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Abstract - Numerous applications rely upon capillary flow in microchannels for success-
ful operation including lab-on-a-chip devices, porous media flows, and printed electronics
manufacturing. Open microchannels often appear in these applications, and evaporation of
the liquid can significantly affect its flow. In this work, we develop a Lucas-Washburn-type
one-dimensional model that incorporates the effects of concentration-dependent viscosity
and uniform evaporation on capillary flow in channels of rectangular cross section. The
model yields predictions of the time-evolution of the liquid front down the length of the mi-
crochannel. For the case where evaporation is absent, prior studies have demonstrated better
agreement between model predictions and experimental observations in low-viscosity liquids
when using a no-slip rather than a no-stress boundary condition at the upper liquid-air in-
terface. However, flow visualization experiments conducted in this work suggest the absence
of a rigidified liquid-air interface. The use of the no-stress condition results in overestimation
of the time-evolution of the liquid front, which appears to be due to underestimation of the
viscous forces from (i) the upper and front meniscus morphology, (ii) dynamic contact angle
effects, and (iii) surface roughness, none of which are accounted for in the model. When high-
viscosity liquids are considered, the large bulk viscosity is found to suppress these factors,
resulting in better agreement between model predictions using the no-stress condition and
experiments. Model predictions are also compared to prior experiments involving poly(vinyl
alcohol) in the presence of evaporation by using the evaporation rate as a fitting parameter.
Scaling relationships obtained from the model for the dependence of the final liquid-front
position and total flow time on the channel dimensions and rate of uniform evaporation are

found to be in good agreement with experimental observations.
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Introduction

Capillary flow is the ability of a liquid to flow in narrow spaces without the assistance of, or
even in opposition to, external forces. This phenomenon has been vigorously studied since
the early 20th century, with much current research focusing on understanding the underlying
physical mechanisms as well as exploring a diverse range of applications such as lab-on-a-
chip devices,"? porous media flows,® soil and water repellency,* heat pipes,” and printed
electronics.®®

Microchannels can be classified as closed or open. A closed channel is defined as one where
all walls are solid and an open channel as one with a liquid-air interface acting as an effective
wall. As a result of advances in lithographic fabrication techniques, open microchannels
with various cross-sectional geometries can be fabricated, including, but not limited to,
rectangular,®*? trapezoidal,'® U-shaped,!” and V-shaped.'* The lack of a top provides access
to the inside of the channel. This access can be exploited in applications such as capillary
micromolding where cured structures are easily removed from within the microchannels after

solidification. ' 16

Capillary flow in closed channels has been extensively investigated experimentally'” 2!
and theoretically.!” 1921739 Theoretical models have focused on describing the liquid-front
position x as a function of time t. Lucas?®> and Washburn® proposed theoretical models
describing flow of a Newtonian liquid in cylindrical capillaries. Both assumed fully devel-

22 work the driving pressure was the capillary pressure

oped pressure-driven flow. In Lucas’
gradient caused by the circular-arc meniscus front. In addition to the capillary pressure gra-
dient, the driving forces considered by Washburn? included hydrostatic pressure gradients
and an imposed pressure difference between the two ends of the capillary. For a horizontal
capillary open at both ends, the hydrostatic and imposed pressure differences are absent,
and an analytical solution 22 = kt is obtained, commonly referred to as the Lucas-Washburn
equation, where £ is known as the mobility parameter.

Rideal'” extended the work of Washburn?? by including inertial effects and assuming that
as the liquid enters the capillary, the velocity field is already fully developed. Bosanquet?*
also included inertial effects, but instead assumed that the liquid entering the capillary has
zero velocity and instantaneously attains a fully developed velocity profile. This assumption

allowed Bosanquet?* to obtain an analytical solution describing the time-evolution of the

liquid-front position x, which could not be obtained from Rideal’s'” approach.



The initial work of Lucas?*® and Washburn?® has been extended to demonstrate that at
early stages the flow is dominated by inertial effects, resulting in o ~ ¢.1° At later stages the
inertial effects are negligible and viscous effects dominate, resulting in x ~ t'/2.17:2%:23 Both
scalings have been confirmed experimentally. However, the Lucas-Washburn equation??23
remains the most widely used model for capillary flow in closed microchannels due to its
simplicity.

Capillary flow in open microchannels has also been the subject of extensive experimen-

ta]9-11,14,21,31-34 ]10,14,21,35-39

and theoretica investigation, with most studies focusing on V-
shaped cross-sectional geometries.!*31737 Experimental investigations of capillary flow in
open channels have demonstrated that the scaling of z ~ t/2 seen in closed channels is
also observed at later stages. Several researchers'®?! have modified the Lucas-Washburn

22,23

equation, which was initially developed for closed cylindrical capillaries, to study cap-

illary flow in open channels and have compared model predictions to experimental results.

10,11

Some studies using this modified Lucas-Washburn equation report better agreement

with experimental results when a no-slip boundary condition is imposed at the upper liquid-

air interface, whereas other studies”?!

report better agreement when a no-stress boundary
condition is used. In this paper we address these conflicting results by conducting flow
visualization experiments and propose alternative explanations for the discrepancies.

A physical phenomenon present during capillary flow of volatile liquids in open mi-
crochannels is evaporation. In certain applications such as microfluidic devices used for
diagnostic tests, evaporation can result in undesirable changes in concentration of the test
liquid and therefore alter the test results.* In other applications such as printed electronics
fabrication, the presence of evaporation is exploited by printing electronically active inks on
flexible substrates which can be integrated with roll-to-roll manufacturing processes resulting
in low-cost and high-throughput device fabrication.®® Examples of such electronic devices
include resistors, capacitors, and transistors.®®

A drive to minimize the size of printed electronic devices has resulted in a recent effort
toward making multilayered electronic devices whose fabrication relies on capillary flow and
evaporation within open microchannels. This process is referred to as self-aligned capillarity-
assisted lithography for electronics (SCALE).S The SCALE process involves depositing a
small volume of conductive ink in reservoirs connected to microchannels. Due to capillary

forces, the ink flows down the microchannel. During this filling step, the ink solvent evapo-

rates and conductive particles that were suspended in the ink are deposited on the underlying



substrate to create electronic circuits. Hence, the quality and performance of the printed
device relies on controlling the competing phenomena of capillary flow and evaporation.

Experiments on capillary flow in open microchannel networks subject to evaporative
lithography were conducted by Lone et al.,' where nano- and micro-particle suspensions
flowed into and filled the channels. After the flow had reached the end of a channel, subse-
quent evaporation of the carrier liquid resulted in deposition of the suspended particles on
the bottom of the channel, creating a two-dimensional continuous metal pattern. Although
particle suspensions were considered, the scaling = ~ t'/? was observed. However, the effect
of evaporation during the flow was not investigated.

