The relevance of interaction complexity for the
reproductive output

An emergent question from this research is why seed reproduc-
tion is best predicted by combinations of traits in some habitats
(e.g. meadows and wet) but not in others (e.g. shaded and open
calcareous steppes). This result could be due to the fact that not
all traits are equally functional for all habitats (Violle et al., 2007).
The influence of traits analysed here on seed reproduction might
be indirect and mediated by trade-offs involving other traits that
we did not include, such as traits related to the size, architecture
and shape spectrum (Diaz et al., 2016; Lonnberg & Eriksson, 2013;
Olson, Aguirre-Hernandez, & Rosell, 2009; Thompson, Band, &
Hodgson, 1993) or flowering phenology (Laughlin, 2014; Wright
et al., 2010).

Moreover, trait-fitness relationships are likely complex resulting
from the interaction of a large set of traits. BRT models improved
the predictive power compared to modelling the effects of all
traits as additive effects, as done in Herben et al. (2012). Analysing
clonal traits alone (Herben et al., 2012) or leaf-height-seed (LHS)
traits (Westoby, 1998), explained a modest portion of the ob-
served variability of seed and vegetative reproduction (Klimesova,
Tackenberg, & Herben, 2016). Moreover, our results show that, in
the habitats where trait interactions were better predictors of both
reproductive outputs than single traits, lateral clonal spread was
the most important trait. Herben et al. (2012), combining the data
of all habitats in a single analysis, found that the main predictors of
seed reproduction were SLA and lateral spread, whereas for veg-
etative reproduction none of the aboveground traits were import-
ant. Despite the differences, our results agree with the notion that
seed and vegetative reproduction result from a wide array of traits
(Herben et al., 2012) and their relative importance can shift among
habitats.

4.3 | The importance of considering traits from
different ecological dimensions

A different architecture of aboveground, bud banks and clonal
growth traits influenced seed and vegetative reproductions in
each habitat. Bud banks and clonal growth traits have been rarely
considered in community assembly studies (but see e.g., Klimes,
Klimesova, Hendriks, & Groenendael, 1997; Klimesova & Herben,
2015; Klimesova et al., 2017), even though they constitute an axis
of specialisation independent of the LHS system (Klimesova et al.,
2016; Vojtké et al., 2017). We second Laughlin (2014)’s call to fully
consider the multidimensionality of plant traits, measuring leaf,
stem, root (absent in the most updated global map of trait corre-
lations by Diaz et al., 2016) and flowering traits and their interac-
tions. Belowground traits, particularly, seem of vital importance for

moving forward, a step that is finally attainable through the recently
released FRED database (lversen et al., 2017). Our results support
the idea of including traits from different organs and whole-plant
properties to truly understand fitness differences.

Phylogenetic relatedness influenced the multi-trait driven-ef-
fects on vegetative reproduction only in the open calcareous steppe.
In this case, the relative importance of lateral spread declined and al-
most equalled the importance of bud bank size, although both traits
were still the most important when considering phylogenetic relat-
edness and when not. Similarly, Herben, Tackenberg, and Klimesova
(2016), found that disturbance parameters (like the proportional
change in cover of bare ground in one event), soil and climatic fac-
tors were related to clonal growth traits and bud banks, respectively,
and these relationships did not change when species phylogeny
was taken into account. Together with our results, this supports the
existence of specific strategies involving aboveground, bud banks
and clonal traits and that lateral spread and bud bank size and the
vegetative reproduction in the open calcareous steppe could have

evolved together.

4.4 | The importance of alternative designs depends
on the environment

While traits interact in complex ways, resulting in different com-
binations of traits that can yield equivalent fitness values, we only
found alternative designs in the meadow habitat. This is likely the
result of different ecological strategies contributing to fitness
(Salguero-Gémez et al., 2016), so that coordinated shifts in the
values of traits compensate each other. In the meadow habitat,
both high and low SLA values combined with high lateral spread
resulted in high vegetative reproduction. As SLA is a proxy of in-
dividual growth rate (Pérez-Harguindeguy et al., 2013; Poorter &
Garnier, 2007; Westoby, 1998; but see Shipley, 2006), this sug-
gests that both slow and fast-growing clonal plants that are able to
spread further away from the ramets are successful in the meadow
habitat. Interestingly, our results show that SLA was among the
most important traits for most of the habitats. This example also
highlights the importance of trait interactions shaping plant repro-
duction and that caution is needed when discarding the role of a
given trait to plant fitness based on single trait-fitness relation-
ships (Méjekova, Bello, Dolezal, & Leps, 2014; Poorter et al., 2008).

Besides meadows, we did not find strong evidence of alterna-
tive designs in the other habitats although trait interactions were
important in the majority of cases. For example, we found a sin-
gle optimum for vegetative reproduction in the wet habitat when
lateral spread combined with values smaller than c. 30 mm2/mg
of SLA. There are several potential explanations for this. First, we
may have not included in our analysis traits that cause species to
have similar reproductive outputs in a habitat (Violle et al., 2007).
Second, considering the relatively high values of tree complexity
that were selected and the way we examined trait effects by vi-
sually inspecting single traits and pairwise interactions, we can-

not discard that we have not been able to visualise all potential
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alternative strategies. This is because alternative strategies could
also arise at higher dimensionalities. Alternatively, there may actu-
ally be no alternative strategies in these habitats when just a sin-
gle strategy is systematically the winning one (Westoby, Falster,
Moles, Vesk, & Wright, 2002).

Our study demonstrates that including complex trait interac-
tions is necessary to adequately quantify the multiple dimensions of
plant traits, including bud banks and clonal growth traits, which are
the key determinants of both sexual and vegetative reproduction.
Specifically, at least in the meadow habitat, traits interacted in com-
plex ways to yield equivalent fitness values. Therefore, the exis-
tence of such alternative designs challenges our ability to detect the
mechanisms responsible for species coexistence. Ultimately, future
studies should measure multiple trait dimensions to understand the
effects of whole phenotypes on fitness (Laughlin, 2018). An import-
ant next step is to collect functional traits of species at the same lo-
cations where demographic databases have already been collected
(see the on-going work of StrateGo Network; Salguero-Gémez et
al., 2018). These coordinated efforts ultimately will improve filling
the current geographic and knowledge gaps. Furthermore, our ap-
proach using BRT models represents a promising approach for pre-

dicting and managing functional changes in vegetation composition.
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