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Abstract
1.	 Traditionally, trait‐based studies have explored single‐trait‐fitness relationships. 
However, this approximation in the study of fitness components is often too simplistic, 
given that fitness is determined by the interplay of multiple traits, which could even 
lead to multiple functional strategies with comparable fitness (i.e. alternative designs).

2.	 Here we suggest that an analytical framework using boosted regression trees 
(BRT) can prove more informative to test hypotheses on trait combinations com‐
pared to standard linear models. We use two published datasets for compari‐
sons: a botanical garden dataset with 557 plant species (Herben, 2012, Journal 
of Ecology, 100, 1522) and an observational dataset with 83 plant species (Adler, 
2014, Proceedings of the National Academy of Sciences, 111, 740).

3.	 Using the observational dataset, we found that BRTs predict the role of traits 
on the relative importance of survival, growth and reproduction for population 
growth rate better than linear models do. Moreover, we split species cultivated in 
different habitats within the botanical garden and observed that seed and vegeta‐
tive reproduction depended on trait combinations in most habitats. Our analyses 
suggest that, while not all traits impact fitness components to the same degree, it 
is crucial to consider traits that represent different ecological dimensions.

4.	 Synthesis. The analysis of trait combinations, and corresponding alternative de‐
signs via BRTs, represent a promising approach for understanding and managing 
functional changes in vegetation composition through measurement of suites of 
relatively easily measurable traits.
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1  |  INTRODUC TION

Trait‐based approaches are extensively used in ecology to examine 
species interactions (Kunstler et al., 2016; Schöb, Macek, Pistón, 
Kikvidze, & Pugnaire, 2017) and species response to environmental 
change (Cornwell & Ackerly, 2009; Kimball et al., 2016). However, 
although the link between traits and fitness is essential for the 
definition of functional traits (Violle et al., 2007; Salguero‐Gómez, 
Violle, Gimenez, & Childs, 2018), evidence linking traits and fitness 
proxies remains scarce (but see Adler et al., 2014; Martínez‐Vilalta, 
Mencuccini, Vayreda, & Retana, 2010; Poorter et al., 2008; Shipley 
et al., 2016; Visser et al., 2016).

One possible reason for the limited evidence is that most studies 
examining trait‐fitness relationships consider individual traits (Adler 
et al., 2014; Marks, 2007). These analytical strategies contrast with 
the fact that fitness is determined by the integrated phenotype 
(Laughlin & Messier, 2015). Approximations such as ordination axes 
that do not explicitly account for interactive effects between traits 
(de Bello, Lepš, & Sebastià, 2005), are also not a satisfactory solution 
since the effects of traits can also be non‐additive. Either by additive 
or non‐additive effects, it is likely that the interplay of multiple traits 
could lead to single or multiple performance peaks with compara‐
ble fitness, the latter called alternative designs. Alternative designs 
are recognised as an important mechanism behind the evolution and 
maintenance of trait diversity (Marks & Lechowicz, 2006) and are 
expected within and across biological communities (e.g. Pivovaroff 
et al., 2016; Valladares, Skillman, & Pearcy, 2002). Considering mul‐
tiple traits from different ecological dimensions (Laughlin, 2014) can 
help us to uncover the relationship between traits and fitness com‐
ponents, and to examine the existence of single optima (i.e. a single 
performance peak) versus alternative designs. However, open ques‐
tions still remain on how to explore alternative designs and whether 
they could improve the predictability of trait‐fitness relationships 
within an environment.

Considering multiple dimensions of plant traits (e.g. in leaf 
traits, stem traits, seed traits, etc; Díaz et al., 2016; Wright et al., 
2004) is essential for exploring the relationship between the en‐
vironment, traits and fitness (Marks & Lechowicz, 2006) and to 
predict community assembly (Laughlin, 2014) or life history evo‐
lution (Salguero‐Gómez et al., 2018). This task, however, is not a 
straightforward one. A current advantage that allows robust con‐
clusions is the increased availability of trait data in databases (e.g. 
Cordlandwehr et al., 2013; Kazakou et al., 2014). Moreover, linear 
regression models have been the most common approach so far 
(Adler et al., 2014; but see Kleyer et al., 2012). Linear models, how‐
ever, are limited when exploring the complex effects of multiple 
traits on fitness, arising from their lack of flexibility in dealing with 