One of the first studies to investigate the effects of evaporation on capillary flow in open

1.'2 Experiments were conducted in

rectangular microchannels was conducted by Lade et a
a humidity chamber to control the rate of evaporation. Strong disagreement was observed
between the experimental results and the theoretical prediction based on no evaporation

10:21 subject to a no-slip boundary condition at the

(i.e., modified Lucas-Washburn equation
upper liquid-air interface), which demonstrates the need for a model that accounts for the
effects of evaporation.

In this work, we address conflicting results from prior literature and investigate the effect
of uniform evaporation on capillary flow in open rectangular microchannels. We develop a
one-dimensional (1D) model that includes effects of concentration-dependent viscosity and
uniform evaporation. Capillary flow in the absence of evaporation is initially considered to
assess the validity of the no-slip condition that has been used in prior studies. Flow visualiza-
tion experiments are performed to identify the appropriate boundary condition at the upper
liquid-air interface. Potential explanations for the discrepancy observed between experimen-
tal observations and model predictions are also discussed. Finally, scaling relationships are

obtained from the model and compared to experimental data from Lade et al.,'* showing

good agreement.

Problem formulation

Governing equations

We consider an incompressible homogeneous solution of density p, viscosity 7, and surface
tension o flowing in an open rectangular channel of width W, height H, length L, and

inclination angle v relative to the z-axis (Figure 1). The solution has a Newtonian solvent
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Figure 1: Schematic of liquid undergoing capillary flow in an open rectangular channel. (a)
Top view and (b) isoperimetric view.

of density p, viscosity 19, and surface tension oy. The rectangular channel is connected to a
reservoir of radius R. During flow, the solution is subject to a constant uniform evaporative
mass flux J. Our theoretical analysis is based on a Washburn?® and Rideal'” approach, hence
we assume the flow is driven by the capillary pressure gradient caused by the circular-arc
meniscus front, while viscous forces resist the flow. Depending on the channel inclination
angle, the hydrostatic pressure due to gravity promotes or inhibits liquid imbibition.

We begin with an integral conservation equation for linear momentum in a deformable

control volume,?6 4143

0
9 o pudV + /CS pul(u —w) -nJdA = Z F, (1)

where C'V and CS refer to the control volume and control surface, respectively, u is the
liquid velocity, w is the velocity of the control surface, n is the unit outward normal to
the control surface, and ¢ denotes time. Equation (1) equates the rate of change of linear
momentum inside the control volume to the momentum flux across the control surface and
the sum of the forces acting on the control volume, > F.

The control volume is taken to be a rectangular slab of width W height h(t), and length
x(t). We assume a parallel flow, u(y,z) = u(y, z)e,, where e, is the unit vector in the
x-direction. Similar to Rideal,'” we assume the liquid already has a fully developed velocity
u(y, z) upon entry into the channel from the reservoir. At the inlet, w = 0, and at the liquid
front, w = u. At the upper liquid-air interface, u-n = 0 and w - n = dh/dt, where h(t) is
the liquid height. Note that at the solid walls, u-n = 0 and w = 0.

With these assumptions, conservation of linear momentum in the z-direction becomes

x(t) ph(t) W)2 ht) W/2 w2
2 / / / pudydzdx / / pudydz — / / dydx Z F.
ot | Jo 0 —wy2 W/2 W/2 x’

(2)



where > F, represents the z-component of the forces acting on the control volume, and x(t)
is the front meniscus position, which, along with the liquid height h, is assumed to depend

only on time. General solutions to the Navier-Stokes equation relating u(y, z) to the depth-

10,21,45

and width-averaged velocity u, = dz/dt in the form of Fourier series for open and

4227

close rectangular channels have been worked out; an example for an open rectangular

channel is eq. (32) in the Appendix. The depth- and width-averaged velocity wu,(t) = dz/dt

1 h(t) pW/2
t) = dz.
s (?) h(t)W/o /W/Z“dy : )

Upon integration and expansion of the sum of forces acting on the control volume, eq.

is defined as

(2) becomes

2
d*x dx
prhW e + [1 = fo(N)]phW (E) =Fc+ Fg + Fy, (4)
where F are the capillary forces, F; are the gravitational forces, and Fy are the viscous
forces. The expression for the aspect-ratio function f,(\) resulting from integration of the
second term in eq. (2) is given by eq. (34) in the Appendix. If one assumes (as done
elsewhere?") that the liquid entering the capillary has zero velocity and instantaneously

attains its fully developed velocity profile, then the inlet momentum flux in eq. (2) is zero
and the left-hand side of eq. (4) is (phW)d/dt[x(dz/dt)].

Gravitational forces

The gravitational-force term is given by
Fo = —pgsin(y)hWz, (5)

where ¢ is the gravitational acceleration and ) = [—7 /2, 7 /2] is the channel inclination angle
relative to the z-axis.?! If ¢» < 0 or v > 0, the gravitational force inhibits or promotes flow,
respectively. The limit v = 0 corresponds to a horizontal channel and the effects of the

gravitational force vanish.



Capillary forces

We define the capillary number (ratio of surface-tension to viscous forces) as Ca = nyU/ 0y,
where U is the characteristic liquid speed. By assuming C'a < 1, the capillary-force term
F¢ can be obtained using the approach reported by Good,** which assumes the liquid-front
morphology is governed by fluid statics. The total free energy G due to the three-phase
contact line moving a distance x in the channel is given by G = o5 As;, — osyvAsy + 0 ALy.
Here, ogr,, 0gy, and o are the surface tensions for the solid-liquid, solid-air, and liquid-air
interfaces, and Agr, Asy, and Ay are the areas of those interfaces.

For the geometry we are considering, Asy, = Agy = (W + 2h)z and Apy = Wa cos(07),
where 07 is the upper liquid-air interface contact angle. We assume the upper liquid-air
interface is flat and parallel to the bottom of the channel (i.e., 07 = 0).%1%:21:45 For a static
contact angle € satisfying the Young equation, o cos(f) = ogy — osy, the capillary-force term

is given by

_dG _
de

where A\ = h/W is the aspect ratio based on the liquid height. The curvature of the liquid-

Fo = oWlcos(0)(1 4 2\) — 1], (6)

front meniscus responsible for driving the flow manifests itself via the contact angle 6. Here,
f is the contact angle associated with the front liquid-air interface and the channel walls.
This expression for the capillary-force term has been used in prior studies of open microchan-

nels.910,21,45

Viscous forces

The viscous-force term is obtained by assuming a parallel flow, u(y, z) = u(y, z)e,, driven
by a pressure gradient in the z-direction. As noted earlier, u(y, z) can be related to the
depth- and width- averaged velocity wu,(t) = dx/dt via Fourier-series solutions.??” For
closed rectangular channels, these solutions are subject to no-slip boundary conditions at
the liquid-solid interfaces. This approach allows for expression of the viscous forces as a
function of w,(t).

