LIMITS OF QUANTUM GRAPH OPERATORS WITH SHRINKING EDGES
GREGORY BERKOLAIKO, YURI LATUSHKIN, AND SELIM SUKHTAIEV

ABSTRACT. We address the question of convergence of Schrédinger operators on metric graphs
with general self-adjoint vertex conditions as lengths of some of graph’s edges shrink to zero. We
determine the limiting operator and study convergence in a suitable norm resolvent sense. It is
noteworthy that, as edge lengths tend to zero, standard Sobolev-type estimates break down, making
convergence fail for some graphs. We use a combination of functional-analytic bounds on the
edges of the graph and Lagrangian geometry considerations for the vertex conditions to establish
a sufficient condition for convergence. This condition encodes an intricate balance between the
topology of the graph and its vertex data. In particular, it does not depend on the potential, on
the differences in the rates of convergence of the shrinking edges, or on the lengths of the unaffected
edges.
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1. INTRODUCTION

Continuous dependence of eigenvalues on edge lengths is a fundamental issue in the spectral
theory of quantum graphs [BK, M14]. In particular, it is vital to spectral shape optimization
problems which have received much attention recently (see for example [F05, EJ, KKM, BRV,
KKMM, DR, BL, BKKD, R17, Ar] and references therein). In such optimization problems achiev-
ing extremum often requires redistribution of volume (edge length) from one edge to another. It is
thus important to determine the limit of a quantum graph operator as one or more of the graph’s
edges shrink to zero.

We answer this question in a very general setting: Schrodinger operators on graphs with general
self-adjoint vertex conditions. The question naturally breaks into three parts. First, one has to
determine the domain of the putative limiting operator; this is simple to do on an intuitive level.
We recall that any set of self-adjoint vertex conditions is determined by a system of linear relations
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between the values of the function f and its derivative f’ at the vertices. Heuristically, the values
of the function (and its derivative) at the end points of an infinitesimally short edge should match.
Hence, it is natural to conjecture that the vertex conditions for the limiting operator stem from
the augmented linear system

f satisfies the original vertex conditions and (1.1)

fe(0) = fe(L.), f(0) = fl(¢.), for every edge e of length £, — 0. (1.2)

Eliminating from this system the variables corresponding to the edges of vanishing length, one
obtains the new set of the limiting vertex conditions on the reduced graph.

The second step is to determine if the vertex conditions obtained through the above procedure
always define a self-adjoint operator on the new graph. We answer this question in the positive
by reformulating it in terms of Lagrangian geometry. It is well known that self-adjoint extensions
of a symmetric operator with equal deficiency indices are in one-to-one correspondence with the
Lagrangian planes in some symplectic Hilbert space [AS80, BF, KS99, Ha00, LS, LSS, McS]. The
question of restricting self-adjoint vertex conditions from the original graph to its reduced version —
with some edges shrunk to zero — is reframed in terms of the so-called linear symplectic reduction
(see, for example, [McS]) allowing us to show that (1.1)-(1.2) indeed define a valid self-adjoint
limiting operator.

We now give two simple but illuminating examples of the limiting vertex conditions. Consider
the graph displayed in the left part of Figure 1. We impose d—type boundary conditions (cf.
(2.18)) with coupling constants cv_ and « at the end points of the vanishing (middle) edge. Then
the limiting vertex condition, in the right part of Figure 1, is also of d—type but with the coupling
constant o + «a,. An interesting dichotomy arises when we contract a loop with #—periodic
conditions (cf. (2.23)) as shown in Figure 2. If # # 0 (mod 27), shrinking results in two separated
vertices with the Dirichlet conditions (cf. (2.22)), whereas contracting a periodic loop (i.e. # = 0)
preserves the conditions at the connecting vertex. More examples are considered in Section 3.

The final third step is to investigate convergence of approximating operators to the limiting
operator. This turns out to be the most difficult part since the convergence does not always
hold. In Section 3 we construct several examples of increasing sophistication that illustrate the
problem. Perhaps the most striking example is that of a sequence of graphs, each with —1 as
an eigenvalue, whose supposed limit is a positive operator, see Example 3.13. It turns out to
be a delicate job to craft a condition which excludes all counter-examples and yet includes all
known cases when the convergence does occur. This is achieved in Condition 3.2 (“Non-resonance
Condition”) which, informally, does not allow eigenfunctions of the approximating operators to be
supported exclusively on the vanishing edges. We also show that in some settings which often arise
in applications, this sufficient condition also turns out to be necessary. Condition 3.2 is formulated
entirely in terms of the easily accessible information: the vertex conditions £ on one hand and
the topological connectivity information from equation (1.2) on the other. A weaker but more
technical sufficient condition (which follows from Condition 3.2.) is that the norms of resolvents
on the approximating graphs, considered as operators from L? to L, remain uniformly bounded
as lengths of some edges shrink to zero. We point out that such a boundedness does not hold in
general since the standard Sobolev estimates break down as edge lengths go to zero.

It is important to elaborate on the notion of convergence appropriate for the operators we
consider. The approximating and the limiting operators are defined on significantly different spaces
making direct comparison impossible. Instead we use the notion of generalized norm resolvent
convergence, formulated by O. Post [P06, P11, P12] and P. Exner [EP] to study the convergence of
differential operators on thin structures to differential operators on graphs. The core of the method
is to intertwine the spaces of functions supported on the thick and thin structures by means of
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FIGURE 1. A vanishing edge (horizontal) e, connecting two vertices equipped with
the d-type boundary conditions. Quasi-unitary operators map the spaces of func-
tions supported on respective graphs and “almost” intertwines the operators on the
corresponding graphs.

quasi-unitary operators. For illuminating discussion of this subject we refer to [P12, Chapter 4].
In our model, the quasi-unitary operators Jy, formally defined in (3.5), simply extend by zero the
functions defined on the reduced graph. This action of the operators J; and their quasi-inverses
J; is schematically illustrated in Figure 1.
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FIGURE 2. Loop of length s.

We now summarize previous related work. In [BK12] it was shown that the eigenvalues of the
Schrodinger operator with arbitrary vertex conditions depend analytically on the edge lengths,
as long as they remain strictly positive. On the opposite side of the spectrum are the results
of [HS], where the behavior of the eigenvalues of the Schrodinger operators with matrix valued
potential on [0, s] was studied as s — 0. The case of diagonal potential here is equivalent to a
bipartite graph with all edges of the same length. Band and Levy [BL, App. A] gave an informal
argument for eigenvalue convergence for the case of shrinking to zero edges that link vertices with
Neumann—Kirchhoff, i.e. d-type with zero coupling constant, conditions. They approached the
problem via a secular determinant which is only viable for scale invariant boundary conditions and
zero potential. Finally, perhaps the most directly related reference is Cheon, Exner and Turek
[CET], which resolves a longstanding open problem about approximating a vertex with arbitrary
conditions by a graph with internal structure but only d-type conditions. As the approximating
graph is shrunk to a point, the authors allow J-couplings to vary, calculate Green’s function
explicitly and thus establish convergence. We note that the case of a graph with fixed d-type
conditions is covered by our results via Lemma 3.4. Finally we remark that our methods are not
incremental extensions of the above mentioned works but a new combination of functional-analytic
estimates and Lagrangian geometry considerations.

This paper is organized as follows. In Section 2 we discuss a one-to-one correspondence between
Lagrangian planes and self-adjoint boundary conditions on metric graphs. Section 3 summarizes
main results of this paper illustrated by numerous examples. Section 4 reviews relevant definitions
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and results from linear symplectic geometry, proves self-adjointness of the limiting operator, and
explores the geometrical meaning of Condition 3.2. Functional-analytic estimates producing the
main result are presented in Section 5.

Notation. We denote by I, the n x n identity matrix. For an n x m matrix A = (a;;);2] ;—, and

a k x { matrix B = (bij)f’:é17j:1, we denote by A ® B the Kronecker product, that is, the nk x m¢
matrix composed of k x £ blocks a;;B,i=1,...n,j=1,...m. Welet (-,-)cn denote the complex
scalar product in the space C" of n x 1 vectors. We denote by B(&X') the set of linear bounded
operators and by Spec(T") the spectrum of an operator 7" on a Hilbert space X'. Given a subspace
S C X we denote 1S := S @ S. Given an operator T acting in X we denote T := T & T, then T
acts in X, Given two subspace U,V C X, we write X := U4V if UNV = {0} and U+V = X.

We denote R := (0,00)?, RZ, := [0,00)%, d € N. Given two positive quantities =,y we write
x <, y if there exits a positive constant ¢ = c(a) > 0 depending only on « such that z < ¢(a)y,
likewise z < y if and only if x < C'y for some absolute constant C' > 0. Given an edge e incident
to a vertex v we write e ~ v.

