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Distributed Differentially Private Algorithms for
Matrix and Tensor Factorization

Hafiz Imtiaz

Abstract—In many signal processing and machine learning
applications, datasets containing private information are held
at different locations, requiring the development of distributed
privacy-preserving algorithms. Tensor and matrix factorizations
are key components of many processing pipelines. In the dis-
tributed setting, differentially private algorithms suffer because
they introduce noise to guarantee privacy. This paper designs new
and improved distributed and differentially private algorithms for
two popular matrix and tensor factorization methods: principal
component analysis and orthogonal tensor decomposition. The
new algorithms employ a correlated noise design scheme to
alleviate the effects of noise and can achieve the same noise level
as the centralized scenario. Experiments on synthetic and real
data illustrate the regimes in which the correlated noise allows
performance matching with the centralized setting, outperforming
previous methods and demonstrating that meaningful utility is
possible while guaranteeing differential privacy.

Index Terms—Differential privacy, distributed orthogonal ten-
sor decomposition, latent variable model, distributed principal
component analysis.

1. INTRODUCTION

ANY signal processing and machine learning algorithms
M involve analyzing private or sensitive data. The out-
comes of such algorithms may leak information about indi-
viduals present in the dataset. A strong and cryptographically-
motivated framework for protection against such information
leaks is ditferential privacy [1]. Differential privacy measures
privacy risk in terms of the probability of identifying individ-
ual data points in a dataset from the results of computations
(algorithms) performed on that data.
In several modern applications the data is distributed over dif-
ferent locations or sites, with each site holding a smaller number
of samples. For example, consider neuro-imaging analyses for
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mental health disorders, in which there are many individual
research groups, each with a modest number of subjects. Learn-
ing meaningful population properties or efficient feature rep-
resentations from high-dimensional functional magnetic reso-
nance imaging (fMRI) data requires a large sample size. Pooling
the data at a central location may enable efficient feature learn-
ing, but privacy concerns and high communication overhead
often prevent such sharing. Therefore, it is desirable to have
efficient distributed privacy-preserving algorithms that provide
utility close to centralized case [2].

This paper focuses on the Singular Value Decomposition
(SVD), or Principal Component Analysis (PCA), and orthogo-
nal tensor decompositions. Despite some limitations, PCA/SVD
is one of the most widely-used preprocessing stages in any ma-
chine learning algorithm: it projects data onto a lower dimen-
sional subspace spanned by the singular vectors of the sample
second-moment matrix. Tensor decomposition is a powerful
tool for inference algorithms because it can be used to infer
complex dependencies (higher order moments) beyond second-
moment methods such as PCA. This is particularly useful in
latent variable models [3] such as mixtures of Gaussians and
topic modeling.

Related Works: For a complete introduction to the history of
tensor decompositions, see the comprehensive survey of Kolda
and Bader [4]. The CANDECOMP/PARAFAC, or CP decompo-
sition [5], [6] and Tucker decomposition [7] are generalizations
of the matrix SVD to multi-way arrays. While finding the de-
composition of arbitrary tensors is computationally intractable,
specially structured tensors appear in some latent variable mod-
els. Such tensors can be decomposed efficiently [3], [4] using
a variety of approaches such as generalizations of the power it-
eration [8]. Exploiting such structures in higher-order moments
to estimate the parameters of latent variable models has been
studied extensively using the so-called orthogonal tensor de-
composition (OTD) [3], [9]-[11]. To our knowledge, these de-
compositions have not been studied in the setting of distributed
data.

Several distributed PCA algorithms [12]-[17] have been pro-
posed. Liang ef al. [12] proposed a distributed PCA scheme
where it is necessary to send both the left and right singular
vectors along with corresponding singular values from each site
to the aggregator. Feldman et al. [18] proposed an improve-
ment upon this, where each site sends a D) x R matrix to the
aggregator. Balcan er al. [13] proposed a further improved ver-
sion using fast sparse subspace embedding [19] and randomized
SVD [20].

1932-4553 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires [EEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



1450

This paper proposes new privacy-preserving algorithms for
distributed PCA and OTD and builds upon our earlier work on
distributed differentially private eigenvector calculations [17]
and centralized differentially private OTD [21]. It improves on
our preliminary works on distributed private PCA [17], [22]
in terms of efficiency and fault-tolerance. Wang and Anand-
kumar [23] recently proposed an algorithm for differentially
private tensor decomposition using a noisy version of the tensor
power iteration [3], [8]. Their algorithm adds noise at each step
of the iteration and the noise variance grows with the prede-
termined number of iterations. They also make the restrictive
assumption that the input to their algorithm is orthogonally de-
composable. Our centralized OTD algorithms [21] avoid these
assumptions and achieve better empirical performance
(although without theoretical guarantees). To our knowledge,
this paper proposes the first differentially private OTD algo-
rithm for distributed settings.

Our Contribution: In this paper, we propose two new (e, d)-
differentially private algorithms, capePCA and capeAGN, for
distributed differentially private PCA and OTD, respectively.
The algorithms are inspired by the recently proposed correla-
tion assisted private estimation (CAPE) protocol [24] and input
perturbation methods for differentially-private PCA [25], [26].
The CAPE protocol improves upon conventional approaches,
which suffer from excessive noise, at the expense of requir-
ing a trusted “helper” node that can generate correlated noise
samples for privacy. We extend the CAPE framework to han-
dle site-dependent sample sizes and privacy requirements. In
capePCA, the sites share noisy second-moment matrix esti-
mates to a central aggregator, whereas in capeAGN the sites
use a distributed protocol to compute a projection subspace used
to enable efficient private OTD. This paper is about algorithms
with provable privacy guarantees and experimental validation.
While asymptotic sample complexity guarantees are of theoret-
ical interest, proving performance bounds for distributed sub-
space estimation is quite challenging. To validate our approach
we show that our new methods outperform previously proposed
approaches, even under strong privacy constraints. For weaker
privacy requirements they can achieve the same performance as
a pooled-data scenario.

II. PROBLEMS USING DISTRIBUTED PRIVATE DATA

Notation: We denote tensors with calligraphic scripts (X'),
vectors with bold lower case letters (x), and matrices with bold
upper case letters (X). Scalars are denoted with regular letters
(M). Indices are denoted with lower case letters and they typi-
cally run from 1 to their upper-case versions (m = 1,2, ..., M).
We sometimes denote the set {1,2,..., M} as [M]. The n-th
column of the matrix X is denoted as x,,. || - ||2, || - |7 and tr(-)
denote the Euclidean (or £5) norm of a vector and the spectral
norm of a matrix, the Frobenius norm and the trace operation,
respectively.

Distributed Data Model: We assume that the data is dis-
tributed in S sites, where each site s € [S] has a data matrix
X, € RP*N-_ The data samples in the local sites are assumed
to be disjoint. There is a central node that acts as an aggregator
(see Fig. 1). We denote N = Zle N as the total number of
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Fig. 1. The structure of the network: left — conventional, right - CAPE.

samples over all sites. The data matrix X, = [Xs1 ... Xs.n,]
at site s is considered to contain the [D-dimensional features
of N, individuals. Without loss of generality, we assume that
[Xs,nll2 <1Vs € [S]and Vn € [N,]. If we had all the data in
the aggregator (pooled data scenario), then the data matrix would
be X = [X; ... Xs| € RP*N . Our goal is to approximate the
performance of the pooled data scenario using distributed dif-
ferentially private algorithms.

Matrix and Tensor Factorizations: We first formulate the
problem of distributed PCA. For simplicity, we assume that
the observed samples are mean-centered. The D x D sam-
ple second-moment matrix at site s is A, = N%Xs X/ In the
pooled data scenario, the D x D positive semi-definite second-
moment matrix is A = +XX. According to the Schmidt ap-
proximation theorem [27], the rank-K matrix Ay that mini-
mizes the difference ||A — Ak ||r can be found by taking the
SVD of A as A = VAV, where without loss of general-
ity we assume A is a diagonal matrix with entries {i4(A)}
and A;(A) > --- = Ap(A) = 0. Additionally, V is a matrix
of eigenvectors corresponding to the eigenvalues. The top-K
PCA subspace of A is the matrix Vi (A) = [v; ... Vg]. Given
Vi (A) and the eigenvalue matrix A, we can form an approx-
imation A = Vg (A)Ax Vi (A)T to A, where Ax con-
tains the K largest eigenvalues in A. For a D x K matrix v
with orthonormal columns, the quality of V in approximat-
ing Vi (A) can be measured by the captured energy of A as
q(V) = tr(VTAV). The V, which maximizes q(V) is the sub-
space Vi (A). We are interested in approximating Vi (A) in
a distributed setting while guaranteeing differential privacy.