Similarly, general solutions are available for open rectangular channels.!%?%4 Conven-
tionally, the boundary condition imposed is no-slip at the liquid-solid interface and no-stress
at the upper liquid-air interface. However, Yang et al.'® found better agreement with their
experiments when considering no-slip at the upper liquid-air interface, which they attributed

to contaminant or surfactant accumulation. Therefore, both cases are included in our study.



The final form of the viscous-force term thus depends on the imposed boundary condition

at the upper liquid-air interface,

— Sz d—$, no-stress boundary condition
o=l AG(A) dt (7)
v _Hﬂd_x no-slip boundary condition
NGO\ i P Y ’

where (,(A) and (.(\) are aspect-ratio functions that depend on the boundary condition
imposed at the upper liquid-air interface, and are given by eq. (33) and eq. (36), respectively,
in the Appendix. A detailed derivation of the expressions for the viscous forces and the

aspect-ratio functions can be found in ref. 21.

Conservation of linear momentum

Using the expressions for the gravitational forces (eq. (5)), capillary forces (eq. (6)) and

viscous forces (eq. (7)), the expression for conservation of linear momentum (eq. (4))

becomes )
d? d d
a:d—tf +[1 = fo(N)] (d—f> =b—gsin(¢)zr — aazd—f, (8)
where the viscous coefficient a is
3—7] no-stress boundary condition
0= d PWVERG(N) (9)
—1277 o-slip boundary condition
n —

and the capillary coefficient b is

b= p;w [cos(0) (1 +2X) — 1). (10)

Total mass and species balances

The effects of uniform evaporation are considered by assuming the liquid is subject to a
constant uniform evaporative mass flux J. The evaporative mass flux is assumed to act only
in the region where the liquid height A is spatially uniform (i.e., away from the liquid front).
The liquid is assumed to contain a spatially uniform solute concentration ¢ = m,,/(ms+m,,),
assuming solvent and solute densities are equal. Here, m, and m, are the solute and solvent
masses, respectively. Concentration-dependent viscosity 7(¢), surface tension o(¢), and

contact angle 6(¢) are considered to account for the temporal evolution of the concentration



caused by solvent evaporation. Empirical relations obtained from prior experiments!! are
used to describe these concentration-dependent quantities and are presented later in the
paper. The effects of evaporation on the shape of the front meniscus are accounted for
via the concentration-dependent static contact angle. Note that any direct influence of
temperature on surface tension is neglected in this work.

A total mass balance across the upper liquid-air interface*® shows that
J=pn-(u—w) (11)

where J is the constant uniform evaporative mass flux through the liquid-air interface, n = e,
is the unit normal to the upper liquid-air interface, u is the liquid velocity field and w is
the velocity of the interface. Since the upper liquid-air interface is assumed to be flat and

parallel to the zy-plane, n-u = 0. Upon rearrangement eq. (11) becomes

- (12)
which is used as the height evolution equation in our model to account for the effects of
uniform evaporation.

To account for the time-evolution of the solute concentration ¢, we make the following

species mass balances for the solvent and solute,

dmg dx

s p(1— gb)hWE — JWz, (13)
dm,, dx
= pphW — 14

where the rate of change in mass is equal to the convected mass at the inlet minus the mass

lost due to evaporation (only present for solvent).

Scaling

To render the governing equations dimensionless, we scale our variables as follows:

r = LT, t="Tt, h =W, ms = Mg,
on —
mp = Mmp? J = % ) 1 = 1o1], 0 = 000,
0

where the bars denote dimensionless quantities. Here, T = 19V /oy is a characteristic time,
L = W is a characteristic length, and M = pW?3 is a characteristic mass. Besides Ca, the

other dimensionless parameters that arise are the Reynolds number Re = pUW/ny (ratio

9



of inertial to viscous forces) and the Bond number Bo = pgW?/oy (ratio of gravitational
to surface-tension forces). Note that Re/Ca provides a ratio of characteristic velocities
associated with capillarity and momentum diffusion.

Using these scalings, eq. (8) becomes

2~ 2\ 2 - -
% x% +[1 = fo(N)] <fl—f> ] = %[Cos O(1 +2)\) — 1] — Bosin(y))T — nC(A)xiZi—i, (15)
where

3/M%(,(\), no-stress boundary condition
(A) = { (16)

12/A%¢.(\), no-slip boundary condition.
For horizontal channels (i.e., ¥ = 0) (or for Bosin(¢)z < 1), the gravitational term can
be neglected. For long times (i.e., t > Re/Ca or t > T Re/Cla), the inertial term (which
~ (Re/Ca)Z*/t?) becomes much smaller than the viscous term (which ~ 7?/t). The di-
mensionless force balance governing the temporal evolution of the dimensionless liquid-front
position Z is then given by

_dx o

Y@t T e

[cosO(1 +2X) — 1. (17)

The dimensionless height evolution and species mass balance equations are given by

d\ -
—=—J 18
dt ) ( )
dm dz -
_S = 1 - - — T 1
e = (1- o - T, (19)
din,, dz
dt dt (20)

In the absence of evaporation (i.e., J = 0), eq. (17) has an analytical solution, which in

dimensional form is

9 200W

=kt h k=
x ,  where Y

[cosO(1 +2X) — 1]. (21)

Here, k is the mobility parameter and has units of (length)?/time. This equation has the same
form as the Lucas-Washburn equation®??® but the expression for the mobility parameter is
for an open rectangular channel. A similar analysis can be conducted for U-shaped and
V-shaped channels to obtain different expressions for £ as described in ref. 21. For the
remainder of the paper eq. (21) will be referred to as the modified Lucas-Washburn (MLW)

equation.

10



Numerical methods

The system of governing equations (17)—(20) is solved using ode45 in MATLAB, which is a
Runge-Kutta method with a variable time step. Initially the channel is considered empty
(i.e.,, z(0) = 0, A(0) = H/W, m4(0) = m,(0) = 0). In the absence of evaporation the
simulation is terminated after 10* dimensionless time units, which exceeds the corresponding
dimensionless time of capillary flow typically observed in experiments. When evaporation
is present, the simulation is terminated when the liquid-front propagation ceases due to an

increase in the viscosity.

Capillary flow in the absence of evaporation

Conflicting results have been observed in previous studies regarding the appropriate bound-
ary condition that should be imposed at the upper liquid-air interface for better agreement

147 conducted flow visualization experiments

with experimental results. Lazouskaya et a
to investigate interfacial interactions and colloid retention under steady flows in an open
microchannel. Confocal microscopy was used to track 1.1 pum diameter fluorescent latex
microspheres in an aqueous suspension. While the flow was driven using a syringe pump
instead of capillarity, comparison of the experimentally measured and simulated velocity pro-
files showed better agreement assuming a no-slip boundary condition at the upper liquid-air
interface compared to a no-stress boundary condition.

