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Mathematical models of biological systems must strike a balance between being sufficiently complex to capture important biological
features, while being simple enough that they remain tractable through analysis or simulation. In this work, we rigorously explore
how to balance these competing interests when modeling murine melanoma treatment with oncolytic viruses and dendritic cell
injections. Previously, we developed a system of six ordinary differential equations containing fourteen parameters that well describes
experimental data on the efficacy of these treatments. Here, we explore whether this previously developed model is the minimal
model needed to accurately describe the data. Using a variety of techniques, including sensitivity analyses and a parameter sloppiness
analysis, we find that our model can be reduced by one variable and three parameters and still give excellent fits to the data. We also
argue that our model is not too simple to capture the dynamics of the data, and that the original and minimal models make similar
predictions about the efficacy and robustness of protocols not considered in experiments. Reducing the model to its minimal form

allows us to increase the tractability of the system in the face of parametric uncertainty.

1. Introduction

For many solid tumors, the most utilized cancer treatments
are surgery, chemotherapy, and radiotherapy [1]. While this
approach can effectively reduce tumor burden in the short
term, long-term recurrence is the norm. This failure of
conventional treatment modalities has spurred efforts to
design novel cancer therapeutics.

One emerging treatment modality is oncolytic virother-
apy. This technique involves targeting cancer cells using
oncolytic viruses (OVs), standard viruses genetically engi-
neered to replicate selectively in cancer cells. OV replication
within a cancer cell creates a viral burden too large for the cell
to support, which eventually causes the infected cancer cell to
lyse [2]. The OV that get released from the lysed cancer cell
are then free to infect additional cancer cells. The lysing effects
of OVs, while powerful, are also transient. In a clinical setting,
OVs have generally proven to be insufficient to fully and
permanently eradicate a solid tumor mass [2].

Another treatment modality receiving attention is gene
therapy, defined as the introduction of genes of interest into
cancer cells with therapeutic intent [3]. Gene therapy has
been attempted using genes that mediate the release of
cytokines, tumor suppressor genes, and apoptosis-related
genes, to name a few. Independent of the gene of interest,
this modality requires a vector that can efficiently deliver,
and uniformly distribute, the gene product to solid tumors
[4]. Oncolytic viruses can be used as such a gene-delivery
vector.

The ability of oncolytic virotherapy to induce tumor cell
lysis and to stimulate an antitumor immune response in
a preclinical setting has led to a number of clinical trials for
different tumor types. As of 2016, twenty different viruses
have been studied as candidates for oncolytic virotherapy,
and new candidate viruses continue to be studied [5]. In
2015, the U.S. Food and Drug Administration approved the
first oncolytic virus therapy, T-VEC (Imlygic™), for the
treatment of advanced melanoma [5]. A number of clinical
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trials using this and other oncolytic viruses are underway in
both solid and liquid tumors, and while they tend to be
incredibly well tolerated, to date efficacy has been inferior to
other available therapies [5, 6]. That said, researchers con-
tinue to actively study the anticancer effects of oncolytic
virotherapy, both as a drug to be used in combination with
other modalities, and as a potential cancer vaccine [5, 6].

In the present work, we focus on preclinical data and
model the use of OVs (the adenovirus (Ad) in particular) to
deliver genes that boost the immune system’s ability to
identify, target, and kill cancer cells. The transgenes of interest
in this study are 4-1BB ligand (4-1BBL) and interleukin (IL)-
12. 4-1BB is a costimulatory member of the tumor-necrosis
factor receptor superfamily that is expressed on activated CD4
+ and CD8+ T cells [7]. The binding of 4-1BB to its ligand, 4-
1BBL, promotes the outgrowth of type-1 T helper cells and
cytolytic effector T cells [4]. IL-12 is a cytokine that strongly
stimulates the differentiation of naive CD4+ T cells to type-1 T
helper cells. IL-12 has been determined to be one of the most
efficient antitumor cytokines in experimental animal models
[8]. For conciseness, we refer to oncolytic adenoviruses
concurrently acting as a vector for both the 4-1BBL and IL-12
transgenes as Ad/4-1BBL/IL-12.

Recent preclinical work of Huang et al. has shown that
Ad/4-1BBL/IL-12 can cause tumor regression in a mouse
model of melanoma [4]. This debulking is a consequence of
both tumor cell lysis, as well as immune system stimulation
resulting from the local release of 4-1BBL and IL-12. Ad/4-
1BBL/IL-12 can also be combined with intratumorally in-
jected dendritic cell (DC) vaccines, resulting in a greater
antitumor response than elicited by either treatment alone
[4]. DCs are immune cells that present antigens to other cells
of the immune system. Antigen presentation triggers an
adaptive immune response that results in the immune
system actively seeking out cells expressing the presented
cancer antigen [9]. Huang et al. developed DC vaccines by
harvesting DCs from the bone marrow of tumor-bearing
mice, and exposing them ex vivo to tumor-associated an-
tigens until maturation [4].

Given the combined effectiveness of Ad/4-1BBL/IL-12
and DC injections, it is natural to ask in what order, and at
what dose, one should administer these therapeutics to
elicit the maximal antitumor response. This is an experi-
mentally time-consuming and costly question to address.
Mathematical-modeling techniques can help answer
questions about complex biological systems without the
associated experimental costs [10]. Differential equation
models (frequently paired with experimental data) have
been successfully used to improve treatment protocols
involving oncolytic viruses [11-16]. Previously, we hier-
archically developed and fit a mathematical model to the
experimental data in Huang et al. [4]. This system of or-
dinary differential equations, involving six variables and
fourteen non-initial-condition parameters, was shown to
well describe the dynamics of OVs enhanced with one or
more immunostimulatory molecules (4-1BBL, IL-12, or
both), DC injections, and DC injections coupled with
Ad/4-1BBL/IL-12 [17-19]. Note that for each treatment
protocol, the model was fit to the average tumor volume
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data (averaged over the 8-9 mice in the treatment cohort,
with some consideration of the standard deviation in the
data).