2. PRELIMINARIES AND NOTATION

2.1. Schrodinger Operators on Graphs With Fixed Edge Lengths. We begin by discussing
differential operators on metric graphs. To set the stage, let us fix a discrete graph G = (V,€)
where V and £ denote the set of vertices and edges correspondingly. We assume that G consists of
finite number |V| of vertices and finite number || of edges. Each edge e € £ is assigned positive
length ¢, € (0,00) and some direction. The corresponding metric graph is denoted by I'. The
boundary JI' of the metric graph is defined as follows,

Ol := Ueee{ae, b}, (2.1)
where a,, b, denote the end points of edge e. Then, one has
L2(0T) = C?€!, (2.2)

where the space L*(9') = @, (L*({ac}) ® L*({bc})) corresponds to the discrete Dirac measure
with support Ueee{ae, be}. Let us introduce the following spaces of functions

LA(T) = @ L¥(e), HA(T) = P H(e), k €N,
ec& ec&

where H¥(e) is the standard L? based Sobolev space of order k € N. The Dirichlet and Neumann
trace operators are defined by the formulas

vp : HA(T) = L*(AT), ypf == flar, f € HX(T), (2.3)
vx + H(T) = L2(AT), v f := 0, f|or, [ € H*(T), (2.4)

where 0, f denotes the inward derivative of f. The trace operator is a bounded, linear operator
given by

tr = DD} ,tr: HA(T) — L*(AT) @ L2(oT) = CcYel. (2.5)
N
This notation gives rise to the following form of the second Green’s identity,
[Fa-T9 =~ [ 8y TFog= (s @ e)trg)cue (2.6
r or

Finally, the Sobolev space of functions vanishing on the boundary 01" together with their derivatives
is denoted by

~

fﬁ@y:{feﬁ%m;uf:o}. (2.7)
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Next, we introduce the minimal Schrodinger operator H,,;, and its adjoint H,,.,. To this end,
let us fix a bounded real-valued potential ¢ € L*>(I';R). Then the linear operator
2

da?

is symmetric in L*(T"). Its adjoint H,uep := H:

min
2

is given by the formulas

— _ 172
Hypos = 0 +q, dom(Hpe) = H(T). (2.9)
Moreover, the deficiency indices of H,,;, are finite and equal, that is,
0 < dimker(Hpq, — 1) = dimker(H,paq + 1) < 00. (2.10)

By the standard von-Neumann theory, the self-adjoint extensions of H,,;, exist and every self-
adjoint extension H satisfies H,,;, C H = H* C H,,.,. There are various possible parameter-
izations of all self-adjoint extensions of the minimal operator. In this paper we utilize the one
stemming from symplectic geometry. Namely, we use the fact that the self-adjoint extensions of
the minimal operator are in one-to-one correspondence with the Lagrangian planes in some sym-
plectic Hilbert space [AS80, McS, Pa|. This relation was noted by many authors in different forms,
cf., e.g, [BF, Ha00, KS99, LS]. For the sake of completeness we provide its proof in Section 4 after
recalling the definition of Lagrangian subspaces of a symplectic space.

Proposition 2.1 (cf. [Ha00, KS99, KS06]). Assume that ¢ € L*(I;R). Then the self-adjoint
extensions of Hpin (cf. (2.8)) are in one-to-one correspondence with the Lagrangian planes in
UL2(0T) equipped with the symplectic form w given by

w: L20r) x ‘L*r) — C, (2.11)
w((¢1, B2), (Y1,102)) == (ng/}l — Pr1s, (2.12)
(61, 02), (Y1, 42) € “L*(AN). (2.13)

Namely, the following two assertions hold.
1) If H is a self-adjoint extension of H,, then

L(H) := tr (dom(H)) is a Lagrangian plane in "L*(IT).

Moreover, the mapping H — L(H) is injective.
2) Conversely, if L C “L?*(0T) is a Lagrangian plane then the operator
d2

H(L) ==~ +q(x), dom (H(L)) = {f € H*T) :tr f € L}, (2.14)

1s a self-adjoint extension of H,.
We recall a related description of the domain of H(L): There exist three orthogonal projec-

tions Pp, Py, Pg acting in L?*(9T), referred to as the Dirichlet, Neumann, and Robin projections
respectively, such that

L*(9T) = ran(Pp) @ ran(Py) @ ran(Pg), (2.15)
and an invertible, self-adjoint matrix ) such that
= Ppypf =0, Pyynf =0,
dom(H (L)) = 4 f € B2(D)|"" , 2.16
om(H(£)) {f (T) Prynf = QPrynf ( )

cf., e.g., [BK, Theorem 1.1.4]. In this notation for arbitrary f € dom(H (L, ¢)) one has
(fL H(L,O)f) 2wy = 1 220y + (P eaaey + (Pryp S QPryp f) 2 or). (2.17)
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The vertex conditions are called scale invariant if Pr = 0, cf. [BK, Section 1.4.2]. Conditions are
scale invariant if and only if the corresponding Lagrangian plane £ C L*(0T') ® L?(9T") decomposes
as L= Lp @ Ly, see Proposition 4.5 in Section 4.

Next, we list some standard conditions at a vertex v (here 0, f denotes the inward derivative of

f):

e )-type condition with coupling constant o € R:

> 0. f(v) = af(v), (2.18)

vr~e

{ f is continuous at v,

e Neumann—Kirchhoff condition is given by (2.18) with o = 0,

S0, f(v) =0, (2.19)

vr~e

{ f is continuous at v,

e '-type condition with coupling constant o € R:

0, f is continuous at v,
{Z f(v) =ad, f(v), (2.20)

vve

e anti-Kirchhoff condition is given by (2.20) with a = 0,

S f(v) =0, (2.21)

vve

{81, f is continuous at v,

e Dirichlet conditions

fe(v) =0, for all e ~ v, (2.22)
e O-periodic (magnetic) condition at a vertex of degree 2 with incident edges e; and ey is
given by
= eif 0 eR
fel (U) € f82.(010)7 € ? (223)
al/fel (U) =—¢ al/f(iQ (U)

2.2. Schrodinger Operators on Graphs With Vanishing Edges. The main purpose of this
paper is to investigate convergence of the spectral projections of the Schrédinger operators on I'(¢),
where £ = ({.).cs denotes the vector of edge lengths, as

(=i RE where (€RE) and 0= () € RE)\ {0} (2.24)

Note that the components of ¢ are all positive, whereas some, but not all, components of { are
equal to zero. The “limiting” metric graph I’(Z) is based on the discrete graph G obtained from G
by contracting the edges with Ze = 0.

We emphasize that the main difficulty is in dealing with the edges whose lengths tend to zero.
For notational convenience we label edges of the graph G so that the first m ones are rescaled but
not completely shrunk to zero, and the remaining |E| —m edges are being shrunk to zero as ¢ — 27,
that is, we write

0=l .0, ,0,..0), (2.25)

where the first m > 1 components of { are positive. To simplify notation we denote the set of the
non-vanishing edges of I'(¢) by
E={e1,...,em}, (2.26)
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and the vanishing ones by

50 = {6m+1, ceey 6|g‘}. (2.27)
Let I'; (¢) be the subgraph of I'(¢) with the set of edges £, and let T'y(¢) be the subgraph of I'(¢)
with the set of edges &. In particular, one has

L) =T,(0)uTly(L). (2.28)
Let ¢, denote the vector of edge lengths of graph I'; (¢), and ¢, denote the vector of edge lengths of
Lo(¢), that is, £ = (¢4,4y). Next, since all components of ¢ are positive, the spaces OI'(¢), OI' (¢),

and 0T'g(¢) do not depend on ¢. We therefore drop ¢ and write OI', OI'y, and OI'y respectively.
Then, in particular, 0I' = 0", U 9’y and

L*(0T) = L*(0r'y) @ L*(9Ty), (2.29)

where L? spaces correspond to the discrete Dirac measure with support Uecg{a.,b.}. We notice
that all spaces in (2.29) are finite-dimensional since I is a compact graph. Let P, be the orthogonal
projection acting in L*(8T") with ran(P;) = L*(9'y) @ {0}, and let Py := I12(9r) — Py. We recall
the notation “L?(AT") := L?(dI')@® L?(T) and we write “ P for the operator P& P acting in “L?(0T").
In particular, for the symplectic form (2.11), one has

w(u,v) = w(Pyu, P iv) + w(Pou, ‘Pov), (2.30)
for all u,v € “L?(9T).
To complete the setting, let us define the Schrodinger operators corresponding to each lengths
vector { € R|€| To this end, let us fix a family of potentials ¢° € L>(T(0); R) corresponding to
the graphs with positive edge lengths, and the limiting potential ¢* € LOO(F(K) R) satisfying

"= reymy = O(1) as £ = ¥,
sup |q(Ley) — qf@;yﬂ =o(1) as . — 0, for all e € &,. (2.31)
y€[0,1]
These conditions hold, for example, if the family ¢ is obtained by rescaling a fixed potential. Next,
we fix a Lagrangian plane
L C “L2on). (2.32)
For ¢ € Rlﬂ) let H(L, /) denote the self-adjoint Schrodinger operator acting in L?(T'(¢)) and given
by the formulas
2

- — + ¢ (),
dom (H(L,0)) :{fGHQ( (0) :tr’ f e L},

where the trace operator trf = (v4,~%)7 acts from H2(I'(£)) to L2(AT) & L(AT) as indicated in
(2.5). In particular, the norm of tr® depends on £. The resolvent of H(L, ) is denoted by

R(L,0,2) = (H(L,0)—2)"", z€ C\ Spec(H(L,1)). (2.34)

H(L,6) = (2.33)

3. MAIN RESULTS

In this section we collect the statements of our main results together with examples that illustrate
their application. The proofs will be provided in subsequent sections.

