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Robust Privacy-Utility Tradeoffs Under Differential
Privacy and Hamming Distortion

Kousha Kalantari
and Anand D. Sarwate

Abstract— A privacy-utility tradeoff is developed for an
arbitrary set of finite-alphabet source distributions. Privacy is
quantified using differential privacy (DP), and utility is quantified
using expected Hamming distortion maximized over the set of
distributions. The family of source distribution sets (source sets)
is categorized into three classes, based on different levels of
prior knowledge they capture. For source sets whose convex hull
includes the uniform distribution, symmetric DP mechanisms are
optimal. For source sets whose probability values have a fixed
monotonic ordering, asymmetric DP mechanisms are optimal.
For all other source sets, general upper and lower bounds on
the optimal privacy leakage are developed and necessary and
sufficient conditions for tightness are established. Differentially
private leakage is an upper bound on mutual information leak-
age: the two criteria are compared analytically and numerically
to illustrate the effect of adopting a stronger privacy criterion.

Index Terms— Differential privacy, Hamming distortion,
information leakage, utility-privacy tradeoff.

I. INTRODUCTION

HE differential privacy (DP) framework offers strong
T guarantees on the risk of identifying an individual’s
presence in a database from public disclosures of functions
of that database [3]. This metric has been applied to a variety
of computational tasks where privacy guarantees are required,
especially in theoretical computer science, databases, and
machine learning. The monograph of Dwork and Roth [4]
gives an in-depth treatment of the fundamentals; a short tutor-
ial for signal processing applications introduces basic concepts
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. Under differential privacy, randomizing the computation
limits the privacy risk, or leakage, due to revealing the result of
the computation. This randomization often incurs a significant
penalty in terms of the usefulness of the published result: this
is known as the privacy-utility tradeoff. Differential privacy
is a property of the distribution of the computation’s output
conditioned on its input, which can be modeled information-
theoretically as a noisy channel. In this paper we seek to
understand the distortion properties of channels that guarantee
differential privacy: this is the privacy-utility tradeoff for the
task of publishing a differentially private approximation of the
full dataset with utility quantified via a distortion measure.

The DP framework makes no modeling assumptions on the
data distribution and gives distribution-independent privacy
guarantees. However, in many applications a data published
may know something a priori about the data distribution. For
example, they may know that some elements of the alphabet
have a higher probability, or may know something about the
distribution up to the labeling of the alphabet.

There are many instances in which a data holder may
be required to publish a version of the underlying data.
To capture the data holder’s knowledge, we assume they know
the true distribution lies in an uncertainty set or source set of
distributions but do not know the true distribution exactly. This
knowledge could come from previously published population
statistics, public data or estimation from the source itself,
with the uncertainty set represented by confidence intervals.
To match the spirit of DP models, we do not assume a
Bayesian prior on the set of distributions.

In order to measure the effect of this uncertainty, we model
utility as the maximum Hamming distortion over the entire
source set. Many datasets contain categorical data for which
Hamming distortion is a natural metric and previously studied
privacy mechanisms using additive noise make less sense [6]:
Hamming distortion captures whether the original data was
altered or not. We show that the optimal mechanism guarantees
the minimal leakage by effectively censoring low-probability
symbols (which are hardest to protect).

A. Our Contributions

This paper extends our previous results on binary sources [2]
to general finite alphabets under Hamming distortion. Larger
alphabet sizes permit more complex structures for source sets.
The following are our main contributions:

1) We categorize source distributions as belonging to one
of three possible source classes as illustrated in Figure 1
for which different DP mechanisms are optimal.
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Fig. 1.

All three classes of source sets for M = 3.

« Class I: Source distribution sets whose convex hull
includes the uniform distribution. For example, see
the blue source set in Figure 1.
For Class I sources we show that the symmetric
mechanism is optimal. Intuitively, this is because
knowing that we have a class I source set does
not give the data publisher any advantage compared
to not knowing anything at all about the source
distribution. Therefore, guaranteeing both utility and
privacy for all distributions requires a symmetric
privacy mapping.
¢ Class II: Source distribution sets that are not Class I,
and have ordered probability values. That is, there
is a permutation of the alphabet such that all distri-
butions in the class have monotonically decreasing
probability mass functions for this permutation. For
example, in Figure 1, we have Py > P, > Ps.
We show how to exploit the ordering to charac-
terize optimal non-symmetric mechanisms for the
distribution. As the distortion increases, the optimal
mechanism reduces the support size of the output
set by mapping low-probability elements to high
probability events. We can think of these low-
probability events as outliers: since they are most
informative (from a privacy perspective), they can
be censored in the output to guarantee more privacy.
o Class III: All source distribution sets that cannot
be classified as Class I or Class II. An example is
depicted in Figure 1.
We first show that any arbitrary source set can be
written as a disjoint union of Class II subsets, each
having a different ordering, and use the characteri-
zation of Class II mechanisms to derive upper and
lower bounds on the privacy leakage.
We show that the structure of the conditional probability
(channel) matrix of optimal mechanisms depends on the
location of what we call critical pairs: two elements in
the same column with maximum ratio.
We show how the worst-case guarantee of differentially
private leakage compares to average-case guarantee of
mutual information (MI) leakage. Under standard DP,
the mechanism is context-free in the sense that the
guarantees do not rely on source distribution assump-
tions. This leakage upper bounds the context-aware
MI leakage, whose guarantees depend on the source

2817

distribution [7], [8]. This work shows how context-
awareness can improve the utility of DP mechanisms
and how the gap between the MI leakage and its DP
leakage upper bound varies. To do this we study the
min-max problems under DP and MI to derive bounds
and compute numerical comparisons. To this end,
we formulate the same min-max optimization problem
proposed to compute DP mechanisms to determine
optimal mechanisms in MI privacy guarantees. We
formulate the same min-max optimization problem using
mutual information as the privacy metric. Then, we show
that for certain ranges of distortion we can obtain tight
bounds and we present numerical comparison.

B. Related Work

There is a growing body of work on differential pri-
vacy (DP) the survey of which is beyond the scope of this
paper; we refer the curious reader to the monograph [4].
However, comparing differential privacy to other statistical
privacy models is a more recent area of study.

Mutual information has been proposed as a metric for
privacy leakage [9]-[11] in a variety of settings including data
communications, publishing, and mining. One of the earliest
works comparing differential privacy and mutual information
privacy is by Alvim ef al. [12], [13]. Mutual information based
privacy metrics have also been considered for data streaming
applications [14]-[16]. Wang et al. [17] compare mutual
information privacy with differential privacy under Hamming
distortion. They also introduce a new privacy measure called
identifiability and highlight its relationship to MI and DP.
Building upon prior work [12], Issa ef al. [18] have introduced
maximal leakage (ML) as an information leakage measure
for a guessing adversary; this measure can also be compared
to DP. Cuff and Yu [19] present an equivalent definition of
differential privacy using mutual information.

In this paper we consider utility metrics based on rate-
distortion in Section III-A. A rate-distortion approach to
mutual information privacy has been also considered by many
researchers [7], [20]-[22]; this paper extends our prior work
in this direction [23].

Local differential privacy (L-DP) [24]-[28] studies sce-
narios in which each data respondent, independently applies
the same privacy mechanism. Recently, Kairouz ef al. [29]
determined the optimal local differential privacy mechanism
for a class of utility functions that satisfy a sub-linearity
property and show that the resulting L-DP mechanism has
a staircase property, meaning that the ratio of any two con-
ditional probabilities leading to same outputs is in {1, ¢, c~'},
where c¢ is some constant. However, while Hamming distortion
is a sub-linear utility function, the worst case distortion over a
source class is not. We show that the staircase property holds
only for Class 1 source sets.