Next, we consider the problem of OTD. We refer the reader
to the survey by Kolda and Bader [4] for related basic defini-
tions. As mentioned before, we consider the decomposition of
symmelric tensors that appear in several latent variable models.
Such tensors can be orthogonally decomposed efficiently. Two
examples of OTD from Anandkumar ef al. [3], namely the sin-
gle topic model (STM) and the mixture of Gaussian (MOG), are
presented in Appendix B.

Let X' be an M-way D dimensional symmetric tensor. Given
real valued vectors v € R?, Comon et al. [28] showed that
there exists a decomposition of the form

K
X = Zlkvk BV @ @ Vg,
k=1

where @ denotes the outer product. Without loss of general-
ity, we can assume that ||v |2 = 1 Vk. If we can find a matrix
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V =[vi...vg] € RP*K with orthogonal columns, then we
say that X’ has an orthogonal symmetric tensor decomposition
[11]. Such tensors are generated in several applications involv-
ing latent variable models. Recall that if M € R”*? is a sym-
metric rank- K’ matrix then we know that the SVD of M is given

by
K K
M=VAV' =) "0vivi =D vk @ Vi,
k=1 k=1

where A = diag{i1,A2,...,Ax } and v is the k-th column
of the orthogonal matrix V. As mentioned before, the or-
thogonal decomposition of a 3-rd order symmetric tensor
X € RP*P>D g a collection of orthonormal vectors {vy}
together with corresponding positive scalars {A;} such that
X = EL] ARV @ Vi @ vi. Now, in a setting where the data
samples are distributed over different sites, we may have local
approximates A,. We intend to use these local approximates
from all sites to find better and more accurate estimates of the
{V }, while preserving privacy.

Differential Privacy: An algorithm A(DD) taking values in a
set T provides (e, §)-differential privacy if

Pr[A(D) € S] < exp(e) Pr[A(D’') € S| + 6, (1)

for all measurable S C T and all data sets ) and I’ differing
in a single entry (neighboring datasets). This definition essen-
tially states that the probability of the output of an algorithm is
not changed significantly if the corresponding database input is
changed by just one entry. Here, € and § are privacy parameters,
where lower e and ¢ ensure more privacy. Note that the param-
eter 6 can be interpreted as the probability that the algorithm
fails. For more details, see recent surveys [29] or the monograph
of Dwork and Roth [30].

To illustrate, consider estimating the mean f(x)=
%Ef:l z, of N scalars X =[r1,...,2x_1, =n]
with each z; € [0,1]. A neighboring data vector x'=
[£1,...,2x 1, «)y]" differs in a single element. The sensitiv-
ity [1] maxy | f(x) — f(x')| of the function f(x) is % There-
fore, for (e,0) differentially-private estimate of the average
a = f(x), we can follow the Gaussian mechanism [1] to release

1 1.25

&=a+e,whcrceN'N(0,72) and 7 = w74/ 21og ~~.

Ne
Distributed Privacy-Preserving Computation: In our dis-

tributed setting, we assume that the sites are “honest but cu-
rious.” That is, the aggregator is not trusted and the sites can
collude to get a hold of some site’s data/function output. Ex-
isting approaches to distributed differentially private algorithms
can introduce a significant amount of noise to guarantee pri-
vacy. Returning to the example of mean estimation, suppose
now there are S sites and each site s holds a disjoint dataset X,
of N, samples for s € [S]. A central aggregator wishes to esti-
mate and publish the mean of all the samples. The sites can send
estimates to the aggregator but may collude to learn the data of
other sites based on the aggregator output. Without privacy, the
sites can send a; = f(X,) to the aggregator and the average
computed by aggregator (a,; — % Ele ag) is exactly equal to
the average we would get if all the data samples were avail-
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able in the aggregator node. For preserving privacy, a standard
differentially private approach is for each site to send a. =

f(xs) + €5, where e, ~ N (0,72) and 7, = N%fﬁQlog L2

The aggregator computes a,, = % Ele a,. We observe

1< 13 13
aagzgza’s:gzgas"‘gzges-
s= s= s=

Note that this estimate is still noisy due to the privacy con-
2 2

straint. The variance of the estimator a,, is S - % = % £ Tag
However, if we had all the data samples in the central aggre-
gator, then we could compute the differentially-private aver-
ageasa, = + SN o+ e, where e, ~ N (0,72) and 7, =

ﬁ 1/ 2log l—fﬁ If we assume that each site has equal number of

samples then N = SN, and we have 7, = ﬁ \/2log LE =

-
gg. We observe the ratio

'rf _ 'rf / S2 B 1
72 2 /85 s
showing that the conventional differentially-private distributed

ag
averaging scheme is always worse than the differentially-private
pooled data case.

III. CORRELATED NOISE SCHEME

The recently proposed Correlation Assisted Private Estima-
tion (CAPE) [24] scheme exploits the network structure and
uses a correlated noise design to achieve the same performance
of the pooled data case (i.e., Tag = 7¢) in the decentralized set-
ting. We assume there is a trusted noise generator in addition
to the central aggregator (see Fig. 1). The local sites and the
central aggregator can also generate noise. The noise generator
and the aggregator can send noise to the sites through secure
(encrypted) channels. The noise addition procedure is carefully
designed to ensure the privacy of the algorithm output from each
site and to achieve the noise level of the pooled data scenario
in the final output from the central aggregator. Considering the
same distributed averaging problem as in Section II, the noise
generator and central aggregator send e, and f., respectively,
to each site s. Site s generates noise g, and releases/sends
a; = f(xs) + es + fs + gs. The noise generator generates e,
such that Ele es = 0. The term e, is needed to protect f(x;)
from the aggregator, since the aggregator knows f, and g, is
not large enough to protect f(x.). The noise generator need
not necessarily be a separate entity and can be considered as a
common randomness, or a shared coin only possessed by the
sites [24]. For example, each site could generate €, and, perhaps
using standard secure multiparty computation protocol [31],
[32], compute Ele €, collaboratively. Each site could then
use eg +— €5 — %Ele €. to achieve Ele e; = 0. As shown
in [24], the noise terms {es, gs, f } are distributed according to
es ~N(0,72), fo ~N(0,77), and go ~N (0, 77), where

2 2 1 2 2 Ts2
Te =Tf = 1—§ 'rs,and'rg:§. (2)
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Algorithm 1: Correlation Assisted Private Estimation
(CAPE).

Require: Data samples {x;}; privacy parameters e, 4.

1: Compute 7, « T 2log ==

2: At the random noise generator, generate e, ~ N
(0,72), where 72 = (1 — L)r2 and 5 | e, =0

3: At the central aggregator, generate f, ~N(0,77),

where T‘? =(1-%)72

cfors=1,..., Sdo

Get e, from the random noise generator
Get f. from the central aggregator
Generate g, ~N(0,7;), where 72 = 3582-
Compute and send a, — f(x;) —|— es + fs + gs
: end for

: At the central aggregator, compute

Lngfp - szs 1 Gs — %Zf:l fe

. 1m
11: return aagp

SV NA

For a given pair of privacy parameters (e,d), we can calculate
a noise variance 72 such that adding Gaussian noise of vari-
ance 72 will guarantee (e, §)-differential privacy Since there
are many (e, §) pairs that yield the same 7, it is convenient to
parameterize our method using 72.

The noise variances of {e;, g, fs } Were derived to ensure that
the variance of the noise f; + g guarantees (e, d)-differential
privacy to the output from site s, since the noise terms e, are
correlated. Additionally, the noise variances ensure that the vari-
ance of e; + g, is sufficient to provide (e, 6)-differential privacy
to the output from site s — as a safeguard against the central ag-
gregator, which knows f,. The aggregator computes

5 5
1mp_§2 g

where weused ) _, e, = Oand the fact that the aggregator knows
the f,, soitcan subtract all of those from a,. The variance of the
estimator a"gp is S - 52 = ;—‘? = 'r , which is the same as if all
the data were present at the aggregator. This claim is formalized
in Lemma 1.

