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Abstract - Numerous applications rely upon capillary flow in microchannels for success-

ful operation including lab-on-a-chip devices, porous media flows, and printed electronics

manufacturing. Open microchannels often appear in these applications, and evaporation of

the liquid can significantly affect its flow. In this work, we develop a Lucas-Washburn-type

one-dimensional model that incorporates the effects of concentration-dependent viscosity

and uniform evaporation on capillary flow in channels of rectangular cross section. The

model yields predictions of the time-evolution of the liquid front down the length of the mi-

crochannel. For the case where evaporation is absent, prior studies have demonstrated better

agreement between model predictions and experimental observations in low-viscosity liquids

when using a no-slip rather than a no-stress boundary condition at the upper liquid-air in-

terface. However, flow visualization experiments conducted in this work suggest the absence

of a rigidified liquid-air interface. The use of the no-stress condition results in overestimation

of the time-evolution of the liquid front, which appears to be due to underestimation of the

viscous forces from (i) the upper and front meniscus morphology, (ii) dynamic contact angle

effects, and (iii) surface roughness, none of which are accounted for in the model. When high-

viscosity liquids are considered, the large bulk viscosity is found to suppress these factors,

resulting in better agreement between model predictions using the no-stress condition and

experiments. Model predictions are also compared to prior experiments involving poly(vinyl

alcohol) in the presence of evaporation by using the evaporation rate as a fitting parameter.

Scaling relationships obtained from the model for the dependence of the final liquid-front

position and total flow time on the channel dimensions and rate of uniform evaporation are

found to be in good agreement with experimental observations.
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Introduction

Capillary flow is the ability of a liquid to flow in narrow spaces without the assistance of, or

even in opposition to, external forces. This phenomenon has been vigorously studied since

the early 20th century, with much current research focusing on understanding the underlying

physical mechanisms as well as exploring a diverse range of applications such as lab-on-a-

chip devices,1,2 porous media flows,3 soil and water repellency,4 heat pipes,5 and printed

electronics.6–8

Microchannels can be classified as closed or open. A closed channel is defined as one where

all walls are solid and an open channel as one with a liquid-air interface acting as an effective

wall. As a result of advances in lithographic fabrication techniques, open microchannels

with various cross-sectional geometries can be fabricated, including, but not limited to,

rectangular,9–12 trapezoidal,13 U-shaped,10 and V-shaped.14 The lack of a top provides access

to the inside of the channel. This access can be exploited in applications such as capillary

micromolding where cured structures are easily removed from within the microchannels after

solidification.15,16

Capillary flow in closed channels has been extensively investigated experimentally17–21

and theoretically.17,19,21–30 Theoretical models have focused on describing the liquid-front

position x as a function of time t. Lucas22 and Washburn23 proposed theoretical models

describing flow of a Newtonian liquid in cylindrical capillaries. Both assumed fully devel-

oped pressure-driven flow. In Lucas’22 work the driving pressure was the capillary pressure

gradient caused by the circular-arc meniscus front. In addition to the capillary pressure gra-

dient, the driving forces considered by Washburn23 included hydrostatic pressure gradients

and an imposed pressure difference between the two ends of the capillary. For a horizontal

capillary open at both ends, the hydrostatic and imposed pressure differences are absent,

and an analytical solution x2 = kt is obtained, commonly referred to as the Lucas-Washburn

equation, where k is known as the mobility parameter.

Rideal17 extended the work of Washburn23 by including inertial effects and assuming that

as the liquid enters the capillary, the velocity field is already fully developed. Bosanquet24

also included inertial effects, but instead assumed that the liquid entering the capillary has

zero velocity and instantaneously attains a fully developed velocity profile. This assumption

allowed Bosanquet24 to obtain an analytical solution describing the time-evolution of the

liquid-front position x, which could not be obtained from Rideal’s17 approach.
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The initial work of Lucas22 and Washburn23 has been extended to demonstrate that at

early stages the flow is dominated by inertial effects, resulting in x ∼ t.19 At later stages the

inertial effects are negligible and viscous effects dominate, resulting in x ∼ t1/2.17,22,23 Both

scalings have been confirmed experimentally. However, the Lucas-Washburn equation22,23

remains the most widely used model for capillary flow in closed microchannels due to its

simplicity.

Capillary flow in open microchannels has also been the subject of extensive experimen-

tal9–11,14,21,31–34 and theoretical10,14,21,35–39 investigation, with most studies focusing on V-

shaped cross-sectional geometries.14,31–37 Experimental investigations of capillary flow in

open channels have demonstrated that the scaling of x ∼ t1/2 seen in closed channels is

also observed at later stages. Several researchers10,21 have modified the Lucas-Washburn

equation,22,23 which was initially developed for closed cylindrical capillaries, to study cap-

illary flow in open channels and have compared model predictions to experimental results.

Some studies10,11 using this modified Lucas-Washburn equation report better agreement

with experimental results when a no-slip boundary condition is imposed at the upper liquid-

air interface, whereas other studies9,21 report better agreement when a no-stress boundary

condition is used. In this paper we address these conflicting results by conducting flow

visualization experiments and propose alternative explanations for the discrepancies.

A physical phenomenon present during capillary flow of volatile liquids in open mi-

crochannels is evaporation. In certain applications such as microfluidic devices used for

diagnostic tests, evaporation can result in undesirable changes in concentration of the test

liquid and therefore alter the test results.40 In other applications such as printed electronics

fabrication, the presence of evaporation is exploited by printing electronically active inks on

flexible substrates which can be integrated with roll-to-roll manufacturing processes resulting

in low-cost and high-throughput device fabrication.6–8 Examples of such electronic devices

include resistors, capacitors, and transistors.6–8

A drive to minimize the size of printed electronic devices has resulted in a recent effort

toward making multilayered electronic devices whose fabrication relies on capillary flow and

evaporation within open microchannels. This process is referred to as self-aligned capillarity-

assisted lithography for electronics (SCALE).6 The SCALE process involves depositing a

small volume of conductive ink in reservoirs connected to microchannels. Due to capillary

forces, the ink flows down the microchannel. During this filling step, the ink solvent evapo-

rates and conductive particles that were suspended in the ink are deposited on the underlying
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substrate to create electronic circuits. Hence, the quality and performance of the printed

device relies on controlling the competing phenomena of capillary flow and evaporation.

Experiments on capillary flow in open microchannel networks subject to evaporative

lithography were conducted by Lone et al.,16 where nano- and micro-particle suspensions

flowed into and filled the channels. After the flow had reached the end of a channel, subse-

quent evaporation of the carrier liquid resulted in deposition of the suspended particles on

the bottom of the channel, creating a two-dimensional continuous metal pattern. Although

particle suspensions were considered, the scaling x ∼ t1/2 was observed. However, the effect

of evaporation during the flow was not investigated.

