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A B S T R A C T

The field of neuroimaging has recently witnessed a strong shift towards data sharing; however, current collab-
orative research projects may be unable to leverage institutional architectures that collect and store data in local,
centralized data centers. Additionally, though research groups are willing to grant access for collaborations, they
often wish to maintain control of their data locally. These concerns may stem from research culture as well as
privacy and accountability concerns. In order to leverage the potential of these aggregated larger data sets, we
require tools that perform joint analyses without transmitting the data. Ideally, these tools would have similar
performance and ease of use as their current centralized counterparts. In this paper, we propose and evaluate a
new Algorithm, decentralized joint independent component analysis (djICA), which meets these technical re-
quirements. djICA shares only intermediate statistics about the data, plausibly retaining privacy of the raw in-
formation to local sites, thus making it amenable to further privacy protections, for example via differential
privacy. We validate our method on real functional magnetic resonance imaging (fMRI) data and show that it
enables collaborative large-scale temporal ICA of fMRI, a rich vein of analysis as of yet largely unexplored, and
which can benefit from the larger-N studies enabled by a decentralized approach. We show that djICA is robust to
different distributions of data over sites, and that the temporal components estimated with djICA show activations
similar to the temporal functional modes analyzed in previous work, thus solidifying djICA as a new, decen-
tralized method oriented toward the frontiers of temporal independent component analysis.
1. Introduction

The benefits of collaborative analysis on fMRI data are deep and far-
reaching. Research groups studying complex phenomena (such as mental
disorders) often gather data with the intent of performing specific kinds
of analyses. However, researchers can often leverage the data gathered to
investigate questions beyond the scope of the original study. For
example, a study focusing on the role of functional connectivity in mental
health patients may collect a brain scan using magnetic resonance im-
aging (MRI) from all enrolled subjects, but may only examine one
particular aspect of the data. The scans gathered for the study, however,
are often saved to form a data set associated with that study—they
therefore remain available for use in future research. This phenomenon
often results in the accumulation of vast amounts of data, distributed in a
decentralized fashion across many research sites. In addition, since
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technological advances have dramatically increased the complexity of
data per measurement while lowering their cost, researchers hope to
leverage data across multiple research groups to achieve sufficiently
large sample sizes that may uncover important, relevant, and interpret-
able features that characterize the underlying complex phenomenon.

The standard industry solution to data sharing involves each group
uploading data to a shared-use data center, such as a cloud-based service
like the OpenfMRI data repository (Poldrack et al.) or the more-recently
proposed OpenNeuro service (Gorgolewski et al., 2017). Despite the
prevalence of such frameworks, centralized solutions may not be feasible
for many research applications. For example, since neuroimaging uses
data taken from human subjects, data sharing may be limited or pro-
hibited due to issues such as (i) local administrative rules, (ii) local desire
to retain control over the data until a specific project has reached
completion, (iii) a desire to pool together a large external dataset with a
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mailto:bbaker@mrn.org
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2018.10.072&domain=pdf
www.sciencedirect.com/science/journal/10538119
http://www.elsevier.com/locate/neuroimage
https://doi.org/10.1016/j.neuroimage.2018.10.072
https://doi.org/10.1016/j.neuroimage.2018.10.072
https://doi.org/10.1016/j.neuroimage.2018.10.072


B.T. Baker et al. NeuroImage 186 (2019) 557–569
local dataset without the computational and storage cost of downloading
all the data, or (iv) ethical concerns of data re-identification. The last
point is particularly acute in scenarios involving genetic information,
patient groups with rare diseases, and other identity-sensitive applica-
tions. Even if steps are taken to assure patient privacy in centralized re-
positories, the repository maintainers are often forced to deal with
monumental tasks of centralized management and standardization. This
can require many hours of additional processing, occasionally reducing
the richness of some of the contributed data (Poldrack and Gorgolewski,
2014).

In lieu of centralized sharing techniques, a number of practical
decentralization approaches have recently been proposed by researchers
looking to perform privatized analyses. For example, the “enhancing
neuroimaging genetics through meta analysis” (ENIGMA) consortium
(Thompson et al., 2014) allows groups to share local summary statistics
rather than gathering all the original imaging data at a single site for a
centralized analysis. This method has proven very successful when using
both mega- and meta-analysis approaches (Thompson et al., 2014; Jack
et al., 2008; Thompson et al., 2017; van Erp et al., 2016). Particularly, the
meta-analysis at work in ENIGMA has been used for large-scale genetic
association studies, with each site performing the same analysis, the same
brain measure extraction, or the same regressions, and then aggregating
local results globally. Meta-analyses can summarize findings from tens of
thousands of individuals, so the summaries of aggregated local data need
not be subject to institutional firewalls or even require additional consent
from subjects (van Erp et al., 2016; Hibar et al., 2015). This approach
represents one proven, widely used method for enabling analyses on
otherwise inaccessible data.

Although ENIGMA has spurred innovation through massive interna-
tional collaborations, there are some challenges which complicate the
approach. Firstly, the meta-analyses at work in ENIGMA are effectively
executed manually: a very time-consuming process. For each experiment,
researchers have to write analysis scripts, coordinate with personnel at
all participating sites to make sure these scripts are implemented there,
adapt and debug scripts at each site, and then gather the results through
the use of proprietary software. In addition, an analysis using the
ENIGMA approach described above is typically “single-shot,” i.e., it does
not iterate among sites to compute results holistically, as informed by the
global data. From a statistical and machine learning perspective, single-
shot model averaging has asymptotic performance with respect to the
number of subjects for some types of analysis (Mcdonald et al., 2009;
Zinkevich et al., 2010). However, simple model averaging does not ac-
count for variability between sites driven by small sample sizes and
cannot leverage multivariate dependence structures that might exist
across sites. Furthermore, the ability to iterate over local site computa-
tions allows not only continuous refinement of the solution at the global
level but also greater algorithmic complexity, enabling multivariate ap-
proaches like group ICA (Calhoun and Adalı, 2012) and support vector
machines (Plis et al., 2016), and increased efficiency due to parallelism,
facilitating the processing of images containing thousands of voxels.

These, together with the significant amount of manual labor required
for single-shot approaches to decentralization, motivates decentralized
analyses which favor more frequent communication. For example, sites
running a global optimization Algorithm can communicate following
each iteration or after a number of iterations. In this paper, we further
previous work in this direction (Baker et al., 2015) to develop iterative
algorithms for collaborative, decentralized feature learning. Namely, we
implement a real-data application of a successful algorithm for decen-
tralized independent component analysis (ICA), a widely-used method in
neuroimaging applications. Specifically, we show that our decentralized
implementation can help further advance the as-of-yet mostly unex-
plored domain of temporal ICA of functional magnetic resonance imag-
ing (fMRI) data. The resulting method is a ready fit for decentralized
collaboration frameworks, such as the COINSTAC neuro-imaging anal-
ysis platform (Plis et al., 2016), which promises innovation in
privacy-sensitive decentralized analysis.
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Decentralized approaches such as ENIGMA allow research sites to
maintain control over data access, thus providing plausible privacy
protection at the cost of additional labor in implementing and updating a
distributed architecture. For many applications, keeping data stored on
sites without transfer of entire data samples may provide substantial
privacy. These decentralized methods, however, are amenable to quan-
tifiable measures of privacy, such as differential privacy (Dwork et al.,
2006). In this work, we leave the addition of differential privacy aside,
and focus on the presentation of djICA as a separate Algorithm first, with
plausible privacy; however, we have pursued the addition of differential
privacy to djICA elsewhere (Imtiaz et al., 2016).

One widespread analysis which stands to benefit from decentraliza-
tion is temporal independent component analysis (tICA). In resting-state
fMRI studies, we can assume that the overall spatial networks remain
stable across subjects and experiment duration, while the activation of
certain neurological regions varies over time and across subjects. Tem-
poral ICA, first utilized for fMRI by Biswal et al. (Biswal and Ulmer,
1999), locates temporally independent components corresponding to
independent activations of a subjects’ intrinsic common spatial networks
(Stone et al., 1999). Both spatial and temporal ICA evidently provide
reliable estimates of these intrinsic networks from fMRI data (Calhoun
et al., 2001a; Gao et al., 2011; McKeown et al., 2003; Smith et al., 2012),
but, unlike its spatial counterpart, temporal ICA allows spatial correlation
between them (i.e. overlaps in the spatial maps) (Friston, 1998). Spatial
and temporal ICA can result in similar estimated networks (Dodel et al.,
2000; Calhoun et al., 2001a; Petersen et al.; Gao et al., 2011), while
temporal ICA provides estimates not otherwise available to spatial ICA
(Smith et al., 2012; Calhoun et al., 2001b), specifically for task-related
data. Temporal ICA has also proven particularly useful for extracting
information from high-resolution fMRI scans with overlapping spatial
activations, a feature not available to spatial ICA (Boubela et al., 2013).
Beyond estimation of novel temporal components, temporal ICA can also
aid in isolating and removing noise from fMRI signals (Glasser et al.,
2017; Beall and Lowe, 2007).

While useful, the existing literature for temporal ICA is limited. This
can be partially attributed to computational complexity and dependence
on statistical sample size, since temporal ICA requires more data points in
the time dimension than the typical fMRI time series can offer (Calhoun
et al., 2001a; Gao et al., 2011). Specifically, the ratio of the spatial to the
temporal dimension often requires the temporal dimension to be at least
similar to the voxel dimension. This often motivates the temporal ag-
gregation of datasets composed of many temporally concatenated sub-
jects. This temporal aggregation is also a key feature of the
well-established group spatial ICA in the fMRI literature (Calhoun
et al., 2001c; Correa et al., 2007; Calhoun et al., 2009). Beyond accu-
mulation of subjects, other studies implementing temporal ICA for fMRI
utilize higher-resolution scans to perform temporal ICA with fewer sub-
jects (Boubela et al., 2013). Further methods reduce the spatial dimen-
sion to make a temporal ICA tractable: Seifritz et al. (Seifritz et al., 2002)
use an initial spatial ICA to reduce spatial dimensional by locating a re-
gion of interest on which to perform temporal ICA, and Van et al. restrict
the temporal analysis to a predetermined region of voxels deemed rele-
vant to their particular problem of speech pattern monitoring (van de
Ven et al., 2009).