Using the best-fit parameters obtained from the hier-
archical fitting to the average, we previously discovered that
administering three doses of OVs followed by three doses of
DCs (OV-OV-OV-DC-DC-DC) is the optimal drug or-
dering [18] when constrained to considering the drug dosing
and spacing used by Huang et al. [4]. Further analysis,
however, led us to doubt the robustness of this prediction.
First, we found that the doses of Ad/4-1BBL/IL-12 and DC
used in Huang et al’s experiments [4] were near a bi-
furcation point; that is, slightly altering the dose or sequence
could drastically change the efficacy of the protocol [18]. A
tull-scale robustness analysis of optimal protocols using the
Virtual Expansion of Populations for Analyzing Robustness
of Therapies (VEPART) procedure confirmed that our
originally predicted optimal strategy is fragile [19].

The fragile nature of the optimal protocol raises doubts
about whether it will actually be effective in individual mice in
the experimental population, as individual mice generally have
dynamics that deviate from the average. And, in the era of
personalized medicine [20, 21], there is a strong emphasis on
tailoring treatment protocols to individual patients. However,
the difficulty of collecting and analyzing patient-specific data,
especially in the face of intratumor and temporal heteroge-
neity, makes personalizing therapy a real challenge [22]. Even
individualizing a mathematical model is a highly nontrivial
task, as it often requires finding the best-fit parameters in
a high-dimensional parameter space, given a very limited
amount of data about the individual. Therefore, before we can
explore the challenging question of personalizing therapy using
our model, we ask the following questions: does our mathe-
matical model require all six variables and fourteen parameters
to adequately describe the data? Or, can we simplify the
structure of the model (number of variables and parameters) in
order to make the model more amenable to personalization
while retaining the goodness of fit to the experimental data?
These are the questions that we answer in this work.

This paper is organized as follows. First, we briefly in-
troduce the reader to the previously developed mathematical
model of tumor growth and treatment with Ad/4-1BBL/IL-12
and DCs [17, 18]. Second, we introduce a collection of
methods that we employ to test whether our original model is
minimal in its structure. Third, we argue that the original
model is not of minimal structure, supported by evidence from
parameter 95% credible intervals, local and global sensitivity
analyses of parameters, and a soft/stiff parameter analysis. This
leads us to propose a minimal model that contains five var-
iables (one less than the original model) and eleven non-initial
condition parameters (three less than the original model).
Next, we show that this minimal model fits the experimental
data as well as the original model, and we further argue that the
model is not too simple for describing Huang et al’s exper-
imental data [4]. We conclude by showing that the minimal
and original models make qualitatively similar predictions
about the efficacy and robustness of treatment protocols not
considered in our experimental dataset, which serves to fur-
ther validate the sufficiency of the minimal model.
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2. Methods

We begin by introducing the previously developed mathe-
matical model that describes tumor-immune dynamics
subject to treatment with either OVs, DCs, or both [17, 18].
We then expound upon the variety of techniques that we
utilized to address whether the model is minimally struc-
tured, given the experimental data it was designed to fit.

2.1. Original Mathematical Model. Our original model
contained the following six ordinary differential equations:

Z—ger—ﬁ%—(KoJkamI)UWT’ U(0) =U,, (1)
%=/ﬁ)%‘511‘(’% +Ckilll)%’ 1(0) =0, (2)
“;—‘: = uy (t) + adI-6yV, V(0)=0, (3)
Z_f = cpl +x,A+xpD-6;T, T(0)=0, (4)
Z—f =c,I-8,A, A(0) =0, (5)
%3 =up (t)-0p,D, D(0)=0. (6)

When all parameters and time-varying terms are posi-
tive, this model captures the effects of tumor growth and
response to treatment with Ad/4-1BBL/IL-12 and DCs. By
allowing various parameters and time-varying terms to be
identically zero, other treatment protocols tested in Huang
et al. can also be described (e.g., adenovirus that only me-
diates the release of 4-1BBL) [4]. These other models are
defined more explicitly after the description of the full
model.

In Equation (1), uninfected tumor cell volume, U, grows
exponentially (at a rate r), and upon being infected by an
oncolytic adenovirus, V, converts to infected cancer cell
volume, I, at a density-dependent rate (SUV/N), where N is
the total volume of cells (tumor cells and tumor-targeting
T cells, T). The tumor-targeting T cells indiscriminately kill
both uninfected and infected tumor cells, with the rate of
killing depending on the amount of IL-12 and 4-1BBL
production (modeled through I in the term (x, + ¢y l)).

In Equation (2), newly infected tumor cell volume is
accumulated at a rate of BUV/N. The infected cells, I, are
lysed by the virus or other mechanisms (at a rate of §;), thus
acting as a source term for the virus by releasing free virions
into the tissue space (with « virions released on average per
cell, seen in Equation (3)). We again see the tumor-targeting
T cells in action, killing I (modeled in the term (x, + ¢j5,1)).

In Equation (3), treatment with OV’ is represented with
the time-dependent term uy, (¢), determined by drug delivery
and dosing schedules of interest. Due to lysis of I, «a virions
are released on average per cell lysed, as discussed earlier.

Virions are not impacted by the T cell population—any loss
of virions is due to natural decay, Jy.

Equations (4) and (5) describe how the population of
T cells, T, and naive T cells, A, change in time. The activation
and recruitment of tumor-targeting T cells can happen in
three ways: (1) through stimulation of the naive T cell pool,
which at rate y, can asymmetrically divide to give rise to
tumor-targeting T cells, due to increased IL-12 (and modeled
as proportional to I, at a rate of c,, as infected cells are the
ones to release IL-12); (2) through stimulation of cytotoxic
T cells due to increased 4-1BBL (also modeled as pro-
portional to I, at a rate of ¢y ); and (3) through production of
T cells due to the externally primed dendritic cells, D, (at
arate of y, ). T cells and naive T cells also experience natural
death (at rates of §; and 6§, respectively).