One of the first studies to investigate the effects of evaporation on capillary flow in open

rectangular microchannels was conducted by Lade et al.12 Experiments were conducted in

a humidity chamber to control the rate of evaporation. Strong disagreement was observed

between the experimental results and the theoretical prediction based on no evaporation

(i.e., modified Lucas-Washburn equation10,21 subject to a no-slip boundary condition at the

upper liquid-air interface), which demonstrates the need for a model that accounts for the

effects of evaporation.

In this work, we address conflicting results from prior literature and investigate the effect

of uniform evaporation on capillary flow in open rectangular microchannels. We develop a

one-dimensional (1D) model that includes effects of concentration-dependent viscosity and

uniform evaporation. Capillary flow in the absence of evaporation is initially considered to

assess the validity of the no-slip condition that has been used in prior studies. Flow visualiza-

tion experiments are performed to identify the appropriate boundary condition at the upper

liquid-air interface. Potential explanations for the discrepancy observed between experimen-

tal observations and model predictions are also discussed. Finally, scaling relationships are

obtained from the model and compared to experimental data from Lade et al.,12 showing

good agreement.

Problem formulation

Governing equations

We consider an incompressible homogeneous solution of density ρ, viscosity η, and surface

tension σ flowing in an open rectangular channel of width W , height H, length L, and

inclination angle ψ relative to the x-axis (Figure 1). The solution has a Newtonian solvent
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Figure 1: Schematic of liquid undergoing capillary flow in an open rectangular channel. (a)

Top view and (b) isoperimetric view.

of density ρ, viscosity η0, and surface tension σ0. The rectangular channel is connected to a

reservoir of radius R. During flow, the solution is subject to a constant uniform evaporative

mass flux J . Our theoretical analysis is based on a Washburn23 and Rideal17 approach, hence

we assume the flow is driven by the capillary pressure gradient caused by the circular-arc

meniscus front, while viscous forces resist the flow. Depending on the channel inclination

angle, the hydrostatic pressure due to gravity promotes or inhibits liquid imbibition.

We begin with an integral conservation equation for linear momentum in a deformable

control volume,26,41–43

∂

∂t

∫
CV

ρudV +

∫
CS

ρu[(u−w) · n]dA =
∑

F, (1)

where CV and CS refer to the control volume and control surface, respectively, u is the

liquid velocity, w is the velocity of the control surface, n is the unit outward normal to

the control surface, and t denotes time. Equation (1) equates the rate of change of linear

momentum inside the control volume to the momentum flux across the control surface and

the sum of the forces acting on the control volume,
∑

F.

The control volume is taken to be a rectangular slab of width W , height h(t), and length

x(t). We assume a parallel flow, u(y, z) = u(y, z)ex, where ex is the unit vector in the

x-direction. Similar to Rideal,17 we assume the liquid already has a fully developed velocity

u(y, z) upon entry into the channel from the reservoir. At the inlet, w = 0, and at the liquid

front, w = u. At the upper liquid-air interface, u · n = 0 and w · n = dh/dt, where h(t) is

the liquid height. Note that at the solid walls, u · n = 0 and w = 0.

With these assumptions, conservation of linear momentum in the x-direction becomes

∂

∂t

[∫ x(t)

0

∫ h(t)

0

∫ W/2

−W/2

ρudydzdx

]
−
∫ h(t)

0

∫ W/2

−W/2

ρu2dydz−
∫ x(t)

0

∫ W/2

−W/2

ρu
dh

dt
dydx =

∑
Fx,

(2)
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where
∑
Fx represents the x-component of the forces acting on the control volume, and x(t)

is the front meniscus position, which, along with the liquid height h, is assumed to depend

only on time. General solutions to the Navier-Stokes equation relating u(y, z) to the depth-

and width-averaged velocity ux = dx/dt in the form of Fourier series for open10,21,45 and

closed2,27 rectangular channels have been worked out; an example for an open rectangular

channel is eq. (32) in the Appendix. The depth- and width-averaged velocity ux(t) = dx/dt

is defined as

ux(t) =
1

h(t)W

∫ h(t)

0

∫ W/2

−W/2

udydz. (3)

Upon integration and expansion of the sum of forces acting on the control volume, eq.

(2) becomes

ρxhW
d2x

dt2
+ [1− fo(λ)]ρhW

(
dx

dt

)2

= FC + FG + FV , (4)

where FC are the capillary forces, FG are the gravitational forces, and FV are the viscous

forces. The expression for the aspect-ratio function fo(λ) resulting from integration of the

second term in eq. (2) is given by eq. (34) in the Appendix. If one assumes (as done

elsewhere24) that the liquid entering the capillary has zero velocity and instantaneously

attains its fully developed velocity profile, then the inlet momentum flux in eq. (2) is zero

and the left-hand side of eq. (4) is (ρhW )d/dt[x(dx/dt)].

Gravitational forces

The gravitational-force term is given by

FG = −ρg sin(ψ)hWx, (5)

where g is the gravitational acceleration and ψ = [−π/2, π/2] is the channel inclination angle

relative to the x-axis.21 If ψ < 0 or ψ > 0, the gravitational force inhibits or promotes flow,

respectively. The limit ψ = 0 corresponds to a horizontal channel and the effects of the

gravitational force vanish.
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Capillary forces

We define the capillary number (ratio of surface-tension to viscous forces) as Ca = η0U/σ0,

where U is the characteristic liquid speed. By assuming Ca � 1, the capillary-force term

FC can be obtained using the approach reported by Good,44 which assumes the liquid-front

morphology is governed by fluid statics. The total free energy G due to the three-phase

contact line moving a distance x in the channel is given by G = σSLASL− σSVASV + σALV .

Here, σSL, σSV , and σ are the surface tensions for the solid-liquid, solid-air, and liquid-air

interfaces, and ASL, ASV , and ALV are the areas of those interfaces.

For the geometry we are considering, ASL = ASV = (W + 2h)x and ALV = Wx cos(θT ),

where θT is the upper liquid-air interface contact angle. We assume the upper liquid-air

interface is flat and parallel to the bottom of the channel (i.e., θT = 0).9,10,21,45 For a static

contact angle θ satisfying the Young equation, σ cos(θ) = σSV −σSL, the capillary-force term

is given by

FC = −dG
dx

= σW [cos(θ)(1 + 2λ)− 1], (6)

where λ = h/W is the aspect ratio based on the liquid height. The curvature of the liquid-

front meniscus responsible for driving the flow manifests itself via the contact angle θ. Here,

θ is the contact angle associated with the front liquid-air interface and the channel walls.

This expression for the capillary-force term has been used in prior studies of open microchan-

nels.9,10,21,45

Viscous forces

The viscous-force term is obtained by assuming a parallel flow, u(y, z) = u(y, z)ex, driven

by a pressure gradient in the x-direction. As noted earlier, u(y, z) can be related to the

depth- and width- averaged velocity ux(t) = dx/dt via Fourier-series solutions.2,27 For

closed rectangular channels, these solutions are subject to no-slip boundary conditions at

the liquid-solid interfaces. This approach allows for expression of the viscous forces as a

function of ux(t).