Lemma 1: Let the variances of the noise terms e, f, and g,
(Step 8 of Algorithm 1) be given by (2). If we denote the variance
of the additive noise (for preserving privacy) in the pooled data

scenario by 72 and thc variance of the estimator a‘mP (Step 10 of

Algorithm 1) by 7iP” then Algorithm 1 achieves 72 = ri=p”,

ag

Proof: We rccall that in the pooled data scenario, the sen-
sitivity of the function f(x) is &, where x = [xy,...,Xs].
Therefore, to approximate f(x) satisfying (e, d) differential

privacy, we need to have additive Gaussian noise standard de-
2log L. Next, consider the (e, )
differentially-private release of the function f(x,). The sensi-
tivity of this function is N . Therefore, the (e, d) differentially-

private approximate of the function f(x.) requires a standard

1.25
v/ 2log 152

I MZ
03|

viation at least 7, = 5=

deviation at least 7, = Note that, if we assume
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equal number of samples in each site, then we have

Ts TQ

=g T =g
We will now show that the CAPE algorithm will yield the
same noise variance of the estimator at [he aggregator Recall

that at the aggrcgator we compute a'mp =z Ly (as—f) =
~ I A —|— Eg 1 gg The variance of the estimator

'r;glpg £5.% = ISE- Z, which is exactly the same as the
pooled data scenario. Therefore, the CAPE algorithm allows us
to achieve the same additive noise variance as the pooled data
scenario, while satisfying at least (¢, ) differential privacy at
the sites and (e, §) differential privacy for the final output from
the aggregator. 0

We show the complete algorithm in Algorithm 1. Privacy
follows from previous work [24], and if S > 2 and number of
trusted sites (the sites that would not collude with any adver-
sary) Sy = 2, the aggregator does not need to generate f,. Note
that the CAPE protocol exploits the Gaussianity of the noise
terms. Therefore, other mechanisms, e.g., the staircase mecha-
nism (SM) [33], cannot be used in the current framework to take
advantage of the correlated noise scheme. We investigated the
performance of SM empirically in the conventional distributed
setting and observed that the CAPE protocol always outper-
forms SM. We believe a very interesting future work would be
to incorporate SM in the correlated noise scheme.

Proposition 1 (Perfonnance gam [24]): Considcr the
gain function G(n) = —mf;,- = Es 17 Wwith n=
[N1,...,Ns]. Then:

® the minimum G(n) is S and is achieved when n =

N N
(50 %

e the maximum G(n) is & (TN—_.Sl'-t-lF +5— 1), which
occurs whenn=1,...,1,N — §+1]

Proof: The proof is a consequence of Schur convexity and
is given in [24]. O

The proposition suggests that the CAPE achieves a gain of at
least S even when we do not know N, of different sites. More-
over, in case of site drop-out, the performance of capePCA
(Algorithm 2) and capeAGN (Algorithm 3) would fall back to
that of the conventional scheme [24]. That is, the output from
each site remains (e, d) differentially private irrespective of the
number of dropped-out sites.

A. Extension of CAPE to Unequal Privacy Requirements

We now propose a generalization of the CAPE scheme,
which applies to scenarios where different sites have differ-
ent privacy requirements and/or sample sizes. Additionally,
sites may have different “quality notions”, i.e., while com-
bining the site outputs at the aggregator, the aggregator can
decide to use different weights to different sites (possibly ac-
cording to the quality of the output from a site). Let us as-
sume that site s requires (e.,d,)-differential privacy for its
output. According to the Gaussian mechanism [1], the noise
to be added to the (non-private) output of site s should have
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Algorithm 2: Improved Distributed Differentially-Private
PCA (capePCA).

Require: Data matrix X, € R”*N+ for s € [S]; privacy

1:

: Compute A — %Ele (As

parameters €, §; reduced dimension K

At random noise generator: generate E, ¢ RP*P as

described in the text; send to sites

At aggregator: generate F, € RP*P as described in

the text; send to sites

for s =1,2,...,5do > at the local sites
Compute A, — =X, X/
Generate D x D symmetric matrix G, as
described in the text )
Compute A; — A, + E; + F; + G;;send A; to
aggregator

end for

—F 3) > at the

aggregator

: Perform SVD: A = VAV
10:
11:

Release / send to sites: Vg
return Vi

Algorithm 3: Distributed Differentially-private OTD
(capeAGN).

Require: Sample second-order moment matrices

:p_.w

11:

12:
13:

14:

: At aggregator: generate F'§ €

:fors=1,

M; € RP*P and third-order moment tensors
M§ € RP*P>D /g e [S], privacy parameters e, €3,
d1, 02, reduced dimension K

: At random noise generator: generate E5 € RP*P and

&5 € RP*DxD a5 described in the text; send to sites
RP>D and

F§ € RP*DxD a5 described in the text; send to sites
, S do 1> at the local sites

Generate G5 € R?*P as described in the text
Compute M; «— M; + E5 + F5 + G3; send NI;
to aggregator

: end for .
: Compute My «— %Eil (Mg — F;) and then

SVD(K) of M, as My; = UDU > at the

aggregator

: Compute and send to sites: W «— UD™ 7
:fors=1,

, S do > at the local sites
Generate symmetric G§ € RP*P*P from the
entries of b € RP==  where [b]s ~N (0,73, )

and 72 ’ _lg'rsfz
CmomputeAJM3 M3+ & +F5 +G3 and

M3 — M3 (W, W, W); send M3 to aggregator
end for :
Compute M3 «— %Ele (M3
'W))r> at the aggregator
return The differentially private orthogonally
decomposable tensor Ms, projection subspace W

7F3‘S(W1Wa

standard deviation given by 7, =

+—1/2log 122 Site s out-

puts &, = f(x:) +es + fs + gs. Here gs mN(D,TgSJ is gen-
erated locally; e, ~N(0,72,) and £, ~A (0, 'rfs)are generated
from the noise generator and the aggregator, respectively. As ex-
plained before, we need to satisfy

, and T83+gs

T_?S-i—g& = T?S —i— TES 2 T TEQS + Tg?s 2 TSQ‘

The aggregator computes a weighted average with weights se-
lected according to the quality measure of the site’s data/output
(e.g., if the aggregator knows that a particular site is suffering
from more noisy observations than other sites, it can choose
to give the output from that site less weight while combining
the site results). Let us denote the weights by {u. } such that
Ef=1 p, = 1 and p, > 0. Note that, our proposed generalized
CAPE reduces to the existing [24] CAPE for p, = EN& The

aggregator computes

1mp _ZP:S (as fs) _Zﬁsas +ZP:365 +Z#sgs

As our goal is to achieve the same level of noise as the pooled
data scenario, we need

var [ZP‘SQ&] =T, :>Z‘u'3 Tge = T¢

Additionally, we need Ele pees = 0. With these constraints,
we can formulate a feasibility problem to solve for the unknown

noise variances {72, ggs,rfs} as
minimize 0
. 2 2 2
subject to 'rfs—i—r Z'r Teo T Tge = Tas

5
Zﬁs Tgs :TgaZPﬂses =0,
s=1

for all s € [S], where {u.}, 7. and {7, } are known to the ag-
gregator. For this problem, multiple solutions are possible. We
present one solution here that solves the problem with equality.

Solution: We start with Ef: 1 Ms€s = 0. The noise generator
generates e, for s € [S — 1] inclependently with e; ~N(0,72)
and then sets eg = — 1 Es | He€q. AS e, for s € [S — 1] are
independent Gaussums they are also uncorrelated. Therefore,
we have

Tl = — Zu =>Z.u
'uSEl

SZO.

Additionally, we have ZS 1 ,us 2+ piT S = 72. Combining

2 2
these, we observe Tjs — To5 = 7 ('r — i i 3) More-

over, for the S-th site, 1—3 g+ 're ¢ = ""s- Therefore, we can solve
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2 2
for 7,5 and 7y as

s-1
2 Tsz, 1 2 Z 2_2
T, —_— - T°5 — T
gs D) 2'”2 c pet HsTg
2 5-1
2 _Ts 1 2 2.9
eS 2 2;_1% (T ; HTg )
Additionally, we set T?S from 'rgﬂs + 'r? s =712as

T2 1 —
2 _ '8 2 2.2
Tfs = 2 - 2“23 (Tc - 3§=1: lu's'rs) .

Now, we focus on setting the noise variances for s € [S — 1].
From the relation Efz_l] p2r?, = pk72g, one solution is to set

1 ’U.Q 1 8-1
2 _ rs. 2 - 2 2_2
Tes = ’U,E(S—].) l 9 Ts 9 (Tc Z»u‘s'rs)‘l .