Equation (6) describes how the population of injected
dendritic cells changes over time. The time-dependent term
up, (t) represents the treatment with DCs, determined by the
drug delivery and dosing schedule of interest. Dendritic cells
decay at a rate of §p,.

The data from Huang et al. was measured as tumor
volume versus time for a variety of treatment protocols,
averaged over 8-9 mice per protocol [4]. The treatment
protocols increased in complexity, and therefore, our full
model was designed and validated hierarchically against
each dataset as follows:

(i) Model I: No OV or DC treatment. Under no treat-
ment, tumor data are modeled using Equation (1)
only, with all parameters other than r set to 0.

(ii) Model 2: Treatment with OV that replicate and lyse,
but do not mediate the release of cytokines and
costimulatory molecules. Tumor data under this
treatment are modeled using Equations (1)-(3) with
K, and ¢y set to 0.

(iii) Model 3: Treatment with OVs that lyse tumor cells
and

(a) mediate the release of 4-1BBL (Ad/4-1BBL).
Tumor data under this treatment are modeled
using Equations (1)-(4) with y, and yp pa-
rameters in Equation (4) set to 0.

(b) mediate the release of IL-12 (Ad/IL-12). Tumor
data under this treatment are modeled using
Equations (1)-(5) with ¢y and y, parameters in
Equation (4) set to 0.

(c) mediate the release of both IL-12 and 4-1BBL
(Ad/4-1BBL/IL-12). Tumor data under this
treatment are modeled using Equations (1)-(5)
with y, parameter in Equation (4) set to 0.

(iv) Model 4: Treatment with DCs only. Tumor data
under this treatment are modeled using only
Equations (1), (4), and (6). Equation (4) has ¢y and
X parameters set to 0 in this case, and Equation (1)
has 8 set to 0.

(v) Model 5: Treatment with Ad/4-1BBL/IL-12 and DCs.
This is modeled using the entirety of the system in
Equations (1)-(6).



The experimental data increase from simple to more
complex, allowing us to fit the model parameters in a hi-
erarchical fashion. For instance, using Model 1, we fit the
tumor growth rate r to the control data in which the tumors
grew without treatment. The best-fit value of r was then used
in subsequent versions of the model. Using previously fit
parameters allowed us to reduce the dimension of parameter
space at each step of the model development and fitting
process. More details on the hierarchical development of the
model can be found in our previous studies [17-19].

2.2. 95% Credible Intervals and Local Sensitivity Analysis.
In our original works [17, 18], a single best-fit value was
determined for each parameter in system (1)-(6). In our later
work [19], we expanded our understanding of the best-fit
parameter values by identifying the potential distribution for
each parameter. We did this by creating one thousand
bootstrap replicates [23] from each of our experimental
datasets (control, Ad only, Ad/4-1BBL/IL-12, etc.,) [19].
Each bootstrap replicate was created by sampling the N mice
in the original experimental dataset with replacement. The
best-fit parameter values were found for each bootstrap
replicate, and these were used to estimate the posterior
marginal distribution on each fit parameter. In other words,
each distribution we approximate is the distribution of the
sample average of a parameter value, for one thousand
populations of size N. The interval in which we can be 95%
certain that the true value of the parameter is found, the 95%
credible interval, was then calculated from these approxi-
mated distributions. This is done by excluding the values that
fall in the extreme tails of the distribution (2.5% of values in
each tail). In this work, we identify poorly constrained
parameters (that may not be needed in a minimal model) as
those with very large 95% credible intervals.

We have previously performed a local sensitivity analysis
on the full system in Equations (1)-(6), along with the
submodels that describe the simpler treatment protocols
detailed above [19]. The parameters we focus on are the ones
whose values could not be readily ascertained from exper-
iments, as detailed in [18]. For each submodel, our local
sensitivity analysis entails performing an exhaustive search
about the best-fit parameters and identifying all parameter
sets that give a fit within 10% of the optimal fit.

The optimal fit is defined as the set of parameters that
minimize the goodness-of-fit metric { [19]:

model _

2
(=Y Vru) (7)

: o

where v, is the average experimental tumor volume at day t,
vinodel s the tumor volume at day ¢ predicted by the sub-
model under consideration, and ¢7 is the variance in the
experimental tumor volume at day ¢. The fractional term in
Equation (7) is a dimensionless measure of the error in
which the sum of the square error is divided by the variance
in the experimental data. In this way, we require better fits to
the average volume when the variance is small, in accor-
dance with the principle of maximum likelihood estimation
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[24]. However, because instrumentation error in volume
measurements is independent of tumor volume, calipers are
imprecise for smaller tumor sizes [25, 26]. For this reason,
we weigh the dimensionless term in Equation (7) by the
average tumor volume, as this does not artificially bias the
algorithm to fit well at small tumor sizes at the expense of
fitting well over a majority of the data points [19].

In this work, we use these data to identify parameters
that the model is highly insensitive to (parameters that can
vary widely without affecting the goodness of fit of the
model). We then consider fixing each of those parameters
or even restructuring the equations to remove such pa-
rameters all together.

2.3. Global Sensitivity Analysis. We next take a more holistic
view of parameter space by performing a global sensitivity
analysis using the Sobol method [27]. To do this, we view
parameter space as our input space, and the tumor volume as
predicted by the corresponding DE submodel in Equations
(1)-(6) as the output space. The Sobol method allows us to
determine how much of the total output variance is due to
each individual parameter. If the Sobol Index corresponding
to a particular parameter (defined below) is small, the model
dynamics are insensitive to varying that particular
parameter.