Similarly, general solutions are available for open rectangular channels.10,21,45 Conven-

tionally, the boundary condition imposed is no-slip at the liquid-solid interface and no-stress

at the upper liquid-air interface. However, Yang et al.10 found better agreement with their

experiments when considering no-slip at the upper liquid-air interface, which they attributed

to contaminant or surfactant accumulation. Therefore, both cases are included in our study.
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The final form of the viscous-force term thus depends on the imposed boundary condition

at the upper liquid-air interface,

FV =


− 3ηx

λζo(λ)

dx

dt
, no-stress boundary condition

− 12ηx

λζc(λ)

dx

dt
, no-slip boundary condition,

(7)

where ζo(λ) and ζc(λ) are aspect-ratio functions that depend on the boundary condition

imposed at the upper liquid-air interface, and are given by eq. (33) and eq. (36), respectively,

in the Appendix. A detailed derivation of the expressions for the viscous forces and the

aspect-ratio functions can be found in ref. 21.

Conservation of linear momentum

Using the expressions for the gravitational forces (eq. (5)), capillary forces (eq. (6)) and

viscous forces (eq. (7)), the expression for conservation of linear momentum (eq. (4))

becomes

x
d2x

dt2
+ [1− fo(λ)]

(
dx

dt

)2

= b− g sin(ψ)x− axdx
dt
, (8)

where the viscous coefficient a is

a =


3η

ρW 2λ2ζo(λ)
, no-stress boundary condition

12η

ρW 2λ2ζc(λ)
, no-slip boundary condition

(9)

and the capillary coefficient b is

b =
σ

ρWλ
[cos(θ)(1 + 2λ)− 1]. (10)

Total mass and species balances

The effects of uniform evaporation are considered by assuming the liquid is subject to a

constant uniform evaporative mass flux J . The evaporative mass flux is assumed to act only

in the region where the liquid height h is spatially uniform (i.e., away from the liquid front).

The liquid is assumed to contain a spatially uniform solute concentration φ = mp/(ms+mp),

assuming solvent and solute densities are equal. Here, mp and ms are the solute and solvent

masses, respectively. Concentration-dependent viscosity η(φ), surface tension σ(φ), and

contact angle θ(φ) are considered to account for the temporal evolution of the concentration

8



caused by solvent evaporation. Empirical relations obtained from prior experiments11 are

used to describe these concentration-dependent quantities and are presented later in the

paper. The effects of evaporation on the shape of the front meniscus are accounted for

via the concentration-dependent static contact angle. Note that any direct influence of

temperature on surface tension is neglected in this work.

A total mass balance across the upper liquid-air interface46 shows that

J = ρn · (u−w) (11)

where J is the constant uniform evaporative mass flux through the liquid-air interface, n = ey

is the unit normal to the upper liquid-air interface, u is the liquid velocity field and w is

the velocity of the interface. Since the upper liquid-air interface is assumed to be flat and

parallel to the xy-plane, n · u = 0. Upon rearrangement eq. (11) becomes

dh

dt
= −J

ρ
, (12)

which is used as the height evolution equation in our model to account for the effects of

uniform evaporation.

To account for the time-evolution of the solute concentration φ, we make the following

species mass balances for the solvent and solute,

dms

dt
= ρ(1− φ)hW

dx

dt
− JWx, (13)

dmp

dt
= ρφhW

dx

dt
, (14)

where the rate of change in mass is equal to the convected mass at the inlet minus the mass

lost due to evaporation (only present for solvent).

Scaling

To render the governing equations dimensionless, we scale our variables as follows:

x = Lx̄, t = T t̄, h = Wλ, ms =Mm̄s,

mp =Mm̄p, J =
ρσ0
η0
J̄ , η = η0η̄, σ = σ0σ̄,

where the bars denote dimensionless quantities. Here, T = η0W/σ0 is a characteristic time,

L = W is a characteristic length, and M = ρW 3 is a characteristic mass. Besides Ca, the

other dimensionless parameters that arise are the Reynolds number Re = ρUW/η0 (ratio
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of inertial to viscous forces) and the Bond number Bo = ρgW 2/σ0 (ratio of gravitational

to surface-tension forces). Note that Re/Ca provides a ratio of characteristic velocities

associated with capillarity and momentum diffusion.

Using these scalings, eq. (8) becomes

Re

Ca

[
x̄
d2x̄

dt̄2
+ [1− fo(λ)]

(
dx̄

dt̄

)2]
=
σ̄

λ
[cos θ(1 + 2λ)− 1]−Bo sin(ψ)x̄− η̄C(λ)x̄

dx̄

dt̄
, (15)

where

C(λ) =

{
3/λ2ζo(λ), no-stress boundary condition

12/λ2ζc(λ), no-slip boundary condition.
(16)

For horizontal channels (i.e., ψ = 0) (or for Bo sin(ψ)x̄ � 1), the gravitational term can

be neglected. For long times (i.e., t̄ � Re/Ca or t � T Re/Ca), the inertial term (which

∼ (Re/Ca)x̄2/t̄2) becomes much smaller than the viscous term (which ∼ x̄2/t̄). The di-

mensionless force balance governing the temporal evolution of the dimensionless liquid-front

position x̄ is then given by

x̄
dx̄

dt̄
=

σ̄

η̄λC(λ)
[cos θ(1 + 2λ)− 1]. (17)

The dimensionless height evolution and species mass balance equations are given by

dλ

dt̄
= −J̄ , (18)

dm̄s

dt̄
= (1− φ)λ

dx̄

dt̄
− J̄ x̄, (19)

dm̄p

dt̄
= φλ

dx̄

dt̄
. (20)

In the absence of evaporation (i.e., J̄ = 0), eq. (17) has an analytical solution, which in

dimensional form is

x2 = kt, where k =
2σW

ηλC(λ)
[cos θ(1 + 2λ)− 1]. (21)

Here, k is the mobility parameter and has units of (length)2/time. This equation has the same

form as the Lucas-Washburn equation22,23 but the expression for the mobility parameter is

for an open rectangular channel. A similar analysis can be conducted for U-shaped and

V-shaped channels to obtain different expressions for k as described in ref. 21. For the

remainder of the paper eq. (21) will be referred to as the modified Lucas-Washburn (MLW)

equation.
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Numerical methods

The system of governing equations (17)–(20) is solved using ode45 in MATLAB, which is a

Runge-Kutta method with a variable time step. Initially the channel is considered empty

(i.e., x̄(0) = 0, λ(0) = H/W , m̄s(0) = m̄p(0) = 0). In the absence of evaporation the

simulation is terminated after 104 dimensionless time units, which exceeds the corresponding

dimensionless time of capillary flow typically observed in experiments. When evaporation

is present, the simulation is terminated when the liquid-front propagation ceases due to an

increase in the viscosity.