First, we define an operator (C E) on the graph 1"(5) which will serve as the limiting operator
for H(L,0) as ¢ — (. The definition is motivated by the heuristic observation, made in the
Introduction, that the limiting boundary conditions should be of the form (1.2).



8 G. BERKOLAIKO, Y. LATUSHKIN, AND S. SUKHTAIEV

Theorem 3.1. Assume that L C dLQ(GF) 1s a Lagrangian plane with respect to symplectic form
w, cf. (2.11)-(2.13). Let

L = {(d1lor+, dalors) : (61, 62) € LN (Do & No)}, (3.1)

where
Dy = {¢1 € L*(0T) : ¢1(ac) = ¢1(be), e € &}, (3.2)
No = {¢y € L*(OT) : ¢a(ae) = —a(be), € € &} (3.3)

Then L is a Lagrangian plane in dL2(6’F+) with respect to the symplectic form wr, obtained by
restricting w to “L*(0T). Therefore, the operator H(L, () acting in L*(T'(£)) and given by
P
—_ + ,
dz2 1 ~ (3.4)
dom (H(L,0)) = {f € H*(T(¢)) : r*(f) € L},

H(L,0) =

1s self-adjoint.
Proof. The proof, based on linear symplectic reduction, is provided on page 16. 0

The main result of this paper is the convergence of the spectral projections of the self-adjoint
Schrédinger operators H(L, /) to those of H(L,¢). It will be established under the following
condition.

Condition 3.2 (Non-resonance Condition). Suppose that for all (¢1,¢p2) € LN (Do @ No) such
that ¢1lary = ¢2lor = 0 one has ¢1 = 0.

Informally, this condition says that if a function from the domain of H is small on non-vanishing
edges, then its value (but not, necessarily, its derivative) should also be small on the vanishing
edges. Let us emphasize the striking similarity between Condition 3.2 and the definition of L
in equation (3.1). As explained in Remark 4.4, this condition is generic among all self-adjoint
Schrodinger operators on I' (as parameterized by the Lagrangian planes £).

Condition 3.2 is also easy to check on important classes of graphs. The first class consists of the
graphs with scale invariant conditions, in which case Condition 3.2 is also necessary.

Lemma 3.3. Suppose that the Robin part of H(L, ) is absent, that is, Pp = 0 in (2.16). Then
Condition 3.2 holds if and only if the zero function is the only function satisfying the boundary
conditions tr(f) € L, that is constant on each edge of I'y and vanishes on T,

Proof. On page 17. O

The second class includes connected graphs with a continuity condition imposed at every vertex.

Lemma 3.4. Suppose that every vanishing edge e € &y belongs to a path P. that contains at
least one non-vanishing edge, and along which the function |f| is continuous for every f €
dom (H(L,()). Then Condition 3.2 holds.

Proof. On page 17. U

In order to formulate our results on spectral convergence, let us introduce quasi-unitary operators
Jr which lift the functions defined on the limiting graph I'(¢) to the approximating graph T'(¢).
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This is achieved by linear scaling on the edges of I'y and by extending functions by zero on the
edges of I'y, that is by defining J, € B (LQ(F(Z)), L2(F(€))> as follows:

(ZeH)@) = 3 xela) \[ (xf) reT(), (35)
ec&y €

where x.(-) is the characteristic function of e C I'(¢). We remark that J,7,, where J, denotes
the adjoint operator, is identity on L*(T'(£)), see Theorem 5.4 for details.

Theorem 3.5 (Convergence of resolvents). Assume Condition 3.2. Then, as { — ‘,

HJZR(E,Z 2) = R(L,0,2)T,

‘B(LQ(F(Z)LL?(F(@)) e (3.6)
[(Te2rgiyy — TeTOR(L A 2| 5o uayyy — O
where R(L, ¢, z) and R(E,Z z) denote the resolvents of the respective operators.
Proof. On page 22 as a combination of Theorems 5.4 and 5.5. O
An immediate corollary of the convergence of resolvents is convergence of spectra.
Theorem 3.6 (Spectral convergence). Assume Condition 3.2 holds. Then
Spec(H(L, ) — Spec(H(L, 1)) as € — L, (3.7)

in the Hausdorff sense for multisets. Namely, if Ao has multiplicity m € {0,1,2, ...} in the multiset
Spec(H (L, 1)) then for all sufficiently small € > 0 there exists § = 6(e, \g) > 0 such that

card (Spec(H(L,0)) N B(Xo,€)) = m whenever |[{ — (| < 6. (3.8)
Furthermore, eigenspaces converge in the following sense,
T (H(L. T (L. 0), H 0,
2B =X HE D 3, i (3.9)
| (Ir2ogiey — JeT7) X(H (L, HB(L%F(Q;Z))) — 0,

where X(H (L, 0)) and x(H(L,1)) denote the spectral projections of the respective operators onto
an interval (a,b) with a,b € R\ Spec(H (L, 1)).

Proof. On page 25 U

In the case of the Laplace operator with scale invariant vertex conditions we show that Condi-
tion 3.2 is not only sufficient but also necessary for the spectral convergence to hold.

Theorem 3.7. Assume that the Robin part of H(L,() is absent , that is, Pr = 0 in (2.16) and
that ¢* =0 . Then (3.7) holds if and only if Condition 3.2 is fulfilled.

Proof. On page 26. O

While Condition 3.2 is convenient to use (see numerous examples below), it will not be used
directly in the proofs. Instead we will need a more technical result: a uniform bound on the
resolvent of H(L,¢) as an operator from L*(T'(¢)) to L°>°(T'(¢)) which follows from Condition 3.2.
In fact, it is this bound that implies the conclusion of Theorem 3.5. We explore this bound in the
following two theorems.

Theorem 3.8. Recall (2.32)—(2.34). Then the following statements are equivalent:
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(i) There exists a constant ¢ > 0, independent of £, such that
IR(L, L, i)HB(L?(F(z)),Loo(r(e))) <, (3.10)
for all U sufficiently close ‘.
(i) There exists a constant ¢ > 0, independent of {, such that
||X6R(£,€, i)HB(LZ(F(Z))) < c\/ﬁ_e for each e € &,

for all U sufficiently close ‘.
(iii) There exists a constant ¢ > 0, independent of ¢ and f, such that

||f”%oo(r(12)) <c <Hf||%2(r(e)) + ||f//||%2(r(e))> , f € dom(H(L, 1)), (3.11)

for all € sufficiently close (

Moreover, if one of the above statements holds then for some constant ¢ > 0, independent of ¢ and
f, one has

172y < ¢ <||f||%2(r(e)) + ||f””%2(r(4))) , f€dom(H(L, 1)), (3.12)

and

||R(£,€7i)||B(L2(F(£))ﬁz(F(,Z))) < (3.13)

for all € sufficiently close /.
Proof. On page 18. O

Theorem 3.9. Condition 3.2 implies statements (i)-(iii) of Theorem 3.8. Furthermore, if the
Robin part of H(L,0) is absent, that is, PR = 0 in (2.16), then (1)-(iii) of Theorem 3.8 are
equivalent to Condition 3.2

Proof. On page 19. O

To illustrate our results we will now discuss several examples of graphs with shrinking edges.
We start with the most basic example where there is no spectral convergence.