incomplete datasets or nonlinear responses among predictors. 
Recently, alternative methods that address this complexity have 
been suggested (Carmona, Bello, Mason, & Lepš, 2016; Laughlin 
& Messier, 2015). Among these, regression trees are a useful tool 
to account for interactions among different traits (de Bello et al., 
2005) although they tend to have low predictive performance 
(Schulz, Cayuela, Rey‐Benayas, & Schröder, 2011). Boosted regres‐
sion trees methods (BRT; Friedman, Hastie, & Tibshirani, 2000, 
Elith, Leathwick, & Hastie, 2008) solve this problem by combining 
a large number of regression trees added together in sequence. 
This confers several advantages such as automatically accounting 
for nonlinearities, including interactions according to the size of 
trees used (Elith et al., 2006), which traditional regression models 
do not. BRTs also fit all possible combinations of exploratory vari‐
ables, allowing for the potential to generate hypotheses on trait 
combinations.

Here, we propose the use of BRTs to include interactions be‐
tween traits when examining trait‐fitness relationships. To show the 
possible advantages of this approach, we reanalysed two published 
datasets to answer two questions: (a) does considering interactions 
between traits by using BRTs result in a higher predictive ability as 
compared to linear models? and (b) can one use BRTs to identify dis‐
tinct combinations of traits that result in similar fitness (i.e. alterna‐
tive designs)? To that end, first, we compared the ability of BRTs with 
linear models to predict the full life cycle of a species reanalysing 
data from Adler et al. (2014). Second, we used a dataset with species 
cultivated in different habitats within a botanical garden (Herben, 
Nováková, Klimešová, & Hrouda, 2012) to test whether functional 
alternative designs play a key role in shaping fitness components 
within a given habitat. We chose these datasets because they are 
key references in this field of research, include a high number of spe‐
cies and, despite that they might not be ideal to characterise trait‐fit‐
ness relationship, they can serve as a clear benchmark for comparing 
new approaches. Although we focus on plants because trait and fit‐
ness information is currently much more extensive in this kingdom 
(Hortal et al., 2015), we highlight how our proposed framework can 
span to other taxa.

2  | MATERIAL S AND METHODS

Data were obtained from two published studies: Adler et al. (2014) 
and Herben et al. (2012), which collectively used information from 
the COMPADRE Plant Matrix Database (Salguero‐Gómez et al., 
2015), TRY (Kattge et al., 2011), LEDA (Kleyer et al., 2008), CLO‐
PLA3 (Klimešová, Danihelka, Chrtek, Bello, & Herben, 2017) and 
Herben, Suda, and Klimešová (2017).

K E Y W O R D S

alternative design, boosted regression tree (BRT), elasticity, fitness, functional trait, 
population growth rate, trade‐off, vegetative reproduction
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2.1 | Comparing BRT versus linear models

Adler et al. (2014) used five traits describing the anatomy and 
physiology, and calculated elasticities of three vital rates (survival, 
growth and reproduction) of 222 plant species worldwide. They 
used elasticities, which express the effect that a relative change in 
a given vital rate would have on population growth rate (de Kroon, 
Plaisier, Groenendael, & Caswell, 1986). Elasticities are often used 
in ecology and conservation to interpret the demographic pro‐
cesses that are most important to the performance of a popula‐
tion (Caswell, 2001; de Kroon, Groenendael, & Ehrlén, 2000). The 
authors obtained the demographic information from matrix popu‐
lation models available in the COMPADRE Plant Matrix Database 
v. 3.0.0 (Salguero‐Gómez et al., 2015). Elasticities were calculated 
per species by an arithmetic element‐by‐element average of the 
matrix population models available for each population per spe‐
cies, a standard procedure in comparative demography (Salguero‐
Gómez et al., 2016; Silvertown & Franco, 1993). Information on 
leaf lifespan, leaf N, specific leaf area (SLA), seed mass and wood 
density was obtained from the TRY database (Kattge et al., 2011; 
references for the original sources of TRY data used in Adler et 
al., 2014 are included in the Supporting Information). The overlap 
between TRY and COMPADRE spanned a global range of biomes 
(i.e. artic, desert, temperate forest, temperate grassland, tropi‐
cal forest and tropical savannah) and growth forms (i.e. perennial 
herbs, palms, shrubs, succulents and trees). The trait data corre‐
sponded to mean values for each trait for each species, after du‐
plicated sources information and outliers (>3 SD from mean) had 
been discarded.