Capillary flow in the absence of evaporation

Conflicting results have been observed in previous studies regarding the appropriate bound-

ary condition that should be imposed at the upper liquid-air interface for better agreement

with experimental results. Lazouskaya et al.47 conducted flow visualization experiments

to investigate interfacial interactions and colloid retention under steady flows in an open

microchannel. Confocal microscopy was used to track 1.1 µm diameter fluorescent latex

microspheres in an aqueous suspension. While the flow was driven using a syringe pump

instead of capillarity, comparison of the experimentally measured and simulated velocity pro-

files showed better agreement assuming a no-slip boundary condition at the upper liquid-air

interface compared to a no-stress boundary condition.

Yang et al.10 conducted capillary flow experiments in horizontal open rectangular and

U-shaped channels using water-glycerol mixtures and observed that the MLW equation (21)

shows good agreement with experimental results, provided a no-slip boundary condition at

the upper liquid-air interface is considered. Subsequent capillary-flow experiments in open

rectangular channels by Sowers et al.9 and Ouali et al.21 considered horizontal and vertical

channels (ψ = 90◦), respectively. Both used high-viscosity polydimethylsiloxane (PDMS) oil

and demonstrated agreement with the MLW equation when a no-stress boundary condition

at the upper liquid-air interface was considered. Nevertheless, comparison of the experiments

and the theory assuming a no-slip boundary condition at the upper liquid-air interface is not

explicitly made in these studies.

Recently, Lade11 conducted capillary-flow experiments in horizontal open rectangular

channels with water, aqueous glycerol, and a UV-curable resin (NOA73). Lade11 demon-

strated that the aqueous mixtures agree best with predictions from the MLW equation when
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using a no-slip boundary condition at the upper liquid-air interface, whereas the non-aqueous

mixtures agree best when using a no-stress boundary condition. This is in agreement with

findings by Yang et al.,10 Sowers et al.,9 and Ouali et al.21 Lade11 postulated that small

surface-tension gradients present naturally in water caused the discrepancy between the

aqueous and non-aqueous mixtures, which is the same justification as that proposed by Yang

et al.10 Such surface-tension gradients cause flows along the liquid-air interface that act to

oppose the bulk flow, resulting in an effective immobilization of the liquid-air interface.48

Effect of boundary condition at upper liquid-air interface

To better understand the effect of the boundary condition imposed at the upper liquid-air

interface on the model predictions, we consider the case of no evaporation (J̄ = 0). In the

absence of evaporation, the model predictions are identical to those of the MLW equation

(eq. (21)). The model predictions are compared to capillary-flow experiments by Lade11

and Sowers et al.9 The physical properties and contact angles of the liquids used in those

experiments are shown in Table 1.

Table 1: Physical properties and contact angles of test liquids

Liquid Density Viscosity Surface tension Contact angleb

(g/cm3) (mPa·s) (mN/m) (◦)

water11 0.997 0.935 71.4 ± 0.5 19 ± 2c

glycerol (aq.)a,11 1.167 19 ± 1 67.7 ± 0.7 25 ± 2c

NOA73 resin11 1.20 ± 0.02 162 ± 3 39.7 ± 0.4 11 ± 2c

PDMS oil9 0.965 4450 19.8 0d

aAqueous glycerol with concentration of 0.70 w/w

bAll channel substrates were plasma treated prior to capillary-flow experiments

cSolid NOA73 channels

dSolid PDMS channels

In the following discussion, the models assuming no-stress and no-slip boundary condi-

tions at the upper liquid-air interface will be referred to as the no-stress and no-slip models,

respectively. The comparison of the no-stress and no-slip model predictions to capillary-flow
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experiments of water, aqueous glycerol, and NOA73 conducted by Lade11 is shown in Figure

2. The no-stress model predictions are represented as a solid line while the no-slip model

predictions are represented using a dashed line. The comparison is made for different channel

aspect ratios λ = H/W (i.e., 46.8/10, 46.8/25, and 46.8/100). For each channel aspect ratio

the model predictions are compared to three experimental trials conducted under the same

experimental conditions.

Figure 2: Square of the liquid-front position x2 as a function of time t for different channel

aspect ratios λ with water (a-c), glycerol (d-f), and NOA73 (g-i). The solid and dashed

lines represent the model predictions using no-stress and no-slip boundary conditions at the

upper liquid-air interface, respectively. The solid symbols represent experimental results for

three different trials by Lade,11 some of which are previously unpublished data.

For all liquids and aspect ratios shown in Figure 2, the liquid-front propagation predicted

by the no-slip model is slower compared to that of the no-stress model due to the additional
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viscous forces that are introduced by imposing the no-slip condition at the upper liquid-air

interface. The difference in the model predictions tends to increase as the channel aspect

ratio λ decreases. However, it will be shown later that this behavior is non-monotonic.

For solutions of water and glycerol shown in Figures 2a-c and Figures 2d-f, respectively,

both the no-slip and no-stress models generally overpredict the liquid-front position compared

to experiments. However, the discrepancy is generally less for the no-slip model than for the

no-stress model. The opposite is observed for NOA73 which is shown in Figures 2g-h, where

the discrepancy is generally less for the no-stress model.

Figure 3: Normalized mobility parameter K as a function of the channel aspect ratio λ for

water,11 glycerol,11 NOA73,11 and PDMS.9 The solid and dashed lines represent the model

predictions using no-stress and no-slip boundary conditions, respectively. The solid symbols

represent experimental results by Lade11 and Sowers et al.9

To isolate the effect of the boundary condition on the model predictions, we define a

dimensionless mobility parameter

K =
T
L2

k

cos(θ)(1 + 2λ)− 1
=
T
L2

2σW

ηλC(λ)
. (22)

The mobility parameter k corresponds to the slope of the model predictions of eq. (21)

(Figure 2) and has units of (length)2/time. The non-dimensionalized mobility parameter K
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(eq. (22)) is a function of λ and the boundary condition imposed at the upper liquid-air

interface. Removing the effects of the liquid-substrate interactions via the contact angle

allows for comparison of experimental results for different liquids on different substrates.

In Figure 3, dimensionless mobility parameters obtained from experiments with water,

aqueous glycerol, and liquid NOA73 by Lade11 conducted in solid NOA73 channels, and

experiments using liquid PDMS by Sowers et al.9 conducted in solid PDMS channels are

compared to model predictions. It is observed that the no-slip model matches the water and

aqueous glycerol experiments, while the no-stress model matches the NOA73 and PDMS

experiments. Based on Figure 3, the aqueous solutions are in better agreement with the

no-slip model predictions, whereas the non-aqueous solutions agree with the no-stress model

predictions. These observations are in agreement with those by Yang et al.10 for aqueous

solutions, and those by Sowers et al.9 and Ouali et al.21 for non-aqueous solutions.