Although temporal ICA would benefit tremendously from increasing
the temporal frequency of scanners, or analyzing a large number of
subjects at a central location, as mentioned above, this is not always
feasible. To overcome the challenges of centralized temporal ICA, we
present a novel method, decentralized joint Independent Component
Analysis (djICA), which allows for the computation of aggregate spatial
maps and local independent time courses across decentralized data
stored at different servers belonging to independent labs. Our approach
combines individual computations performed locally with global pro-
cesses to obtain both local and global results. The resulting method for
temporal ICA produces results with similar performance to the pooled-
data case and provides estimated components in line with previous
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literature, demonstrating the effectiveness of decentralized collaborative
algorithms for this difficult task.

In sum, the contributions of this paper are as follows:

� In Section 2, we present decentralized joint independent component
analysis (Algorithm 1, Section 2.2), which is closely related to Info-
max ICA (Section 2.1) with decentralized PCA preprocessing (Section
2.3).

� In Section 3 we include experiments and evaluation of djICA over
different subject and site distributions for simulated data sets,
including simulated fMRI data, thus providing a baseline result and
proper motivation for real-data experiments.

� In Section 4, we perform experiments which evaluate djICA on a real
set of fMRI data in a simulated decentralized environment, using a
novel pseudo-ground-truth evaluation scheme to compare our results
with the pooled case.

� Finally, in Section 5, we discuss the performance of djICA as a novel
method for performing temporal ICA in decentralized settings,
comparing our results with previously estimated results from the
pooled temporal ICA literature.

2. Materials and methods

In this section, we provide the details of our method for decentralized
joint independent component analysis and provide a basis for its evalu-
ation. We first review Independent Component Analysis for the pooled
case (where all samples are located on a single site) in Section 2.1, which
provides basis for our presentation of the djICA Algorithm in section 2.2.
In section 2.3 we discuss performing PCA preprocessing in a decentral-
ized setting, and finally, in section 2.4, we discuss our methods for
evaluating the djICA algorithm. The code used for evaluation is available
on GitHub,1 and its inclusion in the COINSTAC decentralized analysis
framework is currently ongoing. For a summary of the notation used in
this section, see Table 1.
2.1. Independent component analysis

ICA is a popular blind source separation (BSS) methodwhich attempts
to decompose mixed signals into independent components (ICs), or
sources, without prior knowledge of the structure of those sources.
Empirically, ICA applied to brain imaging data produces robust features
which are physiologically interpretable and markedly reproducible
across studies (Calhoun et al., 2009; Svens�en et al., 2002; Calhoun and
Adalı, 2006; Biswal and Ulmer, 1999). Indeed, while justification for
successful ICA of fMRI results had been previously attributed to sparsity
alone (Daubechies et al., 2009), it has been shown that statistical inde-
pendence between the underlying sources is in fact a key driving
Table 1
A summary of important notation used throughout this paper, especially in Al-
gorithms 1, Algorithm 2, and Algorithm 3.

X S A UΣV
Data Matrix Source Matrix Mixing Matrix SVD results
Xi Xi;red Ui GiðjÞ
Data Site i Reduced Data Site i Eigenvectors Site i Gradient Site i
ΔWðjÞ WðjÞ bðjÞ ðjÞ
Weight Update Weight Matrix Bias iter j
s r d N
# sites rank (# ICs) # rows # cols
ρ wmax θmax α
learning rate max weight max angle anneal rate

1 https://github.com/MRN-Code/djica_paper_code_release.
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mechanism of ICA algorithms (Calhoun et al., 2013), with additional
benefits possible by trading off between the two (Boukouvalas et al.,
2017).

In linear ICA, we model a data matrix X 2 ℝd�N as a product X � AS,
where S 2 ℝr�N is composed of N observations from r statistically inde-
pendent components, each representing an underlying signal source.
Thus, we can interpret ICA in terms of this generative model, with in-
dependent sources S submitted to a linear mixing process described by a
mixing matrix A 2 ℝd�r , forming the observed data X. Most ICA algo-
rithms seek to recover the “unmixing matrix” W ¼ A�1 (or in the case
where A is not square, the pseudo-inverse, Aþ), by maximizing inde-
pendence between rows of the product WX, assuming the matrix A is
invertible.

Maximal information transfer (Infomax) (Bell and Sejnowski, 1995) is
a popular heuristic for estimatingW bymaximizing an entropy functional
related to WX. This can alternatively be interpreted as a Bayesian esti-
mator with a super-Gaussian prior on the density of the sources. More
precisely, with some abuse of notation, let

gðzÞ ¼ 1
1þ e�z

(1)

be the sigmoid function with gðZÞ being the result of element-wise
application of gð�Þ on the entries of a matrix or vector Z. The differen-
tial entropy of a random vector Z with joint density p is

hðZÞ ¼ �
Z

pðZÞlog pðZÞdZ: (2)

The objective of Infomax ICA then becomes

cW ¼ argmax
W

hðgðWXÞÞ: (3)

Another class of algorithms includes the famous family of fixed-point
methods such as Fast ICA (Hyv€arinen, 1997; Hyv€arinen, 1999; Hyv€arinen
and Oja, 2000). These locally optimize a “contrast” function such as
kurtosis or negentropy.

ICA, along with other methods for BSS, has found wide application. In
particular, functional magnetic resonance imaging (fMRI) and other
biomedical imaging data use ICA models to interpret subject imaging
data (Calhoun and Adalı, 2006). For fMRI, many models assume that
functionally connected regions in the brain are systematically nonover-
lapping. ICA has been used in applications ranging from interpreting
physiology to analyzing task-related signals in both the spatial and
temporal domains.

Additionally, a number of extensions of ICA exist for the purpose of
jointly analyzing multiple data sets to perform a simultaneous decom-
position across a large number of subjects and different modalities (Silva
et al., 2016; Sui et al., 2009; Liu and Calhoun, 2007). Group spatial ICA
(GICA) stands out as the leading approach for multi-subject analysis of
task- and resting-state fMRI data (Allen et al., 2011), building on the
assumption that the spatial map components (S) are common (or at least
similar) across subjects. Another approach, called joint ICA (jICA) (Cal-
houn et al., 2006), is popular in the field of multimodal data fusion and
assumes instead that the mixing process (A) over a group of subjects is
common between a pair of data modalities.

A largely unexplored area of fMRI research is group temporal ICA,
which, like spatial ICA, assumes common spatial maps but with statisti-
cally independent timecourses. Group temporal ICA has been most
commonly applied to EEG data (Eichele et al., 2011) but less frequently
to fMRI data. Consequently, like jICA, in the fMRI case, the common
spatial maps from temporal ICA describe a common mixing process (A)
among subjects. However, temporal ICA of fMRI is not typically inves-
tigated because the small number of time points in each data set can lead
to unreliable estimates. Our decentralized jICA (djICA) approach over-
comes that limitation by leveraging information from data sets distrib-
uted over multiple sites. This is an important extension of single-subject
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temporal ICA and a further example of methods which can benefit from
leveraging data in collaborative settings.

2.2. Decentralized joint ICA

Our goal in this paper is to show that the decentralized joint ICA
Algorithm can be applied to decentralized fMRI data and produce
meaningful results for temporal ICA. We present djICA in detail here and
provide notation in table.

For an integer n let ½n� ¼ f1;2;…;ng. Suppose that we have s total sites
indexed by ½s�; each site i 2 ½s� has a data matrix Xi 2 ℝd�Ni consisting of a
total time course of length Ni time points over d voxels. Let N ¼Ps

i¼1Ni

be the total length. We model the data at each site as coming from a
common (global) mixing matrix A 2 ℝd�r applied to local data sources
Si 2 ℝr�Ni . Thus, the total model can be written as

X ¼ ½AS1 AS2 ⋯ ASs� 2 ℝd�N : (4)

Our Algorithm, decentralized joint ICA (djICA), uses locally
computed gradients to estimate a common, global unmixing matrix W 2
ℝr�d corresponding to the Moore-Penrose pseudo-inverse of A in (4),
Fig. 1. An overview of the djICA pipeline. Each panel in the flowchart represents on
sites and on the aggregator site, as well as communication between nodes. The dPCA
to Algorithm 1, and the Source Estimation panel corresponds to the procedure for
arbitrary site in the decentralized network, and local site iþ 1 represents the next sit
sends data to all sites, and Send communication sends data to one site. Lines with a
communication flow. Dotted lines with diamond endpoints indicate that the sending
case of broadcasting, indicates that all nodes receive the latest update. Double-lines

560
denoted Aþ.
Fig. 1 summarizes the overall Algorithm in the context of temporal

ICA for fMRI data. Each site i has data matrices Xi;m 2 ℝd�ni corre-
sponding to subjects m 2 ½Mi� with d voxels and ni time samples. Sites
concatenate their local data matrices temporally to form a d� niMi data
matrix Xi, so the total time course length at site i is Ni ¼ niMi, and the
total number of subjects is M ¼Ps

i¼1Mi. Each site performs local PCA
(Algorithm 2) using the singular value decomposition (SVD), with
matrices Ui 2 ℝd�k and Σi 2 ℝk�k corresponding to the top k singular
vectors and values, respectively. Then, in a decentralized principal
component analysis (dPCA) framework, the sites approximate a global
PCA (Algorithm 3) to form a common r-dimensional projection matrix
U 2 ℝd�r . This approach is an adaptation of the sub-sampled time PCA
(STP) method (Rachakonda et al., 2016) to the case of decentralized
data, offering an accurate bandwidth-efficient alternative to other
dPCA algorithms (Bai et al., 2005) which can compute the global U
directly (without local PCA) but at the expense of communicating a
large d� dmatrix between sites. Finally, all sites project their data onto
the subspace corresponding to U to obtain reduced local datasets
Xi;red 2 ℝr�Ni .
e stage in the pipeline and provides an overview of the processes done on local
panel corresponds to Algorithms 2 and Algorithm 3, the djICA panel corresponds
computing local sources given in equation (5). On each panel, local site i is an
e in a given ordering over the decentralized network. Broadcast communication
n arrowhead indicate procedural flow. Lines with diamond endpoints indicate
process occurs iteratively to neighbors until the aggregator is reached, or in the
indicate site-specific computations.