Example 3.10 (Shrinking Neumann interval). In this example we consider a disconnected two
edge graph I' = {ey, ep} and the Laplace operator subject to Neumann boundary conditions on
ey and to Dirichlet boundary conditions on ep. The spectrum of such quantum graph is given by

{0}U{<7;—l:>2,(%)Q:kleN,kQEN}. (3.14)

Now let /5 — 0 while {p = 1. Condition 3.2 (in the form of Lemma 3.3) fails: the function
equal to 1 on ey and 0 on ep satisfies the boundary conditiogs Nfor all /py. This function gives rise
to eigenvalue 0 which is not present in the spectrum of H(L,¢) defined according to (3.1). The
latter operator is simply the Dirichlet Laplacian on the interval ep whose spectrum is

{<7;—121)2 tky € N} : (3.15)

A slight variation of this example is the same graph with /p — 0, /; = 1, which does satisfy
Condition 3.2. The limiting operator is the Neumann Laplacian on the interval e whose spectrum
is the limit of the set in (3.14) as {p — 0.
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(a) (b)

F1GURE 3. Two similar graphs with different convergence outcomes as s — 0: the
spectrum of (a) does not converge while that of (b) does. Empty circles denote
Dirichlet conditions and full squares denote anti-Kirchhoff conditions, cf. (2.21).

€1

€2

FIGURE 4. o denotes Dirichlet vertex conditions, e denotes Neumann—Kirchhoff
conditions, cf. (2.19), O denotes vertex conditions given by (3.16)

Despite its simplicity, the above example illustrates the common mechanism of convergence
failure: presence of an eigenfunction whose support is shrinking to zero. The following example
shows that there are connected graphs with similar features.

Example 3.11. Consider the graph in Fig. 3(a), equipped with anti-Kirchhoff conditions, cf.
(2.21). Condition 3.2 fails by Lemma 3.3 since there is a function equal to +1 on vertical van-
ishing edges, —1 on horizontal vanishing edges and zero on all non-vanishing edges. This is an
eigenfunction with eigenvalue zero whose support is the vanishing part.

We point out that the spectral convergence (or lack thereof) depends not only on the boundary
conditions but also on the topology of the graph. It is easy to see that the graph in Fig. 3(b),
despite having the same vertex conditions as Fig. 3(a), satisfies the conditions of Lemma 3.3: the
only function, constant on each edge and equal to zero on the non-vanishing edges must be zero
on the whole graph.

Are the eigenfunctions of eigenvalue 0 the only ones to cause such problems? In general, the
answer is no. Let us start with a related question: suppose the whole graph is scaled by s as s — 0.
Weyl’s law dictates that the bulk of the eigenvalues grow at the rate 1/s%. If the vertex conditions
are scale invariant, all eigenvalues of the Laplacian get multiplied by 1/s? and grow (except the
eigenvalue 0). But is the same true in general?

Example 3.12. Consider the graph consisting of two edges of length ¢; = /5, = s connected at
one endpoint, see Figure 4. Impose Dirichlet and Neumann conditions at endpoints of degree one
of edges e; and ey, correspondingly. At the vertex of degree 2 impose the conditions that we will
call hyperbolic,

{8er1 (U) = _fe2 (U)a (316)

al/f@(”) = " Ja (U)
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This graph has vanishing volume but —1 remains an eigenvalue independently of s. The corre-
sponding eigenfunction is

fe, (x) = sinh(x), fe,(z) = cosh(x), (3.17)
where on both edges the point x = 0 is at the vertex of degree one.

We now turn this into an example of a connected graph with some non-vanishing edges.

€1

FIGURE 5. e; is of length 1, ey is of length s for k& € {2,3,4,5}, o denotes Dirichlet
conditions, e denotes Neumann—Kirchhoff conditions, O denotes vertex given
by (3.16).

Example 3.13. Consider the graph shown in Fig. 5. The lengths of the edges are /; = 1 and
ly =103 =1Ly =1Vl5 =5 — 0. There is an eigenfunction with eigenvalue —1 for every s > 0:

fei () =0, fe,(x) = sinh(x), fo,(x) = cosh(z), fe,(x) = —sinh(z), fe,(x) = —cosh(x). (3.18)

Using (1.2), it is easy to see that H(L,!) is the edge e; with Dirichlet conditions. Thus every
approximating graph has an eigenvalue —1 while its would-be limit is a strictly positive operator.

Let us now explore some examples where the spectral convergence holds.

Example 3.14 (Tadpole graph with a vanishing loop). Consider the graph consisting of an edge
and a loop attached to one of its endpoints, see Figure 6. We impose Neumann—Kirchhoff conditions
at the attachment point and the Dirichlet condition at the other endpoint. We assume the magnetic
flux « is threading the loop. The magnetic field is realized as the condition

flet)=e“fle=)  Ouf(ct) = —€0, f(c—) (3.19)
at an arbitrary point ¢ on the loop. The derivative is taken in the direction away from ¢ according
to our convention; this leads to the minus sign in (3.19). Let ¢; = 1 be the length of the edge and
ly = s be the length of the loop. The spectral convergence, as s — 0, holds by Lemma 3.4 and
Theorem 3.6. However, the limiting operator depends on whether a = 0 or not.

It is interesting to explore this difference from the point of view of the secular manifold. Following
a well-known procedure [B17], the eigenvalues A = k? > 0 of this graph can be found as the solutions
of the secular equation F'(kly, kly; a) = 0, where, in this case, the secular function F' is given by

F(z1,x9; ) = —2sinx; (cos xg — cos(a)) — cos xq sin 5. (3.20)

To understand the behavior of eigenvalues, we follow Barra-Gaspard, cf. [BG], and visualize
them as the intersections of the straight line [kly, kls], k € (0,00) with the analytic variety

Yo = {(71,72) € R?: F(x1,72;) = 0}, (3.21)

usually referred to as secular manifold. This convenient characterization is available only for graphs
with scale invariant vertex conditions and zero potential. Both the line and the secular manifold
Y, for two values of « (zero and non-zero) are illustrated in Figure 6. Since we are setting i} = 1,
the values of k can be read as the z-coordinate of the intersection points.
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a=0 a=0.2

1.5 ¢

05t

FIGURE 6. Top panel: o denotes Dirichlet vertex conditions, e denotes Kirchhoff
conditions , x denotes Dirichlet conditions if a # 0 mod (27) and Kirchhoff condi-
tions if & = 0 mod (27).

Bottom panel: The secular manifold and the Barra—Gaspard flow for two values of
Q.

The structure of secular manifold undergoes a significant change from o = 0 to @ # 0. When
a = 0, the secular manifold on the torus is a union of a smooth curve and the line 2o = 0. When
a # 0, there are two smooth curves (which related by a shift of 7 in z; direction).

Suppose that the slope of the dashed lines in Figure 6 is equal to s. Then as s — 0, the first
intersection point converges to (7/2,0) when a = 0 mod (27) and to (m,0) otherwise. That is,
the first intersection point tends to the first eigenvalue of the Neumann-Dirichlet interval if o = 0
mod (27) and to the first eigenvalue of Dirichlet—Dirichlet interval otherwise.

If, instead of contracting the loop, we contract the edge, our results dictate that the loop will
get the Dirichlet conditions at the (former) attachment point. This disconnects the loop into
an interval of length l; with Dirichlet endpoints and the spectrum k, = mn/l;. The result is
independent of « (the magnetic field on an interval can be removed by a gauge transformation)
and can be seen both from Figure 6 (the dashed line is getting close to vertical) or from setting
x1 = 0 in the secular function, equation (3.20).

Finally, we remark that simply setting the relevant z = 0 does not always produce the correct
secular function for the limiting problem: as observed in [ABB], we get identically zero if we set
x9 = 0 for the loop with no magnetic field (a = 0).

Example 3.15 (A vanishing cycle in a graph with Neumann—Kirchhoff conditions). Consider the
tetrahedron graph (complete graph on 4 vertices, K,) with one vertex turned into a triangle. We
will be contracting the triangle into a single vertex, see Figure 7, scaling it by s — 0. We notice
that the assumption of Lemma 3.4 is satisfied, hence, the spectral convergence holds.
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FIGURE 7. Bottom panel: Numerical calculation of the spectrum of a graph with
a cycle of length 3 contracting into a single vertex. Blue curves correspond to no
magnetic field, red lines correspond to a small flux threading the cycle. The limiting
eigenvalue displayed as stars at s = 0 were calculated from the limiting vertex being
supplied with Neumann-Kirchhoff (solid blue line) and Dirichlet (dashed red line)
conditions.

We will thread magnetic flux a through the small triangle, realized as imposing conditions (3.19)
on one of its edges. The limit predicted by our results depends on the value of the flux. For zero
flux we simply recover Neumann—Kirchhoff conditions at the limiting vertex. When flux is non-zero
(modulo 27), the limiting conditions are Dirichlet which effectively disconnects the three edges at
the central vertex. These results are confirmed by the agreement between the results for small s
and the limiting graph computations, shown in Figure 7.

Example 3.16. In a slight modification of Example 3.12, we consider the graph displayed in
Figure 4, but with edge e; now having constant length 1 while e; is shrinking. In this setting
Condition 3.2 is satisfied and the spectral convergence holds.