Using this and 72, = 72 — 72, we have
gs g es

T2 = T2 — —1 ﬁ'fg — l TZ - S “J.QTZ .
gs L “3(8_ 1) 2 2 c . 88

i 2 _.2__2
Finally, we solve for 7, = 77 — 7, as

72 2—1 ﬁ'rg—l TE—§p2T2 .
fe 7 p2(S-1) | 2 2 ¢ &l

Therefore, we can solve the feasibility problem with equality
using the following noise variance expressions. For the S-th
site:

For other sites s € [S — 1]:

1 JI%:
2 _ 2 _ 5.2
Tes = Tfg = P‘g(S_ 1) [?TS

2 2 1 pe o 1, - 2,2
ngz’fg—m 57573 TE—Z%’G .

It is evident from the expressions that the noise variances for
each site depend on the target noise variance (72) as well as
the local noise variances {72} and the quality metric {p,} for
all sites. This is expected as we are trying to achieve the target
noise variance collectively while satisfying a different privacy
requirement at each site. If all the sites had the same quality
metric and the same privacy requirement, the noise variances
would be uncoupled, as depicted in (2).

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 12, NO. 6, DECEMBER 2018

IV. IMPROVED DISTRIBUTED DIFFERENTIALLY-PRIVATE
PRINCIPAL COMPONENT ANALYSIS

In this section, we propose an improved distributed
differentially-private PCA algorithm that takes advantage of the
CAPE protocol. Recall that in our distributed PCA problem,
we are interested in approximating Vg (A) in a distributed
setting while guaranteeing differential privacy. One naive ap-
proach (non-private) would be to send the data matrices from
the sites to the aggregator. When D and/or N, are large, this
entails a huge communication overhead. In many scenarios the
local data are also private or sensitive. As the aggregator is
not trusted, sending the data to the aggregator can result in a
significant privacy violation. Our goals are therefore to reduce
the communication cost, ensure differential privacy, and pro-
vide a close approximation to the true PCA subspace Vg (A).
We previously proposed a differentially-private distributed PCA
scheme [17], but the performance of the scheme is limited by
the larger variance of the additive noise at the local sites due to
the smaller sample sizes. We intend to alleviate this problem us-
ing the correlated noise scheme [24]. The improved distributed
differentially-private PCA algorithm (capePCA) we propose
here achieves the same utility as the pooled data scenario.

We consider the same network structure as in Section III: there
is a random noise generator that can generate and send noise
to the sites through encrypted/secure channels. The aggregator
can also generate noise and send those to the sites over en-
crypted/secure channels. Recall that in the pooled data scenario,
we have the data matrix X and the sample second-moment ma-
trix A = %XXT. We refer to the top-K PCA subspace of this
sample second-moment matrix as the true (or optimal) subspace
Vi (A). At each site, we compute the sample second-moment
matrix as A, = N%XSXST. The L, sensitivity [1] of the func-
tion f(Xs) = A, is Aj = NL., [26]. In order to approximate
A, satisfying (e, &) differential privacy, we can employ the AG
algorithm [26] to compute Ag = A, + G,, where the symmet-
ric matrix G is generated with entries i.i.d. ~A(0,72) and

T, = é} 2log 222, Note that, in the pooled data scenario,

the £, sensitivity of the function f(X)= A is A}**' = L.
Therefore, the required additive noise standard deviation should

pool
satisfy 7poo1 = Eze_\gglog 1_52g = Iz, assuming equal num-
ber of samples in the sites. As we want the same utility as the

pooled data scenario, we compute the following at each site s:
As :Ag +Eg +Fg +Gs-

Here, the noise generator generates the D x D matrix E,; with
[Eg]i; drawn iid. ~A(0,72) and 325, E, = 0. We set the
variance 72 according to (2) as 77 = (1 — &) 72. Addition-
ally, the aggregator generates the D x D matrix F; with [F,];;
drawn i.i.d. ~A(0,77). The variance 77 is set according to
(2) as 1—? = (1 — ;—) 72. Finally, the sites generate their own
symmetric D x D matrix G, where [G,];; are drawn i.i.d.
~N(0,72) and 72 = £72 according to (2). Note that, these
variance assignments can be readily modified to fit the unequal
privacy/sample size scenario (Section III-A). However, for sim-

plicity, we are considering the equal sample size scenario. Now,
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the sites send their Ag to the aggregator and the aggregator
computes

N 1 s . 1 i)
A=§§(As Fs)=§§(As+Gs),

where we used the relation Ele E, = 0. The detailed calcu-
lation is shown in Appendix A-A. Note that at the aggregator,
we achieve an estimator with noise variance exactly the same
as that of the pooled data scenario (by Lemma 1). Next, we
perform SVD on A and release the top-K eigenvector matrix
Vi, which is the (e, d) differentially private approximate to
the true subspace V (A). To achieve the same utility level as
the pooled data case, we send the full matrix As from the sites
to the aggregator instead of the partial square root of it [17].
This increases the communication cost by SD(D — R), where
R is the intermediate dimension of the partial square root. We
consider this as the cost of performance gain.

Theorem I (Privacy of capePCA Algorithm): Algorithm 2
computes an (e, §) differentially private approximation to the
optimal subspace Vg (A).

Proof: The proof of Theorem 1 follows from using the
Gaussian mechanism [1], the AG algorithm [26], the bound
on ||A; — A’c||s and recalling that the data samples in each site
are disjoint. We start by showing that

1 1.25
TE-I—T_,?—TQ?-I—T?—TE—(NS 2log 5)

Therefore, the computation of A, at each site is at least (e,9)
differentially-private. As differential privacy is post-processing
invariant, we can combine the noisy second-moment matrices
A, atthe aggregator while subtracting F', for each site. By the
correlated noise generation at the random noise generator, the
noise E, cancels out. We perform the SVD on A and release
Vi . The released subspace Vi is thus the (¢, d) differentially
private approximate to the true subspace Vi (A). O

Performance Gain With Correlated Noise: The distributed
differentially-private PCA algorithm of [17] essentially employs
the conventional averaging (when each site sends the full A,
to the aggregator). Therefore, the gain in performance of the
proposed capePCA algorithm over the one in [17] is the same
as shown in Proposition 1.

Theoretical Performance Guarantee: Due to the application
of the correlated noise protocol, we achieve the same level of
noise at the aggregator in the distributed setting as we would
have in the pooled data scenario. In essence, the proposed
capePCA algorithm can achieve the same performance as the
AG algorithm [26] modified to account for all the samples across
all the sites. Here, we present three guarantees for the captured
energy, closeness to the true subspace and low-rank approxima-
tion. The guarantees are adopted from Dwork ef al. [26] and
modified to fit our setup and notation. Let us assume that the
(e,0) differentially-private subspace output from Algorithm 2
and the true subspace are denoted by Vi and Vg, respectively.
We denote the singular values of X with oy > -+ > op and
the un-normalized second-moment matrix with A = XX . Let
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Ag and Ag be the true and the (e,0) differentially-private
rank-K approximates to A, respectively. If we assume that the
gap 0% — 0% 1 = W(Tpool /D), then the following holds

o tr (V}A\?K—) > tr (VEAVK) — O(rpoa K VD)
eV V¥, o (=42

1A = Axl2 < |A = A [l2 + O(poo1 VD).

The detailed proofs can be found in Dwork ef al. [26].

Communication Cost: We quantify the total communication
cost associated with the proposed capePCA algorithm. Recall
that capePCA is an one-shot algorithm. Each of the random
noise generator and the aggregator send one D x D matrix to
the sites. Each site uses these to compute the noisy estimate
of the local second-moment matrix (D) x D) and sends that
back to the aggregator. Therefore, the total communication cost
is proportional to 35SD? or O(D?). This is expected as we
are computing the global D) x D second-moment matrix in a
distributed setting before computing the PCA subspace.

V. DISTRIBUTED DIFFERENTIALLY-PRIVATE ORTHOGONAL
TENSOR DECOMPOSITION

In this section, we propose an algorithm (capeAGN) for
distributed differentially-private OTD. The proposed algo-
rithm takes advantage of the correlated noise design scheme
(Algorithm 1) [24]. To our knowledge, this is the first work
on distributed differentially-private OTD. The definition of the
differentially-private OTD is presented in Appendix C. We re-
fer the reader to our previous work [21] for two centralized
differentially-private OTD algorithms: AGN and AVN.