Table 2
A summary of the hyper-parameters used in all experiments, for both simula-
tions, and real-data scenarios.

param. t J ρ wmax θmax α

value 10�6 1024 0.015/lnðrÞ 109 60� 0.9
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The projected data is the input to the iterative djICA Algorithm that
estimates the unmixing matrix W 2 ℝr�r , as described in Algorithm 1.
The full mixing matrix for the global data is modeled as
A � ðWU>Þþ 2 ℝd�r . After initializing W (for example, as the identity
matrix), the djICA algorithm iteratively updates W using a distributed
natural gradient descent procedure (Amari et al., 1996). At each iteration
j the sites update locally. In lines 5 and 6, the sites adjust the local source
estimates Zi ¼ WXi;red by their bias estimates bðj� 1Þ1> 2 ℝr�Ni , fol-
lowed by the sigmoid transformation gð�Þ; then, local gradients are
computed with respect toWi and bi in lines 7 and 8. Here, yl;iðjÞ is the l-th
column of YiðjÞ. The sites then send their local gradient estimates GiðjÞ
and hiðjÞ to an aggregator site, which aggregates them according to lines
11–13. After updating WðjÞ and bðjÞ, the aggregator checks if any values
inWðjÞ increased above an upper bound of wmax ¼ 109 in absolute value.
If so, the aggregator resets the global unmixing matrix, sets the current
iteration to j ¼ 0, and anneals the learning rate by ρ ¼ 0:9ρ. Otherwise,
before continuing, if the angle between ΔWðjÞ and ΔWðj� 1Þ is above
θmax ¼ 60∘, the aggregator anneals the learning rate by ρ ¼ 0:9ρ, pre-
venting W from changing too quickly without learning the structure of
data. The aggregator sends the updated WðjÞ and bðjÞ back to the sites.
Finally, the algorithm stops when kΔWðjÞk22 < t, and each site recovers
the statistically independent source estimates Si by

Si � WXi;red: (5)

Algorithm 1. decentralized joint ICA (djICA).

For the pooled-data case, Amari et al. (Amari et al., 1997) demon-
strate theoretically that Infomax ICA meets with the conditions that
guarantee convergence of W to an asymptotically stable solution as long
as A�1 is also asymptotically stable. In other words, the natural gradient
provides convergence to an equilibrium point corresponding to a local
minimum; however, in the general case for Infomax ICA, it is unfortu-
nately not possible to assure convergence to a global minimum, i.e.
complete separation of the source signals.
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In the decentralized-data case, djICA converges to the solution of the
pooled-data case: the assumption of a common mixing matrix across
subjects assures that the global gradient sum is identical to the pooled-
data gradient on average, likewise moving the global weight matrix to-
wards convergence.

Indeed, since the global iterates of djICA are taken as the average of
the individually computed, on-site gradients, djICA run on a full-batch
case (where each site has access to the full batch of data) is equivalent
to the pooled version of infomax ICA. We show this empirically in section
1 of the supplementary material included with this work.

For our purposes, we chose the hyper-parameter values as specified in
the “Required” parameters for Algorithm 1, and we utilized the stochastic

version of the algorithmwith block size b ¼
$ ffiffiffiffiffiffiffiffiffiffiffiffi

minðNiÞ
20

q %
, where minðNiÞ is

the minimum number of concatenated time-points across all sites. We
summarize these parameters in Table 2.
2.3. PCA preprocessing

Here, we describe the decentralized principal component analysis
(dPCA) algorithms used for dimension reduction and whitening in the
djICA pipeline. The dPCA Algorithm is a preprocessing step that stan-
dardizes the data prior to djICA and should also be decentralized so that
the benefits of using a decentralized joint ICA are not made moot by
dependence on a previous pooled step. There are many approaches to
approximating the global PCA with a distributed algorithm (Imtiaz and
Sarwate, 2018).

We first chose to examine dPCA from Bai et al. (Bai et al., 2005).
Their proposed dPCA Algorithm bypasses local data reduction, and thus
works directly with the full data, which motivates its choice for some of
our simulated experiments. One major downside of their approach,
however, is that it requires the transfer of a large orthogonal matrix
between all sites, thus increasing bandwidth usage significantly. As an
alternative to the approach presented by Bai et al., a two-step dPCA
approach was considered based on the STP approach (Calhoun et al.,
2015) recently developed for large PCA of multi-subject fMRI data. One
advantage of this approach is that only a small matrix P 2 ℝd�k is
transmitted from one site to another, a significant decrease compared to
the large d� d matrix (Bai et al., 2005). The downside is that there are
no bounds on the accuracy of the final U and results can vary slightly
with the order in which sites and subjects are processed. Nonetheless,
our results suggest that the two-step dPCA approach, described in Al-
gorithms 2 and Algorithm 3, yields a fairly good estimate of U. In
principle, any suitable decentralized PCA algorithm could replace the
two methods tested here. Thus, we leave room for future improvements
of our framework to find the most effective dPCA approach for the
djICA pipeline.

Algorithm 2. Local PCA algorithm (LocalPCA).



Table 3
Five scenarios considered for synthesis and analysis of simulated data
experiments.

scenario algorithm preprocessing mixing matrixA

1 ICA (pooled) none i.i.d. Gaussian
2 djICA none i.i.d. Gaussian
3 ICA (pooled) LocalPCA simTB map
4 djICA One-Step dPCA (Bai et al., 2005) simTB map
5 djICA GlobalPCA simTB map
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Algorithm 3. Global PCA algorithm (GlobalPCA).

Algorithm 3 uses a peer-to-peer scheme to iteratively refine PðjÞ, with
the last site broadcasting the finalU to all sites.U is the matrix containing
the top r 0 columns of PðsÞwith largest L2 -norm, but normalized to unit L2
-norm instead. Following the recommendation in Calhoun et al. (Calhoun
et al., 2015), we set r ¼ 20 and k ¼ 5 � r. for our simulations.

2.4. Evaluation strategy

All of our experiments were run using the MATLAB 2007b parallel
computation toolbox, on a Linux Server running Ubuntu 12.04 LTS, with
a 9.6 GHz processor (four Intel Xeon E7-4870 @ 2.40 GHz each), a
120MB L3 cache (30MB L3 cache per processor), and 512 GB of RAM.
For any one experiment, we only used a maximum of 8 cores, due to a
need to share the server with other researchers.

As a performance metric for our experiments we choose the Moreau-
Amari (Amari et al., 1996) inter-symbol interference (ISI):

ISIðQÞ ¼ 1
2rðr � 1Þ

"X
i¼1

r
 X

j¼1

r
��Qij

��
maxk jQik j � 1

!
þ
X
j¼1

r
 X

i¼1

r
��Qij

��
maxk

��Qkj

��
� 1

!#
: (6)

This is a function of the square matrixQ ¼cWA, wherecW ¼WU>,W
is the estimated unmixing matrix from Algorithm 1, U is the orthonormal
projection matrix retrieved from dPCA, and r ¼ rankðQÞ, i.e. the number
of sources. In particular, a lower ISI measure indicates a better estimation
of a set of ground-truth components.

3. Experiments with simulated data

First, we test djICA in a simulated environment where we can
manufacture a known ground-truth and use djICA to reconstruct this
ground-truth under different mixing and site configurations. For this
simulated case, we explicitly construct the signal matrices, S, and the
mixing matrix A (using the methods described in section 3), such that the
source matrices are statistically independent and provide, thus providing
the assurance that a solution to underyling BSS problem exists. If djICA
performs well in this simulated case, where a solution is given, we can
thus justify further experiments with real data, where a solution to the
underlying BSS problem is not readily available. To this end, we evalu-
ated 5 different scenarios for synthesis and analysis of synthetic data, as
summarized in Table 3. Based on what we have learned from these
various scenarios, which include different PCA preprocessing strategies,
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we can construct a promising pipeline for djICA which can then be
translated to the real data case.

Two kinds of mixing matrices A were used for experimentation:

1. Lower dimensional square mixing matrices were generated using
MATLAB's randn function (MATLAB), which generates matrices
whose elements are selected from an i.i.d. Gaussian distribution.

2. Higher dimensional mixing matrices were generated using the MIA-
Lab's fMRI simulation toolbox (simTB) (Erhardt et al., 2012). The
simTB spatial maps are intended to simulate spatial components of
the brain which contribute to the generation of the simulated time
course. Higher dimensional mixtures were masked using a simple
circular mask which drops empty voxels outside of the generated
spatial map.

For the first two scenarios indicated in Table 3, we generated i.i.d.
Gaussian mixing matrices A 2 ℝr�r . For the higher-dimensional problems
(scenarios 3–5), we used the simTB spatial maps (Erhardt et al., 2012) to
generate different A 2 ℝd�r mixing matrices.

The independent signals Sm were simulated using a generalized
autoregressive (AR) conditional heteroscedastic (GARCH) model (Engle,
1982; Bollerslev, 1986), which has been shown to be useful in models of
causal source separation (Zhang and Hyv€arinen, 2012) and time-series
analyses of data from neuroscience experiments (Zhang and Hyv€arinen,
2012; Ozaki, 2012), especially resting-state fMRI time courses (Luo et al.,
2013; Lindquist et al., 2014). We simulated fMRI time courses using a
GARCH model by generating an AR process (no moving average terms)
randomly such that the AR series converges. We chose a random order
between 1 and 10 and random AR coefficients fα½ℓ�g such that α½0� 2
½0:55;0:8� and α½ℓ� 2 ½�0:35;0:35� for ℓ > 0. For the error terms δt ¼
σtεt , we used an ARMA model driven by εt from a generalized normal
distribution with shape parameter 100 (so it was approximately uniform
on ½ � 1;1�) and σ2t ¼ 0:1þ 0:1y½t � 1�2 þ 0:75σ½t � 1�2. For each of 1024
simulated subjects, we generated 20 time courses with 250 time points,
each after a “burn-in” period of 20000 samples, checking that all
pair-wise correlations between the 20 time courses stayed below 0.35.
We generated a total of 1024 mixed datasets for each experiment by
computing Xm ¼ ASm.

In summary, we considered the following combinations of Algorithm,
preprocessing, and mixing matrix: 1) pooled (centralized) temporal ICA
with no preprocessing (no data reduction) and a square i.i.d Gaussian
mixing-matrix, 2) djICA with no preprocessing and a square i.i.d.
Gaussian mixing-matrix, 3) pooled temporal ICA with LocalPCA pre-
processing (Algorithm 2) and a simTBmixing matrix, 4) djICA with dPCA
from Bai et al. (Bai et al., 2005) and a simTB mixing matrix, and 5) djICA
with GlobalPCA (Algorithm 3) and a simTB mixing matrix.
3.1. Simulation results

In this section, the results for simulated experiments are presented.
We are particularly interested in understanding how the proposed Al-
gorithm performs with different kinds of preprocessing, and how the
results improve as a function of the global number of subjects, the global
number of sites, or how the subjects are distributed over sites.

To test how the algorithms compare as we increase the data at a fixed



Table 4
Statistics on the number of timepoints in the data set.

min mean mode median max range std

64 158 158 158 301 237 9
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number of sites, we fixed s ¼ 2 sites and evaluated all five scenarios in
Table 3, splitting the data evenly per site in the non-pooled cases. Fig. 2a
shows ISI versus the total data set size. As the data set increases all al-
gorithms improve and, more importantly, the distributed versions
perform nearly as well as the pooled-data counterparts. Results are
averaged over 10 randomly generated mixing matrices.