Additionally, a non-monotonic behavior of the difference between the no-slip and no-stress

model predictions with increasing channel aspect ratio λ is observed in Figure 3. Specifically,

the maximum difference between the two model predictions is observed for λ = 0.761.

Experiments to test boundary condition

To determine the proper boundary condition at the upper liquid-air interface, we deposited

∼25-35 µm diameter Lycopodium particles at the upper liquid-air interface of a 0.70 w/w

aqueous glycerol solution flowing in an open rectangular channel and compared the velocity

of the particles at the upper interface to the velocity of the liquid front.

Channel fabrication

Traditional microfabrication techniques were applied to form silicon master patterns of cap-

illary channels.7 PDMS (Sylgard 184, Dow Corning) was mixed with a base to curing-agent

ratio of 10:1 by mass and degassed in a vacuum chamber. The prepared PDMS was then

liquid-cast over the silicon wafer in the base of a glass petri dish. The PDMS was cured in

an oven at 75◦C for 2 hr and then 120◦C for 2 hr to fully solidify before being delaminated

from the silicon wafer.

Glass slides (75 x 25 mm2) were used as a substrate for the molded capillary channels.

A layer of UV-curable optical adhesive (NOA73, Norland Products, Inc.) was placed on top

of the glass slides. The PDMS stamp was pressed into the NOA73 and then the assembly

was placed in a UV-curing chamber (Honle UV Spot 100, 365 nm) and illuminated at ∼100

mW/cm2 for 90 s to solidify the resin. The PDMS stamp was then peeled off the substrate

leaving behind a plastic replica of the capillary channels formed on the silicon master pattern.
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Materials preparation and characterization

Aqueous solutions of glycerol with a concentration of 0.70 w/w were prepared using ultra-

filtered and UV-treated water (Millipore Synergy filtration system, EMD Millipore). The

solution is Newtonian over a wide range of shear rates (1-1000 s−1) and the measured vis-

cosity matched the value reported in Table 1. Lycopodium particles (Duke Scientific) with

a diameter range of 25-35 µm were used as tracer particles for the upper liquid-air interface.

Their unique surface structure and hydrophobicity caused by their waxy coating49 allowed

them to remain at the upper liquid-air interface and prevented sinking into the underlying

liquid.50

Experimental setup

Prior to the capillary-flow experiments, the microchannels were plasma treated in a plasma

cleaner (PDC-32G, Harrick Plasma) at ∼0.25 Torr and 18 W for 180 s to enhance wetting

of the NOA73. The plasma-treated open microchannels were placed under an optical lens

(Zoom 6000 system with 3 mm FF zoom lens (model no. 1-6232) and 2x standard adapter

(model no. 1-6030, Navitar)). A syringe and needle were used to manually deposit droplets of

the aqueous glycerol solution into the center of the reservoir connected to the microchannel.

After the solution entered the channel, Lycopodium particles were manually deposited at the

upper liquid-air interface at different distances d from the liquid front. Capillary flow of the

aqueous glycerol solution was recorded using a high-speed camera (FASTCAM-ultima APX,

model 120 K, Photron) at 250 fps and was subsequently analyzed using ImageJ software.

The flow was recorded until the liquid-front propagation ceased due to the finite volume

of liquid in the reservoir. Experiments were conducted at ambient conditions (23 ± 1◦C,

65±1% relative humidity). An image sequence of the capillary flow of aqueous glycerol with

the hydrophobic Lycopodium particles deposited at the upper liquid-air interface is shown

in Figure S1.

From these flow visualization experiments we are able to obtain the velocities of the

particles and the liquid front. Comparison of these velocities for three cases is shown in

Figure 4 for particles located at three difference distances d from the liquid front. In all

three cases, the particle velocity is non zero at the upper liquid-air interface, which suggests

the absence of a rigidified liquid-air air interface. Hence, the no-slip boundary condition

does not appear to be valid for the system we are considering, which is contrary to what has

been reported.10,12 Alternative explanations contributing to the discrepancies between the

no-stress model predictions and the experimental results are discussed in the next section.
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Figure 4: Comparison of the velocity of the ∼25-35 µm diameter Lycopodium particles at

distances (a) ∼1.9 mm, (b) ∼0.9 mm, and (c) ∼0.7 mm from the liquid front of the 0.7

w/w aqueous glycerol solution flowing in a 200 µm wide and 177 µm deep open rectangular

microchannel.

Potential explanations

Upper meniscus morphology

Sowers et al.9 attributed the overprediction of the mobility parameter by the no-stress

model to two factors. The first factor is the upper meniscus morphology.9 The MLW

equation assumes the upper liquid-air interface is flat and the channel to be completely

filled. However, experimentally the upper meniscus is observed to have a concave profile9,11

and hence the effective height of the liquid is less than the channel height. A lower effective

height results in larger viscous forces and therefore a lower mobility parameter.

Forward meniscus morphology

The second factor proposed by Sowers et al.9 involves the forward meniscus morphology,

which the MLW equation assumes is a circular arc. It has been experimentally observed

that a curved forward meniscus develops in which the liquid height gradually decreases and

finger-like filaments form at the bottom corners of the channels resulting in deviation from a

circular-arc meniscus. The finger-like filaments are thought to introduce additional viscous

forces leading to a reduction in the mobility parameter.9

Seemann et al.51 elucidated the dependence of the forward meniscus morphology on θ and

λ for static liquids. Based on their work, three conditions determine the forward meniscus

morphology. The first condition reflects whether capillary imbibition in a rectangular cross-

section is energetically favorable, which is true for

cos(θ) >


1

1 + 2λ
, for λ ≥

√
2− 1

2
,

1− 4λ2

1 + 4λ2
, for λ <

√
2− 1

2
.

(23)
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The first expression in eq. (23) is obtained by considering a liquid filament that is in

mechanical equilibrium between the force due to the Laplace pressure acting over the whole

area of the filament cross section, and the surface tensions acting along the boundaries of

this cross section. An alternative method for obtaining this expression is to set dG/dx = 0

in eq. (6) and solve for cos(θ) as described in ref. 21. The second expression in eq. (23)

is obtained by considering the forces arising from liquid wedges along the groove corners in

addition to the Laplace-pressure and surface-tension contributions.

The second condition defining the forward meniscus morphology is the corner-filling con-

dition obtained by Concus and Finn,52 which states that for a 90◦ wedge, imbibition into

the wedge will occur for

θ ≤ 45◦, (24)

which arises from the general stability criterion for capillary surfaces.