II. PRELIMINARIES AND PROBLEM SETUP

Let A represent data value alphabet for each individual.
For example, X" can represent a single attribute or a Cartesian
product of other alphabet sets, i.e. X = [JX; A, where
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Al is the set of possible values for k'™ attribute measured
about an individual. Without loss of generality, we assume
X ={1,2,3,..., M}. A source distribution set (source set)
P is a subset of probability simplex on M atoms. We model the
data of individuals as being drawn from a distribution Py C P
on X', but our solutions can depend on P and not the particular
Py is not known a priori.

Given an individual’s data X € A, our goal is to find a
conditional distribution Q X that maps the input data X to an

output data X e X.Our objective is to find a Q 4y that is both
privacy preserving and does not distort the data above some
threshold. For any Py € P, let QJE’|X and PX~X = PXQ)A”X
indicate the mechanism and the joint distribution of input
and output data, respectively. When it is clear from context,
we may drop the subscripts and simply use P and Q instead
of Py and Qg . We write P; for Px(X =i) fori € X.
Let T be a permutation on {1, ..., M}, such that 7'(i) is the
th element in the permuted sequence, and T-1( J) is the index
of element j in the permuted sequence. Throughout the sequel,
we also refer to the permuted version of a source distribution P
as T (P), which is a distribution P such that for all i, we have
PT(,) = P;. Likewise, we write T~!(P) to denote the inverse
of T applied to P. The notation T (P) (respectively T—1(P)) is
the image of P (respectively T (P)) when T (respectively 7—1)
is applied to every P € P.

A. Classification of Source Distribution Sets

We divide the set of source distribution sets into three
classes.

Definition 1: A source set P is classified as follows:

« A source set P is of Class I if its convex hull conv(P)
includes the uniform distribution P; = W for all i
{1,2,..., M}.

« A source set P is of Class II if it is not Class I and
there exists a single permutation 7'(-) such that for every
distribution P = (Py, Py, P3,..., Py) € P, we have
Pray = Pr2) = Pra) = --- = Pr(m-

« Any other source set is defined to be of Class III.

Remark 1: Without loss of generality, for Class II source
sets we assume P; = P» > ... > Py.

We now provide some examples for source sets in Classes II
and III defined above. These examples are used in Section IV
to derive numerical comparisons between different source
classes.

Example 1: In a Class II set, all source distributions have
entries (as vectors) ordered in the same way. For example
a P containing a single distribution, such as PH shown
in Table I for M = 6, is a Class II set. A line segment
between two distributions with the same order is a Class II
set. An example Pl(lm} for M = 10 is given in Table II: the
line segment between the two rows is a Class II set.

Example 2: One way to generate a Class III source set is
by taking the unions of Class II sets and (some of) their
permutations. Examples based on PI and Py {19 are shown
in Tables III and IV. Specifically, we created three additional
distributions for each Class II distribution considered by per-
muting the entries in three different ways to obtain additional
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TABLE 1
PI(E') WITHM =6

P, P3Py P
015 006 004 0.03

[~
[ 07

P ]|
0.02 ||

TABLE II
P? Wrrte M = 10

||P1 PR P Pt P P PP B P P10||

03 02 015 008 007 006 0.05 004 0.03 002
035 016 012 010 009 0.09 005 0.02 001 001

TABLE III
(6) (6) (6)
Prt: a» Prx: v» AND Py WITHM =6

P, P P; Py Ps Ps
07 015 006 004 003 002

b a{ 015 07 006

¢ 006 015 07

0.04 003 002
004 015 006 0.7

004 0.03 002
003  0.02

TABLE IV

(1

(10) AND pmﬂ)c WITHM = 10

(10)
Piit: 2> Prir: b

P P BB Py B B
(03 02 015 008 0.07 0.06
a 035 0.16 012 0.10 0.09 0.09
02 03 0.I5 008 0.07 006
| 016 035 0.12 0.10 0.09 0.09
015 02 03 0.08 007 006
0.12 0.16 035 0.I0 0.09 0.09
008 02 015 03 007 006
0.10 0.16 0.12 035 0.09 0.09

P B B

0.05 0.04 0.03
0.05 0.02 0.01
0.05 0.04 0.03
0.05 0.02 0.01
0.05 0.04 003
0.05 0.02 0.01
0.05 0.04 0.03
0.05 0.02 0.01

Pro
0.02]
0.01
0.02]
0.01
0.02
0.01
0.02]
0.01

dlstrlbutlons We label these resulting sets as Pm a PHI p» and
PIH .» Where i € {6, 10}.

Thus, for example to generate ’P
the original ’P and a permuted version of it obtained by
swapping the ﬁrst and second entries of P](Ié) To obtain 'Pﬁl]b,
we permutc the first and third enmes of P and add this to
the set P . Finally, the set Pm . is obtained by adding to
the set Pﬁl p the new distribution obtained by permuting the
first and fourth entries of ’P(G) One can similarly construct
the sets PHIIOZI,P](IIIOL, and Pp;. 10) by permuting the first and
second, first and third, and ﬁrst and fourth entries of P(w)
respectively. These sets are highlighted in Tables III and v
with their entries denoted by the groupings a, b, and c. Clearly,
for both the M = 6 and M = 10 cases, the number of entries
increases from (a) to (c) reflecting less and less structured sets.

we consider both

B. Distortion Measure

We measure the distortion between X and X using Ham-
ming distortion, i.e. d(x,y)=1if x # y, and d(x,y) =0 if
x=y.

Since Hamming distortion imposes a penalty when the
published data is different from the original, it suffices to limit
our search for optimal mechanisms to those with an output
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support set at most equal to M. We formally prove this in
Section III. Hamming distortion is particularly meaningful for
categorical data in which there may be no natural metric: any
difference captures a semantic difference.

We show later that the output alphabet size is at most M as
well, depending on the distortion, so A = X. The average
distortion is then given as Ex’i[d(X,)A{)]. To indicate the
dependence of the average distortion on the source distribution
and the mechanism we write Ep, o ix [d(X, X )1. For Ham-
ming distortion, the average distortion is Zi‘i] P;(1—Q(i]i)).
Thus, we can simplify the @ matrix by defining D; =
1 — Q(ili) for all i. Henceforth, it suffices to consider
mechanisms Q(j|i) with the following form:

1—-Dy Q@21 Q(M|1)
012) 1-D; Q(M|2)
[Q5xlij = : : :
I_Q(1|M) 0@2|M) 1— DMJ

The sub-matrix of Q induced by rows from iy, t0 imax and
columns from jmin t0 jmax is written as Q(jmin : Jmax|imin :
imax)-

Definition 2: A mechanism QX| x> Or equivalently its cor-
responding distortion set {D; }l " 1» is called (P, D)-valid if it
satisfies the average distortion constraint for every Py € P.
The set of all (P, D)-valid mechanisms is

Q(P, D) & {Qilx :]E[d(X, )‘()] <D, VPye 'p}_

C. Local Differential Privacy

We use the same model for local differential pri-
vacy as Kairouz ef al. [29]. We borrow the formaliza-
tion by Kasiviswanathan ef al. [26], which was based on
the randomized response mechanism of Warner [24] and
Evfimievski ef al. [25]. It is stronger than non-local pri-
vacy [30] and implies local e-differential privacy [29], but
allows for columns of Q to be all-0:

Definition 3: A mechanism Q R)x is e-differentially private
(e-DP) if

0(X|x1) < e Q(X|xp) forall x;, xaelX, X, (1)
and
eop(Qgx) 2 min fe : Q) < e Q(EIx2)

for all xl,xgeéif',feéf'}. (2)

Remark 2: Note that the privacy parameter ¢ does not
depend on the source class P.