To test how the algorithms compare as we increase the number of
sites s, we fix Mi ¼ 32 subjects per site. Fig. 2b demonstrates the
convergence of the ISI curve with an increasing amount of combined
data, with results averaged over 10 randomly generated mixing matrices.
Again, we see that the performance of djICA is very close to the
centralized pooled performance, even for such a small number of subjects
per site.

To test how splitting the data sets across more sites affects perfor-
mance, we fixed the total of 1024 subjects and investigated the effect of
splitting them over a growing number of sites s. Thus, the concentration
of data per siteMi decreased with increasing number of sites such that for
small s each site had more data sets and for large s each site had fewer
data sets. Fig. 2c shows that the performance of djICA is very close to that
of the pooled-data ICA, even with more and more sites holding fewer and
fewer data points. This implies that we can support largely decentralized
data with little loss in performance.

4. Experiments with real data

The simulated experiments illustrate the clear benefit djICA provides
by enabling the joint analysis of large decentralized data sets. In this
section, we describe the methods utilized for real-data experiments with
resting-state fMRI datasets. These experiments are intended to illustrate
the effectiveness of djICA (Algorithm 1) in the particular domain of
exploratory analysis of fMRI data. As mentioned earlier, the benefits of
using this algorithm for fMRI analysis are numerous, and the experiments
here aim to both highlight those benefits and illustrate the robustness of
the algorithm when compared to pooled analyses.

4.1. Data description

In this section, we describe the data sets used for real data analysis.
The purpose here is to describe the preprocessing steps specific to the
data utilized here. Experiments used data gathered on-site, according to
the protocol in (Allen et al., 2011). The data were collected using a 3-T
Siemens Trio scanner with a 12-channel radio frequency coil.
T2*-weighted functional images were acquired using a gradient-echo EPI
sequence with TE ¼ 29 ms, TR ¼ 2 s, flip angle¼ 75�, slice thickness ¼
Fig. 2. The ISI for pooled and decentralized algorithms for different distributions of
2a illustrates an increasing number of subjects over two, fixed sites. Panel 2b illustr
constant at 32 subjects per site, with the number of sites starting at 2 and increasin
increasing number of sites. Panel 2d shows the 20 Ground-Truth spatial-maps, along w
2 sites. In the cases with no PCA (panels 2a-2c), the pooled and decentralized algor

563
3.5mm, slice gap ¼ 1.05mm, field of view 240mm, matrix size¼ 64�
64, voxel size ¼ 3.75mm � 3.75mm � 4.55mm. In terms of duration,
resting-state scans were a minimum of 2min 8 s (64 vol) long, on average
5min 16 s (158 vol) long, and at maximum 10min 2 s (301 volumes)
long (see Table 4). In contrast to (Allen et al., 2011), subjects with greater
number of time-points were retained in order to illustrate the general
robustness of djICA to variation in the time-course length.

In terms of preprocessing, the data underwent rigid body alignment
for head motion, slice-timing correction, spatial normalization to MNI
space (using SPM5), regression of 6 motion parameters and their de-
rivatives in addition to any trends (up to cubic or quintic), and spatial
smoothing using a 10mm3 full-width at half-maximum (FWHM)
Gaussian kernel.

We also used the minimum description length (MDL) criterion
(Balan, 2007) to estimate the number of independent components for
each individual subject with the Algorithm available in the MIALab's
Group ICA of fMRI toolbox (GIFT) (Egolf et al., 2004; Medical Image
Analysis Lab, 2018; Calhoun and Adalı, 2012). experiment. The median
number of components over 2038 subjects was 50, and the mean was
49.4636. In all experiments, we thus elected to estimate r ¼ 50 real
components from the data.

4.2. Real data with “real” ground-truth

Our ultimate goal is to show that djICA can provide reasonable
decentralized estimates for real fMRI components which are comparable
to the pooled case. Thus, we first perform a pooled analysis in order to
establish a “pseudo” ground-truth that can be used to evaluate djICA's
performance on real component estimation. We estimated r ¼ 50 real
independent components from M ¼ 2038 subjects by running a pooled
instance of temporal ICA on a single site. The performance of djICA was
assessed by matching the estimated decentralized components to the
pooled components via the Hungarian Algorithm (Kuhn Jüngeret al,
2010) and then computing the ISI between the two sets of components.
For PCA preprocessing, to avoid high communication costs, we elect to
test only the GlobalPCA method given in algorithm 3.

Using the pooled estimations as our basis for comparison, we then
tested djICA in four distinct scenarios, varying the distribution of subjects
subjects over sites under the five simulated scenarios indicated in Table 3. Panel
ates an increasing number of sites, with the number of subjects per site staying
g by a factor of two. Panel 2c illustrates 1024 total subjects distributed over an
ith the estimated spatial-maps from Pooled ICA and djICA with 1024 subjects on
ithms perform identically.
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across a network as follows:

1. when the global number of subjects in the network increases, but the
number of sites in the network stays constant,

2. when the number of subjects per site stays constant, and the number
of sites in the network increases,

3. when the global number of subjects in the network stays constant, but
the number of sites in the network increases (subjects distributed
evenly across sites), and

4. when the global number of subjects in the network stays constant, and
subjects are randomly distributed across sites.

For the first three scenarios, we cap the maximum number of subjects
in the network at 1024 so that we can achieve an even distribution of
subjects in terms of powers of 2, and so that the figures compare more
directly with the simulated experiments. Furthermore, in order to get a
more detailed picture of the effects of small numbers of subjects per site,
we also evaluate djICA in the third scenario with a higher global number
of subjects (M ¼ 2000), and closely examine the results in Fig. 4. For
each of these scenarios, we performed 10 repeated estimations of djICA
components, where each run randomly assigned subjects to different sites
(without duplication of subjects).

For the fourth and last scenario, 2000 subjects were randomly
distributed across sites. Firstly, we selected a parametric probability
distribution PðΘÞ with parameters Θ. We then sampled 100 different
values from P, where each value corresponds with a potential number of
subjects on the i-th site (Mi). We discarded any values below 4, so that
each site has a minimum of 4 subjects per site, and took the ceiling of
each real value so that site distributions are given as natural numbers. We
then selected the first s� 1 values, with s being the number of sites, such
that

Ps�1
i¼1Mi < M, where M is the global number of subjects in the

network. For the final site, we set Ms ¼ M �Ps�1
i¼1Mi so that the total

number of subjects in the network will remain constant atM. This process
results in a varying number of sites between successive samplings, which
we found more appealing for testing as opposed to a randomization
method that would distribute a fixed number of subjects across a fixed
number of sites. We also considered the effect of different distribution
parameter values (Θ) to assess the performance of djICA.

4.3. “Real” ground-truth results

In this section, we present the results of djICA on the four experiments
described above. In all cases, djICA is compared with a pooled case
involving M ¼ 2038 subjects, comparing across conditions using the
Fig. 3. The estimated ISI for real-data djICA over different distributions of subjects ov
Panel 3b illustrates an increasing number of sites, with the number of subjects per si
increasing number of sites. Panel 3d shows three of the spatial maps from djICA with
ground-truth” with 2038 subjects, and the corresponding temporal fluctuation mode
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Moreau-Amari ISI index as we did in the simulated experiments, now
treating the pooled case as a our real-data “ground-truth”.

4.3.1. How do the estimated components compare as we increase the data,
with a fixed number of sites?

In Fig. 3a, we evaluate the ISI index for djICA using real-data in a
scenario where the global number of subjects increases, but the number
of sites in the network is fixed. This figure illustrates that as the number
of subjects increases, the estimated djICA components converge towards
the components computed in the pooled case.

4.3.2. How do the estimated components compare as we increase the number
of sites, with a fixed amount of data sets per site?

In Fig. 3b, we evaluate the ISI index for djICA using real-data in a
scenario where the number of subjects on each site is held constant, while
the number of sites in the network increases. This figure further illus-
trates that as the global number of subjects increases, the estimated djICA
components converge towards the components computed in the pooled
case. Indeed, 1024 global subjects was sufficient for good performance
across the smaller network.

4.3.3. How does spreading the data sets across more sites affect
performance?

In Fig. 3c, we evaluate the ISI index for djICA using real data in a
scenario where the global number of subjects across the entire network is
held constant, while the number of sites in the network increases. This
figure illustrates that it is the global number of subjects included in the
analysis, rather than the number of subjects per site, that mostly affects
the performance of djICA. The concentration of subjects per site only
begins to affect the performance of djICA when it is very low. At four
subjects per site (256 sites in panel 3c), the performance is slightly worse
than in previous runs. Thus, in Fig. 4, we provide more detailed results
for the particular scenario using 2000 subjects in order to illustrate the
effects of low number of subjects per site.

The three cases A, B, and C in Fig. 4 illustrate the performance of the
Algorithm for the minimum, median and maximum inter-symbol inter-
ference (ISI) scenarios respectively on an increasing number of sites, from
10 repeated runs for each subject-site distribution. Each run randomly
placed different subjects on different sites. For all three cases, the plot to
the left illustrates the correlations of each pooled ICA component with
their corresponding match in each decomposition. It is evident from
these plots that the correlation values for the majority of the 50 com-
ponents clustered tightly above the mean correlation values (black hor-
izontal bar) for the entire range of number of sites, thus suggesting that
er sites. Panel 3a illustrates an increasing number of subjects over two fixed sites.
te staying constant. Panel 3c illustrates 1024 global subjects distributed over an
over 2016 subjects evenly split over 16 sites, the pooled temporal ICA “pseudo
s (TFM) from Smith et al. (Smith et al., 2012).



Fig. 4. Keeping the number of subjects fixed at 2000 and increasing the number of sites, we examine the correlations of the estimated components from djICA with the
corresponding best match component from the pooled ICA case. The plots to the left illustrate the correlations between pooled ICA components and their best matched
djICA components, from runs with the minimum (Case A, best), median (Case B), and maximum (Case C, worst) ISI selected out of 10 total runs. On the box-plots, the
black horizontal bar represents the mean value of the Fisher-transformed correlations (z-space) for a specific decomposition transformed back to correlation space (r-
space), the yellow shaded areas give the 95% confidence intervals of the Fisher-transformed correlations (z-space) transformed back to r-space, and the red box
boundaries show the sample standard deviation over the Fisher-transformed correlations (z-space) transformed back to r-space. The panels to the right are a
component-specific depiction of the similarity between the estimated djICA components and their corresponding pooled ICA component. Lighter colors indicate that
the estimated component highly resembled the pooled ICA component estimated from 2038 subjects. The components (columns) are arranged in descending order of
correlations for the minimum ISI case, and this sorting order was retained for the median and maximum ISI cases.
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the mean correlation values for all cases were driven to a lower value by a
few outliers (poorly replicated components). In fact, the lowest mean for
the worst ISI case was 0.83 (s¼ 1000). However, in general, the mean
value of the component correlations for any given case decreased with an
increase in number of sites.