The final forward meniscus morphology condition considers whether finger-like filaments

are pinned to the top of the side walls of the channel. For θ ≤ 45◦, this is true if

λ <
1− sin(θ)

2 cos(θ)
, (25)

which is obtained using geometrical arguments by assuming a circular upper meniscus touch-

ing the bottom of the rectangular channel while being attached to the top corners of the

channel.51

Equations (23)–(25) were used by Seemann et al.51 to construct a forward meniscus

morphology diagram similar to that seen in Figure 5. Four regions are denoted in the

diagram. In region 1 no finger-like filaments are present. In region 2 finger-like filaments

are present. However, since they are not pinned to the top corners of the channel they are

small in size. In region 3 finger-like filaments are present which are pinned to the top of

the channel and are larger in size compared to those observed in region 2. Finally, while

capillary flow is observed in regions 1, 2, and 3, in region 4 there is no capillary imbibition.

Experiments by Sowers et al.,9 Lade,11 and Yang et al.10 conducted in horizontal open

rectangular microchannels are also depicted in Figure 5. Reported observations from these

prior studies9–11 for all the experimental data points (shown as solid symbols in Figure 5)

agree with the diagram predictions, even though the morphology conditions are defined for

static liquid in rectangular channels. The length of the fingers has been seen experimen-

tally9,11 and via numerical simulations9 to increase as λ decreases. Thus, the viscous forces

due to the fingers are expected to be larger for longer fingers, which subsequently results in a
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Figure 5: Forward meniscus morphology diagram as a function of static contact angle

θ and channel aspect ratio λ. Solid, dashed, and dot-dashed lines are eqs. (23), (24),

and (25), respectively. The legend notation indicates the test liquid/substrate material.

Solid symbols represent experiments conducted by Lade11 (water/NOA73, glycerol/NOA73,

NOA73/NOA73), Sowers et al.9 (PDMS/SiO2, PDMS/SiO2-PTFE) and Yang et al.10

(water/SiO2) in horizontal open rectangular microchannels. Region 1 has no finger-like

filaments present, region 2 has unpinned finger-like filaments, region 3 has pinned finger-like

filaments, and region 4 has no capillary imbibition.

larger reduction of the mobility parameter and further deviation from the model predictions,

which is consistent with Figure 3.

While numerous experiments in regions 2, 3, and 4 have been conducted, no capillary

flow experiments for open rectangular microchannels located in region 1 were found in the

literature. In region 1 the MLW equation predictions would be expected to have better

agreement with experiments since finger-like filaments are absent in that region and the

upper meniscus morphology effects would be reduced compared to those observed in regions

2 and 3 since the static contact angle would be larger. Overall, Figure 5 suggests that

to accurately predict the liquid-front evolution in regions 2 and 3, finger formation and

dynamics must be accounted for in the model.
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Dynamic contact angle

Prior work has suggested that the capillary force used to obtain the MLW equation should

be determined by a velocity-dependent dynamic contact angle53,54 rather than by the static

contact angle to obtain better agreement with experiments. To describe the dependence of

the dynamic contact angle θd on the liquid velocity ux = dx/dt, we use the hydrodynamic

theory of a moving three-phase contact line by Cox,55 which assumes the viscosity of the air

to be negligible. For θ < 3π/4, the Cox theory simplifies to θ3d = θ3 + 9(ηux/σ)χ, where χ

is the natural logarithm of the ratio between the macroscopic (width of the channel, ∼10−5

m) and the microscopic56–58 (∼10−9 m) length scales.55 For the system we are considering

the Cox theory has the following form:

θ3d = θ3 + 9Ca′χ, where Ca′ =
η

σ

L
T
dx̄

dt̄
. (26)

Cox’s theory55 describes the change in the dynamic contact angle due to viscous bending

of the liquid-air interface. The theory is derived by applying the method of matched asymp-

totic expansions to solve the Stokes equations for a moving contact line assuming that Ca′

is small and the interface angle is slowly varying. To deal with the stress singularity there,

Cox considers a general slip law defined by the ratio of the aforementioned macroscopic to

microscopic length scales.

Figure 6: Square of the liquid-front position x2 as a function of time t for different channel

aspect ratios λ of water (a), glycerol (b), and NOA73 (c). The solid lines represent model

predictions using a static contact angle. The dashed lines represent model predictions using

a velocity-dependent dynamic contact angle55 in eq. (26). In all cases Ca′ ∼ 10−4 − 10−2.

To evaluate the effect of a velocity-dependent dynamic contact angle, eq. (26) is included

to the system of eqs. (17)–(20) and capillary flow in the absence of evaporation (i.e., J = 0)

is considered. The effect of a velocity-dependent dynamic contact angle on the liquid-front
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evolution for water, glycerol, and NOA73 is depicted in Figure 6. It is observed that using the

velocity-dependent dynamic contact angle results in a slower predicted liquid-front evolution

compared to using a static contact angle. Additionally, for all three liquids decreasing the

channel aspect ratio results in larger deviation from the model predictions using the static

contact angle. This is expected since for the three aspect ratios we are considering, decreasing

λ results in an increase of the flow velocity as observed in Figure 2. However, it is important

to note that based on Figure 3 this trend is not monotonic, and therefore a decrease in λ

does not always result in an increase of the flow velocity.

For the low-viscosity liquids (i.e., water and glycerol) in Figures 6a,b the effect of the

dynamic contact angle is less pronounced than that for the high-viscosity liquid (i.e., NOA73)

in Figure 6c. While the velocities for the low-viscosity liquids are larger than those of the

high-viscosity liquid, the multiple order-of-magnitude difference in the viscosity results in a

larger capillary number Ca′ for the high-viscosity liquid and therefore a larger deviation from

the model prediction using the static contact angle. These observations are in agreement

with those by Popescu et al.,54 who observed a larger deviation from the model predictions

using a static contact angle of a high-viscosity silicon oil compared to water for capillary rise

in tubes.

It is important to note that dynamic contact angles decrease with geometric confine-

ment,59,60 which the Cox theory does not account for. Effects of geometric confinement are

significant when the channel width W is much smaller than the liquid’s capillary length

lcap =
√
σ0/ρg,61 or equivalently when the Bond number Bo = ρgW 2/σ0 � 1. For the mi-

crochannels and liquids considered in this study, confinement effects appear to be significant

since Bo ∼ 10−11 − 10−8. Additionally, the dynamic contact angle depends on the ratio

of the macroscopic and microscopic length scales, and it is not clear what to use for those

values. (The values used above are chosen simply to demonstrate qualitative differences in

the model predictions using dynamic and static contact angles.) In order to properly account

for dynamic contact angle effects, highly resolved finite element method simulations would

be necessary.61
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Surface roughness

An additional potential factor for the discrepancy between the model predictions and the

experiments is the roughness of the channel. Girardo et al.62 conducted experiments and Lat-

tice Boltzmann simulations to study the effect of forward meniscus morphologies in smooth

and rough closed microchannels at short time scales. It was illustrated that even nanoscopic

channel roughness introduces extra dissipative forces, resulting in slower capillary filling (i.e.,

lower mobility parameter) and therefore better agreement with experimental observations.