We start with recalling that the orthogonal decomposition
of a 3-rd order symmetric tensor X € RP*P*D s a collec-
tion of orthonormal vectors {vy } togclher with corresponding
positive scalars {Ay } such that X' = Ek L ARVE ® VE @ VE.A
unit vector u € RY is an eigenvector of X’ with corresponding
eigenvalue A if X'(I,u, u) = Au, where I is the D x D identity
matrix [3]. To see this, one can observe

X(L,u u)fZlk (I'vi) ® (u"vi) @ (u'vi)
k=1
-
= Zlk (‘UTV;C) Vi
k=1

By the orthogonality of the vy, it is clear that X'(I, v, vi) =
AV Vk. Now, the orthogonal tensor decomposition proposed
in [3] is based on the mapping

e ATuww ®

[ (L, u, w)ll

which can be considered as the tensor equivalent of the well-
known matrix power method. Obviously, all tensors are not or-
thogonally decomposable. As the tensor power method requires
the eigenvectors {vy } to be orthonormal, we need to perform
whifening - that is, projecting the tensor on a subspace such that
the eigenvectors become orthogonal to each other.
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We note that the proposed algorithm applies to both of
the STM and MOG problems. However, as the correlated
noise scheme only works with Gaussian noise, the proposed
capeAGN employs the AGN algorithm [21] at its core. In-line
with our setup in Section III, we assume that there is a ran-
dom noise generator that can generate and send noise to the
sites through an encrypted/secure channel. The un-trusted ag-
gregator can also generate noise and send those to the sites
over encrypted/secure channels. At site s, the sample second-
order moment matrix and the third-order moment tensor are de-
noted as Mj € R?>*P and M§ € R?*P D respectively. The
noise standard deviation required for computing the (e1,41)
differentially-private approximate to M3 is given by

AS 1.25
8 —
TS = 61 2lo ( 5 ) ,

where the sensitivity Aj is inversely proportional to the sample
size N.. To be more specific, we can write Aj g = JC for STM
and A3 ,, = 5~ for MOG. The detailed derivation of the sensi-
tivity of M3 for both STM and MOG is shown in Appendix C.

Additionally, at site s, the noise standard deviation required for
computing the (es, 42 ) differentially-private approximate to M3

is given by
Ag 1.25
2 _
T3 = . 2lo ( 5 )

Again, we can write A3 5 = -‘C for STM and Aj M= Nl +

ﬁgr—ﬂ for MOG. Appendix C conlams the detailed algebra for
calEulating the sensitivity of M3 for both STM and MOG. We
note that, as in the case of M3, the sensitivity depends only on
the sample size V.. Now, in the pooled-data scenario, the noise
standard deviations would be given by:

1.25
2 lOg (T)

( [
A

where AD°®' = 22 and A} = s , assuming equal number
of samples in the sites. Now we need to compute the ) x
K whitening matrix W and the D x D x D tensor Ms in a
distributed way while satisfying differential privacy. Although
we could employ our previous differentially-private distributed
PCA algorithm [17] to compute W/, to achieve the same level of
accuracy as the pooled data scenario we compute the following
matrix at site s:

(C))

(&)

pool
pool __ AE
Ta = —_—

1 pool
poo

where E5 € RP*P is generated at the noise generator sat-
isfying 327, E5 =0 and the entries [E3];; drawn iid.
NN (0, 'rge) Here, we set the noise variance according to (2):
2, = (1— 1) 752 Additionally, F§ € RP*? is generated at
the aggregator with the entries | ]u drawn i.i.d. ~N(0,735).
We set the noise variance according to (2): 'rz ;= (1 — —) 52
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Finally, G§ € RP*D is a symmetric matrix generated at site
s where {[G3],; :i € [D],j < i} are drawn i.i.d. ~N(0,73)),

[G3]ij = [G3]; and 73, = £ 757

T R A
M, =53 (M5 -F5) = 5

where we used the relation Ef: 1 E5 = 0. Note that the variance
of the additive noise in N is exactly the same as the pooled
data scenario, as described in Lemma 1. At the aggregator, we
can then compute the SVD(K) of Mg as Mg =UDU'. We
compute the matrix W = UD ¥ and send it to the sites.

Next, we focus on computing My in the distributed set-
ting. For this purpose, we can follow the same steps as com-
puting Ms. However, M3 is a D x D x D tensor, and for
large enough D, this will entail a very large communica-
tion overhead. We alleviate this in the following way: each
site receives F§ € RP*P*D and W from the aggregator and
&5 € RP>D>D from the noise generator. Here, [F§];; are
drawn iid. ~N(0,73;). Additionally, [£5]ij are drawn i.i.d.
~N(0,72,) and Zi] &5 = 0 is satisfied. We set the two vari-
ance terms according (o (2): 72 =T, = (1 — %) 752, Finally,
each site generates their own G5 € RP*P*P in the following
way: site s draws a vector b € RPs= with Dym = (9;2) and
entries i.i.d. ~A(0,73,), where 75, = £75°. The tensor G is
generated with the entries from b such that G3 is symmetric.
Again, for both M2 and M 3, we are considering the equal sam-
ple size scenario for simplicity. Our framework requires only
a small modification to incorporate the unequal privacy/sample
size (Section ITI-A). Now, site s computes

M5 = M§ + & + F5 + G5 and M§ = M5 (W, W, W).

. The aggregator computes

S
> (M5 +G3),
=1

We note that M5 isa K x K x K dimensional tensor. Each site
sends this to the aggregator. This saves a lot of communication
overhead as typically K < D. To see how this results in the
same estimate of .ﬂ-;fg as the pooled data scenario, we observe

M5 = M§ (W, W, W) = M§ (W, W, W)+
E (W WW)+F (WWW)+G (W, W W).
Additionally, at the aggregator, we compute

N 13, . .
Ms = 32 (¥ - 7)

5
- (%ZME +G§) (W, W, W),
s=1

where F5 = F§ (W, W, W). We used the associativity of
the multi-linear operation [3] and the relation Zle & =0.
The detailed calculation is shown in Appendix A-B. Note that
the M3 we achieve in this scheme is exactly the same M3
we would have achieved if all the data samples were present in
the aggregator. Moreover, this is also the quantity that the aggre-
gator would get if the sites send the full Mg to the aggregator
instead of M. The complete capeAGN algorithm is shown in
Algorithm 3.
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Theorem 2 (Privacy of capeAGN Algorithm): Algorithm 3
computes an (e; + €2,01 + do) differentially private orthogo-
nally decomposable tensor Ms. Additionally, the computation
of the projection subspace W is (e, d; ) differentially private.

Proof: The proof of Theorem 2 follows from using the
Gaussian mechanism [1], the sensitivities of VI3 and M35 and
recalling that the data samples in each site are disjoint. First, we
show that the computation of W satisfies (e, d;) differential
privacy. Due to the correlated noise, we have

2
1.25

21 —_—

ox (4 )) ,

where Aj is the sensitivity of Mj. Therefore, the release of

M from each site s is at least (e, d; ) differentially-private.

As differential privacy is closed under post-processing and the

samples in each site are disjoint, the computation of W at the

aggregator also satisfies (e, d1) differential privacy. Next, we
show that the computation of M3 satisfies (e; + 2,61 + d2)

differential privacy. We recall that
2
Aj 1.25
(—3 2log (—) ,
€9 52

where A is the sensitivity of Mj5. The computation of
J’\:’lg at each site is at least (es,do) differentially-private.
Further, by the composition theorem [1], the computation
Mg = M5 (W, W, W) at cach site is (e + e, + d2)
differentially-private. By the post-processing invariability, the
computation of Ms at the aggregator is (e + €z, d; + da)
differentially-private. O

Performance Gain With Correlated Noise: As we mentioned
before, this is the first work that proposes an algorithm for dis-
tributed differentially-private OTD. As we employ the CAPE
scheme for our computations, the gain in the performance over
a conventional distributed differentially-private OTD is there-
fore the same as in the case of distributed differentially-private
averaging, as described in Proposition 1.