A one-way analysis of variance (ANOVA) and multiple comparison of
means tests were used to determine the specific cases in which the mean
Fisher-transformed correlation estimates (z-space) were significantly
different (at a corrected significance level of 5% using Tukey's honest
significant difference (HSD) method). For the minimum ISI case, signif-
icant differences were observed in the first five decompositions (s¼ 4,
10, 25, 50, and 125) as compared to the last decomposition (s¼ 1000),
the first two decompositions (s¼ 4 and 10) as compared to the second-to-
last (s¼ 500), and the first decomposition (s¼ 4) as compared to the
fourth, fifth and sixth (s¼ 50, 125 and 250). The median ISI case showed
an almost identical set of differences, except for one less significant dif-
ference between the first four decompositions (s¼ 4, 10, 25 and 50) as
compared to the last decomposition (s¼ 1000). Finally, for the maximum
ISI case, the first four decompositions (s¼ 4, 10, 25 and 50) had mean
correlation estimates significantly different than the last two (s¼ 500 and
1000), and the first decomposition (s¼ 4) showed additional significant
differences as compared to the fifth and sixth (s¼ 125 and 250). This
overall pattern clearly indicates: (1) deterioration of performance with
lower number of subjects per site; (2) significantly lower mean correla-
tions for very low number of subjects per site (8 at s¼ 250, 4 at s¼ 500,
and 2 at s¼ 1000).

For all cases A, B, and C, the component-specific performance of the
Algorithm can be traced in the correlation intensity images to the right. It
is evident that all three cases feature high correlations for most of the
components, especially in decompositions with lower number of sites.
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However, there are a few components that exhibit poor (or outlying)
performance. For example, correlations for the last few (rightmost)
components degrade significantly in decompositions with higher number
of sites, while in the minimum ISI case the correlation for component 25
is unexpectedly low for the first decomposition (s¼ 4) and higher for the
remaining decompositions. Finally, it can be concluded from these cor-
relation images that although the algorithm performance degrades with
increasing number sites, the same set of components tends to be consis-
tently well replicated.

4.3.4. How does randomly splitting the data sets across more sites affect
performance?

In real-world scenarios, fMRI data is not evenly distributed across
research sites, thus motivating an investigation into the effect of
randomly distributing the number of subjects per site on the effectiveness
of djICA. In Fig. 5, we compare the estimated ISI of djICA using real-data
in a scenario where 2000 subjects are randomly assigned to sites by
sampling the number of subjects on each site from a given distribution
PðΘÞ. We tested three different distributions for site assignment: normal,
exponential, and uniform, setting the mean and standard deviation both
at 128. The sampling process generates nodes (research sites) with
different dataset sizes, and we then run djICA and compute the ISI as
given above. We ran djICA five times for each distribution, resampling
the number of subjects per site each time, and then plotted the ISI for
each run. Each panel in Fig. 5 also illustrates a graph of a network where
each site is represented as a node. The size of each node in the network
corresponds to the number of subjects on a given site, which is sampled
from the given distribution.

As the figure shows, uniformly distributing subjects across the
network reduces variance in computations when compared to normally



Fig. 5. An illustration of the effect of randomly distributing subjects across a decentralized data network. Each panel contains an example graph of connected nodes in
the network, where each node represents a site in the network. The size of each node in the network corresponds to the number of subjects located on that site. The
estimated ISI is computed after running djICA over 5 repeated runs, where each distinct run utilized a different network sampled from the same distribution. Panel (a)
illustrates a network where the number of subjects on each site was sampled from a gaussian distribution, panel (b) illustrates a network of subjects where the number
of subjects on each site was sampled from an exponential distribution, and panel (c) illustrates a network where the number of subjects on each site was sampled from
a uniform distribution. In the bottom-left the corner of each panel, we plot the ISI after performing djICA for 5 different runs, where each run resampled the number of
subjects on each site from the given distribution.
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distributed subjects; however, all of the given runs do not vary more than
0.02 with respect to the ISI, and all fall below 0.1 ISI, indicating favorable
performance.

4.3.5. How do the estimated maps compare with previous results?
In Fig. 3d we provide the spatial maps from three of the highest-

correlated components estimated using djICA and pooled ICA for com-
parison to their corresponding temporal fluctuation modes (TFM) from
Smith et al. (Smith et al., 2012), which also investigated temporal ICA of
fMRI. We discuss this comparison in the following section.

5. Discussion

In contrast to systems optimized for processing large amounts of data
by making computation more efficient (Apache Spark, H2O and others),
we focus on a different setting common in research collaborations: data
are expensive to collect, are spread across multiple sites, and possibly not
shareable directly. To that end, we proposed a distributed data joint ICA
Algorithm that, in synthetic experiments, finds underlying sources in
decentralized data nearly as accurately as its centralized counterpart.
This shows that algorithms like djICA may enable collaborative pro-
cessing of decentralized data by combining local computation and
communication of local summaries. djICA represents an important iter-
ation towards toolboxes for computing on data distributed across private
sites with an emphasis on collaboration. While other distributed methods
for decentralized fMRI analysis have been recently proposed (Wojtale-
wicz et al., 2017; Lewis et al., 2017), djICA in particular is able to benefit
from the unique opportunity of globally accumulated multi-subject data.

To further validate our method we have evaluated it in experiments
on real fMRI data. Our use of djICA to perform temporal ICA of fMRI
produces results which compare well to the pooled version of the Algo-
rithm and produces estimated components which compare well with
other work on temporal fMRI analysis (Smith et al., 2012) that uses much
more elaborate multi-step analyses techniques. Additionally, djICA is
robust to random allocation of subjects to sites, generally performingwell
with a high number of globally accumulated subjects, and insensitive to
how these subjects are distributed across the sites. We have discovered
one edge-case for real-data djICA in which having less than four subjects
per site across all sites in the network leads to a slight decrease in global
performance. While further investigation using a robust hyper-parameter
search (which we did not pursue in this paper) may mitigate this
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performance reduction, the scenario where all or many sites in a
collaborative analysis would each have fewer than four subjects is highly
unlikely. Other decentralized approaches to fMRI analysis, such as ap-
proaches which use the ENIGMA consortium (Thompson et al., 2014), do
not explore this edge-case. Indeed, the lowest number of subjects on a site
within the ENIGMA consortiumwas 36, with themajority of other sites in
the consortium possessing over 200 subjects (van Erp et al., 2016).

Our decentralized djICA Algorithm is a good fit for decentralized
collaborative frameworks, such as the COINSTAC collaboration platform,
and is amenable to the privacy guarantees including in those platforms.
The inclusion of djICA in a system like COINSTAC would allow for shared
analysis between members of pre-arranged consortia without the ex-
change of raw data. This alone provides a level of plausible privacy to
djICA which is not available to centralized ICA approaches. As we have
explored elsewhere, djICA can be easily extended to include quantifiable
notions of privacy, such as differential privacy (Imtiaz et al., 2016).
Further investigation is required, however, to investigate the robustness
of both plausible and differential privacy to scenarios involvingmalicious
participants in the consortium. For example, it has been shown that
malicious participants in a collaborative classification task using a
decentralized Deep Neural Network can reconstruct data samples by
utilizing Generative Adversarial Networks to leverage shared gradient
information (Hitaj et al., 2017). It is currently unclear whether or not
methods such as djICA suffer from this information leakage issue; how-
ever, the issue demands future attention.

Privacy aside, real-world networks can suffer from a number of
additional implementation issues: individual sites may have different
computing hardware and messages may be dropped due to network la-
tency or slow processing. While it is likely that issues such as hardware
variance will not significantly influence the analysis in the decentralized
case, other practical considerations should be handled by the overall
software framework in which djICA would be included. The djICA Al-
gorithm can easily be made more robust to by including features such as
timeouts, automated resets in response to errors or dropout, thresholds
for minimum sufficient participation from each site, and so on.

Additionally, a number of decentralization-friendly heuristic choices
can be made to improve runtime or performance beyond that of the
default settings in djICA. For example, a stochastic gradient for weight
updates can be computed over blocks (or mini-batches) of data in order to
improve runtime. Thus, the block size b can be chosen as a heuristic or
evaluated as a hyper-parameter in order to examine the tradeoff between
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Algorithm runtime and performance. Other hyper-parameters worth
investigating are the tolerance level t, initial learning rate ρ, maximum
iterations J, and the number of components chosen for local PCA.

In a pooled environment with a known ground-truth, it makes sense
to find optimal values for these hyper-parameters using a grid search, or
other hyper parameter selection method. In many real-life collaborative
environments, however, a thorough hyper parameter search across sites
may be impractical, and as far as we have found, no established method
exists for hyper parameter optimization across decentralized sites.
Finally, real-data problems often lack a reliable ground-truth, which
makes it even more difficult and time-consuming to verify the effec-
tiveness of multiple hyper-parameters. Nonetheless, in situations where a
reliable ground-truth is available, such as in realistic simulations, one
simple solution would be to aggregate locally searched hyper-
parameters; however, this method is unlikely to yield good perfor-
mance if the number of subjects varies widely between sites, or if many of
the sites contain only a small amount of data. Another potential solution
would be to have each site participate in a global search using a randomly
sampled subset of the local data. This may prove effective provided that
enough data can be made available from each site, but would come at the
expense of additional computation, and additional release of information
from each site. In ICA for fMRI, certain auxiliary measures, such as the
cross-correlation between components or the kurtosis of estimated in-
dependent components, could be used to assess performance empirically,
starting with an initial heuristic choice of parameters and making ad-
justments if the auxiliary measures (or other indirect validation surro-
gates) indicate it would be helpful to do so.
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Due to the lack of sufficient data problem that our method solves,
temporal ICA networks from resting state neuroimaging data are rarely
reported in the literature. A straightforward comparison of our observed
networks with typical ones is not possible. However, our maps should be
comparable, to some extent, to temporal fluctuation modes (TFMs) re-
ported in Smith et al. (Smith et al., 2012), which performed temporal ICA
on denoised spatial ICA component time courses. A qualitative compar-
ison of the observed ground-truth maps in our work to the TFM maps
reported in their work suggests similarities in certain spatial map acti-
vation patterns between the two. Component 15 resembles TFM 8 with
task positive regions (dorsal visual regions and frontal eye fields)
anti-correlated to the default mode (posterior cingulate, angular gyri, and
medial prefrontal cortex). Component 8, with anti-correlated foveal and
high-eccentricity visual areas corresponding to surround suppression
observed in task studies, shows a good resemblance to TFM 4 in that
work. As observed in TFM 2, component 6 shows coactivation patterns of
lateral visual areas and parts of thalamus. Component 17 from our work,
shows a good correspondence to TFM 13 in that work, with DMN regions
anti-correlated with bilateral supramarginal gyri and language regions,
albeit without strong lateralization reported in that work. TFM 1 and
component 14 in this work, demonstrate anti-correlated somatosensory
regions to DMN regions of the brain. A couple other TFMs, 12 and 15,
show moderate correspondence to components 11 and 9, respectively.