Surface roughness can be incorporated in the model by replacing the static contact angle θ in

eq. (6) by the Wenzel (if the liquid fully penetrates into the surface features) or the Cassie-

Baxter (if liquid bridges are formed between the surface features) contact angles.21 However,

this approach to incorporate surface roughness is not able to account for contact-line pinning

and contact-angle hysteresis.

Bulk viscosity

While the factors discussed above provide potential explanations for the overprediction of

the mobility parameter by the no-stress model, they do not provide an explanation for the

discrepancy observed between the aqueous and non-aqueous mixtures seen in Figure 3. A

potential explanation for this is the difference in the bulk viscosity that is observed between

the aqueous and non-aqueous mixtures seen in Table 1. Due to the non-aqueous mixtures

having a higher viscosity compared to the aqueous mixtures, any of the aforementioned

potential factors that result in lowering of the mobility parameter are suppressed by the large

bulk viscosity. Hence, better agreement is observed between the no-stress model predictions

and high-viscosity mixtures not due to the non-aqueous nature of these liquids but rather

due to their high viscosity.

We note that a combination of the factors discussed above may be responsible for dis-

crepancies between model predictions and experimental results. This uncertainty means

that rather than being a truly predictive model, the MLW equation has mostly been used

to fit experimental data by using the mobility parameter k as a fitting parameter instead

of calculating it analytically.11,16,21 Development of a more detailed model is needed to

make more quantitative predictions and to determine which factors are most responsible for

discrepancies between theory and experiment.
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Capillary flow in the presence of evaporation

To elucidate the effects of evaporation on capillary flow, we consider the simplest case of

uniform evaporation. In this section, we use the rate of evaporation J as the only fitting

parameter to fit the no-stress model to capillary-flow experiments of 0.03 w/w aqueous

solutions of poly(vinyl alcohol) (PVA) conducted by Lade et al.12

Solution characterization

While aqueous PVA solution is Newtonian,12 the viscosity depends on the concentration of

PVA as seen in Figure S2a. A four-order-of-magnitude increase in the viscosity is observed

for the PVA concentration range of 0-0.12 w/w. In addition to viscosity, surface tension

and static contact angle also depend on the concentration of PVA as seen in Figures S2b,c.

Based on Figure S2b, a decrease of the surface tension is observed as the PVA concentration

increases, while the opposite trend is observed for the static contact angle in Figure S2c.

An empirical viscosity model proposed by Patton63 is used to capture the temperature

T and PVA concentration φ dependence of the viscosity:

log η̄ =
φ

ka(T ) + φkb(T )
, where

ka(T ) = 1.28 · 10−5T (K) + 1.59 · 10−2,

kb(T ) = 3.83 · 10−4T (K)− 2.47 · 10−2.
(27)

The fitting parameters ka(T ) and kb(T ) reported by Lade11 were obtained by fitting the

empirical model to rheological data ranging from 17-40◦C, with concentrations ranging from

0.03-0.121 w/w, and over shear rates of 0.1-10 s−1. The empirical model is depicted as a

dashed line in Figure S2a.

The empirical formulas used to describe the dependence of the surface tension and static

contact angle on the PVA concentration are

σ̄ = 16.378φ2 − 3.5713φ+ 1, (28)

θ = 2097φ2 + 102.84φ+ 19.9, (29)

which are obtained by fitting surface-tension and contact-angle measurements conducted by

Lade11 at 23◦C with PVA concentrations ranging from 0-0.12 w/w. These empirical formulas

are represented as dashed lines in Figures S2b,c, respectively.

Equations (27)–(29) are used to describe the concentration-dependent viscosity η̄(φ),

surface tension σ̄(φ), and static contact angle θ(φ) in eq. (17) to account for effects of

evaporation.
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Figure 7: Square of the liquid-front position x2 as a function of time t for λ = 1.872 of PVA.

The solid symbols representing the experimental results of Lade et al.12 are fitted with the

no-stress model for relative humidities (RH) of (a) 7%, (b) 45%, and (c) 80%. The model

predictions using the no-stress boundary condition are depicted as solid lines.

Comparison with results of Lade et al.

The effects of evaporation on capillary flow are determined by using the rate of evaporation

J̄ as the only parameter to fit the no-stress model to experiments conducted by Lade et al.12

The comparison is depicted in Figure 7 for λ = 1.872 for different relative humidities RH,

which were used to control the rate of evaporation. As the relative humidity increases, the

evaporative flux decreases, resulting in longer flow distances and longer flow times.

In the presence of evaporation the mobility parameter k (i.e., slope of solid lines in

Figure 7) decreases as a function of time due to the increase in viscosity, decrease in surface

tension, and increase in static contact angle, resulting in flow termination. By using the

rate of evaporation as the only fitting parameter, the no-stress model is able to capture the

liquid-front evolution quantitatively for all three RH conditions depicted in Figure 7.

The validity of the evaporative flux values used to fit the experimental data is assessed

by comparison to the bulk drying measurements reported by Lade et al.12 Table 2 illustrates

that the flux values used in the model are O(10 − 102) larger than those observed in the

bulk drying experiments. The discrepancy is likely a result of the model assumptions that

the liquid height and the evaporation rate, and hence the concentration-dependent viscosity,

are spatially uniform.

However, Lade et al.12 experimentally showed the presence of spatial gradients in the PVA

concentration, with solute accumulation at the contact line. This resulted in a non-uniform

dry-film thickness after complete solvent evaporation. These findings led Lade et al.12 to

infer that the evaporation rate is enhanced at the contact line and pinning of the contact
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line occurs far before drying of the liquid in rest of the channel. This phenomenon is not

accounted for in the model or in the bulk evaporation rate data. Hence, the model requires

an extremely high uniform evaporation rate to replicate the experimentally observed flow

behavior, which is significantly affected by the higher local PVA concentration at the contact

line. Despite there being a discrepancy between the evaporative mass fluxes used to fit the

model and those obtained from bulk drying experiments, important scaling relationships can

be obtained from the model and are discussed in the following section.

Table 2: Comparison of evaporative flux values to flux values obtained by fitting the no-

stress model to experimental data by Lade et al.12 Reported evaporative mass flux values

are in units of mg m−2 s−1.

Relative Humidity Evaporative mass flux

(%) bulk drying experiments12 model

7 650 14420

45 230 6866

80 90 2630

Scaling analysis

In many applications relying on capillary flow subject to evaporation, the goal is not neces-

sarily to control the liquid-front evolution but rather the final liquid-front position xF and

the final flow time tF . The final liquid-front position xF corresponds to the position where

the liquid-front meniscus propagation is halted and the final flow time tF corresponds to the

time at which the liquid meniscus propagation is terminated.