Remark 3: For a finite € > 0, an e-differentially private
mechanism is such that every column has either all non-
zero or all zero entries, i.e. there cannot be a zero and a
non-zero entry in the same column. Thus, any mechanism
achieving a finite epp(-) can have M — k non-zero columns
and k all-zero columns for some integer 0 < k < M — 1. Also

note that epp(Q g y) = 0 for any Qg .
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Note that D = 0 (perfect utility) implies that X=X , i.e. the
optimal mechanism is an identity matrix Q with epp(Q) = oo
Thus, we focus only on D > 0 in the sequel.

Lemma I: epp(-) is quasi-convex in Q %1x> Where quasi-
convexity is defined according to [31, Sec. 3.4.1]. Equivalently
[31, Sec. 3.4.2], for all @1, Q>, and A € [0, 1] we have

epp(4Q1 + (1 — 2)Q2) < max{epp(Q1), €pp(Q2)}.

The proof is given in Section V-A.

From Definitions 2 and 3, the minimal achievable ¢-DP for
a given distribution set under Hamming distortion is defined
as follows.

Definition 4: For a source distribution set P, and a distor-
tion D, where 0 < D < 1, let

ehp(P, D) = o
| X

Also denote the set of all Q@ € Q(P, D) that achieve (4) by
Q*(P, D).

3

min

4
€Q(P,D) “

GDP(QXD()-

D. Worst-Case Distortion Is Not Sub-Linear

The worst-case distortion for a mechanism @ is
maxp.p Zi‘i] P;D;. Since €)p(P, D) is decreasing in D,
instead of minimizing leakage for a limited worst-case dis-
tortion, we can minimize worst-case distortion for limited
leakage. Hence, one can formulate the optimization problem
in (4) as

M

min max

5
0ecQ, PE'P ©)

P;D; _énaé(U(Q)

where utility U(Q) = —maxpep S M, PiD;, and Q. is the
set of all e-DP mechanisms.

Kairouz ef al. [29] show the optimality of staircase mecha-
nisms for U satisfying U(y Q) = yU(Q) and U(Q1+ Q2) <
U(Q1) + U(Q2); they call such U sub-linear. We show
by example that our utility is not sub-linear. Let M = 2
and consider two mechanisms (1 and Q7 with distortions
D — {1, 0} and D@ = {0, 1} respectively, as well as a
source set P = {P1) = (1,0), P® = (0, 1)}. Then:

& ((1) (2))
P, (D/" +D

— max
PeP =

> —maxz P; D( ) maxZPDm (6)

IIT. MAIN RESULTS

In the prior work Sarwate and Sankar [1] conjecture that the
optimal differentially private (DP) mechanism for a discrete
source of alphabet size M and distortion level D is

1-D,

i=j
o(jln2{ D

, 0 .
M —1 #J
In the following, we show that the achievable scheme in (7)
is tight for Class I source classes; for the Class II source sets,

)
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we exactly characterize ef;p(P, D) and show that it matches to
that of (7) for well-defined subsets of D € (0, 1], specifically
for high and low utility regimes. Finally, we characterize the
optimal leakage for Class III source sets of any other form.
Note that, eDP(’P D) = 0 is achievable for D > M L by
o(jli) = -1 =i =<M,1<j< M, for any source sel of
any class.

Lemma 2: Under Hamming distortion, the minimal leakage
of P is the same as the minimal leakage of the convex hull
of P.

The proof is given in Section V-C. Hence, we can always
assume P is convex.

The following lemma shows that it suffices to limit
our search for optimal mechanisms to only those with
output support set sizes at most equal to M. Therefore,
we focus on only such mechanisms throughout the rest of this
article

Lemma 3: For a source set P, there exists an optimal
mechanism with an output alphabet X satisfying |X | < M.
The proof is given in Section V-B.

Lemma 4: For a source set P of Class II (without loss of
generality let Py > P > ... = Py for any P € P, there
exists an optimal mechanism whose corresponding set of {D;}
satisfy Dy < Dy <--- < Dy.

The proof is given in Section V-D.

Theorem 1: For any source set P of Class I, we have
log(M — 1)%, D € [0, M),

pp(P, D) = ®)

0, De| , 10

For a full proof see Section V-E. Since the source set
includes the uniform point, i.e. the worst distribution, there
is no choice other than applying a symmetric mechanism as
if there is no knowledge available.

We now proceed to Class II source sets, where there is a
known order on the probability of each outcome. For such
source sets, we use a coloring argument on the entries of
Q to prove specific properties that hold for any optimal
mechanism. This, in turn, helps us to reduce the dimension of
the feasible space and derive the optimal leakage in terms of a
minimization over only M diagonal entries of the mechanism.
This is formally stated in the next Theorem.

Since utility is a statistical quantity, the statistical knowl-
edge about the source class can be exploited to obtain a
better mechanism than the symmetric one. As the distortion
increases, i.e. lower utility is allowed, the size of the output
space can decrease. Conversely, for increasing utility, i.e.
decreasing distortion, the output space cannot be smaller than
a certain size. This leads to a collection of distortion thresholds
D™ at which an additional decrease in output size becomes
optimal.

In addition to this observation, we also use the properties
of e-DP, and in fact properties of any optimal mechanism,
to reduce the dimension of the feasible space from M 2 to just
M entries.

Theorem 2: For a Class II source set P with ordered
statistics:
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(a) There is no (P, D)-valid mechanism with k or more
all-zero columns for D < DU‘), where DY £ 0 and

p® £ max Z P, 1<k<M. 9)
1 M—k+1
(b) The optimal leakage is

epp(P, D)
1-D :
log (M—l)T , 0<D<DW,
. D(k] <D D(k+l)
min GSI)}H(P, D), =P= ’
lef0,1,..k} =" kell,...,M =2}
0, pM-D) < p <1,
(10)
where eg%::u(’P, D) is the minimum leakage achiev-
able over all (P, D)-valid mechanisms with exactly

[ columns with all zero elements and M — [ columns
with positive elements, formally defined as

erH(’P D)
| _ 2D
2 min log(M —1—1)— M=1-1
(! Dy
MIPD;<D-DO, VPP,
subject to { M D, <M —1 -1,
Die[0,1], Yl<i<M—I,
(11)

and the subscript DP:II in (10) and (11) denote the
Class II source set.

For a detailed proof see Section V-F. Note that each column
of a mechanism Q with finite epp(Q) has elements that are
either all zero, or all positive. The proof hinges on the fact
that for a Class II source set, where we have a complete
knowledge on the order of the source distribution probabilities,
only mechanisms with specific number of all-zero columns
can be feasible for a given distortion D. This limitation,
together with some properties of the epp(-) function, result
in a specific structure imposed on the optimal mechanism.
Therefore, the dimension of the variable space that we need
to optimize over reduces to only M instead of M2.

We now consider the Class III source sets. We show that
the optimal mechanism for Class III source sets can be
obtained from results for Class II source sets. As a first
step to presenting the main result for Class III source sets,
we introduce the following notation and definitions.

Let Sp be the set of all Class II distributions with decreas-
ingly ordered probabilities. Formally,

So2{P:P>Py>...> Py} (12)

Note that the simplex of distributions can be partitioned
into M! such ordered subsets, one for each permutation of
{1,..., M}, and thus, there are a total of M! — 1 other
subregions similar to Sp. For example, for M = 3, as shown
in Figure 2, the simplex is a union of six disjoint ordered
sets. More generally, a subset P of the simplex is a union of
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Class lll P

P3
So
PL N

Fig. 2.

A Class III source set P.

distributions P that lie in one or more ordered partitions. For a
source distribution P belonging to any one of these partitions,
there exists a corresponding folding permutation T such that
Pray = Prip = ... = Pr, or equivalently T(P) € Sp.
Specifically, any Class III source set P can be written as a
disjoint union of Class II source sets using what we call folding
permutations.