The differences between the networks we observed and the TFMs
reported in Smith et al. (Smith et al., 2012) may stem from methodo-
logical differences and choice of number of independent components.
In that work, instead of performing direct temporal ICA on
Fig. 6. The 19 identified non-artifactual
spatial modes, with spatial map activa-
tion patterns localized to gray matter
regions. Component 15 resembles TFM 8
from (Smith et al., 2012), with task
positive regions (dorsal visual regions
and frontal eye fields) anti-correlated to
the default mode (posterior cingulate,
angular gyri, and medial prefrontal cor-
tex). Component 8 shows anti-correlated
foveal and high-eccentricity visual areas
corresponding to surround suppression
observed in task studies, and resembles
to TFM 4 in Smith et al.. Component 6
shows coactivation patterns of lateral
visual areas and parts of thalamus.
Component 17 shows a good corre-
spondence to TFM 13 in Smith et al..
with DMN regions anti-correlated with
bilateral supramarginal gyri and lan-
guage regions, but without strong later-
alization reported in that Smith et al..
Component 14 demonstrates
anti-correlated somatosensory regions to
DMN regions of the brain. A couple
other TFMs from Smith. et al.. 12 and
15, show moderate correspondence to
components 11 and 9 from our
estimation.
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preprocessed data to identify fluctuation modes, Smith et al. (Smith
et al., 2012) use a two-step approach: firstly, performing a high model
order spatial ICA, identifying artifactual components, and regressing
out their variance from the time courses of seemingly non-artifactual
components, and secondly, performing a temporal ICA on these
denoised time courses. In contrast, we perform direct temporal ICA,
leveraging the large number of samples available in large collaborative
studies and directly getting to dynamics of fMRI. Therefore, the amount
of variance captured during the PCA step in both methods differs. We
identify 19 non-artifactual spatial modes, out of our 50 estimated
components; all with spatial map activation patterns localized to gray
matter regions and corresponding power spectra of independent time
courses showing higher low frequency amplitude, as observed for
intrinsic connectivity networks from spatial ICA analyses. These maps
are included in Fig. 6. Finally, the data utilized in that work was from 36
ten minute-runs from 5 subjects, roughly sampled at TR¼ 0.8s, which
yielded 24000 concatenated timepoints, in contrast to roughly 300000
concatenated timepoints from 2000 subjects in this study, which is
arguably a more general result.

6. Conclusions & future work

We have presented djICA, a novel method for decentralized temporal
Independent Component Analysis, which represents a step toward facil-
itating large, collaborative analyses of data in a decentralized fashion.We
evaluated djICA on simulated and real fMRI data, with both experiments
illustrating the benefits of djICA, namely the increased availability of a
larger, otherwise inaccessible, subject pool shared across multiple sites.
Additionally, since djICA does not communicate subject data across sites
but only gradients, it is amenable to privatization via approaches like
differential privacy (Dwork et al., 2006), thus further opening the po-
tential for collaboration between sites where direct sharing of data is not
possible. Indeed, the increased availability of data provided by decen-
tralized methods like djICA enables data-intensive, and thus underutil-
ized, analyses like temporal Independent Component Analysis. Our
comparison to the results from Smith et al. (Smith et al., 2012) confirms
that djICA produces comparable temporal components. Finally, djICA
and other methods like it foster further research on previously unex-
plored temporal dynamics in fMRI, such as the effects on temporal ICA of
common confounds often found in datasets consisting of multi-site data.

Additional extensions to the methods provided here include reducing
the bandwidth of the method and designing privacy-preserving variants,
possibly, with differential privacy guarantees, which we have previously
investigated for simulated cases (Imtiaz et al., 2016). In such cases,
reducing the iteration complexity will help guarantee more privacy and
hence incentivize larger research collaborations. If we were to return to
the simulated data case, additional explorations into robust
hyper-parameter searches and the deliberate corruption by noise may
prove interesting for discovering and ameliorating further edge-cases for
djICA. Beyond temporal ICA, decentralized spatial ICA is also worth
investigation, and could be paired with decentralized clustering to
evaluate decentralized dynamic functional network connectivity. Finally,
Infomax ICA represents only one optimization approach to perform ICA,
and while it is amenable to decentralization, other algorithms for ICA,
such as fastICA (Hyv€arinen, 1999) or the flexible entropy bound mini-
mization (EBM) (Li and Adali, 2010) approach, may provide other ben-
efits beyond ease of decentralization.

Funding

This work was supported by grants from the NIH grant numbers
R01DA040487, P20GM103472, and R01EB020407 as well as NSF grants
1539067 and 1631838. The author(s) declare that there was no other
financial support or compensation that could be perceived as constituting
a potential conflict of interest.
568
Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.neuroimage.2018.10.072.

References

E. Allen, E. Erhardt, E. Damaraju, W. Gruner, J. Segall, R. Silva, M. Havlicek, S.
Rachakonda, J. Fries, R. Kalyanam, A. Michael, A. Caprihan, J. Turner, T. Eichele, S.
Adelsheim, A. Bryan, J. Bustillo, V. Clark, S. Feldstein Ewing, F. Filbey, C. Ford, K.
Hutchison, R. Jung, K. Kiehl, P. Kodituwakku, Y. Komesu, A. Mayer, G. Pearlson, J.
Phillips, J. Sadek, M. Stevens, U. Teuscher, R. Thoma, V. Calhoun, A baseline for the
multivariate comparison of resting state networks, Front. Syst. Neurosci. 5 (2).
https://doi.org/10.3389/fnsys.2011.00002.

Amari, S. i., Cichocki, A., Yang, H.H., 1996. A new learning Algorithm for blind signal
separation. Adv. NIPS 757–763.

Amari, S.-I., Chen, T.-P., Cichocki, A., 1997. Stability analysis of learning algorithms for
blind source separation. Neural Network. 10, 1345–1351. https://doi.org/10.1016/
S0893-6080(97)00039-7.

Bai, Z.-J., Chan, R., Luk, F., 2005. Principal component analysis for distributed data sets
with updating. In: APPT 2005: Advanced Parallel Processing Technologies, vol 3756.
Springer, pp. 471–483. https://doi.org/10.1007/11573937_51 of Lecture Notes in
Computer Science.

Baker, B.T., Silva, R.F., Calhoun, V.D., Sarwate, A.D., Plis, S.M., 2015. Large scale
collaboration with autonomy: decentralized data ICA. In: Proceedings of the IEEE
25th International Workshop on Machine Learning for Signal Processing. MLSP),
Boston, MA, USA. https://doi.org/10.1109/MLSP.2015.7324344.

Balan, R., 2007. Estimator for number of sources using minimum description length
criterion for blind sparse source mixtures. In: D. M. E., J. C. J., A. S. A., P. M. D. (Eds.),
ICA 2007: Independent Component Analysis and Signal Separation, vol 4666.
Springer, pp. 333–340. https://doi.org/10.1007/978-3-540-74494-8_42 of Lecture
Notes in Computer Science.

Beall, E.B., Lowe, M.J., 2007. Isolating physiologic noise sources with independently
determined spatial measures. Neuroimage 37 (4), 1286–1300.

Bell, A.J., Sejnowski, T.J., 1995. An information-maximization approach to blind
separation and blind deconvolution. Neural Comput. 7 (6), 1129–1159. https://
doi.org/10.1162/neco.1995.7.6.1129.

Biswal, B.B., Ulmer, J.L., 1999. Blind source separation of multiple signal sources of fMRI
data sets using independent component analysis. J. Comput. Assist. Tomogr. 23 (2),
265–271.

Bollerslev, T., 1986. Generalized autoregressive conditional heteroskedasticity.
J. Econom. 31 (3), 307–327. https://doi.org/10.1016/0304-4076(86)90063-1.

Boubela, R.N., Kalcher, K., Huf, W., Kronnerwetter, C., Filzmoser, P., Moser, E., 2013.
Beyond noise: using temporal ICA to extract meaningful information from high-
frequency fMRI signal fluctuations during rest. Front. Hum. Neurosci. 7, 168. https://
doi.org/10.3389/fnhum.2013.00168.

Boukouvalas, Z., Levin-Schwartz, Y., Calhoun, V.D., Adalı, T., 2017. Sparsity and
independence: balancing two objectives in optimization for source separation with
application to fmri analysis. J. Franklin Inst. 355 (4), 1873–1887. https://doi.org/
10.1016/j.jfranklin.2017.07.003.

Calhoun, V.D., Adalı, T., 2006. Unmixing fMRI with independent component analysis.
IEEE Eng. Med. Biol. Mag. 25 (2), 79–90. https://doi.org/10.1109/
MEMB.2006.1607672.

Calhoun, V.D., Adalı, T., 2012. Multisubject independent component analysis of fMRI: a
decade of intrinsic networks, default mode, and neurodiagnostic discovery. IEEE Rev.
Biomed. Eng. 5, 60–73. https://doi.org/10.1109/RBME.2012.2211076.

Calhoun, V., Adalı, T., Pearlson, G., Pekar, J., 2001. Spatial and temporal independent
component analysis of functional MRI data containing a pair of task-related
waveforms. Hum. Brain Mapp. 13 (1), 43–53. https://doi.org/10.1002/hbm.1024.

Calhoun, V.D., Adali, T., McGinty, V., Pekar, J.J., Watson, T., Pearlson, G., 2001. Fmri
activation in a visual-perception task: network of areas detected using the general
linear model and independent components analysis. Neuroimage 14 (5), 1080–1088.

Calhoun, V.D., Adalı, T., Pearlson, G.D., Pekar, J., 2001. A method for making group
inferences from functional MRI data using independent component analysis. Hum.
Brain Mapp. 14 (3), 140–151. https://doi.org/10.1002/hbm.1048.