Yang et al.'® conducted capillary flow experiments in horizontal open rectangular and
U-shaped channels using water-glycerol mixtures and observed that the MLW equation (21)
shows good agreement with experimental results, provided a no-slip boundary condition at
the upper liquid-air interface is considered. Subsequent capillary-flow experiments in open

1.2! considered horizontal and vertical

rectangular channels by Sowers et al.? and Ouali et a
channels (¢ = 90°), respectively. Both used high-viscosity polydimethylsiloxane (PDMS) oil
and demonstrated agreement with the MLW equation when a no-stress boundary condition
at the upper liquid-air interface was considered. Nevertheless, comparison of the experiments
and the theory assuming a no-slip boundary condition at the upper liquid-air interface is not
explicitly made in these studies.

Recently, Lade!! conducted capillary-flow experiments in horizontal open rectangular

channels with water, aqueous glycerol, and a UV-curable resin (NOA73). Lade!' demon-

strated that the aqueous mixtures agree best with predictions from the MLW equation when

11



using a no-slip boundary condition at the upper liquid-air interface, whereas the non-aqueous
mixtures agree best when using a no-stress boundary condition. This is in agreement with
findings by Yang et al.,'® Sowers et al.,” and Ouali et al.?! Lade'! postulated that small
surface-tension gradients present naturally in water caused the discrepancy between the
aqueous and non-aqueous mixtures, which is the same justification as that proposed by Yang
et al.'® Such surface-tension gradients cause flows along the liquid-air interface that act to

oppose the bulk flow, resulting in an effective immobilization of the liquid-air interface.*®

Effect of boundary condition at upper liquid-air interface

To better understand the effect of the boundary condition imposed at the upper liquid-air
interface on the model predictions, we consider the case of no evaporation (J = 0). In the
absence of evaporation, the model predictions are identical to those of the MLW equation
(eq. (21)). The model predictions are compared to capillary-flow experiments by Lade!!
and Sowers et al.” The physical properties and contact angles of the liquids used in those

experiments are shown in Table 1.

Table 1: Physical properties and contact angles of test liquids

Liquid Density Viscosity Surface tension Contact angle”
(g/cm®)  (wPas)  (mN/m) )
water!! 0.997 0.935 71.4 £0.5 19 £ 2°
glycerol (aq.)®1! 1.167 19+1 67.7 £ 0.7 25 £ 2°¢
NOAT73 resin'! 1.20 £ 0.02 162 £ 3 39.7+ 04 11 £+ 2°
PDMS oil? 0.965 4450 19.8 04

2Aqueous glycerol with concentration of 0.70 w/w
PAll channel substrates were plasma treated prior to capillary-flow experiments
¢Solid NOAT3 channels

dS0lid PDMS channels

In the following discussion, the models assuming no-stress and no-slip boundary condi-
tions at the upper liquid-air interface will be referred to as the no-stress and no-slip models,

respectively. The comparison of the no-stress and no-slip model predictions to capillary-flow
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experiments of water, aqueous glycerol, and NOA73 conducted by Lade!'! is shown in Figure
2. The no-stress model predictions are represented as a solid line while the no-slip model
predictions are represented using a dashed line. The comparison is made for different channel
aspect ratios A = H/W (i.e., 46.8/10, 46.8/25, and 46.8/100). For each channel aspect ratio
the model predictions are compared to three experimental trials conducted under the same

experimental conditions.

(a)

- =no-slip
—no-stress

(d)

z?(mm?)

glycerol
A =1.872

glycerol
A =4.68

z?(mm?)

Figure 2: Square of the liquid-front position 2% as a function of time ¢ for different channel
aspect ratios A with water (a-c), glycerol (d-f), and NOAT73 (g-i). The solid and dashed
lines represent the model predictions using no-stress and no-slip boundary conditions at the
upper liquid-air interface, respectively. The solid symbols represent experimental results for
three different trials by Lade,'* some of which are previously unpublished data.

For all liquids and aspect ratios shown in Figure 2, the liquid-front propagation predicted

by the no-slip model is slower compared to that of the no-stress model due to the additional
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viscous forces that are introduced by imposing the no-slip condition at the upper liquid-air
interface. The difference in the model predictions tends to increase as the channel aspect
ratio A decreases. However, it will be shown later that this behavior is non-monotonic.

For solutions of water and glycerol shown in Figures 2a-c and Figures 2d-f, respectively,
both the no-slip and no-stress models generally overpredict the liquid-front position compared
to experiments. However, the discrepancy is generally less for the no-slip model than for the
no-stress model. The opposite is observed for NOA73 which is shown in Figures 2g-h, where

the discrepancy is generally less for the no-stress model.

0.15 . ; ;
no-stress @ water 4 NOAT3

— =—no-slip 8 glycerol ¢ PDMS

0.1¢f

0.05

Figure 3: Normalized mobility parameter K as a function of the channel aspect ratio A for
water,'! glycerol,'* NOA73,!'* and PDMS.? The solid and dashed lines represent the model
predictions using no-stress and no-slip boundary conditions, respectively. The solid symbols
represent experimental results by Lade'! and Sowers et al.”

To isolate the effect of the boundary condition on the model predictions, we define a

dimensionless mobility parameter

[ K _ T 20W
CL%cos(0)(1+2)) —1  L2nAC(N)

(22)

The mobility parameter k corresponds to the slope of the model predictions of eq. (21)

(Figure 2) and has units of (length)?/time. The non-dimensionalized mobility parameter K
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(eq. (22)) is a function of A and the boundary condition imposed at the upper liquid-air
interface. Removing the effects of the liquid-substrate interactions via the contact angle
allows for comparison of experimental results for different liquids on different substrates.

In Figure 3, dimensionless mobility parameters obtained from experiments with water,
aqueous glycerol, and liquid NOA73 by Lade!' conducted in solid NOA73 channels, and
experiments using liquid PDMS by Sowers et al.” conducted in solid PDMS channels are
compared to model predictions. It is observed that the no-slip model matches the water and
aqueous glycerol experiments, while the no-stress model matches the NOA73 and PDMS
experiments. Based on Figure 3, the aqueous solutions are in better agreement with the
no-slip model predictions, whereas the non-aqueous solutions agree with the no-stress model
predictions. These observations are in agreement with those by Yang et al.'® for aqueous
solutions, and those by Sowers et al.® and Ouali et al.?’ for non-aqueous solutions.

Additionally, a non-monotonic behavior of the difference between the no-slip and no-stress
model predictions with increasing channel aspect ratio A is observed in Figure 3. Specifically,

the maximum difference between the two model predictions is observed for A = 0.761.