4. LAGRANGIAN AND SYMPLECTIC SUBSPACES

The purpose of this section is to provide proof of the results that make heavy use of symplectic
geometry, namely Proposition 2.1, Theorem 3.1 and Lemmas 3.3 and 3.4. We start by collecting
the basic facts and definitions (see, for example, [McS] for further information).

Definition 4.1. Let n € N and S be a complex linear space of dimension 2n. A formw : xS — C
is called symplectic if the following holds:
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(i) wis sesquilinear, that is, w(az+ Py, 2) = aw(z, 2)+Bw(y, z) and w(z, ar+By) = aw(z, )+
Pw(z,y), for all z,y,z € S and o, 5 € C
(i) w is skew-Hermitian, that is, w(x,y) = —w(y, z), for all z,y € 9,
(iii) w is nondegenerate, that is, if w(x,y) =0 for all y € S, then x = 0.
The pair (S,w) is called a symplectic space.

Let w be a symplectic form on C?" and V C C** be a linear subspace. The annihilator of V is
denoted by V° and defined by the formula

Ve i={r e C™ w(z,y)=0forally € V}. (4.1)
Since the form w is nondegenerate one has [McS, Lemma 2.2]
dim(V) 4+ dim(V°) = 2n, (Vo) =W (4.2)

Definition 4.2. Let w be a symplectic form on C?>* x C?* and let S,V,W,L C C?" be linear
subspaces. Then S is called symplectic if S°N.S = {0}, V is called isotropic it V. C V°, W is called
co-isotropic if W° C W, and L is called Lagrangian if L° = L.

A subspace S of a symplectic space (C**,w) is symplectic if and only if the restriction w|g of w
on S is a symplectic form on the linear space S (in other words, S is a symplectic subspace if and
only if (S,wl|s) is a symplectic space).

The main use of the Lagrangian theory in this paper is to characterize self-adjoint vertex con-
ditions on a graph.

Proof of Proposition 2.1. The second Green’s identity yields
<Hmaa:fa g>L2(F) - <fa Hmaa:g>L2(F) = W(tl" f7 tr g) (43>

where f,g € H2(I).
Let us assume that H is a self-adjoint extension of H,,;,. The subspace
tr (dom(H)) C L*(0T') @ L*(aT),
is isotropic since w(tr f,trg) = 0 whenever f,g € dom(H). In order to show that it is maximal,
we recall that ran(tr) = L2(0') @ L2(dI'). Assume that w € (tr(dom(H)) )", then there exists
/e ﬁQ(F) such that w = tr f. Then for any g € dom(H ), one has

<Hfa g)LQ(F) - <f7 H9>L2(F) = W(tl‘ f7 tI'g) = 07

hence, f € dom(H*) = dom(H). Therefore, the subspace tr (dom(H)) is Lagrangian. We complete
the proof of injectivity in the first part of the statement of the proposition by noticing that if
Hy, = Hi,k = 1,2 are two self-adjoint extensions of H,,;, satisfying

tr (dom(H;)) = tr (dom(H,)), (4.4)
then
Hy, C H |qom(m1)+dom(is) = (H*|aom(#)+dom(r)) s k = 1, 2. (4.5)
Since Hy, k = 1,2 are self-adjoint operators, (4.5) yields
dom(H;) = dom(Hs), hence, Hy = H,. (4.6)

To prove the second assertion in the proposition, let us fix a Lagrangian plane £ C L*(0T") ®
L*(dT). Clearly, the operator given by (2.14) is symmetric. Furthermore, for arbitrary h €
dom(H(L£)*) and g € dom(H (L)) one has

0 = (H(L)h, )y — (h H(L)g) 12y = wltrh, tr ).
Therefore, trh € £L° = L and h € dom(H (L)). Hence, H(L) is a self-adjoint operator. O
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To establish Theorem 3.1 we use a technique sometimes called linear symplectic reduction.

Proposition 4.3 (see, for example, [McS, Lemma 1.2.7] or [LM, Proposition 1.8.4]). Let W be a
co-isotropic subspace of the symplectic space (C*",w). The reduced symplectic space associated
with W is the space

W =w/we (4.7)
with the symplectic form naturally induced by w. .
If £ is a Lagrangian subspace of (C*,w), then the projection of LNW onto W is Lagrangian
m W.

Proof of Theorem 3.1. In order to prove that Lis a Lagrangian plane we let W = Dy & Ny and
investigate W. We recall that

W = {(¢1,02) € L2N) : ¢u(ac) = ¢(be), d2(ae) = —da(be), e € &} (4.8)

Importantly, ¢; and ¢- take arbitrary values on the edges e € £,. Explicit calculation shows that
We ={(¢1,¢2) € dLQ(aF) L dilors = @alors = 0; d1(ac) = ¢1(be), 2(ac) = —da(be), € € &}

= {(¢1.¢2) € “L*(OT) : G1lor+ = dalor+ = 0:} NW. (4.9)

This shows that W is co-isotropic and W/W? is naturally identified with “2(0r',). By the second

part of Proposition 4.3, £ which is defined in (3.1) as the projection of £ N W to “L?(dT.) is

Lagrangian in “L?(9T ).
0J

Remark 4.4. Using equation (4.9) we can succinctly write Condition 3.2 as
LN (Dy® No)° C 0@ L*(0T). (4.10)

Note the similarity to the condition of transversality of £ and Dy @ Ny, namely LN (D@ Ny)° =0
(we used that £ = L£°). Transversality is generic in the Grassmanian of all Lagrangian planes L.
Therefore, our less restrictive Condition 3.2 is also generic.

4.1. Geometry of Condition 3.2. In this section we delve deeper into the meaning of Condi-
tion 3.2 and prove Lemmas 3.3 and 3.4. To approach Lemma 3.3 we characterize scale invariant
conditions in terms of the Lagrangian plane L.

Proposition 4.5. The vertex conditions, (2.16), for the operator H(L) are scale invariant, that
is, Pr = 0, if and only if there exist subspaces Lp C L*(0T') and Ly C L*(OT) such that

L= {(gzﬁl,qbg) € dL2(8F) : gbl € ﬁD,ng S £N} (4.11)

Proof. If Pr = 0 then (4.11) holds with Lp := ker(Pp), Ly := ker(Py). Conversely, assuming
(4.11) we will first establish that

Lp = Ly. (4.12)
Let us pick arbitrary f € Ly and notice that for all ¢; € Lp, ¢ € Ly one has
w((f: 0)7 (d)h ¢2)) = - 5 7¢2 = 0. (413)
r

Since L is Lagrangian, this yields (f,0) € £ and, in particular, f € Lp. Next, to prove Lp C Ly
we observe that (¢1,0), (0,¢2) € L for all ¢; € Lp, ¢ € Ly, thus

0= w((¢1,0),(0,¢2)) = — . $102. (4.14)
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Let Pp, Py denote the orthogonal projections in L?(9T') with ker(Pp) = Lp and ker(Py) = Ly.
Then

ran(Pp) @ ran(Py) = Ly © Lp = L*(90) (4.15)

and by (2.14), (2.16) and (4.12)
dom(H(L)) = {f c ﬁQ(r)(Pme — 0, Pynf = o} . (4.16)
Thus, P = 0. [

Proof of Lemma 3.3. Let us note that Condition 3.2 can be succinctly written as follows
(¢1,02) € LN (Dy® Ny) Nker(P,) = ¢, =0. (4.17)

Suppose that the assumption of the Lemma holds yet Condition 3.2 is not satisfied. Then pick
arbitrary (¢y, ¢s) € LN (Do @ Ny) Nker(*P,) with ¢; # 0 and define the following function

[= Z ¢1(ac)xe # 0. (4.18)
ec&y

By construction, we have vpf = ¢1. Also, since the function is constant on every edge, v f = 0.
Since our vertex conditions are scale invariant, by Proposition 4.5, (¢1, ¢2) € L implies (¢1,0) € £

and therefore f € dom(H (L, ¢)), in contradiction to the assumption.
Conversely, suppose that f is a nonzero function constant on each edge satisfying the boundary
conditions and such that supp(f) C Ty. Then tr f € £ N (Dy @ Ny) Nker(®P,) yet ypf # 0 and
therefore the choice (¢1, ¢2) = tr f falsifies Condition 3.2. O

Proof of Lemma 3.4. Due to the continuity assumption every function f € dom(H (L, ¢)) satisfying
(tI‘ f) T8F+: 07

and
f(ae) = f(be), for all e € &
has zero Dirichlet trace: vpf = 0. U

5. RESOLVENT ESTIMATES AND THE SPECTRAL CONVERGENCE

As mentioned in Section 3, in order to prove spectral convergence, Theorem 3.6, we will require
some technical estimates listed in Theorem 3.8. Before we formally prove Theorems 3.8 and 3.9,
we compare these estimates with standard functional-analytic results.