Definition 5: Given a Class III source set P, its folding
permutation set Tp is the set of all permutations 7', for which
there exists at least one P € P with Prgy = Prp) = --- >
Pr(a). Then, for each T € Tp define

Plr £2{P eP:Pray= Pro=>---

> Pron}.  (13)

Thus, a Class III source set P is a union of Class II source sets,
i.e.’ P = U_P|r. For example, the source set P in Fig. 3 lies
TETp

in three partitions, with corresponding folding permutations
Ty, Tz, and T3. Thus, P|r; is the intersection of P with the
partition whose folding permutation is T;, i = 1,2, 3, such
that P = P|r, U Pl U P|p.

Without loss of generality, we only focus on those Class III
source sets P that have a non-empty intersection with Sp.
This is due to the fact that for any other Class III source set,
the optimal mechanism can be found using a similar analysis
with appropriate change of indices. We now show that for
any such Class III source set P, the optimal leakage can be
bounded using the result in Theorem 2. We do so by mapping
each P|r into Sp, using its corresponding permutation.

Definition 6: For any permutation function 77 e 7p,
we define a folded equivalent of P|r as its mapped image
to Sy, defined as

Plr2{PeS:3P ePlr st. P=T(P)}. (14)
Furthermore, let
na U A Es T
P TeTfpplT’ Pe= Te%_plplr. (15)

Clearly, P € PY € &, and thus, P"" and PV are Class I
source sets. This is depicted in Figure 3.
We now proceed to our main result for Class III source sets.
Theorem 3: Let P be a Class III source set, such that P
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Fig. 3.

a Class I1I source set P.

and PV are non-empty. Then

ff)p;m(pns D,Tp) < GEP(IPJ D) = Gﬁp;lll(lpu, D,1p),
(16)

where for any Class II source set Py and a folding permutation
set 7 we have:

EE")MH(PH, D, T)

1-D
log((M—l)T), 0<D <D,
A . (* D.T ) M—1
IE[OI’I}T_M} eppm(Pu, D, T), DV <D < T
M—1
0, <=D<1,
y =P=
(17
with
k ®
EE}B:III(PH’ D,T)
_ x5
A . M-1-k
= min log(M —1—k)—————
M & Dy
SM¥*pD;<D-D®, VP ePy,
SMED <M -1k,
subject to { Dr(;) = D, VT T,
l<i<M,
D; €[0,1], Vl<i<M.
(18)

See Section V-G for a detailed proof. For any Class III
source set, one can determine P and PV located inside Sp,
as shown in Figure 3. The bound results from focusing on
P" and PY, and mapping them back using the inverses of
all permutations in 7p. The union of all these mapped sets
forms P“® and PYB, which is contained in and contains
P, respectively. However, PLB and PUB have this specific
property that their corresponding leakage can be calculated
from applying Theorem 2 on P and PV, with an additional
constraint of D; = Dr(;), forall 1 <i <M and T € Tp.

Remark 4: In the special case where P" = @, €},p(P, D)
can be simply lower bounded by €/,(P N Sp, D).

Remark 5: Observe that ég?m in (11) and eég qr in (18)
differ in an additional constraint. This comes from the fact
that the image of PLB and PUB in each Class II partition
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is similar, and therefore, forces some distortion values to be
equal.
Corollary 1: For P"

ep(P", D) = &5p(P, D) = ¢p(P", D). (19)

Remark 6: 1f P” = PY, then the upper and lower bound
match, and the minimal leakage is equal to that of P™ obtained
by Theorem 2, with the additional constraint D; = Dy(;), for
all<i<Mand T € Tp.

Finally, note that the solutions provided in Theorem 2 and
Theorem 3 are found by solving a linear program for fixed D;.
This simplifies the optimization considerably for large M:
a naive exhaustive search over ©®(M?) options is reduced
to ®(M). These formulations are exploited in Section IV to
provide intuition comparing Class I, II, and III source sets.

= PY, we have

A. Information Theoretic Leakage

Another metric used for leakage is the mutual information
between the original and released data, often referred to as
“mutual information (MI) leakage”. Unlike DP leakage that
provides worst case guarantees, MI leakage provides average
case guarantees for all entries of a dataset by taking the
statistics of the data into account. Another difference between
the two is the fact that for any given mechanism, the MI
leakage is not only a function of the mechanism Py, but also
it is dependent on the specific data distribution Py. For known
source distributions, mutual information leakage is studied in
[71, [20], and [23], where both asymptotic and non-asymptotic
results are derived. However, for the case wherein the source
distribution is not known precisely, but some knowledge of
source distribution is available, then the worst-case MI leakage
of any mechanism Q is defined in [1] as:

ar(Q) = maKf(P ),

such that the minimal mutual information leakage is defined
as

e (P, D) =

(20)

min

min max I(P;
0<Q(P,D)

€
r(Q) = e, max

(2D

Note that it is not in general straightforward to get analytical
closed form results for ef(P, D) for any P and a desired
utility function. However, we can characterize its general
behavior and use that to make comparisons with DP. Since any
mechanism Q that is (P, D)-valid for two source distributions
Py and P», is also valid for any convex combination of P; and
P, as well, any source distribution set P can be replaced with
its convex hull without loss of generality. As a result, the set
of valid mechanisms Q(P, D) is also convex. Also note that
both P and Q(P, D) are compact, i.e. closed and bounded,
and mutual information is convex in conditional distribution
and convex in source distribution. Therefore, according to the
minimax theorem [32] we can conclude that the minimax
inequality holds as equality and we have:
(P, D) = QEQ('P D) I;lg% 1P Q)
I(P; Q).

= max min

(22)
PP QeQ(P,D)
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We stress that MI leakage and DP leakage reflect two very
different privacy sensitivity models; in particular, DP leakage
is always an upper bound on MI leakage. Therefore, for a
common utility function, and a given source set, it is worth-
while to compare their performance. To this end, we present
some analytical results under MI leakage for source classes I
and II.

Lemma 5: For any Class I source set P, we have

er(P, D)
M—1
logM — H(D)— Dlog(M — 1), D < s
= M—1
0, D= .
M

(23)

Proof: We first show that (P, D) = 0, if D > 4=1.
Consider the mechanism which maps every letter of the
input alphabet to the first letter. This mechanism results in
a distortion of % and achieves €(P, D) = 0, because the
resulting output distribution is totally independent of the input.

We now proceed to the case where D < T Recall that
P is of Class I and includes the uniform point. Since MI
leakage is a concave function of P € P, for any given
mechanism Q the resulting worst case MI leakage is the one
corresponding to the uniform source distribution.

The resulting leakage can be lower bounded as

1(X: X) = H(X)— HX|X)

> logM — H(D)— Dlog(M — 1),  (24)

where (24) follows from Fano’s inequality. The lower bound
in (24) can be achieved by the following mechanism:

1-D,
o3(l)=1 D
M-1

i=j,

25

L# ] @)

|

Lemma 6: For any Class II source set P, efp(P, D) = 0 iff
D > pWM-1),

Proof: Let D > DM=1) and P* € P be the distribu-
tion achieving the maximum in definition of DM-1 jn 9).
Consider a mechanism that maps every input independently
to the output element of P* with the highest probability.
One can verify that the resulting distortion is DM-1) < D.
Furthermore, one can also verify that for this mechanism
1(X;X)=0

We now show that no mechanism can achieve 7 (X; X )=0,
if D < D=1 Without loss of generality, let Py > P, >

. > Ppy. Assume to the contrary that there exists a Q
achieving efp(P,D) = 0 for some D < D™D Since
I(X; X) = 0, P(i|x) = p(&) for all x. This in turn result
in a distortion at least equal to Zf’iz P*, which is equal to
D™-1and thus, O cannot be (P, D)-valid. [ ]

IV. ILLUSTRATION OF RESULTS

We now illustrate our result by first giving examples of DP
leakage for class LII, and III sources as well as comparisons
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Fig. 4. DP leakage-distortion tradeoff for Class I, Class II, and Class IIT
source sets with M = 6.
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Fig. 5. DP leakage-distortion tradeoff for Class I, Class II, and Class IIT
source sets with M = 10.

between DP and MI leakage. The central question motivating
this work is how partial knowledge of the source distribution
can be exploited to improve privacy-utility tradeoffs. We revisit
our examples from Section II-A to illustrate our theoretical
results.