Experiments to test boundary condition

To determine the proper boundary condition at the upper liquid-air interface, we deposited
~25-35 pm diameter Lycopodium particles at the upper liquid-air interface of a 0.70 w/w
aqueous glycerol solution flowing in an open rectangular channel and compared the velocity

of the particles at the upper interface to the velocity of the liquid front.

Channel fabrication

Traditional microfabrication techniques were applied to form silicon master patterns of cap-
illary channels.” PDMS (Sylgard 184, Dow Corning) was mixed with a base to curing-agent
ratio of 10:1 by mass and degassed in a vacuum chamber. The prepared PDMS was then
liquid-cast over the silicon wafer in the base of a glass petri dish. The PDMS was cured in
an oven at 75°C for 2 hr and then 120°C for 2 hr to fully solidify before being delaminated
from the silicon wafer.

Glass slides (75 x 25 mm?) were used as a substrate for the molded capillary channels.
A layer of UV-curable optical adhesive (NOAT73, Norland Products, Inc.) was placed on top
of the glass slides. The PDMS stamp was pressed into the NOA73 and then the assembly
was placed in a UV-curing chamber (Honle UV Spot 100, 365 nm) and illuminated at ~100
mW /cm? for 90 s to solidify the resin. The PDMS stamp was then peeled off the substrate

leaving behind a plastic replica of the capillary channels formed on the silicon master pattern.
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Materials preparation and characterization

Aqueous solutions of glycerol with a concentration of 0.70 w/w were prepared using ultra-
filtered and UV-treated water (Millipore Synergy filtration system, EMD Millipore). The
solution is Newtonian over a wide range of shear rates (1-1000 s™') and the measured vis-
cosity matched the value reported in Table 1. Lycopodium particles (Duke Scientific) with
a diameter range of 25-35 pum were used as tracer particles for the upper liquid-air interface.
Their unique surface structure and hydrophobicity caused by their waxy coating®® allowed
them to remain at the upper liquid-air interface and prevented sinking into the underlying
liquid.®®

Experimental setup

Prior to the capillary-flow experiments, the microchannels were plasma treated in a plasma
cleaner (PDC-32G, Harrick Plasma) at ~0.25 Torr and 18 W for 180 s to enhance wetting
of the NOAT73. The plasma-treated open microchannels were placed under an optical lens
(Zoom 6000 system with 3 mm FF zoom lens (model no. 1-6232) and 2x standard adapter
(model no. 1-6030, Navitar)). A syringe and needle were used to manually deposit droplets of
the aqueous glycerol solution into the center of the reservoir connected to the microchannel.
After the solution entered the channel, Lycopodium particles were manually deposited at the
upper liquid-air interface at different distances d from the liquid front. Capillary flow of the
aqueous glycerol solution was recorded using a high-speed camera (FASTCAM-ultima APX,
model 120 K, Photron) at 250 fps and was subsequently analyzed using ImageJ software.
The flow was recorded until the liquid-front propagation ceased due to the finite volume
of liquid in the reservoir. Experiments were conducted at ambient conditions (23 4+ 1°C,
65+ 1% relative humidity). An image sequence of the capillary flow of aqueous glycerol with
the hydrophobic Lycopodium particles deposited at the upper liquid-air interface is shown
in Figure S1.

From these flow visualization experiments we are able to obtain the velocities of the
particles and the liquid front. Comparison of these velocities for three cases is shown in
Figure 4 for particles located at three difference distances d from the liquid front. In all
three cases, the particle velocity is non zero at the upper liquid-air interface, which suggests
the absence of a rigidified liquid-air air interface. Hence, the no-slip boundary condition
does not appear to be valid for the system we are considering, which is contrary to what has
been reported.'%!? Alternative explanations contributing to the discrepancies between the

no-stress model predictions and the experimental results are discussed in the next section.
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Figure 4: Comparison of the velocity of the ~25-35 ym diameter Lycopodium particles at
distances (a) ~1.9 mm, (b) ~0.9 mm, and (c¢) ~0.7 mm from the liquid front of the 0.7
w/w aqueous glycerol solution flowing in a 200 ym wide and 177 um deep open rectangular

microchannel.

Potential explanations
Upper meniscus morphology

Sowers et al.” attributed the overprediction of the mobility parameter by the no-stress
model to two factors. The first factor is the upper meniscus morphology.” The MLW
equation assumes the upper liquid-air interface is flat and the channel to be completely
filled. However, experimentally the upper meniscus is observed to have a concave profile” '
and hence the effective height of the liquid is less than the channel height. A lower effective

height results in larger viscous forces and therefore a lower mobility parameter.

Forward meniscus morphology

The second factor proposed by Sowers et al.’ involves the forward meniscus morphology,
which the MLW equation assumes is a circular arc. It has been experimentally observed
that a curved forward meniscus develops in which the liquid height gradually decreases and
finger-like filaments form at the bottom corners of the channels resulting in deviation from a
circular-arc meniscus. The finger-like filaments are thought to introduce additional viscous
forces leading to a reduction in the mobility parameter.”

Seemann et al.’! elucidated the dependence of the forward meniscus morphology on § and
A for static liquids. Based on their work, three conditions determine the forward meniscus
morphology. The first condition reflects whether capillary imbibition in a rectangular cross-

section is energetically favorable, which is true for

1 V2 -1

—_—, for A > ,

cos(f) > % i_ Zi‘\g \/52_ 1 (23)
— fi :
WL or A< 2
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The first expression in eq. (23) is obtained by considering a liquid filament that is in
mechanical equilibrium between the force due to the Laplace pressure acting over the whole
area of the filament cross section, and the surface tensions acting along the boundaries of
this cross section. An alternative method for obtaining this expression is to set dG/dx = 0
in eq. (6) and solve for cos(f) as described in ref. 21. The second expression in eq. (23)
is obtained by considering the forces arising from liquid wedges along the groove corners in
addition to the Laplace-pressure and surface-tension contributions.

The second condition defining the forward meniscus morphology is the corner-filling con-
dition obtained by Concus and Finn,’? which states that for a 90° wedge, imbibition into
the wedge will occur for

0 < 45°, (24)

which arises from the general stability criterion for capillary surfaces.

The final forward meniscus morphology condition considers whether finger-like filaments

are pinned to the top of the side walls of the channel. For 6 < 45° this is true if

= 12 C(j:(lﬁ()0>’ (25)
which is obtained using geometrical arguments by assuming a circular upper meniscus touch-
ing the bottom of the rectangular channel while being attached to the top corners of the
channel.”!