Calhoun, V., Adalı, T., Giuliani, N., Pekar, J., Kiehl, K., Pearlson, G., 2006. Method for
multimodal analysis of independent source differences in schizophrenia: combining
gray matter structural and auditory oddball functional data. Hum. Brain Mapp. 27
(1), 47–62. https://doi.org/10.1002/hbm.20166.

Calhoun, V.D., Liu, J., Adalı, T., 2009. A review of group ICA for fMRI data and ICA for
joint inference of imaging, genetic, and ERP data. Neuroimage 45 (1), S163–S172.
https://doi.org/10.1016/j.neuroimage.2008.10.057.

Calhoun, V., Potluru, V., Phlypo, R., Silva, R., Pearlmutter, B., Caprihan, A., Plis, S.,
Adalı, T., 2013. Independent component analysis for brain fMRI does indeed select
for maximal independence. PloS One 8 (8), e73309. https://doi.org/10.1371/
journal.pone.0073309.

Calhoun, V.D., Silva, R.F., Adalı, T., Rachakonda, S., 2015. Comparison of PCA
approaches for very large group ICA. Neuroimage 118, 662–666. https://doi.org/
10.1016/j.neuroimage.2015.05.047.

Correa, N., Adalı, T., Calhoun, V.D., 2007. Performance of blind source separation
algorithms for fMRI analysis using a group ICA method. Magn. Reson. Imag. 25 (5),
684–694. https://doi.org/10.1016/j.mri.2006.10.017.

Daubechies, I., Roussos, E., Takerkart, S., Benharrosh, M., Golden, C., D'Ardenne, K.,
Richter, W., Cohen, J., Haxby, J., 2009. Independent component analysis for brain

https://doi.org/10.1016/j.neuroimage.2018.10.072
https://doi.org/10.1016/j.neuroimage.2018.10.072
https://doi.org/10.3389/fnsys.2011.00002
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref2
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref2
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref2
https://doi.org/10.1016/S0893-6080(97)00039-7
https://doi.org/10.1016/S0893-6080(97)00039-7
https://doi.org/10.1007/11573937_51
https://doi.org/10.1109/MLSP.2015.7324344
https://doi.org/10.1007/978-3-540-74494-8_42
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref7
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref7
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref7
https://doi.org/10.1162/neco.1995.7.6.1129
https://doi.org/10.1162/neco.1995.7.6.1129
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref9
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref9
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref9
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref9
https://doi.org/10.1016/0304-4076(86)90063-1
https://doi.org/10.3389/fnhum.2013.00168
https://doi.org/10.3389/fnhum.2013.00168
https://doi.org/10.1016/j.jfranklin.2017.07.003
https://doi.org/10.1016/j.jfranklin.2017.07.003
https://doi.org/10.1109/MEMB.2006.1607672
https://doi.org/10.1109/MEMB.2006.1607672
https://doi.org/10.1109/RBME.2012.2211076
https://doi.org/10.1002/hbm.1024
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref16
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref16
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref16
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref16
https://doi.org/10.1002/hbm.1048
https://doi.org/10.1002/hbm.20166
https://doi.org/10.1016/j.neuroimage.2008.10.057
https://doi.org/10.1371/journal.pone.0073309
https://doi.org/10.1371/journal.pone.0073309
https://doi.org/10.1016/j.neuroimage.2015.05.047
https://doi.org/10.1016/j.neuroimage.2015.05.047
https://doi.org/10.1016/j.mri.2006.10.017


B.T. Baker et al. NeuroImage 186 (2019) 557–569
fMRI does not select for independence. Proc. Natl. Acad. Sci. Unit. States Am. 106
(26), 10415–10422. https://doi.org/10.1073/pnas.0903525106.

Dodel, S., Herrmann, J.M., Geisel, T., 2000. Comparison of temporal and spatial ica in
fmri data analysis. In: Proceedings of ICA2000, the Second International Conference
on Independent Component Analysis and Signal Separation, pp. 543–547.

Dwork, C., McSherry, F., Nissim, K., Smith, A., 2006. Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (Eds.), Theory of Cryptography, Vol.
3876 of Lecture Notes in Computer Science. Springer, Berlin, Heidelberg,
pp. 265–284. https://doi.org/10.1007/11681878_14.

Egolf, E., Kiehl, K.A., Calhoun, V.D., 2004. Group ICA of fMRI toolbox (GIFT). In:
Proceedings of Human Brain Mapping, Budapest, Hungary.

Eichele, T., Rachakonda, S., Brakedal, B., Eikeland, R., Calhoun, V.D., 2011. EEGIFT: a
toolbox for group temporal ICA event-related EEG. Comput. Intell. Neurosci. 2011
https://doi.org/10.1155/2011/129365. Article ID 129365.

Engle, R., 1982. Autoregressive conditional heteroscedasticity with estimates of the
variance of United Kingdom inflation. Econometrica 50 (4), 987–1007. https://
doi.org/10.2307/1912773.

Erhardt, E., Allen, E., Wei, Y., Eichele, T., Calhoun, V., 2012. SimTB, a simulation toolbox
for fMRI data under a model of spatiotemporal separability. Neuroimage 59 (4),
4160–4167. https://doi.org/10.1016/j.neuroimage.2011.11.088.

Friston, K.J., 1998. Modes or models: a critique on independent component analysis for
fmri. Trends Cognit. Sci. 2 (10), 373–375.

Gao, X., Zhang, T., Xiong, J., 2011. Comparison between spatial and temporal
independent component analysis for blind source separation in fmri data. In:
Biomedical Engineering and Informatics (BMEI), 2011 4th International Conference
on, vol. 2. IEEE, pp. 690–692.

Glasser, M.F., Coalson, T.S., Bijsterbosch, J.D., Harrison, S.J., Harms, M.P., Anticevic, A.,
Van Essen, D.C., Smith, S.M., 2017. Using Temporal Ica to Selectively Remove Global
Noise while Preserving Global Signal in Functional Mri Data. bioRxiv, p. 193862.

Gorgolewski, K., Esteban, O., Schaefer, G., Wandell, B., Poldrack, R., 2017. Openneuro—a
free online platform for sharing and analysis of neuroimaging data. In: Organization
for Human Brain Mapping (OHBM), Vancouver, Canada, p. 1677.

Hibar, D.P., Stein, J.L., Renteria, M.E., Arias-Vasquez, A., Desrivi�eres, S., Jahanshad, N.,
Toro, R., Wittfeld, K., Abramovic, L., Andersson, M., et al., 2015. Common genetic
variants influence human subcortical brain structures. Nature 520 (7546), 224.
https://doi.org/10.1038/nature14101.

Hitaj, B., Ateniese, G., Perez-Cruz, F., 2017. Deep models under the gan: information
leakage from collaborative deep learning. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. ACM, pp. 603–618.

Hyv€arinen, A., 1997. A family of fixed-point algorithms for independent component
analysis. In: Proceedings of the 1997 IEEE International Conference on Acoustics,
Speech, and Signal Processing, vol. 5, pp. 3917–3920. https://doi.org/10.1109/
ICASSP.1997.604766.

Hyv€arinen, A., 1999. Fast and robust fixed-point algorithms for independent component
analysis. IEEE Trans. Neural Network. 10 (3), 626–634. https://doi.org/10.1109/
72.761722.

Hyv€arinen, A., Oja, E., 2000. Independent component analysis: algorithms and
applications. Neural Network. 13 (4–5), 411–430.

Imtiaz, H., Sarwate, A.D., 2018. Differentially private distributed principal component
analysis. In: Proceedings of the 43rd IEEE International Conference on Acoustics,
Speech and Signal Processing. ICASSP, Calgary, Canada, 2018.

Imtiaz, H., Silva, R., Baker, B., Plis, S.M., Sarwate, A.D., Calhoun, V.D., 2016. Privacy-
preserving source separation for distributed data using independent component
analysis. In: Proceedings of the 2016 Annual Conference on Information Science and
Systems. CISS), Princeton, NJ, USA, pp. 123–127. https://doi.org/10.1109/
CISS.2016.7460488.

Jack, C.R., Bernstein, M.A., Fox, N.C., Thompson, P., Alexander, G., Harvey, D.,
Borowski, B., Britson, P.J., Whitwell, J.L., Ward, C., et al., 2008. The Alzheimer's
disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imag. 27 (4),
685–691. https://doi.org/10.1002/jmri.21049.

Kuhn, H.W., 2010. The Hungarian method for the assignment problem. In: Jünger, M.,
et al. (Eds.), 50 Years of Integer Programming 1958-2008. Springer, Berlin,
Heidelberg, pp. 29–47. https://doi.org/10.1007/978-3-540-68279-0_2.

Lewis, N., Plis, S., Calhoun, V., 2017. Cooperative learning: decentralized data neural
network. In: International Joint Conference on Neural Networks (IJCNN). IEEE,
Anchorage, AK, USA, pp. 324–331. https://doi.org/10.1109/IJCNN.2017.7965872,
2017.

Li, X.-L., Adali, T., 2010. Complex independent component analysis by entropy bound
minimization. IEEE Trans. Circ. Syst. I: Regul. Papers 57 (7), 1417–1430. https://
doi.org/10.1109/TCSI.2010.2046207.

Lindquist, M., Xu, Y., Nebel, M., Caffo, B., 2014. Evaluating dynamic bivariate
correlations in resting-state fMRI: a comparison study and a new approach.
Neuroimage 101, 531–546. https://doi.org/10.1016/j.neuroimage.2014.06.052.

Liu, J., Calhoun, V., 2007. Parallel independent component analysis for multimodal
analysis: application to fMRI and EEG data. In: Proceedings of the 4th IEEE
International Symposium on Biomedical Imaging: from Nano to Macro. ISBI,
pp. 1028–1031. https://doi.org/10.1109/ISBI.2007.357030, 2007.

Luo, Q., Tian, G., Grabenhorst, F., Feng, J., Rolls, E., 2013. Attention-dependent
modulation of cortical taste circuits revealed by Granger causality with signal-
dependent noise. PLoS Comp. Bio. 9 (10), e1003265 https://doi.org/10.1371/
journal.pcbi.1003265.
569
MATLAB, rand:Uniformly Distributed Random Numbers, mathworks. URL https://www.
mathworks.com/help/matlab/ref/rand.html.

Mcdonald, R., Mohri, M., Silberman, N., Walker, D., Mann, G.S., 2009. Efficient large-
scale distributed training of conditional maximum entropy models. In: Bengio, Y.,
Schuurmans, D., Lafferty, J.D., Williams, C.K.I., Culotta, A. (Eds.), Advances in Neural
Information Processing Systems 22 (NIPS 2009). Curran Associates, Inc.,
pp. 1231–1239

McKeown, M.J., Hansen, L.K., Sejnowsk, T.J., 2003. Independent component analysis of
functional mri: what is signal and what is noise? Curr. Opin. Neurobiol. 13 (5),
620–629.