Because not all traits were available for all species, we ex‐
cluded species with information for fewer than two traits. Leaf 
lifespan and wood density were excluded altogether because 
information for them was lacking for a high proportion of spe‐
cies, and, unlike BRT models, linear models cannot handle miss‐
ing observations. These criteria resulted in 80, 83 and 83 plant 
species for reproduction, survival and growth, respectively. 
To evaluate the ability of functional traits to explain variation 
across vital rate elasticities, we fitted a separate model for each 
of the three elasticities for a total of six models (three linear 
and three BRT models; see “Analysis” section below). Vital rate 
elasticities were logit‐transformed prior to modelling, whereas 
traits were log‐transformed. An extended summary including 
range and number of predictors per species is shown in Table 
S1 in Appendix S1.

2.2 | Traits as predictors of reproductive output

Herben et al. (2012) used data for 951 species from the collection 
of native plants of central European Flora, growing in the botani‐
cal garden of the Faculty of Science in Prague (http://www.bz-uk.
cz; see also Herben et al., 2017). Since each species was grown 
under abiotic conditions that resembled their natural habitats, re‐
production in the garden should resemble that of the plants in their 

natural settings. These habitats comprised (a) shaded and (b) open 
calcareous steppes, (c) meadow habitat, (d) oak forest habitat, (e) 
sandy habitat and (f) wet and humid habitat along a stream. Traits 
for these species were collected from the LEDA (Kleyer et al., 2008) 
and CLO‐PLA3 databases (Klimešová et al., 2017). Selected above‐
ground traits were total leaf area, maximum mature height, SLA and 
seed mass, while vegetative bud banks traits were bud bank size and 
depth (i.e. all inactive buds that can give rise to new shoots located 
on the soil surface or belowground), and traits of clonal growth were 
clonal multiplication, lateral spread, life history, shoot lifespan and 
persistence of connections between ramets (Table S2).

As a proxy for demographic processes, the authors used spon‐
taneous seed and vegetative reproduction, assessing the number of 
times the new offspring had to be thinned by local gardeners (data 
on seed and vegetative reproduction in Herben et al., 2017). To mea‐
sure seed and vegetative reproduction, scores were assigned using 
the same ordinal scale across species that were growing in the gar‐
den for at least 10 years. Scores ranged from 1 to 5 with the lowest 
for species that did not reproduce in the garden and the highest for 
those that multiplied spontaneously and had to be thinned more 
than once per year (Table 1 in Herben et al., 2012). For an extended 
description of the methods see Methods S1. This approach to de‐
fine fitness components can have limitations because (a) growth 
and multiplication records are not fully quantitative, and (b) it comes 
with lower control of environmental conditions than in a designed 
experiment. Nonetheless, it allows comparison across many species 
in different habitats rendering such dataset valuable for the present 
study. We fitted separate BRT models for each habitat to study the 
effect of trait interactions on different reproductive outputs: seed 
(n = 538 species) and vegetative (n = 556 species; Table S3).

2.3 | Analysis

We fitted BRT models to analyse the effect of the considered traits 
and their interactions on each fitness component (for the observa‐
tional dataset) or reproductive output (botanical garden dataset). We 
fitted these models using the function gbm.step in the dismo package 
(Hijmans, Phillips, Leathwick, & Elith, 2017) in R v3.1.1. In order to 
calibrate the models, we first adjusted the model parameters, which 
included (a) the learning rate (lr, determining the contribution of 
each tree to the growing model. A slower learning rate, that is, small 
value of lr, increases the number of trees required and reduces the 
amount by which the individual initial trees contribute to the final 
model; Elith et al., 2008), (b) bag fraction, which controls the pro‐
portion of the data that is randomly chosen to train each new tree. 
This parameter introduces stochasticity and improves the predictive 
performance by reducing the variance of the final model. Therefore, 
final models will be slightly different each time they are run. The 
default is bag fraction 0.5, which means that at each iteration, 50% 
of the data are drawn at random, without replacement, from the full 
training set; Elith et al., 2008), and (c) step size, the number of trees 
to add at each cycle of the boosting algorithm, while we fixed (d) tree 
complexity at 15 (tc controls the maximum level of interactions that 

http://www.bz-uk.cz
http://www.bz-uk.cz
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can be achieved, see below for further explanations). We selected 
the combination of these parameters that yielded the highest ex‐
plained deviance based on a minimum of 1,000 trees, following Elith 
et al. (2008). Further step‐by‐step details on the BRT method can be 
found in Appendix S2.