Equations (23)—(25) were used by Seemann et al.®® to construct a forward meniscus
morphology diagram similar to that seen in Figure 5. Four regions are denoted in the
diagram. In region 1 no finger-like filaments are present. In region 2 finger-like filaments
are present. However, since they are not pinned to the top corners of the channel they are
small in size. In region 3 finger-like filaments are present which are pinned to the top of
the channel and are larger in size compared to those observed in region 2. Finally, while
capillary flow is observed in regions 1, 2, and 3, in region 4 there is no capillary imbibition.

Experiments by Sowers et al.,” Lade,!' and Yang et al.'® conducted in horizontal open
rectangular microchannels are also depicted in Figure 5. Reported observations from these
prior studies®!! for all the experimental data points (shown as solid symbols in Figure 5)
agree with the diagram predictions, even though the morphology conditions are defined for
static liquid in rectangular channels. The length of the fingers has been seen experimen-

9,11

tally® ™ and via numerical simulations? to increase as A decreases. Thus, the viscous forces

due to the fingers are expected to be larger for longer fingers, which subsequently results in a
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Figure 5: Forward meniscus morphology diagram as a function of static contact angle
0 and channel aspect ratio A. Solid, dashed, and dot-dashed lines are eqs. (23), (24),
and (25), respectively. The legend notation indicates the test liquid/substrate material.
Solid symbols represent experiments conducted by Lade!'! (water/NOAT3, glycerol/NOAT3,
NOAT73/NOA73), Sowers et al.® (PDMS/SiO,, PDMS/SiO»-PTFE) and Yang et al.'”
(water/SiOq) in horizontal open rectangular microchannels. Region 1 has no finger-like
filaments present, region 2 has unpinned finger-like filaments, region 3 has pinned finger-like
filaments, and region 4 has no capillary imbibition.

larger reduction of the mobility parameter and further deviation from the model predictions,
which is consistent with Figure 3.

While numerous experiments in regions 2, 3, and 4 have been conducted, no capillary
flow experiments for open rectangular microchannels located in region 1 were found in the
literature. In region 1 the MLW equation predictions would be expected to have better
agreement with experiments since finger-like filaments are absent in that region and the
upper meniscus morphology effects would be reduced compared to those observed in regions
2 and 3 since the static contact angle would be larger. Overall, Figure 5 suggests that
to accurately predict the liquid-front evolution in regions 2 and 3, finger formation and

dynamics must be accounted for in the model.
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Dynamic contact angle

Prior work has suggested that the capillary force used to obtain the MLW equation should
be determined by a velocity-dependent dynamic contact angle®®* rather than by the static
contact angle to obtain better agreement with experiments. To describe the dependence of
the dynamic contact angle 6; on the liquid velocity w, = dz/dt, we use the hydrodynamic
theory of a moving three-phase contact line by Cox,® which assumes the viscosity of the air
to be negligible. For § < 37 /4, the Cox theory simplifies to 03 = 6% + 9(nu,/o)x, where y
is the natural logarithm of the ratio between the macroscopic (width of the channel, ~107°

56-58

m) and the microscopic (~107% m) length scales.”® For the system we are considering

the Cox theory has the following form:

_néd:ﬁ

03 = 6° ! h == 2
o +9Cd’x, where Ca ST (26)

Cox’s theory® describes the change in the dynamic contact angle due to viscous bending
of the liquid-air interface. The theory is derived by applying the method of matched asymp-
totic expansions to solve the Stokes equations for a moving contact line assuming that C'a’
is small and the interface angle is slowly varying. To deal with the stress singularity there,

Cox considers a general slip law defined by the ratio of the aforementioned macroscopic to

microscopic length scales.

Figure 6: Square of the liquid-front position 2% as a function of time ¢ for different channel
aspect ratios A of water (a), glycerol (b), and NOAT73 (c). The solid lines represent model
predictions using a static contact angle. The dashed lines represent model predictions using

a velocity-dependent dynamic contact angle® in eq. (26). In all cases Ca’ ~ 107 — 1072

To evaluate the effect of a velocity-dependent dynamic contact angle, eq. (26) is included
to the system of egs. (17)—(20) and capillary flow in the absence of evaporation (i.e., J = 0)

is considered. The effect of a velocity-dependent dynamic contact angle on the liquid-front
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evolution for water, glycerol, and NOA73 is depicted in Figure 6. It is observed that using the
velocity-dependent dynamic contact angle results in a slower predicted liquid-front evolution
compared to using a static contact angle. Additionally, for all three liquids decreasing the
channel aspect ratio results in larger deviation from the model predictions using the static
contact angle. This is expected since for the three aspect ratios we are considering, decreasing
A results in an increase of the flow velocity as observed in Figure 2. However, it is important
to note that based on Figure 3 this trend is not monotonic, and therefore a decrease in A
does not always result in an increase of the flow velocity.

For the low-viscosity liquids (i.e., water and glycerol) in Figures 6a,b the effect of the
dynamic contact angle is less pronounced than that for the high-viscosity liquid (i.e., NOAT73)
in Figure 6¢c. While the velocities for the low-viscosity liquids are larger than those of the
high-viscosity liquid, the multiple order-of-magnitude difference in the viscosity results in a
larger capillary number C'a’ for the high-viscosity liquid and therefore a larger deviation from
the model prediction using the static contact angle. These observations are in agreement

1.,°* who observed a larger deviation from the model predictions

with those by Popescu et a
using a static contact angle of a high-viscosity silicon oil compared to water for capillary rise
in tubes.

It is important to note that dynamic contact angles decrease with geometric confine-
ment,” % which the Cox theory does not account for. Effects of geometric confinement are
significant when the channel width W is much smaller than the liquid’s capillary length
leap = \/00/pg,%! or equivalently when the Bond number Bo = pgW?/0oy < 1. For the mi-
crochannels and liquids considered in this study, confinement effects appear to be significant
since Bo ~ 107!t — 1078, Additionally, the dynamic contact angle depends on the ratio
of the macroscopic and microscopic length scales, and it is not clear what to use for those
values. (The values used above are chosen simply to demonstrate qualitative differences in
the model predictions using dynamic and static contact angles.) In order to properly account

for dynamic contact angle effects, highly resolved finite element method simulations would

be necessary.5!
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Surface roughness

An additional potential factor for the discrepancy between the model predictions and the
experiments is the roughness of the channel. Girardo et al.? conducted experiments and Lat-
tice Boltzmann simulations to study the effect of forward meniscus morphologies in smooth
and rough closed microchannels at short time scales. It was illustrated that even nanoscopic
channel roughness introduces extra dissipative forces, resulting in slower capillary filling (i.e.,
lower mobility parameter) and therefore better agreement with experimental observations.
Surface roughness can be incorporated in the model by replacing the static contact angle 6 in
eq. (6) by the Wenzel (if the liquid fully penetrates into the surface features) or the Cassie-
Baxter (if liquid bridges are formed between the surface features) contact angles.?! However,
this approach to incorporate surface roughness is not able to account for contact-line pinning

and contact-angle hysteresis.