Part (i) of Theorem 3.8 gives a bound on the resolvent of a quantum graph operator. A well-
known bound on the resolvent of a general self-adjoint operator H on a Hilbert space H gives

1
H— 2™t < I 0. 5.1
I =20) Moo < g, Tz 7 (5.1
We immediately get, for any I'(¢),
|R(L,€,1)|| B2y < 1. (5.2)

We stress that this bound is weaker than part (i) of Theorem 3.8, which bounds R(L,¢,1i) as an
operator from L? to L.

On the other hand, part (i) of Theorem 3.8 is reminiscent of the following standard Sobolev-
type inequalities that hold for all edges e,

1 fellooe) < 672 Fellzogey + C72 N Foll 2oy (5.3)
I follz2e) < €M fellz2ey + Cell £ Nl 2o (5.4)
il ooy < 62 ol p2ey + C2 N 2 e (5.5)
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(cf., e.g, [Bu, Theorem 4.2.4 and Corollary 4.2.7 part 1.]). However, in a situation when some edge
lengths ¢, — 0, uniform bound (3.11) is a substantially stronger statement.

Proof of Theorem 3.8. By the resolvent identity it suffices to verify equivalency of the statements
for the free resolvent, i.e. we may assume that ¢ = 0 for all £. Indeed, denoting the free resolvent

by Ro(L,¢,1) := (Ho(L,¢) —i)~! one has
R(L,0,1) = Ry(L,0,i) — Ry(L,L,1)¢"R(L, (,1). (5.6)
Next, we recall that by assumptions
gz reeymy < ¢ (5.7)

for some ¢ > 0 and all ¢ sufficiently close to ¢. Combining this bound with (5.2) and (5.6)
one infers that parts (i) and (i7) hold if and only if they hold with ¢ = 0. In addition, since
dom(H (L, 0)) = dom(Hy(L,¢)), part (iii) holds if and only it holds with ¢ =
(i) = (ii). For arbitrary e € & and v € L*(T),
IxeRo(L, & 1)v]| L2rie) < lIxell 2y [ Ro(L, £, D)0l oo (reey) (5-8)
< O Ro(L,0,3) |52y, =y 0]z - (5.9)
Combining this with (i) we infer (ii).
(i1)) = (ii). Let e € &. For f € dom(Hy(L,/)) put —f" —if = v, then by (i),

1Fellzze) S VElvllawy = VeI +if ). (5.10)
Combining (5.10), (5.3), (5.4) we obtain that for every e € &,
I fell ooqey < 2672 fell ooy + 67211 £ 1 2oy (5.11)
SIF" +if 2wy + 21 e, (5.12)
S e0) (L2 ey + 1 lzeey) » (5.13)

where ¢(f) = O(1) as ¢ — £. Note that we had to use (5.10) because £, — 0 for e € &.
(i1i)) = (i) Let f € dom(Hy(L,!)) and let —f" —if = v. Then by (%ii),

[ Ro(L, L, i)“”%w(r(@) = ||f||%oo(r(z)) (5.14)
Se <||f”%2(r(e)) + v+ if”%?(r(z))) (5.15)
S ¢ (I1Ro(L, €, )0l 3aquqey + 10 2c00ey) (5.16)
Sc ||U||L2(1"(£))’ (5.17)

where in the last step we used (5.2). This proves (7).
Next we prove (3.12) and (3.13). To this end, let f € dom(Hy(L,¢)) and let — " —if = v. Then
using (2.17) and the Cauchy—Schwarz inequality, we obtain

1/ 720y < | ) ey | + [(PryD f QPrYD ) 120m) | (5.18)
<2yl N2y + 1QUIND 72 or) (5.19)
< 2wy + 1 12200 + 1QUIVGF 172 0ry- (5.20)

Employing (3.11) we estimate the third term in (5.20) and infer (3.12).
Then, one has

[Ro(L, €, 1)v]| gz (r ) Hf”H2(1" = £ 122y + 1 1z + 1 N2y
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< e(0) (1 aqeen + 1" 1320 ) S Ol

where ¢(¢) = O(1) and in the last step we proceeded as in (5.15)-(5.17). O
{1

In the proof of Theorem 3.9 we will use the following geometric fact.
Proposition 5.1. Suppose that A and B are closed linear subspaces of a Hilbert space X, and

that at least one of them is finite dimensional. Let {b,}>>, C B be such that dist(b,, A) — 0 as
n — oo. Then dist(b,, AN B) — 0 as n — oc.

As the following counterexample! shows, the proposition may not hold if both A and B are
infinite dimensional. In the sequence space X = ¢?(N) we consider infinite dimensional subspaces

A= {(x1, 79,79, 73,73,...) € (*(N) : 74, € C} (5.21)
B = {(z1, 21, T, T, T3, T3, ... ) € £*(N) : 7, € C}, (5.22)
and let
apn=(1,1-2 1-2 1-2"1-2_"1°00,...)€A, (5.23)
b, = (1, 1, 1-i1-1 12 1170 ..)eB, (5.24)

forn =1,2,.... Then dist(b,, A) < ||bp—a,|| = n~/? — 0 while ANB = {0} and dist(b,, ANB) =
|bn|| = +00 as n — oo.

Proof of Proposition 5.1. Let P denote the orthogonal projection onto (AN B)*t. We want to show
that || Pb,|| = dist(b,, AN B) — 0 as n — oo. Note that Pb, € B.
Consider the orthogonal decomposition

X = ((AmB)@ (AN (AmB)L)> @ At (5.25)

and split b, accordingly, b, = x, +y,+ 2z,. Applying P, we see that Pb,, = y,,+ Pz,. We know that
||zn|| = dist(b,, A) — 0, therefore Pz, — 0 and we conclude that either both sequences (Pb,) and
(yn) converge to zero (and then the proof is finished), or else, may be by passing to a subsequence,
they both are separated away from zero. Let us suppose that the latter holds. Then equality
Yl 7 Py = |Ynll ™ Yn + ||Ynl| ' Pz, shows that the following two sequences,

(Ilgal =" Pb) € BN(ANB)*  and  (lyall'vn) C AN(ANB),

are bounded. Since at least one of the subspaces A or B is finite dimensional, passing to a subse-
quence, we may conclude that at least one of the two sequences converges. Then by ||y,|| "' Pz, — 0
both sequences must converge, and their common limit must be zero as it belongs to A N B and
(AN B)*. Since ||yn|| tyn is of unit length, the contradiction completes the proof. O

Proof of Theorem 3.9. Due to the resolvent identity, equation (5.6), it is enough to prove the
statement for the free Laplacian. That is, we focus on the case of zero potential.
Seeking a contradiction we assume that condition(ii7) from Theorem 3.8 does not hold and

obtain sequences {/,}>°; C ]R' o and {¢,}22, C dom(H(L,¢,)) such that

by — L, (5.26)
el =1, neN, (5.27)
lenllz2r@ny) + €0l 2@y =0, n— o0 (5.28)

Due to Th. Schlumprecht
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From equation (2.17) one has

lenllZien)) = (ns @) 12ween)) = (PRYD®n, @PRYDER) L2 (0T)- (5.29)
Thus, using (5.27), (5.28) we get

lenll2 e,y = O(1). (5.30)

n—oo

Using this, for each e € & one obtains

on(a0) — pulbe)] = / Ovon| S VTl lizeny = 0. 11— oo. (5.31)
Similarly, by (5.28), for each e € & one has
1 (ae) — a(B)] = / S < ol e — 0, 1 — oo, (5.32)

That is,
dist (tr ¢, Do ® Ny) — 0, n — oo. (5.33)
Next, using (5.28) and the standard Sobolev inequalities on I'y, cf. (5.3)—(5.5), we obtain

allimaen) S Iallzzeaen + 1€l = oD, (5.34)
il S Nenllza. ey + I2hle, ey = o)) (5.35)
In particular,
Tim lon Tor, [lz=ory) =0, lim {l¢} Tor, [le(or,) = 0. (5.36)
Moreover, one has
liminf | for, [|zee(are) > 0. (5.37)

Indeed, assuming the contrary and passing to a subsequence if necessary, one gets that for any
e € & and arbitrary z € e

|90n($)| < enlac)| + < lenlac)| + V en,e”@:zHLz(F(én)) — 0, n— oo, (5.38)

vPn
€

contradicting (5.27).
Next, using (5.33) and (5.36) we obtain

dist ( tr ¢, (Do @& No) Nker(“P1)) — 0, n — oo. (5.39)
Combining this with tr ¢, € £ and Proposition 5.1, we obtain that
dist (¢}, ¢5), £ N (Do & No) Nker(“PL)) — 0, n — oo. (5.40)
Interpreting Condition 3.2 as £ N (Do @ Ny) Nker(?P,) C {0} @ L?*(9T), one has
pnllzzory = dist (16, {0} ® L2(0D)) (5.41)
< dist (tr i, LN (D ® No) Nker(“Py)) — 0, n — . (5.42)

which contradicts (5.37).
To prove the last statement assume that P = 0. Then by Lemma 3.3 there exists a nonzero
function f constant on each edge satisfying the boundary conditions and such that supp(f) C L.