Once learning rate, bag fraction and step size were selected, 
we quantified improvements in BRT model predictive ability as 
more complex interactions were added by running models with 
increasing tree complexity. For each model, we used values of 
tc ranging between 1 (where there is only one split in the tree, 
and no interactions between studied traits), to 15 (which means 
that the trees include several splitting rules allowing for highly 
complex interactions among traits). This procedure is described 
in depth in Tables S4 and S5 and Appendix S2. To provide confi‐
dence intervals of our model predictions, we simulated 100 trees 
for each model and tc value. We estimated the predictive capacity 
via R2 of each of these models, as well as the relative influence of 
each predictor on each response variable. Afterwards, the 100 
values of each combination of response variable and tc value were 
averaged in order to have an estimation of R2 mean and variability, 
and the relative influence of variables (Carmona, Röder, Azcárate, 
& Peco, 2013). In order to select an optimum tc value, we fitted 
ANOVAs with R2 as response variable and tc values as explanatory 
variable and performed a Tukey test. We selected the lowest tc 
value that did not show significant differences compared to the 
largest tc value, indicating that model performance had reached 
a plateau.

We used the observational dataset to compare the performance 
of BRT versus linear models for predicting each of the three vital 
rate elasticities. To do so, we performed models for survival, growth 
and reproduction separately. A great deal of environmental hetero‐
geneity exists both in COMPADRE and TRY, and most trait and vital 
rate data for a given species come from multiple populations, making 
estimations of trait‐fitness relationships unreliable for biological in‐
terpretations of within‐environments species differentiations (con‐
sidering that fitness landscapes change with environment; Laughlin 
& Messier, 2015, Salguero‐Gómez et al., 2018). However, environ‐
mental heterogeneity is non‐central to our first goal: to use these 
data to perform a methodological test, comparing the predictive 
abilities of both methods.

In the case of BRTs, for each of the three vital rate elasticities, 
we selected the model parameters using the procedure described 
above (Table S4 for details). Once the models were fitted, we es‐
timated their predictions for all the species in the dataset. For lin‐
ear models, we fitted a saturated model (considering the number 
of observations) for each vital rate elasticity. This model included 
the simple effects of the traits, their pairwise interactions and the 
quadratic terms of the traits as predictors. We used the dredge 
function (Barton, 2018) to evaluate all potential simpler models 
nested within the saturated one, and calculated the AIC of each 
model. From the AIC‐ranked models, we selected the subset of 
models within five AIC points of the most parsimonious one and av‐
eraged their predicted values, giving more weight to the predictions 

of the most plausible models as per their AIC weights. This way, 
for each vital rate elasticity, we attained two predicted values for 
each species: one given by the BRT approach, and one by the lin‐
ear model approach. Finally, we compared BRTs and linear models 
using Pearson correlation coefficients between the observed and 
predicted values. Models with a high correlation between observed 
and predicted values have higher predictive ability than models 
with a low correlation.

To explain the role of functional traits as determinants of repro‐
ductive outputs (botanical garden dataset), we fitted a BRT model 
for each combination of reproductive output and habitat. For each 
of these models we inspected R2 mean values as well as the 95% CIs 
for each tc to examine whether the explanatory capacity of the mod‐
els improves as the tree complexity was increased (see above). BRT 
models also report the relative influence of the different predictors, 
which is an indicator of their contribution in reducing overall model 
deviance. We calculated the relative influence of each predictor as 
the mean of the influences of the 100 simulations for the selected tc 
optimum value. We used tc optimum values and the function gbm.
interactions to test whether interactions were detected and mod‐
elled, and for reporting the interaction magnitude of each pair of 
predictors.

This function forms predictions for each considered pair of pre‐
dictors while setting the rest of the variables to their means (Elith et 
al., 2008). This function creates, for each possible pair of predictors, 
a temporary grid of variables representing combinations of values 
at fixed intervals along each of their ranges. Then, it uses a linear 
model to relate the predictions to the two marginal predictors, fit‐
ting them as factors. The residual variance in this linear model in‐
dicates the relative strength of each interaction (Elith et al., 2008). 
We represented these interactions plotting changes in reproductive 
outputs across the phenotypic space using partial dependence plots 
(function gbm.perspective) for each reproductive output and habitat 
combination.

In addition, for plants of each habitat in the botanical garden, 
we checked if phylogenetic relatedness influenced our results due 
to species’ common ancestry. We accounted for phylogeny by using 
residuals from regression models where the response variables, the 
reproductive outputs, were regressed on the axes of a Principal 
Coordinates Analysis (PCoA) of a species pairwise cophenetic dis‐
tance matrix (a method equivalent to the first step in phylogenetic 
eigenvector regression; Diniz‐Filho, Sant'Ana, & Bini, 1998). The 
obtained phylogenetic residuals for that model were used as a new 
response variable in BRT models estimates, following the same 
modelling process explained above. While it would be preferable to 
directly include phylogeny into the BRT models, to our knowledge, 
this is not possible with this kind of regression models, and it rep‐
resents an advancement that falls beyond the scope of this manu‐
script. For an extended description of the methods see Methods S2 
in Appendix S1.