To use the Sobol method, we first determine a realistic
domain for each parameter in the model. Define the vector p
such that each element of the vector corresponds to a pa-
rameter in our model, specified in Equations (1)-(6):

p=[r B xy i O & 8y cr xa Xp Or ca 64 Opl. (8)

The full set of choices for each element of the vector p
defines the 14 dimensional parameter space P; though in all
of our analyses, we only consider a subset of this vector. We
assume a uniform distribution for each parameter in the
parameter space, where the minimum and maximum value
for each parameter is determined from its 95% credible
interval.

Here, we define the total output space as all possible
values of y = f(p), where for a particular choice of pa-
rameters p € P, we define

final

t

fo)=[ "wo o ©)
where U (t) and I(t) are elements of the solution to the
original model (1)-(6), for the particular choice of param-
eters p with time t = 0 to t = t,,;, here 30 days.

In order to determine how the output varies with each
parameter, we consider how much each parameter con-
tributes to the total variance of the output space [27, 28],
var{y}. First we calculate the total variance of y over the full
parameter space, var{y}. If possible, we would next calculate
the variance of y, given the true value of p; = p;, var{y|p;}, to
determine how much variance is lost due to p; being fixed.
However, we do not know the true value of p;. Instead, we
calculate the first-order sensitivity index (Sobol Index) for
each of the i parameters, S;, by calculating the expected value
of y over all other parameters conditioned on each value of
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pi: h(p;) = E[ylp;]. We then compute the variance of the
conditional expectation: var [k (p;)].

S; is then defined as the amount that the parameter p;
contributes to the total variance, normalized by the total
variance:

g var[h(p)] _ var[h(p)]
ovarlyl [ f(P)dP

(10)

where, as previously stated, the range of values considered
for each parameter p; is determined by its associated 95%
credible interval.

Sobol’s key insight involves using an ANOVA de-
composition to calculate the above variances [27, 28]. This
allows for practical numerical simulations that employ
Monte Carlo simulations to calculate the Sobol Indices [27].
In this study, we utilized an available MATLAB toolbox,
GSAT, to calculate all of the reported Sobol Indices using
the FAST method and Sobol distributions for sampling.
(https://www.mathworks.com/matlabcentral/fileexchange/
40759-global-sensitivity-analysis-toolbox). When Sobol’s
method determines that varying a parameter over its domain
causes y to change minimally, S; will be small. Because such
a p; does not contribute much to the overall variance of the
output, the model is considered insensitive to the value of
that parameter. On the contrary, when varying a parameter
over its domain causes y to greatly vary, S; will be large. A
model is sensitive to parameters p; corresponding to large S;
values.

2.4. Parameter Sloppiness Analysis. It is well established that
the quantitative behavior of multiparametric biological
models is much more sensitive to changes in certain com-
binations of parameters than to others, a phenomenon known
as “sloppiness” [29]. Herein, we will use an established
methodology (see [29, 30] for more details) to identify
parametric combinations to which the model is highly sen-
sitive (i.e., stiff directions) and combinations to which the
model is highly insensitive (i.e., soft directions). This is done
by performing an eigenvector decomposition of the Hessian
matrix corresponding to our cost function in Equation (7).
Large eigenvalues correspond to stiff eigendirections, whereas
small eigenvalues correspond to the soft eigendirections
[29, 30].

The foundational step of performing a sloppiness
analysis is to compute the cost manifold [30]. We do this by
identifying all points in parameter space that give a fit within
10% of the optimal (generated for the previously-described
local sensitivity analysis). The data are then normalized in
two ways. First, the value of each parameter is scaled by the
optimal value of that parameter, hence the normalized axes
we see in Figure 1. Second, for each parameter set {p;}, we
define the cost function c({p;}) to be the deviation in the
value of { at that parameter set {p;} compared with the value
of { at the optimal parameter set. As we are only interested in
parameters that give a fit within 10% of optimal, each point
shown in parameter space in Figure 1 has a c value in the

range 0 and 0.1. We then find the best-fit quadratic surface
describing c({p;}) using the polyfit package for MATLAB
(https://www.mathworks.com/matlabcentral/fileexchange/
34765-polyfitn). Once the best-fit quadratic surface has been
obtained (an example of which is visualized in Figure 1(a)),
its associated Hessian matrix can be computed. The ei-
genvalues and eigenvectors of this matrix allow us to identify
soft and stiff parameter directions.

We will first employ this analysis to study whether the
OV model has any redundant parameters. This means we
will compute ¢ ({p;}) as a function of the T cell parameters
(ca» €p> Cqp) in Model 3¢, which is our model of treatment
with Ad/4-1BBL/IL-12 only. We choose to focus on the T cell
parameters because our local sensitivity results (see Sec-
tion 3.1) suggest that the model is most insensitive to these
parameters. The second question we will explore is whether
the model is too simple to describe the experimental data. To
this end, we turn to one of the major simplifying as-
sumptions we made: that tumor growth is exponential in the
absence of treatment, and we consider instead a model
without any treatment (u, (¢) = up (t) = 0 Vt) in which tu-
mor growth is logistic instead of exponential. In this case,
Model 1 is replaced with the model:

au _ U 1_2
dr ~ )

U0 =U,

(11)

and we will be working in (p,, p,) parameter space, where
P, is the tumor growth rate (comparable to r in the original
Model 1), and p, is the tumor-carrying capacity. We
perform a parameter sloppiness analysis to assess the
carrying capacity’s impact on the fit of the model to the
data. While there are other intrinsic tumor growth terms
that could be considered, and other structural terms in the
model we could analyze, we focus on the exponential
growth term because prior studies have indicated better fits
to cancer growth data using functional forms other than
exponential growth [31].

2.5. Robustness Analysis. Once we propose a minimal sys-
tem, we need to validate that this reduced system and the
original system in (1)-(6) make qualitatively (and possibly
quantitatively) similar predictions. One way to do this is to
compare the fits of the original and reduced models with the
data. As a further way to validate the proposed minimal
system, we will employ the Virtual Expansion of Populations
for Analyzing Robustness of Therapies (VEPART) method
[19] to see if the original and reduced systems make similar
predictions about treatment efficacy in situations for which
we do not have experimental data.