We first illustrate the reduction in leakage obtained when
one goes beyond Class I source knowledge to Class IL
Figures 4 and 5 show the minimal DP leakage for ’PI(IG )
with M = 6 and P](]m) with M = 10, respectively. When
compared against Class I, for low distortion requirements there
is no benefit to source knowledge, but in regimes where a
moderate level of distortion is tolerable, the data publisher can
significantly decrease the privacy leakage by taking advantage
of the source set structure.

Yet another comparison made here is between Class II and
CLass III source sets. Specifically, we expect the leakage
guarantees to diminish for Class III which is less structured
than Class II and indeed we observe this behavior. In fact,
since the distortion guarantee for a Class III set also holds for
its convex hull, eventually this hull will contain the uniform
distribution and the tradeoff will correspond to the Class I
leakage.

Finally, since DP is distribution-agnostic, the MI leakage is
always upper bounded by the DP leakage. In Figures 6 and 7
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in Table II.

we compare the MI and DP leakages for Class I and Class II
sets. The MI leakage we use is the source-aware worst-case
mutual information.

These plots clearly show the convexity of the MI leakage
and nonconvexity of the DP leakage as a function of the distor-
tion constraint D. The bounds only coincide at perfect privacy,
where the output is independent of the input, as indicated by
Lemmas 5 and 6.

V. PROOFS

A. Proof of Lemma 1: Quasi-Convexity of epp(-) in Q

Proof: Based on the definition of quasi-convexity in
[31, Sec. 3.4], it suffices to show that all the sub-level sets
of the function epp(-) are convex, i.e. if two different mecha-
nisms @ and Q> are e-differentially private mechanisms for
some finite €, then their convex combination Qyp = Q1 +
(1 -0)02, 0 < @ < 1, is also e-differentially private. Let

x1 and x be two arbitrary input elements, and let X be an
arbitrary output element. We have

Qo (X|x1) = 0Q1(X[x1) + (1 — 0)Q2(X|x1) (26a)

< 0Q1(X|x2)e® + (1 — 0) Q2(X|x2)e€ (26b)
= € Qg(X|x2). (26¢)
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Therefore, Qp is also e-differentially private, and thus epp(-)
is a quasi-convex function. |

B. Proof of Lemma 3

Proof: We first show that for any optimal mechanism P
with output support set of size N, where N > M + 1, there
exists an optimal mechanism @ with output support set of
size N — 1. It suffices to build Q from P by merging the last
two columns of P, i.e. adding them element-wise to make one
single column. One can verify that epp(Q) < epp(P) due to
quasi-convexity of epp(-) shown in Lemma 1. Note that the
resulting distortion is exactly identical in both Q and P since
their diagonal elements are equal. |

We now show that for an optimal mechanism P with output
support set of size M + 1, we can construct an optimal
mechanism Q with output support set of size M. Take columns
M and M + 1 of P, and merge them similar to the previous
part. One can similarly verify epp(Q) < epp(P). We now
check distortion feasibility. Note that Py y = 1 — Dy,
and therefore once Py p41 is added to it to obtain Qu um.,
the updated Dy does not increase, and therefore the total
distortion under Q is at most equal to that of P. This holds
for any distribution point in P.

C. Proof of Lemma 2: Convexity of P

Proof: This is due to the fact that any (P, D)-valid
mechanism should be also valid for any P that is a convex
combination of distributions in P. More formally, suppose that
a P is in the form of 2 6; P9, where PY e P, for all

i €{1,2,...,r}. Then, for a (P, D)-valid mechanism Q with
distortion set {D;} we have
M M r
> D =>>0;PYD, (27a)
i=1 i=1 j=1
r M .
=>"0;> PYp; (27b)
j=1 =l
,
<> 0;D=D. (27¢)
j=1
Thus, Q is also a valid mechanism for P and any P can be
extended to its convex hull without loss of generality. [ ]

D. Proof of Lemma 4

Without loss of generality, let P > P, > ... > Py for any
P € P. We now show that there exists an optimal mechanism
with Q with Dy < Dy <... < Dy. Let QX|X be some opti-
mal mechanism such that DT(]} < DT(g) <...< DT(M), for
some permutation T. Then, let Q% Xx = QT(X}|T(X] Clearly,

we have Df < D7 < --- < Dj, and er(Q) = epp(Q*).
Finally, Q")i(l ¥ is a (P, D)-valid mechanism, because:

M M M

* * M
El P;D; < E] P,’DT_|(£} = El P;D; < D.
= = 1=

(28)
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E. Proof of Theorem 1: Class I Source Sets

We now determine the optimal mechanism for Class I and
show that it is indeed the conjectured mechanism in [1]. From
Lemma 2, we know that we can replace P with conv(P)
without loss of generality, and henceforth our results hold for
conv(P). We begin by assuming to the contrary that there
exists a (P, D)-valid mechanism Q 1x With lower risk guar-
antees than conjectured in [1], i.e. epp(Q) < log(M — 1)-5= 1_D
for0 < D < M For any Q with epp(Q) < er(QD)
we require that QXlX(_ﬂz) > eEDP(Qﬂ}Q (i), for at least
one pair (i, j),i # j. Thus, by summing over all columns in
QX|X and recalling that eEDP(QD) 1 D(M — 1), we have

M M
M =33 0l (29)
i=1 j=1
S a0
- Zl eG1N+ Z e€op(0p) (29b)
iz
M
- zl |:(1 —Di) e<op(0p) - ] (29¢)
iz
A MM—-1) M—-1 X
=M= Zl Dj+ eop(@D)  enp(QD) Z] D; (29d)
i= =
M—1 M
- (m + 1) M- ZIDJ (29¢)
(1 - ) ZD (29f)
Therefore
M M
S -0Glj»=> D, > MD. (30)

i=1 i=1
This, however, contradicts satisfying the distortion constraint

for the uniform distribution.

E Proof of Theorem 2: Class II Source Sets

We now prove Theorem 2, which exactly characterizes
epp(P, D) for the Class II source sets as introduced in
Definition 1. Recall that we defined distortion levels D™ in (9)
such that for any &, D® corresponds to the case wherein at
most k — 1 letters of the input are suppressed and the output
alphabet size is at least M —k, if D < D®). On the other hand,
for D > D®, the output alphabet size may be suppressed by
k or more elements. Through the following lemma, we first
prove that perfect privacy, i.e. zero leakage, can be achieved
if and only if D > DM-1),

Lemma 7: €5p(P, D) = 0 if and only if D > DM,

Proof: ~ We first prove the converse and show that
eip(P, D) = 0 only if D > D™=V Let Q be a (P, D)-
valid mechanism with epp(Q) = 0. This implies all elements
of the i™ column have the same value, namely a;, where
0 <ag <1 and Zf’ilai = 1. Hence, the corresponding
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distortion values for Q are D; = 1 —a;,Vi,where 0 < D; <1
and Zf‘i] D; = M —1. Also, recall that for any distribution P,
we have P; = P» > ... > Py. Therefore, by replacing Dy
with zero and D;,i > 1 with one, we can further lower
bound the distortion as 3M P;D; > M, P;. Note that
Q is a (P, D)-valid mechanism, and therefore Zfi P; < D.
Taking the maximum over all P € P gives DM-1)
maxpep 3 M, P < D.