Theoretical Performance Guarantee: Although our proposed
capeAGN algorithm can reach the performance of the pooled
data scenario (that is, the AGN algorithm [21] with all data sam-
ples from all sites stored in the aggregator), it is hard to charac-
terize how the estimated {4, } and {0y } would deviate from the
true {a;, } and {w;, }, respectively. We note that although we are
adding symmetric noise to the third-order moment tensor, an or-
thogonal decomposition need not exist for the perturbed tensor,
even though the perturbed tensor is symmetric [3], [11]. Anand-
kumar et al. [3] provided a bound on the error of the recovered
decomposition in terms of the operator norm of the tensor per-
turbation. For our proposed algorithm, the perturbation includes
the effect of estimating the third-order moment tensor from the
samples as well as the noise added for differential-privacy. Even
without accounting for the error in estimating the moments from
observable samples, the operator norm of the effective noise at
the aggregator: ||G|lop = §|| Zle G5 |lop, is a random quan-
tity, and requires new measure concentration results to analyze.
Relating these bounds to the error in estimating recovering the
{ar } and {wy } is nontrivial. However, very recently Esmaeili

&
2 .2 _ 2 s _ e _ [A5
Tae T Tog =Tog + Taf =T —(61

2 2 _ o 2 _ 52 _
T3 T T3y = T3, +T3; =73~ =
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and Huang [34] proposed differentially private OTD-based
Latent Dirichlet Allocation (LDA) for topic modeling. The au-
thors consider the sensitivities of different functions at different
points in the flow of the LDA algorithm and propose to employ
Gaussian mechanism [1] to the point with the smallest sensitiv-
ity, conditioned on some constraints. This enables the DP-LDA
algorithm to achieve belter utility bounds. The extension of the
techniques introduced in [34] to STM and MOG is nontrivial
and we defer that for future work.

Communication Cost: We note that capeAGN is a two-step
algorithm: it computes the projection subspace W € RP*K and
then orthogonally decomposable tensor M3. The random noise
generator sends E5 € R”*" and £5 € RV*P* to eachsite s.
Each site s sends M5 € RP*P and M3 € R¥ *K <K and to the
aggregator. The aggregator sends F5 € RP*D, W € RP K|
and F§ € RP*PxD tg each site s. Therefore, the total commu-
nication cost is proportional to 35 D? + 2SD3 + SDK + SK3
or O(D?). This is expected as we are computing the global
D x D x D third-order moment tensor in a distributed setting.

VI. EXPERIMENTAL RESULTS

In this section, we empirically show the effectiveness of the
proposed distributed differentially-private matrix and tensor fac-
torization algorithms. We focus on investigating the privacy-
utility trade-off: how the performance varies as a function of the
privacy parameters and the number of samples. We start with the
proposed capePCA algorithm followed by the capeAGN algo-
rithm. In each case, we compare the proposed algorithms with
existing (if any) and non-private algorithms and a conventional
approach (no correlated noise).

A. Improved Distributed Differentially-Private PCA

We empirically compared the proposed capePCA, the ex-
isting DPdisPCA [17] and non-private PCA on pooled data
(non-dp pool). We also included the performance of differ-
entially private PCA [26] on local data (local) (i.e., data of a
single site) and the conventional approach (conv) (i.e., with-
out correlated noise). We designed the experiments according
to Imtiaz and Sarwate [17] using three datasets: a synthefic
dataset (D = 200, K' = 50) generated with zero mean and a pre-
determined covariance matrix, the MNIST dataset () = T84,
K =50) [35] (MNIST) and the Covertype dataset (D = 54,
K =10) [36] (COVTYPE). The MNIST consists of handwrit-
ten digits and has a training set of 60000 samples, each of size
28 x 28 pixels. The COVTYPE contains the forest cover types
for 30 x 30 m? cells obtained from US Forest Service (USFS)
Region 2 Resource Information System (RIS) data. We col-
lected the dataset from the UC Irvine KDD archive [36]. For
our experiments, we randomly selected 60000 samples from the
COVTYPE. We preprocessed the data by subtracting the mean
(centering) and normalizing the samples with the maximum £y
norm in each dataset to enforce the condition ||x,[2 <1 ¥n.
We note that this preprocessing step is not differentially pri-
vate, although it can be modified to satisfy differential-privacy
at the cost of some utility. In all cases we show the average
performance over 10 runs of the algorithms. As a performance
measure of the produced subspace from the algorithm, we
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choose the captured energy: ¢CF = tr(VTAV), where V is
the subspace estimated by an algorithm and A is the true
second-moment matrix of the data. Note that, we can ap-
proximate the the captured energy in the true subspace as
tr(Vix (A)T AV (A)), where A is achieved from the pooled-
data sample second-moment matrix and Vg (A) is achieved
from the non-private PCA.

Dependence on privacy parameter e First, we explore the
trade-off between privacy and utility; i.e., between ¢ and q°F
We note that the standard deviation of the added noise is in-
versely proportional to e —bigger e means higher privacy risk but
less noise and thus, better utility. In Figs. 2(a)—(c), we show the
variation of gCF of different algorithms for different values of e.
For this experiment, we kept the parameters J, N and S fixed.
Forall the datasets, we observe that as € increases (higher privacy
risk), the captured energy increases. The proposed capePCA
reaches the optimal utility (non-dp pool) for some parame-
ter choices and clearly outperforms the existing DPdisPCA,
the conv, and the local algorithms. One of the reasons that
capePCA outperforms conv is the smaller noise variance at
the aggregator, as described before. Moreover, capePCA out-
performs DPdisPCA because DPdisPCA suffers from a larger
variance at the aggregator due to computation of the partial
square root of As [17]. However, DPdisPCA offers a much
smaller communication overhead than capePCA. Achieving
better performance than local is intuitive because including the
information from multiple sites should always result in better
estimates of population parameters than using the data from a
single site only. An interesting observation is that for datasets
with lower dimensional samples, we can use smaller € (i.e.,
lower privacy risk) for the same utility.

(h) Privacy paramater (§)

(I} Privacy paramater (5)

Variation of performance in distributed PCA for synthetic and real data: (a)-(c) with privacy parameter €; (d)—(f) with sample size Vs and (g)—(i) with

Dependence on number of samples N,: Next, we investigate
the variation in performance with sample size V. Intuitively, it
should be easier to guarantee smaller privacy risk € and higher
utility ¢°F, when the number of samples is large. Figs. 2(d)—
(f) show how ¢©F increases as a function of N,. The variation
with N, reinforces the results seen earlier with variation of e.
For a fixed € and 6, the utility increases as we increase N,.
For sufficiently large V;, the captured energy will reach that of
non-dp pool. Again, we observe a sharper increase in utility
for lower-dimensional dataset.

Dependence on privacy parameter §: Finally, we explore the
variation of performance with the other privacy parameter 4.
Recall that § can be considered as the probability that the al-
gorithm releases the private information without guaranteeing
privacy. We, therefore, want this to be as small as possible. How-
ever, lower 4 results in larger noise variance. In Figs. 2(g)(i),
we show how ¢®F vary with varying §. We observe that if &
is not too small, the proposed algorithm can achieve very good
utility, easily outperforming the other algorithms.

B. Distributed Differentially-Private OTD

For the proposed capeAGN algorithm, we focus on measur-
ing how well the output of the proposed algorithm approximate
the true components {a } and {wy }. Let the recovered com-
ponent vectors be {4, }. We use the same error metric as our
previous work [21], ¢g“°™P, to capture the disparity between
{ax} and {4 }:

¢ = ZEDW and EDfy, = min (14 — aw >
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Fig. 3.

For comparison, we show the error resulting from the a;’s
achieved from the proposed capeAGN algorithm, a conven-
tional (but never proposed anywhere to the best of our knowl-
edge) distributed differentially-private OTD algorithm that does
not employ correlated noise (conv), a differentially-private
OTD [21] onlocal data (local) and the non-private tensor power
method [3] on pooled data (Non-priv.). We also show the error
considering random vectors as 4;’s (Rand. vect.). The rea-
son [21] to show (Rand. vect.) is the following: this error cor-
responds to the worst possible results, as we are not taking any
information from data into account to estimate a;.’s. As recov-
ering the component vectors is closely related with recovering
the selection probabilities {wy, }, we only show the error of re-
covering the component vectors. We studied the dependence of
g““™P on the privacy parameters ¢, § and the sample size N,. In
all cases we show the average performance over 10 runs of each
algorithm. We note that the capeAGN algorithm adds noise in
two stages for ensuring differential-privacy: one for estimating
‘W and another for estimating Ms. We equally divided € and 4
to set €1, €3 and 4y, d9 for the two stages. Optimal allocation of
e and ¢ in multi-stage differentially-private algorithms is still an
open question.

Performance variation in the MOG sefup: First, we present
the performance of the aforementioned algorithms in the setting
of the mixture of Gaussians. We use two synthetic data sets
of different feature dimensions (D = 10, K =5 and D = 50,
K = 10), where the common covariance is o2 = 0.05 and the
components {ay } satisfy ||ag|2 < 1.