All statistical analyses were conducted in R v3.1.1 using the 
dismo (Hijmans et al., 2017) and multcomp packages (Hothorn, Bretz, 
& Westfall, 2017).
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3  | RESULTS

3.1 | BRTs versus linear models

BRT models systematically predicted trait‐fitness relationships bet‐
ter than linear models for the elasticities of population growth rate 
to reproduction, survival and to growth (Figure 1). The correlations 
between predicted versus observed values were 36.11%, 25.00% 
and 22.67% greater for BRT models than linear models for reproduc‐
tion, survival and growth, respectively. The results of the selection 
of linear models are in Table S6 in Appendix S1.

3.2 | Traits as predictors of reproductive outputs

For each habitat within the botanical garden, we quantified the 
improvement in model predictive abilities as interactions between 
traits were added. A lower degree of complexity of interactions 
among traits was necessary to predict seed reproduction compared 
to vegetative reproduction. In three out of five habitats, BRT models 
predicted seed reproduction without interactions among trait pre‐
dictors (model predictive ability stabilised at tc = 1), while vegetative 
reproduction was better predicted by models including trait interac‐
tions, with the exception of the sandy habitat (Table S7). Regardless 
of the habitat, the proportion of variance explained for seed re‐
production (from ~0.1 to ~0.4) was lower than that explained for 
vegetative reproduction (ranging between ~0.2 and ~0.7; Figure 2). 
The highest proportion of variance explained corresponded to the 
meadow habitat (~0.4 and ~0.7 for seed and vegetative reproduc‐
tions, respectively), while the shaded calcareous steppe showed 
the lowest (~0.1 and ~0.2). We only found a relatively strong 

phylogenetic signal for vegetative reproduction in the open calcare‐
ous steppe (Table 1). After accounting for phylogeny in the analysis 
of this habitat, the proportion of explained variance in vegetative 
reproduction increased from 30% to 40%.

Belowground bud banks and traits of clonal growth were im‐
portant predictors regardless of the type of reproduction output. 
Seed reproduction decreased abruptly with high lateral spread (LS) 
and small seed mass values (relative influences of ~30% and 20% 
in the meadow, respectively). However, in the wet habitats seed 
reproduction decreased abruptly with high seed mass (relative 
influence ~20%; Figure 3 and Figure S1a). In the habitats where 
seed reproduction was better predicted by single traits, the most 
important traits varied depending on the habitat. In general, vege‐
tative reproduction sharply increased with high LS for all habitats 
where trait interactions were important (relative influence ~40%) 
with the exception of the sandy habitat (LS with a relative influ‐
ence ~0%), where the bud bank size was the most important pre‐
dictor (Figure 4). In the case of the open calcareous steppe, and 
accounting for phylogenetic relationships, vegetative reproduction 
increased with large bud bank size and LS (both with relative in‐
fluence ~30%) and decreased with SLA (relative influence ~10%; 
Figures S1b and S2). Persistence of connections between mother 
and daughter shoots, the number of offspring per parent shoot and 
life history were consistently among the less important traits influ‐
encing both seed and vegetative reproduction. The results of the 
magnitude of the pairwise interactions among predictors for seed 
and vegetative reproduction are in Tables S8 and S9.

Finally, we found functional alternative designs that yielded 
equivalent vegetative reproduction values only in the meadow 

F I G U R E  1  Boosted Regression Trees (BRT) models are better predictors of the relationship between traits and fitness than linear models 
alone. We obtained observed versus predicted values for both types of models using data from three vital rates elasticities (survival, growth, 
and reproduction) of plant species worldwide (observational dataset; Adler et al., 2014). For BRTs (orange lines), we calculated one model for 
each of the three vital rate elasticities using SLA, leaf N content and seed mass using tree complexity (tc) optimum and selected parameters 
(Table S3). For linear models (LM; green lines), we also performed a standard major axis regression for each of the three vital rate elasticities 
including the same traits, their pairwise interactions and the quadratic terms of the traits. We show Pearson correlation coefficient on the 
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habitats. The interaction plot between SLA and LS showed two dis‐
tinct peaks, for high and low values of SLA, separated by a valley 
of low reproductive outputs in between (Figure 5 and Figure S3). 
To check if these alternative designs were significantly different, we 
extracted the predictions of the 100 performed models, fixing all 
variables to their means, except SLA (values ranging between 10 and 
40 mm2/mg) and LS, which was fixed at 0.2 cm (Figure 5). Then we 
plotted the mean prediction and its confidence intervals along the 
SLA gradient, revealing that there were indeed two different peaks 
separated by a valley and hence alternative designs (Figure S3).