Medical Image Analysis Lab, M.R.N.. Group ICA of fMRI toolbox (GIFT) [cited February
11, 2018]. URL. http://mialab.mrn.org/software/gift.

Ozaki, T., 2012. Time Series Modeling of Neuroscience Data, first ed. CRC Press, Boca
Raton, FL, USA.

K. Petersen, L. K. Hansen, T. Kolenda, On the Independent Components of Functional
Neuroimages.

S. Plis, A. D. Sarwate, D. Wood, C. Dieringer, D. Landis, C. Reed, S. R. Panta, J. A. Turner,
J. M. Shoemaker, K. W. Carter, P. Thompson, K. Hutchison, V. D. Calhoun,
COINSTAC: A privacy enabled model and prototype for leveraging and processing
decentralized brain imaging data, Front. Neurosci. 10 (365). https://doi.org/10.
3389/fnins.2016.00365.

Poldrack, R.A., Gorgolewski, K.J., 2014. Making big data open: data sharing in
neuroimaging. Nat. Neurosci. 17 (11), 1510–1517. https://doi.org/10.1038/
nn.3818.

R. A. Poldrack, D. M. Barch, J. P. Mitchell, T. D. Wager, A. D. Wagner, J. T. Devlin, C.
Cumba, O. Koyejo, M. P. Milham, Toward open sharing of task-based fMRI data: the
OpenfMRI project, Front. Neuroinf. 7. https://doi.org/10.3389/fninf.2013.00012.

Rachakonda, S., Silva, R.F., Liu, J., Calhoun, V.D., 2016. Memory efficient PCA methods
for large group ICA. Front. Neurosci. 10, 17. https://doi.org/10.3389/
fnins.2016.00017.

Seifritz, E., Esposito, F., Hennel, F., Mustovic, H., Neuhoff, J.G., Bilecen, D., Tedeschi, G.,
Scheffler, K., Di Salle, F., 2002. Spatiotemporal pattern of neural processing in the
human auditory cortex. Science 297 (5587), 1706–1708. https://doi.org/10.1126/
science.1074355.

Silva, R., Plis, S., Sui, J., Pattichis, M., Adalı, T., Calhoun, V., 2016. Blind source
separation for unimodal and multimodal brain networks:a unifying framework for
subspace modeling. EEE J. Sel. Top. Signal Proc. 10 (7), 1134–1149. https://doi.org/
10.1109/JSTSP.2016.2594945.

Smith, S.M., Miller, K.L., Moeller, S., Xu, J., Auerbach, E.J., Woolrich, M.W.,
Beckmann, C.F., Jenkinson, M., Andersson, J., Glasser, M.F., et al., 2012. Temporally-
independent functional modes of spontaneous brain activity. Proc. Natl. Acad. Sci.
Unit. States Am. 109 (8), 3131–3136. https://doi.org/10.1073/pnas.1121329109.

Stone, J., Porrill, J., Buchel, C., Friston, K., 1999. Spatial, temporal, and spatiotemporal
independent component analysis of fMRI data. In: Spatio-temporal Modelling and its
Applications, Citeseer. Department of Statistics, University of Leeds, pp. 7–9.

Sui, J., Adalı, T., Pearlson, G., Calhoun, V., 2009. An ICA-based method for the
identification of optimal fMRI features and components using combined group-
discriminative techniques. Neuroimage 46 (1), 73–86. https://doi.org/10.1016/
j.neuroimage.2009.01.026.

Svens�en, M., Kruggel, F., Benali, H., 2002. ICA of fMRI group study data. Neuroimage 16
(3), 551–563. https://doi.org/10.1006/nimg.2002.1122.

Thompson, P.M., Stein, J.L., Medland, S.E., Hibar, D.P., Vasquez, A.A., Renteria, M.E.,
Toro, R., Jahanshad, N., Schumann, G., Franke, B., et al., 2014. The ENIGMA
consortium: large-scale collaborative analyses of neuroimaging and genetic data.
Brain Imag. Behav. 8 (2), 153–182. https://doi.org/10.1007/s11682-013-9269-5.

Thompson, P.M., Andreassen, O.A., Arias-Vasquez, A., Bearden, C.E., Boedhoe, P.S.,
Brouwer, R.M., Buckner, R.L., Buitelaar, J.K., Bulayeva, K.B., Cannon, D.M., et al.,
2017. ENIGMA and the individual: predicting factors that affect the brain in 35
countries worldwide. Neuroimage 145, 389–408. https://doi.org/10.1016/
j.neuroimage.2015.11.057.

van de Ven, V., Esposito, F., Christoffels, I.K., 2009. Neural network of speech monitoring
overlaps with overt speech production and comprehension networks: a sequential
spatial and temporal ica study. Neuroimage 47 (4), 1982–1991.

van Erp, T.G., Hibar, D.P., Rasmussen, J.M., Glahn, D.C., Pearlson, G.D., Andreassen, O.A.,
Agartz, I., Westlye, L.T., Haukvik, U.K., Dale, A.M., et al., 2016. Subcortical brain
volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy
controls via the ENIGMA consortium. Mol. Psychiatr. 21 (4), 547. https://doi.org/
10.1038/mp.2015.63.

Wojtalewicz, N.P., Silva, R.F., Calhoun, V.D., Sarwate, A.D., Plis, S.M., 2017.
Decentralized independent vector analysis. In: Proceedings of the 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
New Orleans, LA, USA, pp. 826–830. https://doi.org/10.1109/
ICASSP.2017.7952271.

Zhang, K., Hyv€arinen, A., 2012. Source separation and higher-order causal analysis of
MEG and EEG. In: 26th Conference on Uncertainty in Artificial Intelligence (UAI
2010). AUAI Press, Catalina Island, California, pp. 709–716.

Zinkevich, M., Weimer, M., Li, L., Smola, A.J., 2010. Parallelized stochastic gradient
descent. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A.
(Eds.), Advances in Neural Information Processing Systems 23 (NIPS 2010). Curran
Associates, Inc., pp. 2595–2603

https://doi.org/10.1073/pnas.0903525106
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref24
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref24
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref24
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref24
https://doi.org/10.1007/11681878_14
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref26
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref26
https://doi.org/10.1155/2011/129365
https://doi.org/10.2307/1912773
https://doi.org/10.2307/1912773
https://doi.org/10.1016/j.neuroimage.2011.11.088
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref30
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref30
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref30
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref31
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref31
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref31
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref31
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref31
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref32
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref32
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref32
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref33
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref33
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref33
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref33
https://doi.org/10.1038/nature14101
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref35
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref35
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref35
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref35
https://doi.org/10.1109/ICASSP.1997.604766
https://doi.org/10.1109/ICASSP.1997.604766
https://doi.org/10.1109/72.761722
https://doi.org/10.1109/72.761722
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref38
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref38
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref38
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref38
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref38
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref39
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref39
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref39
https://doi.org/10.1109/CISS.2016.7460488
https://doi.org/10.1109/CISS.2016.7460488
https://doi.org/10.1002/jmri.21049
https://doi.org/10.1007/978-3-540-68279-0_2
https://doi.org/10.1109/IJCNN.2017.7965872
https://doi.org/10.1109/TCSI.2010.2046207
https://doi.org/10.1109/TCSI.2010.2046207
https://doi.org/10.1016/j.neuroimage.2014.06.052
https://doi.org/10.1109/ISBI.2007.357030
https://doi.org/10.1371/journal.pcbi.1003265
https://doi.org/10.1371/journal.pcbi.1003265
https://www.mathworks.com/help/matlab/ref/rand.html
https://www.mathworks.com/help/matlab/ref/rand.html
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref49
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref49
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref49
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref49
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref49
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref49
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref50
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref50
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref50
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref50
http://mialab.mrn.org/software/gift
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref52
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref52
https://doi.org/10.3389/fnins.2016.00365
https://doi.org/10.3389/fnins.2016.00365
https://doi.org/10.1038/nn.3818
https://doi.org/10.1038/nn.3818
https://doi.org/10.3389/fninf.2013.00012
https://doi.org/10.3389/fnins.2016.00017
https://doi.org/10.3389/fnins.2016.00017
https://doi.org/10.1126/science.1074355
https://doi.org/10.1126/science.1074355
https://doi.org/10.1109/JSTSP.2016.2594945
https://doi.org/10.1109/JSTSP.2016.2594945
https://doi.org/10.1073/pnas.1121329109
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref61
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref61
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref61
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref61
https://doi.org/10.1016/j.neuroimage.2009.01.026
https://doi.org/10.1016/j.neuroimage.2009.01.026
https://doi.org/10.1006/nimg.2002.1122
https://doi.org/10.1007/s11682-013-9269-5
https://doi.org/10.1016/j.neuroimage.2015.11.057
https://doi.org/10.1016/j.neuroimage.2015.11.057
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref66
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref66
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref66
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref66
https://doi.org/10.1038/mp.2015.63
https://doi.org/10.1038/mp.2015.63
https://doi.org/10.1109/ICASSP.2017.7952271
https://doi.org/10.1109/ICASSP.2017.7952271
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref69
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref69
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref69
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref69
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref69
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref70
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref70
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref70
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref70
http://refhub.elsevier.com/S1053-8119(18)32053-6/sref70

	Decentralized temporal independent component analysis: Leveraging fMRI data in collaborative settings
	1. Introduction
	2. Materials and methods
	2.1. Independent component analysis
	2.2. Decentralized joint ICA
	2.3. PCA preprocessing
	2.4. Evaluation strategy

	3. Experiments with simulated data
	3.1. Simulation results

	4. Experiments with real data
	4.1. Data description
	4.2. Real data with “real” ground-truth
	4.3. “Real” ground-truth results
	4.3.1. How do the estimated components compare as we increase the data, with a fixed number of sites?
	4.3.2. How do the estimated components compare as we increase the number of sites, with a fixed amount of data sets per site?
	4.3.3. How does spreading the data sets across more sites affect performance?
	4.3.4. How does randomly splitting the data sets across more sites affect performance?
	4.3.5. How do the estimated maps compare with previous results?


	5. Discussion
	6. Conclusions & future work
	Funding
	Appendix A. Supplementary data
	References