The VEPART method is a way to not only predict op-
timal treatment protocols, but to assess the robustness of
those protocols. To detail, when a dataset is mathematically
modeled, typically the model is fit to the average experi-
mental data (tumor volume at each time point averaged over
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FIGURE 1: An example illustrating the ellipsoidal nature of the cost function near the best-fit parameters for Equation (10). Note that parameters
on each axis are scaled by the optimal value, indicated with a*. Only parameters where the cost is less than 0.1 (deviation from optimal value of {
is 10% or less) are shown. (a) Also shows the contours of the best-fit quadratic surface to this data. (b) Also shows the eigenvectors of the
associated Hessian matrix. The near-vertical eigenvector (which appears less vertical than it actually is due to axes scaling) has A, = 11.9947 with
7, = [0.11857,-0.99295], and the near-horizontal eigenvector has A, = 5686.0 with ¥, = [0.99295,0.11857].

the N mice in the treatment cohort). From a model that well
describes the average data, optimization techniques can be
utilized to identify the best way to control the tumor, given
the drugs under consideration and any constraints on their
usage. However, a protocol that is optimal for treating the
“average” tumor may or may not be effective in a tumor
whose dynamics deviate from the average. If a protocol
elicits the same qualitative response in samples that deviate
from the average, we call the protocol robust. If a protocol
results in a qualitatively different treatment response in
samples that deviate from the average, the protocol is
classified as fragile [19].

We have previously undertaken a robust/fragile treatment
analysis of system (1)-(6) using the VEPART method [19].
This method, which is summarized in Figure 2, begins with
time course data from a sample population, for which
a mathematical model is developed and fit to the average of
this data. Bootstrapping of the data allows for an estimation of
the posterior distribution on each of the fit parameters (in our
case, at different stages of the hierarchical model development
process). The distributions are then pseudorandomly sam-
pled, only selecting values within the 95% credible interval,
and selecting simultaneously fit parameters together to pre-
serve the covariance structure in the data. This procedure
results in a full parameterization of the mathematical model,
which we call a “virtual population.” We generate 1000 such
virtual populations, perform an optimal treatment analysis on
each population, and compare treatment response across
virtual populations to assess robustness. Full details of the
method can be found in [19].

In this work, we will apply the VEPART method to our
proposed minimal model and ask whether this model gives
qualitatively similar robust/fragile predictions as the original
model. If the reduced model indeed gives similar predictions,

this provides an additional level of validation that important
information was not lost by simplifying our original model to
the proposed minimal one.

3. Results and Discussion

3.1. 95% Credible Intervals and Local Sensitivity Analysis.
Here, we explore if any parameters can be fixed or removed
entirely from the model without compromising the goodness
of fit to the data by considering the following: (1) the 95%
credible intervals for each fit parameter and (2) the extent to
which a single parameter can deviate from its best-fit value
and still give a goodness-of-fit metric (a value of ) within
10% of the optimal value (Table 1).

If we start by looking at the 95% credible intervals (Table 1),
we find that three parameters (r, 8, and y,) have very tight
credible intervals. Here, tight means that the interval for which
we can be 95% certain that the true value of the parameter is
found only contains numbers that vary over at most one order
of magnitude. On the contrary, the T cell-related parameters
(ca» €1, and ¢;) have 95% credible intervals containing values
that vary over four to five orders of magnitude. This indicates
that we have much less certainty about the value of these T cell
parameters, and that the model’s fit to the data may not heavily
depend on their precise value.

To determine how much the fit depends on these pa-
rameters, we next consider how much a parameter value can
vary from its best-fit value and still give a goodness-of-fit
metric { within 10% of the optimal value. Using the data in
Table 1, the ¢, parameter, which represents the IL-12-
induced activation rate of naive T cells, stands out from
the other parameters. This parameter can vary by 17,300%
from its best-fit value while still ensuring the goodness-of-fit
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TaBLE 1: Best-fit parameters for the system in Equations (1)-(6) to the Ad/4-1BBL/IL-12 and DC data, along with the corresponding 95%
credible interval, as computed in [19]. Also shown is the maximum extent to which each parameter value can deviate from its best-fit value
and still give a fit within 10% of the optimal, as determined through a local sensitivity analysis [19].

Parameter Best-fit Maximum % deviation from best-fit value 95% credible interval
r r* =0.3198 3% [0.9287*,1.135r*]
B B* = 0.00100854 0.7% [0.9398*,1.0508"]
ca ¢} = 0.000517 17,300% [0.542¢%, 3321c% ]
cr ch = 1.6984 47.2% [0.005¢%, 2.445¢%]
Cral iy = 5.954x 1077 46.3% [0.00017cfy, 1.895¢;,]
o X}, = 4.6754 7% [0.856)5, 1.803y}]

metric ¢ is within 10% of the optimal value. No other pa-
rameters considered come close to being able to deviate this
much, with ¢p and ¢y having the next largest deviations at
only 47.2% and 46.3%, respectively. Furthermore, even
choosing c, =0 gives a fit within 10% of the optimal, as
shown in the cost function in Figure 3. Combining this local
sensitivity result with the very large 95% credible interval for
c, suggests we can set this parameter to zero in the model.
Since the model uses an initial condition of A (0) = 0, setting
¢ = 0 does more than just eliminate a parameter from the
model—it actually eliminates the entire variable A from the
model, since the only source term of A in Equation (5)
comes from the term c,I.