4  | DISCUSSION

This study, by using BRT, demonstrates that trait interactions can 
matter for multiple trait effects on fitness. Models considering 

single traits are therefore likely to provide an incomplete evaluation 
of the trait‐fitness relationship. In 83% of the cases in the botanical 
garden dataset the values of vegetative reproduction were better 
explained by models including interactions among traits. On the 
other hand, the values of seed reproduction were better explained 
by trait interactions for the meadow and wet habitats, but models 
without trait interactions sufficed to explain seed reproduction for 
the calcareous steppe and sandy habitats. Here we show the cru‐
cial importance of considering interactions among traits that de‐
pict different ecological dimensions (e.g. roots, branches, leaves, 
etc.; Laughlin, 2014) to reliably assess trait‐by‐environment effects 
on fitness, as well as to explore the existence of complex adap‐
tive landscapes in community assembly and life history studies. We 
demonstrate that demographic processes can be determined by 
combinations of traits. Therefore, boosted regression trees appear 
as a better alternative than traditional linear regressions to predict 

F I G U R E  2  Vegetative reproduction is better explained by interactions among functional traits than by single trait models in almost all 
habitats. However, in three out of five habitats, single trait models explained seed reproduction better than trait interactions. Plots show the 
relationship between R2 and tree complexity (tc) for each response variable and reproductive output obtained from Boosted Regression Trees 
(BRT). Dotted lines indicate ±95% CIs. Different symbols indicate different habitats within the botanical garden (Herben et al., 2012). Cal.op 
(w/p): open calcareous steppe (with phylogeny); Cal.op (w/op): open calcareous steppe (without phylogeny); Cal.sh: shaded calcareous steppe

  Shaded Cal. St. Open Cal. St. Meadow Oak Sandy Wet

Seed rep.

n 75 92 147 70 53 101

Mean 2.667 2.685 2.741 2.685 3.245 2.911

SD 1.287 1.128 1.194 1.128 1.017 1.167

λ 5.47E‐05 6.61E‐05 6.61E‐05 NA 6.65E‐05 0.253

p 1 1 1 NA 1 1

Veg. rep.

n 76 92 147 69 53 101

Mean 2.500 2.087 2.639 2.232 2.132 2.752

SD 1.465 1.323 1.374 1.330 1.301 1.322

λ 4.75E‐05 0.552 7.24E‐05 0.269 5.58E‐05 4.75E‐05

p 1 0.014 1 1 1 1

Abbreviations: Shaded Cal. St.: shaded calcareous steppe; Open Cal. St.: open calcareous steppe.

TA B L E  1   Summary statistics and 
estimate of phylogenetic signal (Pagel's λ) 
for each reproductive output and habitat 
within the botanical garden
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F I G U R E  3  Seed reproduction depends on interactions between aboveground, bud banks and clonal traits. The ranked relative influence 
of multiple traits was calculated by the mean of 100 simulations for a tree complexity (tc) optimum value using Boosted Regression Trees 
(BRT; see Figure 2) and the botanical garden dataset. White colour indicates aboveground traits while grey colour indicates bud bank and 
clonal growth traits
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F I G U R E  4  Vegetative reproduction depends on interactions between aboveground, bud banks and clonal traits. The ranked relative 
influence of multiple traits was calculated by the mean of 100 simulations for a tree complexity (tc) optimum value using Boosted Regression 
Trees (BRT; see Figure 2) and the botanical garden dataset. White colour indicates aboveground traits while grey colour indicates bud bank 
and clonal growth traits
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species’ fitness components and account for nonlinear relation‐
ships and trait interactions.