Since f” =0 and ||f||%2(r(12)) — 0 as ¢ — ¢, the inequality (3.11) does not hold. O

As was pointed out in Introduction, our method of proving spectral convergence relies upon a
technique developed by P. Exner and O. Post [EP, P06, P11, P12].
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Definition 5.2. For each t € R",n € N, let H; be a self-adjoint operator acting in the Hilbert
space ‘H;. Then H; is said to converge in the generalized norm resolvent sense to Hy, ast — t if
for each t € R™ there exists a bounded linear operator J; € B(H;, H:) such that

T T = Iy for all t € R", (5.43)
(0, — 207 He=) sy = ol0), (5.44)
—
IuH: = 21 = (= =5 Tl 00 = o(0) (5.5
ﬁ

for each z € C, Im z # 0. In this case we write H, = H; ast — t.

Assuming conditions (7)- (i) of Theorem 3.8 we focus on showing that
H(L,0) Z5 H(L,0), (. (5.46)

As a first step, we show that, in the abstract setting, the generalized norm resolvent convergence
is preserved under bounded perturbations.

Theorem 5.3. Let HY, H? satisfy Definition 5.2. Let A, € B(H,) be a family of self-adjoint,
bounded operators satisfying the relations

|7t A; — AcTill By = 0(1) and || Adlsa,) = O(1). (5.47)
t—t t—t

Then equations (5.44) and (5.45) hold with Hy = Hy + A;.

Proof. The proof relies on the resolvent identity
R(t) = Ro(t) — R(t) A Ro(t) (5.48)
= Ro(t) + Ro(t)A:R(t), t € R™. (5.49)
where
R(t) = (Hto + At - ZI’Ht)ila RO(t) = (Hto - Z[Ht>717 Im z 7é 0.
In order to verify (5.44) for H, = Hy + A;, we combine (5.44) (for Ry(t)) and (5.49) and obtain
[y, — BT )R 801y < (I, — T T ) Ro(E)l| By + | (e — Te Ty ) Bo(O) AR (1) || 334,
= o(1) (L + [[ARM)|l531)) = o(1),
t—t t—t

where we used the second equality in (5.47), and the general resolvent bound (5.1).
The identity

(ZR(E) — R(1)T:) (I, + AiRo(t))
= ([Ht - R(t)At) (%RO(?) — Ro(t)\ﬂ) + R(t) (Atxyt _ \77514{) RO({)

may be verified by substituting (5.48) for R(t) and R(t) on the left-hand side and expanding.
Using (5.45), (5.47) and (5.1), we arrive at

| (7R = RO)Z) (b + AcRo@) | sy " (5.50)

Moreover, due to the identity
I + AgRo(t) = (Hz — 21 + A7) Ro(t),

the operator I, + A:Ry is boundedly invertible on Imz # 0. Thus (5.50) implies (5.45) for
Ht = HtO + At. |:|
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In the following theorem we establish a version of (5.43) and (5.44) in the context of graphs
with vanishing edges. Let us recall definition of J from (3.5).

Theorem 5.4. Assume conditions (i)-(iii) of Theorem 3.8 hold. Then
TiTe = T2y L€ RE(‘M (5.51)

and

H(ILQ(F(Q;K)) - %%*)R(E,f, Z)HB(LQ(F(Q;Z))) ejZ 0(1)7 (552)
for each z € C, Im z # 0.

Proof. Using change of variables, one obtains

J; € B(LA(I(¢)), LA(T(0))), (5.53)

253 e \f e (gf ) - e IArW), v eT() (5.54)

A direct computation shows that (3.5) and (5.54) yield (5.51). Moreover, one has
JeT; € BILAT(), T f=xriwf feLT(), (5.55)

where xr, () denotes the characteristic function of I', (£).
By Theorem 3.8(%i) one has

H (Lr2(rey — JeJg)R(L, L, Z)”L?(F(é)) = ” Z XeR(L, L, Z)Hm(r(e)) (5.56)
e€&p
< Z IxeR(L, ¢, 2 HL2(F(€ Z O( 61/2 =_o(1), (5.57)
e€&y teces EHE
as asserted. O

In the following theorem we establish a version of (5.45) in the context of graphs with vanishing
edges. Together with Theorem 5.4 this will conclude the proof of Theorem 3.5.

Theorem 5.5. Assume conditions (i)-(iii) of Theorem 3.8, and recall the operator H(L,€) from
Theorem 3.1. Then

H%R(Z,Zz) R(L, 0, ng — o(1), (5.58)

B(L2(T(0).L2(T(0)) -7

for each z € C, Im z # 0.

Proof. We split the proof into several natural steps. In the first step we prove (5.58) in the situation
when the non-vanishing edges are being fixed while the vanishing edges tend to zero. This is the
most challenging part of the proof. In the second step we deal with (5.58)when the vanishing edges
are absent, while the non-vanishing edges rescale non-singularly. Finally, in the third step we put
everything together, and obtain (5.58) as asserted.

Note that by Theorem 5.3 we may assume that ¢ = 0 for all /.

Step 1. Let us denote ¢ = ({4, {y), 0= (¢4+,0). Then the scaling operator acting from F(E)

I'(¢) is given by J, 7 € B(LA(I'(0)), L?(F(Z))),

T2 (@) =D Xelx .z el(0), (5.59)

ecfy
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The goal of this step is to prove a version of (5.58) with respect to this scaling operator. Namely,
we will prove that

|97R(Z.7.2) = R(L.. 23,4 e i) o (5.60)

holds uniformly in ¢, satisfying

/ ~
Wi <m (5.61)

It suffices to prove that the inequality
‘<f, (R(EL2) = RLL I g)a) ,

holds for arbitrary f € L2((¢)) and g € LA(I'(Z)), with
sup c(l)=o0(1) as ly — 0. (5.63)

A
e Wajey i<

(O fl 22 ))”g”L?(F(Z))a (5.62)

Let us denote

= R(L,0,Z)f and v := R(Z,Z, 2)g. (5.64)
Rewriting the left-hand side of (5.62) we obtain
,JAHZ,Z—2_1> —<H.c,£ N > 5.65
(FOAHED =2) ), ((HLO =2 [ D), (565)
_ <(H(£, 0 — z)u,Jf7;U>L2(F(€)) - <u,Jz7Z(H(£, 70— z)v>L2(m)) (5.66)
=(H 7£ ) > — (% ) > .
< (L, O)u, J, 50 ) <zu I, v ) (5.67)
—(u,J,7H Z,EAU> + <u,zJ ~U> 5.68
(wdoet(ED0) ') parcey (5.68)
= (H(L,¢ - H(L, 0 . 5.69
< (£, )u’JZ’ZU>L2(F(£)) <U’J“ (£, )U>L2(F(£)) (5.69)
Henceforth, our objective is to show that
(HE0uwTg) o= TG E D) | = o I leaeplolae,  (65:70)
as o — 0, uniformly in ¢, satisfying (5.61).
Denoting the left-hand side by Z and integrating by parts one obtains
= (H(L, 0w, 3y 70) 1o 1y) — (W T gH (L, 0V) ooy (5.71)
= / WJM‘U —uJ, " = / u'v — " = / O, uv — ud,v, (5.72)
(0 7 7 ry(0) ory

where we used
Je2H)(@) = xro 0 f(2), v € T4 (0)
due to the fact that the fact that ¢, is fixed.
By Theorem 3.1, trv € £ = P(LN(Dy® Np)). Let G : L — LN (Dy& Ny) be any
finite-dimensional linear operator! such that P, G¢ = ¢ for any ¢ € L. We let

w = (wy,ws) = Gtrv € LN (Do &) NO) C ‘L (on);

IThat is, G is a “generalized inverse” of dP+. It always exist but may no be unique; the choice of G with the
least norm is the Moore-Penrose pseudoinverse.
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it satisfies
P w=tru, (5.73)
I dP0w||dL2 (8Tg) = ||w||dL2 ar) S t“)||dL2(aF+) (5.74)
the latter because G, as any finite-dimensional linear operator, is bounded.
Using (5.73) we rewrite the last integral in (5.72),
7 = 0,uv — u0,v = wr(Py tr'u, P w). (5.75)
or