3.2. Global Sensitivity Analysis. To further our investigation,
we next expand our study of parameter sensitivity from a local
one to a global one. In particular, we conducted a Sobol
sensitivity analysis on the T cell parameters (c,, c1, ¢iq) that get

fit in the Ad/4-1BBL/IL-12 model (Model 3c). We found that
the first-order Sobol indices S, are given by S. = 0.3071,
S, = 0.2380, and S, = 0.1359. The larger the Sobol index is
for a parameter, the more sensitive the dynamics of the model
are to the value of that parameter. We see that ¢, has the
smallest Sobol index among the T cell parameters, in spite of
the large 95% credible interval used in its calculation.

Thus, the global sensitivity analysis further confirms the
local sensitivity analysis: the model appears most insensitive
to the choice of ¢ . Since we previously showed thatc, = 01is
a viable choice for the model to result in a goodness of fit
within 10% of the optimal fit, this lends more credence to the
notion that a minimal model could have ¢, = 0. And, as
previously argued, this means that a minimal model need
not include the A equation at all.

3.3. Parameter Sloppiness Analysis of Ad/4-1BBL/IL-12
Model. To further explore the hypothesis that we can set ¢, =
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0 and therefore remove the variable A from our model, we
conducted a sloppiness analysis of the Ad/4-1BBL/IL-12
model (Model 3c) in ¢y —cp— ¢y parameter space. We
found that the Hessian matrix corresponding to the best-fit
ellipsoid has the following eigenvalue-eigenvector pairs:

A, = 19.85095,
0.000545
. (12)
Vv, =0.708150 |,
0.706062
A, = 0.09225,
[-0.003656 ]
(13)
v, =| 0.706059 |,
[ -0.708144 |
A, = 0.00000,
[ 0.999993 1
- (14)
Vv, =| 0.002195
[ -0.002974 |

While the first two eigenvectors do not clearly point in
the direction of one of the parameters, the final eigenvector
clearly points along the axis of the first parameter (the c,
axis). Furthermore, the eigenvalue associated with this ei-
genvector is very small. Such a small eigenvalue means the
length of the ellipsoid along the direction of that eigenvector
is very large, and therefore, the ¢, parameter can be classified
as a soft parameter whose value has a minimal impact on the
model dynamics.

3.4. A Minimal Model. Taken together, these analyses sug-
gest that ¢, can be fixed (at zero, as argued above), and

therefore that the A variable can be removed from system
(1)-(6) without sacrificing model fit to the data. If we remove
the variable A from consideration, the parameters c,, x,,
and §, are no longer needed. This leaves us with the fol-
lowing minimal model which contains five variables (one less
than the original) and eleven non-initial condition pa-
rameters (three less than the original):

du uv
=rU

uT
Tkl —ﬂW—(KoJkaiuI)W’ (15)
dI uv IT
P :/3?_511_(’“0 +Ck111[)ﬁ’ (16)
6;—‘; = uy (1) + ad - 8y V, (17)

T

T crl + xpD - 61T, (18)
‘Z—It) = up (£) = 8D, (19)

When considering the treatment protocol Ad/4-1BBL/IL-
12, the ¢ parameter in this minimal model represents the
joint impact that 4-1BBL and IL-12 have on recruiting tumor-
targeted T cells. If we were considering only treatment with
Ad/4-1BBL, ¢ represents the singular impact 4-1BBL has,
and if we were only considering treatment with Ad/IL-12, ¢y
represents the singular impact of IL-12 on T cell recruitment.
The interpretation of all other parameters has not changed
from the original model.

We have repeated the process of hierarchically finding
the best-fit parameters for this minimal model, and its
submodels corresponding to the different treatment pro-
tocols (Models 1-5, as detailed previously). Table 2 gives the
value of the best-fit parameters, along with the percent
change in their values compared with the original model.
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TABLE 2: Best-fit parameter values for the minimal model in Equations (11)-(15), along with the change in the goodness-of-fit metric { for the
submodel of Ad/4-1BBL/IL-12 (Model 3c), and the full model for Ad/4-1BBL/IL-12 with DCs (Model 5). Also provided is the model number
(which stage of the hierarchy) that was fit to arrive at the given parameter value. Once a value has been fit, it is used in all subsequent models.

Value Best-fit (minimal model) % deviation from original model Model
r 7 =0.3198 0% 1
B B = 0.00100854 0% 2
cr &p = 1.428064 ~15.92% 3¢
Cal G = 6.234x 1077 +4.7% 3
o ¥p = 4.901894 +4.84% 4and 5
Value % change in ( from original model
Cadja-1BBLIL-12 +3.05%

Ad/4-1BBL/IL-12+DC —0.08%
These changes ranged from a 16% decrease to a 5% increase e
in the value of a single parameter (see Table 2). AIC = nln(;) + 2k, (20)

Figure 4 illustrates how well the full model (Ad/4-
1BBL/IL-12 and DCs) and submodel 3¢ (Ad/4-1BBL/IL-
. . ) . . 4 2nk

12, at two different doses) in their original and minimal AICc = nln() b (21)
forms fit the experimental data. Visually, the fits to the data n) n-k-1
from the minimal model (Figure 4(b)) and the original ‘
model (Figure 4(a)) are so similar they cannot be distin- _ 6
guished. Therefore, to quantify how the fit has changed from BIC = nln<n> +kln(n), 22)

the original model to the minimal model, we compare the
goodness-of-fit metric { in each case (see Table 2). Recall the
goal of parameter fitting was to minimize ( ; therefore, an in-
crease in { means the model is a worse fit to the data, and
a decrease in ( means the model is a better fit to the data. We
found that the goodness-of-fit metric (combined for both doses)
went up about 3% (3% worse fit) for submodel 3c describing
treatment with Ad/4-1BBL/IL-12. Surprisingly, and likely at-
tributable to the random nature of the simulated annealing
scheme used to fit the parameters (see [19] for details), the
goodness-of-fit metric actually went down insignificantly
(0.08% better fit) in the full model accounting for Ad/4-
1BBL/IL-12 and DCs. This allows us to conclude that the
minimal model describes the experimental data as well as the
original model.