4.1 | The potential of boosted regression 
trees at pinpointing multiple trait interactions to 
predict fitness

BRT models are a powerful tool to analyse complex ecological 
datasets (Elith et al., 2008). We found that BRTs predict the role 
of traits on the relative importance of survival, growth and repro‐
duction for population growth rate (de Kroon et al., 1986) better 
than linear models do. A growing body of literature quantifies this 
difference in performance between models for several ecological 
questions (e.g. Dortel et al., 2013; Elith et al., 2006; Leathwick, 
Elith, Francis, Hastie, & Taylor, 2006; Moisen et al., 2006; Naghibi 
& Pourghasemi, 2015). For any particular response variable, the 
resulting linear model is the single, most parsimonious model that 
describes the relationship between the response and predictors. 
However, the BRT model is an ensemble method that fits many 
models combining them to provide more robust estimates of the 
response variable (Elith et al., 2008). Here, trying to ensure a fair 
comparison between methods, we simulated a similar approach by 

combining the predictions of the most parsimonious set of linear 
models through model averaging techniques. Still, BRT clearly out‐
performed linear models in our dataset.

The benefits of using BRT models for this kind of analyses go 
beyond their superior predictive ability. Most importantly, linear 
models assume additivity between predictors. This means that 
they cannot properly account for the combined and interactive ef‐
fect of traits, where, for instance, the positive effect of one trait 
on fitness depends on the effect of other traits. Beside this bio‐
logically superior property, BRT models can accommodate missing 
values (Friedman et al., 2000). In our analysis, in order to fit BRT 
and linear models to the same datasets, we had to remove spe‐
cies for which we were lacking some predictors (since linear mod‐
els fully disregard observations when there are missing values for 
any of the predictors). This ultimately led us to completely discard 
some traits with a relatively high proportion of missing informa‐
tion. Considering the sparsity of information for some traits in the 
existing databases, the ability of BRTs to predict for observations 
with missing values appears as a major advantage for this kind of 
models. Another important advantage is that BRTs automatically fit 
interactions between predictors and nonlinear responses in a way 
that could not be achieved with a linear model (Elith et al., 2008). 

F I G U R E  5  Fitness landscapes of the first and second ranked pairwise interactions (left and right panels, respectively) using the optimum 
values of model parameters (see Figure 2 and Table S4) and the botanical garden dataset. The strength of two‐way interactions between 
determinants of seed and vegetative reproduction is shown above each plot. Brighter and darker tones represent high and low fitted values, 
respectively. LS: lateral spread; PH: maximum height; SLA: specific leaf area
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Therefore, BRTs appear to be powerful for exploring trait‐fitness 
relationships and generating new hypotheses with respect to trait 
interactions and fitness.

4.2 | The relevance of interaction complexity for the 
reproductive output

An emergent question from this research is why seed reproduc‐
tion is best predicted by combinations of traits in some habitats 
(e.g. meadows and wet) but not in others (e.g. shaded and open 
calcareous steppes). This result could be due to the fact that not 
all traits are equally functional for all habitats (Violle et al., 2007). 
The influence of traits analysed here on seed reproduction might 
be indirect and mediated by trade‐offs involving other traits that 
we did not include, such as traits related to the size, architecture 
and shape spectrum (Díaz et al., 2016; Lönnberg & Eriksson, 2013; 
Olson, Aguirre‐Hernández, & Rosell, 2009; Thompson, Band, & 
Hodgson, 1993) or flowering phenology (Laughlin, 2014; Wright 
et al., 2010).

Moreover, trait‐fitness relationships are likely complex resulting 
from the interaction of a large set of traits. BRT models improved 
the predictive power compared to modelling the effects of all 
traits as additive effects, as done in Herben et al. (2012). Analysing 
clonal traits alone (Herben et al., 2012) or leaf–height–seed (LHS) 
traits (Westoby, 1998), explained a modest portion of the ob‐
served variability of seed and vegetative reproduction (Klimešová, 
Tackenberg, & Herben, 2016). Moreover, our results show that, in 
the habitats where trait interactions were better predictors of both 
reproductive outputs than single traits, lateral clonal spread was 
the most important trait. Herben et al. (2012), combining the data 
of all habitats in a single analysis, found that the main predictors of 
seed reproduction were SLA and lateral spread, whereas for veg‐
etative reproduction none of the aboveground traits were import‐
ant. Despite the differences, our results agree with the notion that 
seed and vegetative reproduction result from a wide array of traits 
(Herben et al., 2012) and their relative importance can shift among 
habitats.