To control the final flow time and final liquid-front position, it is necessary to determine

their dependence on the rate of evaporation and the microchannel dimensions. The 1D model

is used to determine scaling relationships for the dependence of the dimensionless final flow

time t̄F and dimensionless final liquid-front position x̄F on the dimensionless evaporative

flux J̄ and channel aspect ratio λ. Using the height evolution eq. (18), the dimensionless

final flow time scales as

t̄F ∼
λ

J̄
, (30)
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where the dimensionless final flow time is proportional to the channel aspect ratio λ = H/W

and inversely proportional to the dimensionless total evaporative mass flux J̄ .

Similarly, using the force balance in eq. (17) the dimensionless final liquid-front position

scales as

x̄2
F ∼ λ3ζo(λ)

J̄
(31)

where ζo(λ) is an aspect-ratio function (see ref. 21). Based on this scaling relationship the

dimensionless final liquid-front position is nonlinearly related to the channel aspect ratio and

inversely proportional to the square root of the dimensionless evaporative mass flux.

The accuracy of the scaling arguments can be seen in Figure 8 for different channel widths

W . The scaling relationships of eqs. (30) and (31) are in agreement with experimental

results by Lade et al.12 We note that the evaporative mass flux values used to define the

coordinates of the experimental data points in Figure 8 are the bulk evaporative mass flux

values reported by Lade et al.12 In experiments, the evaporative mass flux will likely be

a function of space, but Figure 8 suggests that the constant bulk values are sufficient for

qualitatively understanding the behavior of the final liquid-front position and the final flow

time. Quantitatively accurate predictions of these quantities and of the time-evolution of

the liquid front will likely require accounting for the spatial dependence of the evaporative

mass flux (and possibly the influence of temperature-induced surface-tension changes).

Figure 8: Scaling relationships for (a) dimensionless final time t̄F and (b) square of the

dimensionless final liquid-front position x̄2
F , for different channel widths W . The solid lines

represent the proposed scalings from eqs. (30) and (31) and the solid symbols represent

experimental results by Lade et al.12 All channel heights H are 46.8 μm.
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Conclusions

The results of this study help resolve conflicting results from prior literature regarding the

proper boundary condition at the upper liquid-air interface in capillary flows in open rect-

angular microchannels. Flow visualization experiments indicate the absence of a rigidified

liquid-air interface, suggesting that the no-slip boundary condition is not appropriate. The

better agreement between model predictions using the no-slip (rather than the no-stress)

boundary condition and experimental observations with low-viscosity liquids is likely due to

factors not included in the model such as (i) upper and forward meniscus morphology, (ii)

dynamic contact angle effects, and (iii) channel roughness. For high-viscosity liquids, the

influence of these factors appears to be suppressed by the large bulk viscosity.

We have also developed a Lucas-Washburn-type 1D model that incorporates the effects of

concentration-dependent viscosity and uniform evaporation. Scaling relationships obtained

from the model for the dependence of the final flow time and final liquid-front position on

the rate of evaporation and channel dimensions are in good agreement with experimental

observations. The model developed here can be used for any solution or colloidal suspension

where the shear viscosity is the dominant rheological parameter, provided that expressions

for the concentration-dependent viscosity, surface tension, and contact angle are available.

Although the evaporative mass flux was used as a fitting parameter in the present study,

more detailed evaporation models could be incorporated. To accurately predict the time-

evolution of the liquid front, it will be necessary to use a model that accounts for the upper

and forward meniscus morphology, as well as finger formation and dynamics.

Appendix

Ouali et al.21 report a general solution to the Navier-Stokes equation relating u(y, z) to the

depth- and width-averaged velocity ux(t) = dx/dt (eq. (3)) for an open rectangular channel,

subject to a no-stress boundary condition at the upper liquid-air interface and a no-slip

boundary condition on the solid walls. This general solution is given by

u(y, z) = − 12ux
π3λ2ζo(λ)

∞∑
n=0

(−1)n

(2n+ 1)3
[cosh(aonz/H)− tanh(aon) sinh(aonz/H)− 1] cos(aony/H),

(32)
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where λ = h/W is the aspect ratio based on the liquid height, −W/2 ≤ y ≤ W/2 and

0 ≤ z ≤ h, aon = (2n+ 1)πλ, and ζo(λ) is an aspect-ratio function defined as

ζo(λ) =
24

π4λ2

∞∑
n=0

1

(2n+ 1)4

[
1− tanh(aon)

aon

]
. (33)

Using eq. (32) to evaluate the inlet momentum flux term in eq. (2) gives rise to the aspect-

ratio function fo(λ) defined as

fo(λ) =
1

hW

∫ h(t)

0

∫ W/2

−W/2

[
− 12

π3λ2ζo(λ)

∞∑
n=0

(−1)n

(2n+ 1)3

× [cosh(aonz/H)− tanh(aon) sinh(aonz/H)− 1] cos(aony/H)

]2
dydz.

(34)

Ouali et al.21 also report a general solution for an open rectangular channel subject to a

no-slip boundary condition at the upper liquid-air interface and on the solid walls, which is

equivalent to the general solution for a closed rectangular channel given by

u(y, z) = − 48ux
π3ζc(λ)

∞∑
n=0

(−1)n

(2n+ 1)3

[
1− cosh(acny/W )

cosh(acn/2)

]
cos(acnz/W ), (35)

where −W/2 ≤ y ≤ W/2 and −h/2 ≤ z ≤ h/2, acn = (2n+1)π/λ, and ζc(λ) is an aspect-ratio

function defined as

ζc(λ) =
96

π4

∞∑
n=0

1

(2n+ 1)4

[
1− 2 tanh(acn/2)

acn

]
. (36)

Similar to fo(λ), an aspect-ratio function fc(λ) resulting from evaluation of the inlet mo-

mentum flux term for a closed rectangular channel can be obtained using eq. (35).
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Fig. S1. Image sequence of capillary flow. Fig. S2. Plots of viscosity, surface tension, and

static contact angle as a function of PVA concentration.
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Figure S1: Image sequence of capillary flow of 0.70 w/w aqueous glycerol in 200 μm wide

and 177 μm deep open rectangular channels. Orange arrows indicate the position of the

Lycopodium particles and the blue arrows indicate the position of the advancing liquid

front. The Lycopodium particles were initially located a distance d from the liquid front.

Scale bar: 700 μm.
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Figure S2: (a) Dimensionless viscosity η̄, (b) dimensionless surface tension σ̄, and (c) static

contact angle θ as a function of PVA concentration φ. Solid symbols represent experimental

measurements at 23◦C by Lade.11 In panel (a) the dashed line represents an empirical viscos-

ity model proposed by Patton63 accounting for the temperature and the solute-concentration

dependence of the viscosity seen in eq. (27). In panel (b-c) dashed lines represent empirical

formulas of eqs. (28) and (29), respectively, which were obtained by fitting the experimental

data. The solvent viscosity η0 and surface tension σ0 used for non-dimensionalization are

those of water, shown in Table 1. The reported density is 1.0 g/cm3.12
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