3.5. Is the Minimal Model Too Simple? We have demon-
strated that our minimal model is sufficient to describe the
experimental data when tumors are treated with Ad/4-
1BBL/IL-12 either in isolation or in combination with DC
injections. Here, we explore the question of whether the
model is too simple to describe the data. To begin, we
turned to the model selection methods of Akaike in-
formation criterion (AIC) [32] and its variant AICc which
corrects for small sample sizes [33], along with Bayesian
information criterion (BIC) [34]. These can be used to
evaluate different models and assign a numerical score to
each model based on the goodness of fit to the data and the
number of parameters in the model. This allows models
based on different assumptions to be compared, with the
aim of identifying the most plausible model [35]. To further
validate our prediction that the minimal model is sufficient
to describe the experimental data, we calculate the AIC,
AICc, and BIC under the assumption that absolute model
error is independent and normally distributed [35]:

where # is the number of time points for which we have data
and k is the number of model parameters. Note we are using
a modified version of these formulas to correspond with our
goodness-of-fit function, . All three criteria assign the lowest
score, and therefore “select,” our minimal model of Ad/4-
1BBL/IL-12 + DCs over the original model (see Table 3).

This information theoretic approach suggests that our
minimal model is not too simple, when compared with the
original model. However, it does not consider other com-
ponents of the model that may make it too simplistic. To
further investigate how much model complexity is needed to
adequately describe the data, here we explore the impact of
using a two-parameter growth model, the logistic equation
(Equation (10)) to describe tumor growth without treatment.
This is in comparison with the currently used one-parameter
exponential growth term.

We approach this using a parameter sloppiness analysis.
Since this model contains only two parameters, the analysis
occurs in two-dimensional parameter space, which allows
for nice visualizations of the results (see Figure 1). In par-
ticular, in Figure 1, we see all normalized points in p, — p,
parameter space that give a goodness of fit within 10% of the
optimal fit. In Figure 1(a), we can see the best-fit ellipsoid to
this data, and in Figure 1(b), we see the eigenvectors of the
Hessian associated with this ellipsoid.

We find that the tumor growth rate, p,, is a stiff pa-
rameter, as the eigenvector extending nearly along the p,
axis has relatively large eigenvalue of A =~ 5686. This means
the value of p; cannot deviate significantly from the optimal
and still give a strong fit to the data. On the contrary, p, is
a soft parameter, as the eigenvector extending nearly along
the p, axis (distorted in figure due to scaling differences in
the horizontal and vertical axis) has a small corresponding
eigenvalue of A = 12. This means that the value of p, can
deviate significantly from its optimal value and still give
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FIGURE 4: Experimental data from Huang et al. in which mice with B16-F10 subcutaneous tumors are intratumorally injected with different
treatment protocols [4]. Data points represent mean tumor volume + standard error in each group of 8-9 mice. All Ad/4-1BBL/IL-12 injections
occur on days 0, 2, and 4, and DC injections, when given, occur on days 1, 3, and 5. Also shown in (a) are the best-fit solution curves from the
original model presented in Equations (1)-(6) and in (b) are the best-fit solution curves from the minimal model presented in Equations (11)-(15).

TaBLE 3: Values of AIC, AICc, and BIC for both the original and
minimal model of Ad/4-1BBL/IL-12 + DCs.

Original model Minimal model

AIC 325.3096 319.3474
AlCc 350.6029 339.2206
BIC 339.3096 327.3474

a strong fit to the data. As p, represents the carrying capacity
in the logistic growth term, this says that the model for
tumor growth is highly insensitive to the value of the car-
rying capacity. Since expanding the model to include logistic
growth instead of exponential growth would introduce a soft
parameter, we conclude that it is sufficient to use an ex-
ponential growth term to capture tumor behavior without
treatment. The sufficiency of using an exponential growth
term can be explained by revisiting the experimental
data—the time scales for which tumor growth is considered
are sufficiently short that the tumor is still in its near-
exponential growth regime (even though its growth
would eventually plateau). Hence, the model is highly in-
sensitive to the choice of a carrying capacity, and the added
complexity is not needed in this model.

3.6. Robustness Analysis. We have presented a variety of
evidence that system (11)-(15) represents a minimally, but
not too minimally, structured model describing treatment
with immuno-enhanced OVs and dendritic cell injections.
Here, we will create “virtual populations,” as indicated in the
VEPART method, to classify various treatment protocols as
either robust (effective in a large fraction of virtual

populations) or fragile (ineffective in a large fraction of
virtual populations). If the minimal model and original
model yield similar predictions, this lends further support
that the dynamics we are interested in capturing are ade-
quately described by the minimal model.

The constraints imposed on this analysis were based on
the experimental design in [4], and are as follows: (1) one
treatment is administered per day, (2) there are six days of
treatment, with three of the days being Ad/4-1BBL/IL-12,
and three being DCs, and (3) the dose is fixed at the dose
used in the experimental work [4], or a different fixed dose if
specified. This results in twenty possible treatment protocols
per fixed dose, and these protocols are then ranked from
quickest time to tumor eradication (defined as tumor vol-
ume dropping below that of a single cell, estimated to be
107 mm’), to the largest volume after thirty days [19].

In our robustness analysis of the original model, the
protocol of OV-OV-OV-DC-DC-DC was found to be
optimal for the dose used in the experimental data. This
was deemed the optimal protocol because it led to tumor
eradication in the largest fraction of the 1000 virtual
populations [19]. However, the response to this “optimal”
protocol varied significantly across virtual populations, as
shown in Figure 5(a). The “optimal” protocol was the best
protocol to apply in 72.2% of the virtual populations, but
was the worst protocol to apply in 13.8% of the virtual
populations. Therefore, we previously classified the doses
used in the experiments of Huang et al. [4] as fragile, since
different virtual populations have a very different response
to the same treatment protocol, including the one pre-
dicted to be “optimal.”
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FiGure 5: VEPART output at the experimental dose of Ad/4-1BBL/IL-12 and DCs used in Huang et al. [4]. The x axis indicates each of the 20
treatment protocols tested, with “V” representing Ad/4-1BBL/IL-12 treatment and “D” representing DC treatment on a given day. For each
of the 20 treatment protocols, we see the frequency at which it ranks in positions 1 (best protocol) to 20 (worst protocol) for (a) the original
model in system (1)-(6) and (b) the minimal model in system (11)-(15).