4.3 | The importance of considering traits from 
different ecological dimensions

A different architecture of aboveground, bud banks and clonal 
growth traits influenced seed and vegetative reproductions in 
each habitat. Bud banks and clonal growth traits have been rarely 
considered in community assembly studies (but see e.g., Klimeš, 
Klimešová, Hendriks, & Groenendael, 1997; Klimešová & Herben, 
2015; Klimešová et al., 2017), even though they constitute an axis 
of specialisation independent of the LHS system (Klimešová et al., 
2016; Vojtkó et al., 2017). We second Laughlin (2014)’s call to fully 
consider the multidimensionality of plant traits, measuring leaf, 
stem, root (absent in the most updated global map of trait corre‐
lations by Díaz et al., 2016) and flowering traits and their interac‐
tions. Belowground traits, particularly, seem of vital importance for 

moving forward, a step that is finally attainable through the recently 
released FRED database (Iversen et al., 2017). Our results support 
the idea of including traits from different organs and whole‐plant 
properties to truly understand fitness differences.

Phylogenetic relatedness influenced the multi‐trait driven‐ef‐
fects on vegetative reproduction only in the open calcareous steppe. 
In this case, the relative importance of lateral spread declined and al‐
most equalled the importance of bud bank size, although both traits 
were still the most important when considering phylogenetic relat‐
edness and when not. Similarly, Herben, Tackenberg, and Klimešová 
(2016), found that disturbance parameters (like the proportional 
change in cover of bare ground in one event), soil and climatic fac‐
tors were related to clonal growth traits and bud banks, respectively, 
and these relationships did not change when species phylogeny 
was taken into account. Together with our results, this supports the 
existence of specific strategies involving aboveground, bud banks 
and clonal traits and that lateral spread and bud bank size and the 
vegetative reproduction in the open calcareous steppe could have 
evolved together.

4.4 | The importance of alternative designs depends 
on the environment

While traits interact in complex ways, resulting in different com‐
binations of traits that can yield equivalent fitness values, we only 
found alternative designs in the meadow habitat. This is likely the 
result of different ecological strategies contributing to fitness 
(Salguero‐Gómez et al., 2016), so that coordinated shifts in the 
values of traits compensate each other. In the meadow habitat, 
both high and low SLA values combined with high lateral spread 
resulted in high vegetative reproduction. As SLA is a proxy of in‐
dividual growth rate (Pérez‐Harguindeguy et al., 2013; Poorter & 
Garnier, 2007; Westoby, 1998; but see Shipley, 2006), this sug‐
gests that both slow and fast‐growing clonal plants that are able to 
spread further away from the ramets are successful in the meadow 
habitat. Interestingly, our results show that SLA was among the 
most important traits for most of the habitats. This example also 
highlights the importance of trait interactions shaping plant repro‐
duction and that caution is needed when discarding the role of a 
given trait to plant fitness based on single trait‐fitness relation‐
ships (Májeková, Bello, Doležal, & Lepš, 2014; Poorter et al., 2008).

Besides meadows, we did not find strong evidence of alterna‐
tive designs in the other habitats although trait interactions were 
important in the majority of cases. For example, we found a sin‐
gle optimum for vegetative reproduction in the wet habitat when 
lateral spread combined with values smaller than c. 30 mm2/mg 
of SLA. There are several potential explanations for this. First, we 
may have not included in our analysis traits that cause species to 
have similar reproductive outputs in a habitat (Violle et al., 2007). 
Second, considering the relatively high values of tree complexity 
that were selected and the way we examined trait effects by vi‐
sually inspecting single traits and pairwise interactions, we can‐
not discard that we have not been able to visualise all potential 
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alternative strategies. This is because alternative strategies could 
also arise at higher dimensionalities. Alternatively, there may actu‐
ally be no alternative strategies in these habitats when just a sin‐
gle strategy is systematically the winning one (Westoby, Falster, 
Moles, Vesk, & Wright, 2002).

Our study demonstrates that including complex trait interac‐
tions is necessary to adequately quantify the multiple dimensions of 
plant traits, including bud banks and clonal growth traits, which are 
the key determinants of both sexual and vegetative reproduction. 
Specifically, at least in the meadow habitat, traits interacted in com‐
plex ways to yield equivalent fitness values. Therefore, the exis‐
tence of such alternative designs challenges our ability to detect the 
mechanisms responsible for species coexistence. Ultimately, future 
studies should measure multiple trait dimensions to understand the 
effects of whole phenotypes on fitness (Laughlin, 2018). An import‐
ant next step is to collect functional traits of species at the same lo‐
cations where demographic databases have already been collected 
(see the on‐going work of StrateGo Network; Salguero‐Gómez et 
al., 2018). These coordinated efforts ultimately will improve filling 
the current geographic and knowledge gaps. Furthermore, our ap‐
proach using BRT models represents a promising approach for pre‐
dicting and managing functional changes in vegetation composition.
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