We first explore the privacy-utility tradeoff between e and
g“°™P. For the capeAGN algorithm, the variance of the noise
is inversely proportional to €2 — smaller ¢ means more noise
(lower utility) and lower privacy risk. In the top-row of Fig. 3,
we show the variation of ¢“°™P with e for a fixed é = 0.01
and S = 5 for two different feature dimensions, each with two
different samples sizes. For both of the feature dimensions,
we observe that as € increases (higher privacy risk), the errors
decrease and the proposed capeAGN algorithm outperforms the
conv and local methods. capeAGN matches the performance

Variation of performance in the MOG setup: top-row — with privacy parameter ¢; bottom-row — with sample size N;.

of Non-priv. method for larger e values. For a particular feature
dimension, we notice that if we increase N, the performance
of capeAGN gets even better. This is expected as the variance
of the noise for capeAGN is inversely proportional to square of
the sample size.

Next, we consider the performance variation with N;. Intu-
itively, it should be easier to guarantee a smaller privacy risk for
the same € and a higher utility (lower error) when the number
of samples is large. In the bottom row of Fig. 3, we show how
the errors vary as a function of N; for the MOG model for
two different feature dimensions, while keeping § = 0.01 and
S =5 fixed. The variation with the sample size reinforces the
results seen carlier with variation in e: the proposed capeAGN
outperforms the other algorithms under investigation for both
D = 10and D = 50. In general, capeAGN approaches the per-
formance of Non-priv. as the sample size increases. When € is
large enough, the capeAGN algorithm achieves as much utility
as Non-priv. method.

Finally, we show the variation of performance with the other
privacy parameter §. Recall that é can be interpreted as the
probability that the privacy-preserving algorithm releases the
private information “out in the wild” without any additive noise.
Therefore, we want to ensure that & is small. However, the
smaller the 4 is the larger the noise variance becomes. Thus
smaller § dictates loss in utility. We observe this in our exper-
iments as well. In the top-row of Fig. 5, we show the varia-
tion of ¢g“°™P with ¢ for two different feature dimensions and
two different sample sizes. We kept S = 5 fixed. We observe
that when e is small, we need larger ¢ to achieve meaningful
performance. This can be explained in the following way: for
Gaussian mechanism, we need to ens standard devi-
ation of the noise o satisfies o > % 2log l‘aﬁ, where A is the
L4 sensitivity of the function under consideration. This inequal-
ity can be satisfied with infinitely many (e, §) pairs and one can
keep the noise level the same for a smaller e with a larger §. We
observe from the figure that when both € and N, are larger, the
proposed capeAGN can achieve very close performance to the
non-private one even for very small & values.
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Fig. 5. Variation of performance with privacy parameter 4: top-row — in MOG setup; bottom-row — in STM setup.

Performance variation in the STM setup: We performed ex- for two different feature dimensions. For both of the feature
periments on two synthetic datasets of different feature dimen- dimensions, we observe that as € increases (higher privacy risk),
sions (D =10, K =5 and D = 50, K = 10) generated with the errors decrease. The proposed capeAGN outperforms conv
pre-determined w and {a; }. It should be noted here that the and local methods in all settings; and match the performance of
recovery of {ay } is difficult [21], because the recovered word ~ Non-priv. for large enough e. Increasing IV, makes the proposed
probabilities from the tensor decomposition, whether private or  algorithm perform even better.
non-private, may not always be valid probability vectors (i.e., Next, in the bottom-row of Fig. 4, we show how the errors
no negative entries and sum to 1). Therefore, prior to computing  vary as a function of N, for two different feature dimensions,
the ¢g°°™P, we ran a post-processing step (O-out negative entries while keeping = 0.01 and S = 5 fixed. The variation with
and then normalize by summation) to ensure that the recovered N, reiterates the results seen earlier. The proposed capeAGN
vectors are valid probability vectors. This process is non-linear outperforms all other algorithms (except the Non-priv.) for both
and potentially makes the recovery error worse. However, for D) = 10 and D = 50. For larger ., it achieves almost the same
practical STM, D is not likely to be 10 or 50, rather it may be utility as the Non-priv. algorithm. Even for smaller ¢ with a
of the order of thousands, simulating which is a huge computa-  proper sample size, the error is very low. For the D = 10 case,
tional burden. In general, if we want the same privacy level for the capeAGN always performs very closely with the Non-priv.
higher dimensional data, we need to increase the sample size. We  algorithm.
refer the reader to some efficient (but non-privacy-preserving) Lastly, we show the variation of ¢“°™? with § in the bottom-
implementations [37] for tensor factorization. row of Fig. 5. We observe similar performance trend as in the

As in the case of the MOG model, we first explore the privacy- MOG setting. For smaller € and sample size, we need to compen-
utility tradeoff between € and ¢°°™P. In the top-row of Fig. 4, we  sate with larger J to achieve a performance closer to Non-priv.
show the variation of ¢°°™P with e forafixedd = 0.01and S =5 one. However, when sample size is larger, we can get away
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with a smaller € and é. This is intuitive as hiding one individual
among a large group is easier — the additive noise variance need
not be very large and hence the performance does not take a
large hit.

VII. CONCLUSION

In this paper, we proposed new algorithms for distributed
differentially-private principal component analysis and orthog-
onal tensor decomposition. Our proposed algorithms achieve the
same level of additive noise variance as the pooled data scenario
for ensuring differential-privacy. Therefore, we attain the same
utility as the differentially-private pooled data scenario in a dis-
tributed setting. This is achieved through the employment of the
correlated noise design protocol, under the assumption of avail-
ability of some reasonable resources. We empirically compared
the performance of the proposed algorithms with those of exist-
ing (if any) and conventional distributed algorithms on synthetic
and real data sets. We varied privacy parameters and relevant
dataset parameters. The proposed algorithms outperformed the
existing and conventional algorithms comfortably and matched
the performance of corresponding non-private algorithms for
proper parameter choices. In general, the proposed algorithms
offered very good utility even for strong privacy guarantees,
which indicates that meaningful privacy can be attained even
without loosing much utility.

APPENDIX A
ALGEBRA FOR VARIOUS CALCULATIONS

A. Calculation of A in Section IV

Then we have
N 13
Nt = 3 (M5 (W, W, W) + £ (W, W, W)
s=1
+Ff 4G5 (W, W, W) - 7
1 5
= 230 (M5 (W, W, W) 46 (W, W, W) +
1 g
X (gzgg) (W:W:W)
1 S
=3 > (M5 (W, W, W) + G5 (W, W, W))

5

1

= (§ Z.M; + G;) (W, W, W),
a=1

where we used the associativity of the multi-linear operation [3]

and the relation Ele & =0.

APPENDIX B
APPLICATIONS OF ORTHOGONAL TENSOR DECOMPOSITION

We review two examples from Anandkumar et al. [3], which
involve estimation of latent variables from observed samples.
The lower-order moments obtained from the samples can be
written as low-rank symmetric tensors.

We show the calculation of A here in detail. Recall that A- Single Topic Model (STM)

the sites send their A, to the aggregator and the aggregator

computes
(-

(As +E3+Fs +G3_F3)

»

A=

Ul =
M«

w
]
-

I
=
M

o
Il
=

I
] ~
NE

S
1
A, +G)+=S"E,
(A, + J+S§

w
Il
=

(As + Gg),

I
tl =
M)

g=1

where we used the relation 35, E, = 0.

B. Calculation of Ajig in Section V

_We shgw the calculation of _r‘\;fg here in detail. We recall that
M5 = M5 (W, W, W). At the aggregator, we compute

~ 1 ol ~ -
M= 3 (M5 - ).

where F§ = F5 (W, W, W).

Let us consider an exchangeable bag-of-words model [3] for
documents. Such exchangeable models can be viewed as mix-
ture models in which there is a latent variable h such that the
L words in the document t;, ts, ..., t; are conditionally i.i.d.
given h. Additionally, the conditional distributions are identical
at all the nodes [3]. Let us assume that h is the only topic of a
given document, and it can take only K distinct values. Let D be
the number of distinct words in the vocabulary, and L > 3 be the
number of words in each document. The generative process for
a document is as follows: the document’s topic is drawn accord-
ing to the discrete distribution specified by the probability vector
W = [wy,wy, ..., wg] . This is modeled as a discrete random
variable h such that Pr[h = k] = wy, for k € [K]. Given the
topic h, the document’s L words are drawn independently ac-
cording to the discrete distribution specified by the probability
vector a, € RP. We represent the L words in the document by
D-dimensional random vectors t; € R . Specifically, if the [-th
word is d, we set t; = e4 for [ € [L], where e1, €9, ... ,ep are
the standard coordinate basis vectors for R”. We observe that
for any topic k

Efti@tolh=k =) Prlty =ity =jlh=kle;®e;
i!j
=E[ti|h =k| ®FE [ta|h = k]

= ap @ ag.
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Now, we can define two moments in terms of the outer products
of the probability vectors a; and the distribution of the topics h
as
K K
M, = Z wpay @ ag, Mz = Z wray @ ag ®ag.  (6)

k=1 k=1

The method proposed in [3] to recover w and {ay;, } proceeds as
follows: we observe N documents. Each of the documents has
number of words L. > 3. The way we record what we observe is:
weforman D x D x D tensor whose (d,, ds, d3 )-th entry is the
proportion of times we see adocument with first word d, , second
word d» and third word ds. In this setting, we can estimate the
moments IV and M3, defined in (6), from the observed data as:
M; = ]E[tl & tg] and M3 = E[tl @Dty @ tg]. We then need to
perform orthogonal tensor decomposition on M3 to recover w
and {ay }.