For proving the achievability, ie. €5p(P,D) = 0 for
D > DM-1)_ congsider the mechanism with zero elements
everywhere except the first column where all entries are 1,
ie. Q@lj) =0,ifi > 1, and Q(i|j) = 1, if i = 1. This

mechanism achieves €fj,(P, D) = 0 and the distortion is
bounded by
M M
max Y P;D; =max » P; = DMV < p. 31
PeP 4 o PE?.Z ' - S
i=1 i=2
|

We now restrict ourselves to 0 < D < DM-1)_ apd
in the following collection of lemmas we prove structural
conditions on the optimal mechanisms for Class II sources.
‘We first describe the need for different distortion levels, and
then provide achievability and converse proofs. In particular,
as the distortion increases there are specific distortion values
at which the support of output is allowed to shrink more. The
following lemma captures this observation precisely.

Lemma 8: For a k € {1,2,...,M} and D < D®,
no (P, D)-valid mechanism can have an output support size
of less than or equal to (M — k).

Proof: For any P € P, any mechanism with k or more
all-zero columns results in an average distortion Zf‘i] P;D;,
which is strictly greater than Zf‘iM_k 41 Pi because at least
k elements in the set {D;}, are equal to one. Hence, for
D < D("), no mechanism with k or more all-zero columns
can be (P, D)-valid. [ ]

Recall that without loss of generality, we can assume a given
Class 1II source set has the ordering Py = P, > ... > Py, for
any P € P. Then, based on Lemma 4, there exists an optimal
mechanism with Dy = Dy > ... > Dy.

Using these lemmas, we now present a converse proof by
exploiting the definition of differential privacy. We provide a
sequence of properties that any optimal mechanism must sat-
isfy. We can therefore obtain a lower bound on the leakage by
minimizing parameters of those properties. Then, we present
an achievable scheme by providing a mechanism that achieves
the minimum value given by the converse.

1) Converse for Theorem 2: We now prove a lower bound
on &5p(P,D) for 0 < D < DM-D. We first define
critical pairs in a matrix and then introduce a matrix coloring
scheme to prove specific properties of the optimal mechanism.
We illustrate this definition and the properties using Figure 8.

Definition 7: For a mechanism QJ?|X with er(QirlX) > 0,
a critical pair in Q Rx is a pair of elements
{Q(kli), Q(k|j)} in a non-zero column, such that
Q)?|X(k|f) = exP(GDP(QﬁX})Qim(kU)-

Note that there exists at least one critical pair, but in general
if there are multiple critical pairs in different columns of a
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Fig. 8. For Class II source sets, optimal mechanisms with k all-zero columns
have at most one non-black diagonal element, while all other non-zero off
diagonal elements are either red or white.

matrix @, they may have different values. However, their ratio
needs to be equal to exp(epp(Q)). Furthermore, note that not
all columns may have a critical pair. However, the maximal
ratio of two elements in any column is at most exp(epp(Q)).

We color the entries of non-zero columns of any given
matrix Q black, white or red as follows:

« An element is colored black if it is the larger element in

a critical pair.
o An element is colored red if it is the smaller element in
a critical pair.

o All other elements are colored white.

Remark 7: Note that if a black element is decreased (or
a red is increased), either the epp(-) of the matrix has to
decrease, or that element can no longer be black (red).

Our proof involves manipulating the elements of O while
maintaining it as a valid mechanism: any change in Q that
neither increases a black element nor decreases a red element
keeps epp(Q % x) at most equal to its previous value.

Definition 8: Forany 0 <k < M—1, let Q®(P, D) be the
set of all (P, D)-valid mechanisms with & all-zero columns.
Also let Q*(ki (P, D) c Q® (P, D) be the set of mechanisms
with the smallest epp(-) among all mechanisms in Q) (P, D).

Recall from Section II that Q(jmin : Jmax|imin : imax) iS
the sub-matrix of Q induced by rows from imip 0 imax and
columns from jmip t0 jmax. This notation is used extensively
throughout the following lemmas and propositions.

Lemma 9: For a given 0 < D < D™= and 0 < k <
M —1, there exists a Q"i X c Q,.(fh (P, D) with the distortions
Dy < Dy < ... < Dy such that
| _ T Di

M—1-k

D (32)

epp(Q%, ) = log(M — 1 —k)

Proof: Denote those mechanisms o+ (P, D) that have
the smallest Zf‘i] D; by Q"l\‘,;g(P,D), where MS in the
subscript stands for “Minimum Sum”. Through five sequential
claims, we now show that there exists a Q £jx € Q*M(g (P, D)
with a specific color structure as shown in Figure 8 and
E[)p(Qi,lx) is given by (32).
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For any mechanism QJ'(| y With k all-zero columns (or in
other words, with k of its D;s being equal to 1), without loss of
generality we can assume that columns M —k+-1 to M are the
all-zero ones due to Lemma 4. Let Q(1 : (M —k)|1 : (M —k))
and Q(1: (M —k)|(M —k + 1) : M) be sub-matrices of any
given Q. Then there exists a Qg |y € Oy 0 (P D) that satisfies

the following claims sequentially. In olher words, f:a(fh claim
)

i states that there exists at least one QX| x € Qu (’P D)
among all the ones satisfying the previous claims {1 ,I—
1}, such that the statement of claim i is true.
Claim 1: No row is all black (or all red) in
O : (M —k)|1:M).
Proof: ~ Assume the contrary that the i ™ row in

Q(1 : (M—k)|1 : M) is all black for any Qv € Q*m(,p D).

Consider the ratio epp(Q) = log %(% where Q(1]j) is the
red element associated with Q(1]#) which is black, i.e. @(1]j)
and Q(1|i) form critical pairs. Also note that for any other
2 <1l =M—k QUi) = Q(lj). Now, if epp(Q) > 0,
we have

M—k M—k

1= Q)+ X Q) > QU+ D QUlj)=1, (33)
=2 I=2

which is a contradiction. Otherwise, if epp(Q) = 0,
by Lemma 7 D > DM _]}, which is also a contradiction to
our assumption of 0 < D < DM=1) in the beginning of
converse proof. The proof for no row with all red elements is
similar. |

Claim 2: All the off-diagonal elements of a row in Q(1 :
(M — k)|1 : M) have the same color.

Proof: Take an arbitrary mechanism QX| x € Q*m (P, D)
that Q(1 : (M — k)|1 : M) satisfies Claim 1. le a row i,
and let the number of off-diagonal elements in row i of Q(1 :
(M — k)|1 : M) with each of the colors black, white and
red be np, nw and np respectively, where np +nw +ng =
M — 1 — k. If only one of ng, nw or np is non-zero, then
the claim is satisfied. We split the remaining scenarios into
two cases and show that in each it is sufficient to make all
off-diagonal elements of the ith row white.

s If ng,np > 0, then there exists an arbitrarily small § > 0
such that each of the off-diagonal black elements can
be decreased by , and each of the off-diagonal red

elements can be 1ncreased by . Consider a Q" which
is identical to Q everywhere excepl for a segment of the
i-throw Q'(1: (M —k)|i).For 1 < j <M —k,j #1,
let Q' (}Il) = Q(@jli) - i if Q(jli) is black, Q'(jli) =
QGili) + 2 if Q(jli) is red, and Q'(jli) = Q(jli) if
Q(jli) is whlte Note that it does not matter if nw =
0 or not, because the white off-diagonal elements Q’(1 :
(M — k)|i) are not changed.

e If ng = O,nw,np > 0 (or np = O,nw,ngp > 0),
then there exists an arbitrarily small § > 0 such that
each of off- dlagenal white elements can be increased (or
decreased) by — ot and each of off-diagonal black ele-
menls (or red elements) can be decreased (or increased)
by = (or n—) Consider a Q' which is identical to Q
everywhere except for Q'(1 : (M — k)|i). For 1 =
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j =M=k j#i let Q(jli) = Q(JII)——B if
Q(jli) is black and Q'(jli) = Q(1|£)+ Ay Q31
is white (or Q'(jli) = Q(_,r|z)—|— 2 if Q(}|z) is red
and Q'(jli) = Q(jli) — _w if Q(}|z) is white), and
Q'(jli) = Q(jli) elsewhere.