Since wr(trf u, w) = 0, equation (2.30) yields

7 = wr(*Py tr*u, ‘Pow) = wp(*Potr u, "Pow) = Oy uwy — Uws. (5.76)
o'y

We estimate each term in (5.76) individually. Using wy; € Dy and the Cauchy—Schwarz inequality
one obtains

‘ 0,uw; —‘Zwl ) — wy(ae)u /
oo e ‘ (5.77)
< fwi(ae) [V | e
e€&y

Similarly, using wy € Ny and the Cauchy—Schwarz inequality we get

)/ UWo —‘ng +w2 ae
arg

oo [

eco (5.78)
< Z |wa(ac) |\/_e||u/||L2(e)
e€&y
Therefore, utilizing (5.74), (5.76) — (5.78) we arrive at
‘Z| S V! |l dPOUJHdL?(am)HUH?p(r(z)) S Vol |l t“’”%?(am)Hu”ﬁﬁ(r(e)) (5.79)
< VIl e I vl oy el 20 (5.80)
Let us notice that
7 _
sup || tr* || s(F o) 2er) O(1) as {y — 0, (5.81)

e Wajep|<id
and
Hva < |IR(ET, L (22 o) 191200

Combining these with (3. 13) we obtain (5.70). N
Step 2. Let us denote £ := (¢,,0), £ = (£,,0) and let J; : L2(T'(£)) — L2(I'(£)) be defined as

le , [l
We remark that in this case, the operators J; are unitary. We need to prove

H@R(Z,Z@ ~R(L,0,2)F H — o), (5.82)

LZ(F (F(Z))) £+—>Z+
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where R(E,Zz) denotes the resolvent of H (E, v ), the Laplace operator acting in LQ(F(Z)) and

associated with the Lagrangian plane £ as in Theorem 3.1.
This case has been considered in [BK12, Theorem 3.7]. In particular, it is proved there that the
operator valued function

0~ TR(L,0,2)T, (5.83)
is continuous. This together with the fact that 77 is unitary implies (5.82).
Step 3. In this step we show how to combine the results from previous steps to derive (5.58).
To this end we use (5.51) and J; = J, 7 J; to notice the following;
JeR(L,0,2) = R(L,6,2)T, = T, Ty R(L, L, 2) = R(L,€,2)],3 T
= (J,7R(L,0,2) = R(L,0,2)0,5) To+ T, 7 (T R(L, 0, 2) — R(L,(,2) J7). (5.84)

For all ¢, 7 one has

172l s20@r@y = 1 Wezllsze@ ey =1 (5.85)

Moreover,
C= (o, b)) = 0= (0,,0) < 0, —{,, ly—0. (5.86)
Therefore, using (5.60) (uniformly in ¢, satisfying (5.61)), (5.82), (5.84) and the triangle inequality,
we obtain (5.58). O

Our next goal is to show that the generalized resolvent convergence of the Schrodinger operators
implies convergence of spectral projections and thus convergence of spectra in the Hausdorff sense.
In case of non-negative operators this result was established in [P12, Theorem 4.3.3]. In the present
setting [P12, Theorem 4.3.3] is not directly applicable since the bottom of the spectrum of H (L, ¢)
may tend to negative infinity as ¢ — ¢ (cf., [KS06, Section 3.3]). Nevertheless, the convergence of
spectra still holds. We carry out the proof following the standard line of arguments from [P12],
[RS, Theorem VIII.20, VIII.23, VIII.24].

Proof of Theorem 3.6. The convergence of spectra follows from Theorem 3.5 and [P12; Proposition
4.3.1]. First of all, by Theorem 3.9, conditions (i)-(i7i) of Theorem 3.8 hold. Hence Theorem 5.4
and Theorem 5.5 are applicable.

Next, in order to simplify notation let us denote

Ry := R(L,0,+i), Ry :=R(L,(,+i),
H:=H(L0), H:=H(LZ).

Let us prove the first assertion in (3.9). Proceeding as in [P12, Theorem 4.2.9] and using (5.58)
we get

(5.87)

JEP—RPJH . — o(1), peN. '
H s (@) L2 0w) o7 M. » (5.88)
Next, for arbitrary p,q € N one has
JiR" R — R"R' J, = (TR’ — R".J;) RY (5.89)
+ RV (TR — RLT,). (5.90)
Let us notice that _
IR sawey < 1 IR s@aw@y <1 (5.91)

Therefore (5.88)—(5.90) yield

jépéq_—RpRQ_jH . — o(1), p.q € N. 5.92
H o T s (@) 2 0w)) o7 (). pq (5.92)
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By the Stone-Weierstrass theorem polynomials in (z +1i)~! and (x —i)~! are dense in C(R), the
space of continuous functions for which the limits at both +00 and —oo exist and are equal. That
is, given any f € C'(R) and arbitrary ¢ > 0 there exits a polynomial P(u,v) such that

ess sup,eg|f(z) — P((z +1)7 (z —1) )| < e (5.93)
Combining (5.92) and (5.93) we arrive at
|7 ) = DT i) iy OO (5.94)

for all f € C(R). As in the case of positive operators, (5.94) gives rise to a similar identity for
the spectral projections corresponding to bounded open sets. Namely, in the present context the
analogue of [P12, Corollary 4.2.12] reads as

H%X(a,b)(ﬁ) - X(a,b)(H)%HB@Z(F o(1), (5.95)

B)L2C0)) -7

where —0o < a < b < oo and a,b ¢ Spec(f[). In order to show (5.95), let us pick any ¢ € C(R)
satisfying

0 < <1, supp(vp) C R\ {a,b} and 1(zx) =1 whenever x € Spec(H). (5.96)
Then

| 7ot () = Xtan (D || < || Tt () Xy () = ()Xo ()T
Dxcen |

[Tt = ) E) () = (1= ) ()X (H) Te

where the norms are taken in B (LQ(F(Z)),[P(F(E))). Since ¥x@p € C(R), the expression in
(5.97) is o(1) as £ — {. Using (1 — )(H) = 0, we rewrite and estimate (5.97) as follows

11 = ) E) (DT < |1 = )T < |70 - 0)(d) - 1= 0)iF|. (5.99)

Since 1 — ¢ € C(R), the expression in (5.98) is o(1) as £ — (. Hence, (5.95) and the first part of
(3.9) hold as asserted. Analogously, the second part of (3.9) can be derived from the second part
of (3.6). O

Proof of Theorem 3.7. Due to Theorem 3.6 it is enough to show that (3.8) implies Condition 3.2.
Seeking a contradiction we assume that Condition 3.2 is not fulfilled and will show that (3.8) does
not hold. In fact we will prove a slightly stronger statement,

dim(ker(H(L,0))) > dim(ker(H(L, (), (€RE). (5.99)

In particular, the multiplicity of zero eigenvalues of the limiting and the approximating operators
do not match. s

Our first objective is to prove that any ¢ € ker(H (L, ¢)) is constant on each edge. By Proposition
4.5 there exist subspaces Lp, Ly such that

L={(¢1,¢2) € "L*(OT) : ¢y € L, 2 € L}

. (5.97)

By Theorem 3.1, one has
L:={P(¢1,02): ¢ € LN Dy, s € Ly N No}. (5.100)

Then by Proposition 4.5 the vertex conditions of H (/3, Z) are scale invariant. From (2.17) one has

0= (p, H(Z7 £)¢>L2(F(Z)) = HSO/HLz(p(Z))- (5.101)
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Thus ¢ is constant on each edge, in particular p(a.) = p(b.) for every e € &,.

Next, for each ¢ € ker(H (L, )) we construct fo € ker(H(L,()) as follows. Since try € L, by
Theorem 3.1 there exists

(¢1,02) € LN (Do & No) (5.102)
such that tr o = P, (¢, ¢). Note that since ¢ was constant on edges from £, and ¢, € Dy,
o1(ae) = ¢1(be) on every edge e. (5.103)
Let us define a function f,, constant on each edge, by the formula
foi=Y_ d1(ac)xe, (5.104)
ecf

We claim that tr f, € £. By construction and property (5.103), vpf, = ¢1. Since f, is constant
on edges, Ynf, = 0. Finally, by Proposition 4.5 (¢1,¢2) € L implies (¢1,0) € L. Therefore,
fo €ker(H(L,0)) and f,|r, = ¢. s

We have now produced a function f, € ker(H(L,/)) for every ¢ € ker(H(L,()). It it easy to
see that f, are linearly independent if the corresponding ¢ are. Furthermore, no non-trivial linear
combination of f, can be zero on I',.

Let us now utilize Lemma 3.3 to produce a nonzero f € ker(H(L,()) such that f|p, =0. It is
clearly linearly independent of all f,, leading to

dim(ker(H (L, ¢))) < dim(span{f,, f : ¢ € ker(H (L, ?))}) < dim(ker(H(L, ())) (5.105)

as required. O
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