B. Mixture of Gaussians (MOG)

A similar example as the single topic model is the spher-
ical mixture of Gaussians [3]. Let us assume that there are
K components and the component mean vectors are given by
the set {a;,ay,...,ag } C RP. The probability of choosing
component k is wy. We assume that the common covariance
matrix is 021 . However, the model can be extended to incor-
porate different covariance matrices for different component as
well [3], [9]. The n-th observation of the model can be writ-
ten as t, = ay + %, where h is a discrete random variable with
Pr[h = k] = wy and z is an D-dimensional random vector, in-
dependent from h, drawn according to N'(0, o2Ip). Let us de-
note the total number of observations by V. Without loss of gen-
erality, we assume that ||a |2 < 1.Now, for D > K, ithas been
shown [9] that if we have estimates of the second and third order
moments from the observations t,, as Ma = E[t @ t] — o?Ip
and

My = ]E[t Rt t]—
D
o> (Et] @ es ®eq +eq ®E[t] ® e + ez @ ea ® E[t]),
d=1

then these moments are decomposable as: M, =

K K
Zk:l wpag @ ag and JM3 = Zk:l wiay 0 ag & ag.

C. Orthogonal Decomposition of Ms

For both the STM and the MOG models, in order to decom-
pose M3 using the tensor power method (3), we need the a;’s
to be orthogonal to each other. But, in general, they are not.
To employ the orthogonal tensor decomposition, we can project
the tensor onto some subspace W € RP*X to ensure W a;’s
are orthogonal to each other. We note that, according to the
multi-linear notation, we have

M;3(Vi, Vo, V3) =
K
Zwk (VlTak) @ (V;ak) @ (VaTak) .
k=1
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In order to find W, we can compute the SVD(K') on the second-
order moment My € RP*P as My = UDUT, where U €
R?*K and D € RF K We define W = UD 7 € RP*K and
then compute the projection M3 = M;3(W, W, W). We note
that M3 € REXKExE s now orthogonally decomposable. We
use the tensor power iteration (3) on M3 to recover the weights
{wy } and the component vectors {ay, }. The detail of the tensor
power method can be found in Anandkumar ef al. [3].

APPENDIX C
DIFFERENTIALLY-PRIVATE OTD

We note that the key step in the orthogonal tensor decompo-
sition algorithm is the mapping given by (3). In order to ensure
differential privacy for the orthogonal decomposition, we may
either add noise at each iteration step scaled to the Lo sensitiv-
ity [26] of the operation given by (3) or we can add noise to
the tensor A’ itself just once. Adding noise in each iteration step
might result in a poor utility/accuracy of the recovered eigenvec-
tors and eigenvalues. We intend to add noise to the tensor itself
prior to employing the tensor power method. In the following,
we are showing the sensitivity calculations for the pooled data
scenario. Extension to the distributed case is straightforward
(replacing N with N;).

First, we focus on the exchangeable single topic model setup
that we described in Appendix B-A. We observe and record V
documents. Let us consider two sets of documents, which differ
in only one sample (e.g., the last one). Let the empirical second-
order moment matrices be My and M) and the third-order
moment tensors be M3y and Mj, respectively, for these two
sets. We consider the two tensors, M3 and M3, as neighboring.
We observe that

1 N
.
M, = ﬁnz—:]tl’ntm

1 1
=— § tinty, +—t; ytg
N — 1,nban N 1N 2N

1 T
tints , + ﬁt!l‘NtIQ,N:

n=1

where t; ,, denotes the [-th word of the n-th document. Similarly,
we observe

D
1
Ms = N Ztl,n @ton @ t3p
d=1
1 %= 1
== tin @ton @tz + =t vy @te vy D3N,
N — N
N-1
! 1 1 ! ! = !
JME:W tin @tg,n(@tg,nﬂ—ﬁt]?;\r ®t2‘N '?_C'ta,N.

n=1

As mentioned before, we perform the SVD on M first to com-
pute W. We intend to use the AG algorithm [26] to make this
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operation differentially private. We look at the quantity:

1 T
My — M'gls = ﬁ”tl‘NtzT,N —t' vty w2

1
=%, sup {UT (tl,Nt;gr,N - l3!1‘I\th;—,f\|‘) V}
[l fiv]l2=1
V2
< —_—= AQ,S:

N

because of the encoding t; , = e4. For the mixture of Gaus-
sians model, we note that we assumed |lax|2 <1 for all
ke{1,2,...,K}. To find a bound on || My — M's||2, we con-
sider the following: for identifiability of the {ay }, we have to
assume that the ay,’s are linearly independent. In other words,
we are interested in finding the directions of the components
specified by {ay }. In that sense, while obtaining the samples,
we can divide the samples by a constant ¢ such that ||t |2 < 1is
satisfied. From the resulting second- and third-order moments,
we will be able to recover {ay, } up to a scale factor. It is easy to
show using the definition of largest eigenvalue of a symmetric
matrix [38] that

1
M — M > TN o u (tNth‘r _tf‘vtq") “}
ujja=
1 T 2 T, |12
:Fufﬁlgl{lu tNl —|u tN| }
2=
1
éW:AZ,M':

where the inequality follows from the relation |[t, |2 < 1. We
note that the largest singular value of a matrix is the square
root of the largest eigenvalue of that matrix. For the distributed
case, as mentioned before, the sensitivity of V5 depends only
on the local sample size. We can therefore use the AG algo-
rithm [26] (i.e., adding Gaussian noise with variance scaled to
Ag g or As pr to My) to make the computation of W (e, 61 )-
differentially private. Next, we focus on the tensor M3. We need
to project M3 on W before using the tensor power method. We
can choose between making the projection operation differen-
tially private, or we can make the M3 itself differentially private
before projection. We found that making the projection opera-
tion differentially private involves addition of a large amount
of noise and more importantly, the variance of the noise to be
added depends on the alphabet size (or feature dimension) D
and the singular values of IVI,. Therefore, we choose to make the
tensor itself differentially private. We are interested to find the
sensitivity of the tensor valued function f(Ms3) = Ms, which
is simply the identity map. That is, we need to find the max-
imum quantity that this function can change if we replace the
argument M5 with a neighboring M's. For our exchangeable
single topic model setup, we have

1
IMs — M's|| = ||Wt1,N ®ton @lay

1 V2
— ﬁt;l,r\r @ty @ty N " < N Az s,

because only one entry inthe D x D x Dtensort; y @t y @
t3,n is non-zero (in fact, the only non-zero entry is 1). Now, for
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the mixture of Gaussians model, we define
T =
D
o? Z(]E[t] ®eg Deg+ e @E[t] ®eq+ 65 ® eg @ E[t])
d=1
Therefore, we have
T-T
0’2 D
= ﬁz ((tN —ty) ®eg®eq
d=1
+e @ (ty —thy) @eq
+es@e @ (ty — tjv))
1T -7 = B iy — iyl < BT
= N N N2 = N ]
where the last inequality follows from ||t, ||, < 1. We have
1
[ Ma = M| = |ty @ty @t
1
— ﬁt!N ®t’N 8 t’N +T— T’ |
2  6Do?
<=4+ —==A
=N + N 3,.M 5
because ||ty @ ty @ ty| = 1inour setup. Again, we note that

in the distributed setting, the sensitivity of the local M3 depends
only on the local sample size. We refer the reader to our previous
work [21] where we proposed two algorithms for centralized
differentially private OTD. The first one uses a symmetric tensor
made with i.i.d. entries from a Gaussian distribution, while the
second proposed method uses a symmetric tensor made with
entries taken from a sample vector drawn from an appropriate
distribution. Both of the algorithms guarantee (e, §)-differential
privacy.
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