In both cases Q' has the same off-diagonal row sum and
the same set of {D,-}f"il as Q, but for sufficiently small &,
Q' is still a valid row stochastic matrix and none of the
elements in Q'(1 : (M — k)|1 : M) become 1 or 0. Thus,
Q' would still be a (P, D)-valid mechanism. Besides, all off-
diagonal elements in row i of Q', i ¢ {aj,az,--- ,ax}, are
white: If not we would have a smaller EDP(Q:E’M’) due to
Remark 7, which contradicts our first assumption that Qi’| x €

O (P, D). In this construction, all off-diagonal elements of
Q'(1 : (M —k)|1 : M) in rows other than i are colored
the same as Q without affecting the average distortion, while
keeping epp(Q’) < epp(Q) and thus Q' € ﬁ,[;(’P D). This
operation can be done for each row i repeatedly, to get the
final Q' to satisfy the claim. [ |

Remark 8: As a result of Claims 1 and 2, all the off-
diagonal elements in Q(1 : (M —k)|{(M —k + 1) : M) are
white.

Claim 3: If a diagonal element in Q(1 : (M —k)|1
k)) is not black then all off-diagonal elements of Q(1 :
k)|1: (M — k)) in the same row are red.

Proof: Take an arbitrary QX|X € Q”‘U(’P D) satisfying
Claims 1 and 2, and for some 1 <i < M — k suppose Q(ili)
is red or white. By Claim 2, all elements in the set {Q(j|i) :
J #i,1 <j < M — k} have the same color. Assume to the
contrary that they are not all red, so they are all black or white.
Consider a Q" which is equal to @, exceptin Q'(1 : (M —k)|i)
where Q'(ili) = Q(ili) + and Q'(jli) = Q(jli) — 3=
for j #i,1 < j < M — k. For sufficiently small § > 0 this is
also a (P, D)-valid mechanism. Although epp(Q’, ) remains
unchanged due to Remark 7, we have

M M M M
> Di=>(1-Ql) <> (- Q)= Di
i=1 i=1 i=1 i=1 (34)

(M —
(M —

Xx

where D! is the distortion of i element under Q. This clearly
contradicts the assumption that Q € Q"‘m (P, D). [ ]

Claim 4: There is at most one non- black element on the
diagonal of Q(1 : (M —k)|1 : (M — k)).

Proof: Take an arbitrary Q¢ y € Qﬁ,lg (P, D) satisfying
all previous claims. Assume the contrary that there are at
least two non-black diagonal elements Q(i|i) and Q(j|j),
(i # j,i,k = M — k). Thus, Q(i|j) is red by Claim 3,
which implies that there exists a k # j where Q(i|k) is black,
because there should be a black element for each red element
in a column. However, k # i because we already know that
Q(i|i) is non-black. Thus, Q(i|k) has to be an off-diagonal
black element in Q(1 : (M —k)|1 : M), which is contradictory
to our first assumption of Q satisfying all previous claims,
including Claim 1 and 2. Therefore, at most one diagonal
element is non-black. [ |
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Claim 5: The only possible non-black element along the
diagonal of Q(1 (M — k)1 (M — k)) is the one
corresponding to the smallest, or one of the smallest D;s.

Proof: ‘Take an arbitrary Qyy € Qﬂg (P, D) satisfying
all previous claims. Let the diagonal element in row i,1 <
i< M—k, bf, non-plack. We show that for any j #i,1 <
J =M —k, D; = D;. By Claim 3, we know that any other
off-diagonal entry in row i of Q(1 : (M — k)|1 : (M — k)),
including Q(j|i) is red. We also know that Q(j|j) is black
and other entries in row j of Q(1 : (M — k)|1 : (M — k)),
including Q(i|j), are either all red or all white due to
Claims 1 and 2. Thus, for all 1 < k < M — k other than
i or j we have Q(k|j) = Q(k|i) because Q(k|j) is either
red or white, and Q(k|i) is red, where both of them are in the
same column. Since any row has to sum up to one, summing
over rows i and j results in

Q31 + QG = QG + (1)

Besides, since Q(j|j) is black, Q(j|i) is either red or white,
Q(i|j) is red, and Q(i|i) is either red or white, we have

(33)

0Glj)  Qli)
. 36
oGl ~ 0Gl)) (36)
‘We now show that
1—Dj = Q(jlj) < Q(li)=1—-D; 37

Assume the contrary that Q(j|j) > Q(i|i). Thus, by (35) we
have

0 < Q(@jlj) — QGl) = 2(jli) — QGl)),
which means % =< 1. However, (36) shows that
QG1) — Q) _ QG L) _ QGl) _
Q@) —eGlj) — el QG —

which means

(38)

0, (39)

Q3> 1j) — Gl > Q@) — Q1)) (40)
because eDP(Q) — %7(“% > 1, which contradicts (38). [ |

The clalms above imply that for D; as one of the smallest
{D; }I ] , all the other diagonal elements are black, and the
non-zero elements in the row corresponding to D are all red.
This implies that for each red Q(j|1), j # i, there exists
a diagonal element 1 — D; in the same column j which is
eo?(Q) times bigger than the red element Q(j|1). The proof
is completed by summing over row 1 entries and solving for
E€DP. |

Let 0 < k < M — 1. Lemma 9 provides a formula for
the optimal epp(-) among (P, D)-valid mechanisms with k
all-zero columns in terms of their corresponding distortion
values {D; } k . Besides, no mechanism with at least k all-
zero columns can be (P, D)-valid for D < D® due to
Lemma 8. Thus, for any k and D® < D < D&+ a lower
bound on €};,(P, D) can be derived by lakmg the minimum
over0 <l <k ?‘ni] all (P, D)-valid sets of {D;}M i~ that satisfy

Z D;
(M—1 k) "—“ e =1, orequwalenllyZM kDi < M—1.
Moreover, for a mechamsm with k all-zero columns we have
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D; =1fori > M —k, andlhus {D} —; can be (P, D)-
valid if and only if {D;}7% is (P, D — D®)-valid, i.e.

Mk p.D; < D — D®. This result in (11) and completes
the proof of the lower bound in Theorem 2.

We now proceed to the special case where D < D). For
proving €fp(P, D) > log(M — I)I_D, it suffices to show
that e*m)(’P D) is greater than or equal to log(M — 1)1 D
We need the followmg Lemma.