Bulk viscosity

While the factors discussed above provide potential explanations for the overprediction of
the mobility parameter by the no-stress model, they do not provide an explanation for the
discrepancy observed between the aqueous and non-aqueous mixtures seen in Figure 3. A
potential explanation for this is the difference in the bulk viscosity that is observed between
the aqueous and non-aqueous mixtures seen in Table 1. Due to the non-aqueous mixtures
having a higher viscosity compared to the aqueous mixtures, any of the aforementioned
potential factors that result in lowering of the mobility parameter are suppressed by the large
bulk viscosity. Hence, better agreement is observed between the no-stress model predictions
and high-viscosity mixtures not due to the non-aqueous nature of these liquids but rather
due to their high viscosity.

We note that a combination of the factors discussed above may be responsible for dis-
crepancies between model predictions and experimental results. This uncertainty means
that rather than being a truly predictive model, the MLW equation has mostly been used
to fit experimental data by using the mobility parameter k as a fitting parameter instead

of calculating it analytically.t! 1621

Development of a more detailed model is needed to
make more quantitative predictions and to determine which factors are most responsible for

discrepancies between theory and experiment.
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Capillary flow in the presence of evaporation

To elucidate the effects of evaporation on capillary flow, we consider the simplest case of
uniform evaporation. In this section, we use the rate of evaporation J as the only fitting
parameter to fit the no-stress model to capillary-flow experiments of 0.03 w/w aqueous

solutions of poly(vinyl alcohol) (PVA) conducted by Lade et al.'?

Solution characterization

While aqueous PVA solution is Newtonian,'? the viscosity depends on the concentration of
PVA as seen in Figure S2a. A four-order-of-magnitude increase in the viscosity is observed
for the PVA concentration range of 0-0.12 w/w. In addition to viscosity, surface tension
and static contact angle also depend on the concentration of PVA as seen in Figures S2b.c.
Based on Figure S2b, a decrease of the surface tension is observed as the PVA concentration
increases, while the opposite trend is observed for the static contact angle in Figure S2c.
An empirical viscosity model proposed by Patton® is used to capture the temperature

T and PVA concentration ¢ dependence of the viscosity:

ko(T) =1.28 - 107°T(K) 4+ 1.59 - 1072,
¢ ,  where (27)
ka(T) + oky(T) kp(T) = 3.83 - 10T (K) — 2.47 - 1072,

log 7 =

The fitting parameters k,(T) and k,(T) reported by Lade'! were obtained by fitting the
empirical model to rheological data ranging from 17-40°C, with concentrations ranging from
0.03-0.121 w/w, and over shear rates of 0.1-10 s™'. The empirical model is depicted as a
dashed line in Figure S2a.

The empirical formulas used to describe the dependence of the surface tension and static

contact angle on the PVA concentration are

16.378¢% — 3.5713¢ + 1, (28)

o

0 = 2097¢* + 102.84¢ + 19.9, (29)

which are obtained by fitting surface-tension and contact-angle measurements conducted by
Lade!! at 23°C with PVA concentrations ranging from 0-0.12 w/w. These empirical formulas
are represented as dashed lines in Figures S2b,c, respectively.

Equations (27)—(29) are used to describe the concentration-dependent viscosity 7(¢),
surface tension o(¢), and static contact angle 6(¢) in eq. (17) to account for effects of

evaporation.
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Figure 7: Square of the liquid-front position 22 as a function of time ¢ for A = 1.872 of PVA.
The solid symbols representing the experimental results of Lade et al.'? are fitted with the
no-stress model for relative humidities (RH) of (a) 7%, (b) 45%, and (c) 80%. The model
predictions using the no-stress boundary condition are depicted as solid lines.

Comparison with results of Lade et al.

The effects of evaporation on capillary flow are determined by using the rate of evaporation
J as the only parameter to fit the no-stress model to experiments conducted by Lade et al.'?
The comparison is depicted in Figure 7 for A\ = 1.872 for different relative humidities RH,
which were used to control the rate of evaporation. As the relative humidity increases, the
evaporative flux decreases, resulting in longer flow distances and longer flow times.

In the presence of evaporation the mobility parameter k (i.e., slope of solid lines in
Figure 7) decreases as a function of time due to the increase in viscosity, decrease in surface
tension, and increase in static contact angle, resulting in flow termination. By using the
rate of evaporation as the only fitting parameter, the no-stress model is able to capture the
liquid-front evolution quantitatively for all three RH conditions depicted in Figure 7.

The validity of the evaporative flux values used to fit the experimental data is assessed
by comparison to the bulk drying measurements reported by Lade et al.'? Table 2 illustrates
that the flux values used in the model are O(10 — 10?) larger than those observed in the
bulk drying experiments. The discrepancy is likely a result of the model assumptions that
the liquid height and the evaporation rate, and hence the concentration-dependent viscosity,
are spatially uniform.

1.'2 experimentally showed the presence of spatial gradients in the PVA

However, Lade et a
concentration, with solute accumulation at the contact line. This resulted in a non-uniform
dry-film thickness after complete solvent evaporation. These findings led Lade et al.'? to

infer that the evaporation rate is enhanced at the contact line and pinning of the contact
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line occurs far before drying of the liquid in rest of the channel. This phenomenon is not
accounted for in the model or in the bulk evaporation rate data. Hence, the model requires
an extremely high uniform evaporation rate to replicate the experimentally observed flow
behavior, which is significantly affected by the higher local PVA concentration at the contact
line. Despite there being a discrepancy between the evaporative mass fluxes used to fit the
model and those obtained from bulk drying experiments, important scaling relationships can

be obtained from the model and are discussed in the following section.

Table 2: Comparison of evaporative flux values to flux values obtained by fitting the no-

stress model to experimental data by Lade et al.'? Reported evaporative mass flux values

are in units of mg m=2 s7!,

Relative Humidity Evaporative mass flux
(%) bulk drying experiments'? model
7 650 14420
45 230 6866
80 90 2630

Scaling analysis

In many applications relying on capillary flow subject to evaporation, the goal is not neces-
sarily to control the liquid-front evolution but rather the final liquid-front position xr and
the final flow time ¢r. The final liquid-front position zp corresponds to the position where
the liquid-front meniscus propagation is halted and the final flow time ¢z corresponds to the
time at which the liquid meniscus propagation is terminated.