Here, we repeated the robustness analysis at the ex-
perimental dose used in Huang et al. [4] on the minimal
model, and the results are shown in Figure 5(b). The
protocol found to optimize treatment response in the
minimal model is the same as in the original model, which
is a good indication that the two models have similar
dynamics. Furthermore, the “optimal” protocol was the
best protocol to apply in 77.4% of the virtual populations
(+5.2% from original model), but was the worst protocol to
apply in 9.4% of the populations (-4.4% from original
model). In other words, the optimal predicted at the ex-
perimental dose used in Huang et al. [4] is fragile whether
or not we assess robustness using the original model or the
minimal model.

The VEPART method was also applied to the original
and minimal model in two regions of dosing space that
differ from the experimental dose used in Huang et al. [4].
First, we considered increasing the Ad/4-1BBL/IL-12 dose
by 50%, while simultaneously decreasing the DC dose by
50% (high OV/low DC). In the original model, the optimal
at the high OV/low DC dose remained OV-OV-OV-DC-
DC-DC [19], and this treatment proved to be more robust
than the same treatment at the experimental dose. The same
qualitative result holds when we consider the minimal
model (data not shown).

Next, we considered decreasing the Ad/4-1BBL/IL-12 dose
by 50%, while simultaneously increasing the DC dose by 50%
(low OV/high DC). In this case, the optimal treatment

predicted by both the original and the minimal model is DC-
DC-DC-OV-OV-OV. In the original model, this optimal
proved to be the most robust of all, as it caused tumor
eradication in a significant majority of the virtual populations
(84.2%, see Figure 6(a)), and it ranked as the best protocol in
100% of the virtual populations [19]. In the minimal model,
the optimal protocol still proves to be the most robust protocol
considered, causing tumor eradication in 95.4% of the virtual
populations (+11.2% from original model). And, just like for
the original model, in the minimal model, the treatment ranks
as the best protocol in 100% of the virtual populations.
Therefore, despite some quantitative changes, the main
conclusion of our VEPART analysis remains unaltered
whether we consider the original or the minimal model: the
experimental dose used in Huang et al. [4] is still fragile (see
Figure 5(b)), and we do not recommend treating at this
region of dosing space. Instead, treatments should occur in
the low OV/high DC region of dosing space, as the optimal
protocol of DC-DC-DC-OV-OV-OV is predicted to be
robust (see Figure 6). The similar nature of the predictions
from the original and the minimal model lends further
support to the sufficient nature of our minimal model.

4. Conclusions

In this study, we tackled a common challenge faced by
mathematical biologists: identifying when one has developed
a minimal model to describe an experimental dataset. Our
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FIGURE 6: VEPART output at the low OV/high DC dose. The x axis indicates each of the 20 treatment protocols tested, with “V” representing
Ad/4-1BBL/IL-12 treatment and “D” representing DC treatment on a given day. For each of the 20 treatment protocols, we see the frequency
of virtual populations for which the specified treatment protocol leads to tumor eradication (blue) or tumor escape (yellow) for (a) the
original model in system (1)-(6), and (b) the minimal model in system (11)-(15).

approach combined the use of several methodologies, in-
cluding an analysis of 95% credible intervals, a local sen-
sitivity analysis, a global sensitivity analysis, a parameter
sloppiness analysis, an information criteria analysis, and
a comparison of model dynamics subject to a range of
scenarios (treatment protocols). Applying these approaches
to our model of oncolytic virus treatment in combination
with dendritic cell injections led us to uncover that a reduced
model, containing five (instead of six) variables and eleven
(instead of fourteen) non-initial condition parameters, is
sufficient and not too simplistic to describe the experimental
data in [4].

Although the results presented herein are particular to
one dataset and its corresponding model, these analyses can
be applied in many other scenarios where it is of value to
have an analytically tractable model with a minimal
number of parameters. That said, this was not a compre-
hensive study of all aspects of the model. While we focused
closely on robustness to perturbations in parameter values,
we did not consider robustness to initial conditions, or to
many of the functional forms used in the model, as has been
considered elsewhere [13, 36-39]. Further, we did not study
whether our ordinary differential equation model is
structurally identifiable, meaning its parameters can be
identified from perfect noise-free data, or if the model is
practically identifiable, meaning the parameters can be
identified in the case of imperfect, noisy data [40]. Despite
not considering all possible ways to analyze the sufficiency
of a mathematical model, we are able to simplify an existing
mathematical model while providing evidence that the
model is not too simple to describe important aspects of
treatment with oncolytic viruses and dendritic cell
injections.

While in many ways the approaches detailed herein run
counter to the current trend of developing mechanistic
models with significant biological detail, we believe that
minimal models with sufficient complexity hold significant
promise in the realm of precision medicine [20, 41, 42].
Precision/personalization raises a number of challenges,
a significant one being the often sparse data available on an
individual basis coupled with the high dimensionality of
parameter space, even in a minimal model like the one
proposed here. In future work, we will consider how global
sensitivity analyses can help to identify the most important
model parameters in a high-dimensional parameter space.
This will allow us to leverage our minimal model to perform
individualized fitting of mouse data, and to search for
personalized optimal treatment protocols.

Data Availability

Previously reported murine tumor volume data were used to
support this study. These prior studies (and datasets) are
cited at relevant places within the text as reference [4].
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