Lemma 10: Let {a;}?_,, {b;}"_,, and {a;}"_,
of real numbers between 0 and 1, such that

n n
!
i=1 i=1

< bp. If a] = ay and a; < a; fori =

be a collection

(41)

and by < b, < ...
2,3,---,n, then

(42)

n n
Zﬂib,’ < Za,'b,-
=1 i=1

Then, assume the contrary that for some D < D), all
mechanisms in Q*(P, D) achieve a strictly smaller epp(-)
than log(M — l)]_D From Lemma 9 we know that there
exists an optimal mechamsm QX| x With the set of distortions

{D; }l 1» such that epp(Q) is given by (32), and without loss
of generality D; < Dy < --. < Dy due to Lemma 4. Hence,
the contrary assumption is that there exists an optimal Qi’| x
such that

_ XD
ebp(Q, D) = epp(Qgx) = log(M — H——5"=1— (43a)
1-D
< log(M —1 —— (43b)
Thus:
(I—D)D]—i—iiD,' > D. (44)
M—1 =

On the other hand, since QX x is supposed to satisfy the
distortion constraint for any P € 7P, including P* =
argmaxp _p Py, we have

M M
> P'D; = P{Di+ Y _PD (452)
i=1 i=2
D M
=(=D)Di +5— ; D; <D, (45b)

where (45b) is in view of Lemma 10 and the fact that D <
DM implies P* > ;2 fori =2,3,--- ,M and P} < 1-D.
Obviously (45b) contradicts (44). Thus, for 0 < D < D,
we have

D

l _
ehp(Q, D) > log(M — 1 5 (46)
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2) Achievability for Theorem 2: First, we show that for 0 <
D < DU, the optimal leakage in (10) is achievable. Consider
the following mechanism

1 - D,
Q@li)=1 D
M-1
Observe that Q is (P, D)-valid and epp(Q) = log(M—])%.
Therefore, the lower bound in (46) is tight and €p(P, D) =
log(M — 1)172 for 0 < D < D).

We now prove that the lower bound in (10) is achievable for
p® =D < DWM=1) To this end, we construct the following
mechanism. For any given 0 < k < M — 1 and the optimal
set {D;"}f’i Tl in (11), consider the following mechanism.

i=j,

47
i £ “n

i=j<M-—k
x ., Dl'ijai?é.s I..,.{M_k,

oW (jliy=1"241-Df b
oW (jIM—k), i>M—k j<M—k,

0, j>M—k.
(48)
Mok oy
We now verify that epp(Q®") = (M — 1 — k)= ILE,

Since each of the last k rows in the above matrix are If:qual
to the (M — k)”’ row, and the last k columns are all equal
to zero, it suffices to check the epp(-) for the square matrix
formed by the first M — k rows and columns. The ratio of any
two elements in the same column in QU‘)* belongs to the set
{e1,¢2,...,cm—k}, Where

| _ 2jziDi
c,:(M-l—k)%.

(49)

From Lemma 4 we have that D; < ...
turn implies that for any 0 < j < M — k:

< Dpy_i, which in

Dy _ 2izj Di
M_1—k M—_1-k
M—-1—-k\———>(M—-—1—k——MM. 50
( ) D >( ) D, (50)
=Mk p;

Therefore, epp(Q®*) = (M — 1 —k) ]__%TI?F_

G. Proof of Theorem 3: Class IIl Source Sets

Proof: Recall that a Class III source set P can be

written as a union of Class II source sets as P = U_ P|r.
TETp

Furthermore, each of these partitions P|7 can be mapped to
Sp with the appropriate permutation to get P|7. We write the
intersection and union of the mapped partitions as P" and
PV, respectively. Since P" and PV are Class II source sets,
we can compute the optimal leakage and the corresponding
mechanism for these two sets. Moreover, mapping P and
P back into the original partitions results in two sets pUB
and PB that contain and are contained in P, respectively.
Formally, let

PLB — Ureq, T71(PD),
PUB = Ureq, T71(PY).

(51a)
(51b)

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 13, NO. 11, NOVEMBER 2018

Fz

22 L

Fig. 9. A source set P and its folded versions.

For the PP shown in Figure 2 and the corresponding P" and
P" in Figure 3, Figure 9 illustrates the PLB and PYB,

Recall that for two sets P; and Pa, if Py € P,, then
epp(P1, D) = €)p(P2, D). Thus, it suffices to show the
following:

1) PLB c P < PUB and

2) The optimal DP leakage for PLB and PUB are given by

ebp(P™B, D) = bpu(P", D, Tp),
epp(PY8, D) = ehp. (P, D, Tp),

(52)
(33)

where €fjp.;;(+) is defined in (17).

Proof of (i): For each T € Tp, since P € P|r we have
T-1(P") < P|r. After taking union over all T € Tp, we have
PLB — P. One can immediately show that P C PUB,

Proof of (ii): We first prove (52). A similar argument
proves (53). Recall that PLB = UTGTPT_](’PH), and thus,
for any P € P" and T € Tp we have T-!1(P) e PLB.
This means that for any given (PLB, D)-valid mechanism
Qx> QT(HTSX) is also (P'®, D)-valid and epp(Qyy) =
E[)p(QT(_i-]lT(X . Since epp(Q) is a quasi-convex function
of Q due to lzemma 1, there exists an optimal mechanism
achieving EEP(’PLB, D) for which

Dr@y = Di,

forany T e7p,i=1,...,M. (54)

Hence, it suffices to search over only those (P, D)-valid
mechanism that satisfy (54) in order to find eg‘g‘ (PLB D).
Furthermore, since P is a Class II source set, we can use
the results from Theorem 2. We now show eﬁp(’PLB, D) =
espm (P, D, Tp).

First consider the case where D > % Clearly, choosing
Q(i|j) = 7 achieves e5p(PLB, D) = 0, while the distortion
constraint is also satisfied.

For D < %, similar to the proof for Theorem 2, we first
restrict the set of mechanisms to those that have a fixed number
k of all-zero columns, Kk = 0,1, ..., M — 1. For any such &,
the optimal leakage is given by (18), where the third constraint
is a result of (54). Note that (18) results from the addition of
the constraint in (54) to the constraints in (11) for a Class II
source set. The optimal eﬁp(’PLB, D) is then the minimum of
éggjm(?’ﬁ, D, Tp) over all k, resulting in (17).

Finally, for D < Dm, analogous to Theorem 2, we can still
show that the optimal mechanism is symmetric. Recall that for
a Class II source set P” and D < D(, the optimal mecha-
nism achieving e’[“)p(’P”, D) is symmetric, and thus, does not
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violate (54). Hence, we have

1-D
ebpn(P" D, ) = p(P", D) = log (1~ 152

|

Note that in contrast to Theorem 2, we no longer have

distortion thresholds D(z), D(?’), e, DWM-2) where in each

of them only mechanisms with specific number of all-zero

columns are allowed. This is due to the constraint in (54),

which may not allow a gradual shrinking of output support
set.

VI. CONCLUSION

In this paper, we have quantified the privacy-utility trade-
offs for a dataset under different assumptions on distribution
knowledge (classes) and for Hamming distortion using differ-
ential privacy as the leakage metric. The guarantees we can
make under differential privacy are stronger than those under
mutual information-based measures of privacy leakage: DP
leakage is lower bounded by MI leakage. We divide source
sets into three classes. For Class I the optimal mechanism is
symmetric. For Class II achieving optimal leakage involves
reducing the output space as the distortion increases. For
Class III sets we can use Class II results to develop upper
and lower bounds on the leakage.

Our results show that symmetric distortion, such as random-
ized response [24], is optimal when very little is known about
the source distribution or when the distortion requirement is
very strict. In cases where the source distribution is partially
known, data publishers can take advantage of this to tailor a
local privacy mechanism to guarantee lower privacy leakage
for the same distortion, or lower distortion for the same privacy
leakage. These gains can be significant if quite a lot is known
about the source, such as Class II sources, and degrades as less
and less information is known. These results imply that domain
knowledge or public data should be used when designing
mechanisms for publishing private data.

There are several interesting questions which we leave for
future work. Obviously, a full characterization of Class III
sources would be welcome, but the techniques here should
extend directly to general discrete distortion measures (linear
and nonlinear). Extensions to continuous source distributions
may be trickier, but perhaps a starting point would be dis-
tributions with bounded support. Finally, understanding the
implications of this simple model to categorical and hierarchi-
cally categorized data would help build insight into designing
practical source-aware data release mechanisms.
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