To control the final flow time and final liquid-front position, it is necessary to determine
their dependence on the rate of evaporation and the microchannel dimensions. The 1D model
is used to determine scaling relationships for the dependence of the dimensionless final flow
time ¢tz and dimensionless final liquid-front position Zy on the dimensionless evaporative
flux J and channel aspect ratio A\. Using the height evolution eq. (18), the dimensionless
final flow time scales as

_ A
tF ~ j—, (30)
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where the dimensionless final flow time is proportional to the channel aspect ratio A = H/W
and inversely proportional to the dimensionless total evaporative mass flux J.
Similarly, using the force balance in eq. (17) the dimensionless final liquid-front position

scales as ,
_ ACo(N)
2

where (,(A) is an aspect-ratio function (see ref. 21). Based on this scaling relationship the

(31)

dimensionless final liquid-front position is nonlinearly related to the channel aspect ratio and
inversely proportional to the square root of the dimensionless evaporative mass flux.

The accuracy of the scaling arguments can be seen in Figure 8 for different channel widths
W. The scaling relationships of eqgs. (30) and (31) are in agreement with experimental
results by Lade et al.'®> We note that the evaporative mass flux values used to define the
coordinates of the experimental data points in Figure 8 are the bulk evaporative mass flux
values reported by Lade et al.'?> In experiments, the evaporative mass flux will likely be
a function of space, but Figure 8 suggests that the constant bulk values are sufficient for
qualitatively understanding the behavior of the final liquid-front position and the final flow
time. Quantitatively accurate predictions of these quantities and of the time-evolution of
the liquid front will likely require accounting for the spatial dependence of the evaporative

mass flux (and possibly the influence of temperature-induced surface-tension changes).
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Figure 8: Scaling relationships for (a) dimensionless final time ¢z and (b) square of the
dimensionless final liquid-front position z%, for different channel widths . The solid lines
represent the proposed scalings from egs. (30) and (31) and the solid symbols represent
experimental results by Lade et al.'> All channel heights H are 46.8 pm.
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Conclusions

The results of this study help resolve conflicting results from prior literature regarding the
proper boundary condition at the upper liquid-air interface in capillary flows in open rect-
angular microchannels. Flow visualization experiments indicate the absence of a rigidified
liquid-air interface, suggesting that the no-slip boundary condition is not appropriate. The
better agreement between model predictions using the no-slip (rather than the no-stress)
boundary condition and experimental observations with low-viscosity liquids is likely due to
factors not included in the model such as (i) upper and forward meniscus morphology, (ii)
dynamic contact angle effects, and (iii) channel roughness. For high-viscosity liquids, the
influence of these factors appears to be suppressed by the large bulk viscosity.

We have also developed a Lucas-Washburn-type 1D model that incorporates the effects of
concentration-dependent viscosity and uniform evaporation. Scaling relationships obtained
from the model for the dependence of the final flow time and final liquid-front position on
the rate of evaporation and channel dimensions are in good agreement with experimental
observations. The model developed here can be used for any solution or colloidal suspension
where the shear viscosity is the dominant rheological parameter, provided that expressions
for the concentration-dependent viscosity, surface tension, and contact angle are available.
Although the evaporative mass flux was used as a fitting parameter in the present study,
more detailed evaporation models could be incorporated. To accurately predict the time-
evolution of the liquid front, it will be necessary to use a model that accounts for the upper

and forward meniscus morphology, as well as finger formation and dynamics.

Appendix

Ouali et al.?! report a general solution to the Navier-Stokes equation relating u(y, z) to the
depth- and width-averaged velocity u,(t) = dz/dt (eq. (3)) for an open rectangular channel,
subject to a no-stress boundary condition at the upper liquid-air interface and a no-slip

boundary condition on the solid walls. This general solution is given by

n

u(y, z) = —W?’/l\zg:()\) Z (2(71__‘1}1)3 [cosh(az/H) — tanh(ay) sinh(arz/H) — 1] cos(ary/H),

n=0

(32)
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where A\ = h/W is the aspect ratio based on the liquid height, —TW/2 < y < W/2 and
0<z<h,al=(2n+ 1)mA, and (,(A) is an aspect-ratio function defined as

B tanh(afl)]

o
an

o0

24 1

Using eq. (32) to evaluate the inlet momentum flux term in eq. (2) gives rise to the aspect-

(33)

ratio function f,(\) defined as

1 h(t) [ W/2 o0 )
) A =-—
fo(N) hW/o /—vm Wvgo Z 2n—|—1

n=

X [cosh(alz/H) — tanh(a?) sinh(alz/H) — 1] cos(a ny/H)] dydz.
(34)

Ouali et al.?’ also report a general solution for an open rectangular channel subject to a
no-slip boundary condition at the upper liquid-air interface and on the solid walls, which is
equivalent to the general solution for a closed rectangular channel given by

o0 ?"L

48u,,
uly, z) = TG Z2n+1

n=

_ cosh(azy/W)
cosh(a¢ /2)

] cos(ayz/W), (35)

where —W/2 <y <W/2and —h/2 < z < h/2,a% = (2n+1)7/\, and (.(\) is an aspect-ratio
function defined as
96
N=—§V"_-
) T = (2n + 1)*

n—

B Ztanh(a%/Q)] . (36)

C
an

Similar to f,(\), an aspect-ratio function f.(\) resulting from evaluation of the inlet mo-

mentum flux term for a closed rectangular channel can be obtained using eq. (35).
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Associated Content—Supporting Information

Supporting Information can be found at the end of the manuscript.

Fig. S1. Image sequence of capillary flow. Fig. S2. Plots of viscosity, surface tension, and

static contact angle as a function of PVA concentration.
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Supporting Information

Capillary Flow with Evaporation in Open Rectangular Microchannels
Panayiotis Kolliopoulos, Krystopher S. Jochem, Robert K. Lade Jr., Lorraine F.
Francis, Satish Kumar

Department of Chemical Engineering and Materials Science, University of Min-

nesota, Minneapolis, MN 55455, USA

Figure S1: Image sequence of capillary flow of 0.70 w/w aqueous glycerol in 200 pym wide
and 177 pm deep open rectangular channels. Orange arrows indicate the position of the
Lycopodium particles and the blue arrows indicate the position of the advancing liquid
front. The Lycopodium particles were initially located a distance d from the liquid front.
Scale bar: 700 pm.
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Figure S2: (a) Dimensionless viscosity 7, (b) dimensionless surface tension &, and (c¢) static
contact angle 6 as a function of PVA concentration ¢. Solid symbols represent experimental
measurements at 23°C by Lade.!! In panel (a) the dashed line represents an empirical viscos-
ity model proposed by Patton® accounting for the temperature and the solute-concentration
dependence of the viscosity seen in eq. (27). In panel (b-¢) dashed lines represent empirical
formulas of eqs. (28) and (29), respectively, which were obtained by fitting the experimental
data. The solvent viscosity 7y and surface tension oy used for non-dimensionalization are
those of water, shown in Table 1. The reported density is 1.0 g/cm?.1?
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