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Identifiability of Kronecker-Structured Dictionaries
for Tensor Data

Zahra Shakeri
and Waheed U. Bajwa

Abstract—This paper derives sufficient conditions for local
recovery of coordinate dictionaries comprising a Kronecker-
structured dictionary that is used for representing Kth-order ten-
sor data. Tensor observations are assumed to be generated from a
Kronecker-structured dictionary multiplied by sparse coefficient
tensors that follow the separable sparsity model. This paper pro-
vides sufficient conditions on the underlying coordinate dictionar-
ies, coefficient and noise distributions, and number of samples that
guarantee recovery of the individual coordinate dictionaries up to
a specified error, as a local minimum of the objective function, with
high probability. In particular, the sample complexity to recover K
coordinate dictionaries with dimensions my, X pj up to estimation
error £, is shown to be max;.¢(k; C)(mkpzsgz ).

Index Terms—Dictionary identification, dictionary learning,
Kronecker-structured dictionary, sample complexity, sparse rep-
resentations, tensor data, Tucker decomposition.

1. INTRODUCTION

APID advances in sensing and data acquisition technolo-
gies are increasingly resulting in individual data samples
or signals structured by multiple modes. Examples include hy-
perspectral video (four modes; two spatial, one temporal, and
one spectral), colored depth video (five modes; two spatial, one
temporal, one spectral, and one depth), and four-dimensional
tomography (four modes; three spatial and one temporal). Such
data form multiway arrays and are called fensor data [2], [3].
Typical feature extraction approaches that handle tensor
data tend to collapse or vectorize the tensor into a long one-
dimensional vector and apply existing processing methods for
one-dimensional data. Such approaches ignore the structure
and inter-mode correlations in tensor data. More recently, sev-
eral works instead assume a structure on the tensor of inter-
est through tensor decompositions such as the CANDECOMP/
PARAFAC (CP) decomposition [4], Tucker decomposition [5],
and PARATUCK decomposition [3] to obtain meaningful repre-
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sentations of tensor data. Because these decompositions involve
fewer parameters, or degrees of freedom, in the model, infer-
ence algorithms that exploit such decompositions often perform
better than those that assume the tensors to be unstructured.
Moreover, algorithms utilizing tensor decompositions tend to
be more efficient in terms of storage and computational costs:
the cost of storing the decomposition can be substantially lower,
and numerical methods can exploit the structure by solving sim-
pler subproblems.

In this work, we focus on the problem of finding sparse repre-
sentations of tensors that admit a Tucker decomposition. More
specifically, we analyze the dicfionary learning (DL) problem
for tensor data. The traditional DL problem for vector-valued
data involves constructing an overcomplete basis (dictionary)
such that each data sample can be represented by only a few
columns (atoms) of that basis [6]. To account for the Tucker
structure of tensor data, we require that the dictionary underly-
ing the vectorized versions of tensor data samples be Kronecker
structured (KS). That is, it is comprised of coordinate dictio-
naries that independently transform various modes of the tensor
data. Such dictionaries have successfully been used for tensor
data representation in applications such as hyperspectral imag-
ing, video acquisition, distributed sensing, magnetic resonance
imaging, and the tensor completion problem (multidimensional
inpainting) [7], [8]. To provide some insights into the useful-
ness of KS dictionaries for tensor data, consider the hypothetical
problem of finding sparse representations of 1024 x 1024 x 32
hyperspectral images. Traditional DL methods require each im-
age to be rearranged into a one-dimensional vector of length
2%° and then learn an unstructured dictionary that has a total of
(2% p) unknown parameters, where p > 225 In contrast, KS DL
only requires learning three coordinate dictionaries of dimen-
sions 1024 x p;,1024 x po,and 32 x p3, where p;, ps = 1024,
and ps > 32. This gives rise to a total of [1024(p; + p2) + 32ps]
unknown parameters in KS DL, which is significantly smaller
than 22° p. While such “parameter counting” points to the useful-
ness of KS DL for tensor data, a fundamental question remains
open in the literature: what are the theoretical limits on the
learning of KS dictionaries underlying Kth-order tensor data?
To answer this question, we examine the KS-DL objective func-
tion and find sufficient conditions on the number of samples (or
sample complexity) for successful local identification of coor-
dinate dictionaries underlying the KS dictionary. To the best of
our knowledge, this is the first work presenting such identifica-
tion results for the KS-DL problem.
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A. Our Contributions

We derive sufficient conditions on the true coordinate dic-
tionaries, coefficient and noise distributions, regularization pa-
rameter, and the number of data samples such that the KS-DL.
objective function has a local minimum within a small neigh-
borhood of the true coordinate dictionaries with high probabil-
ity. Specifically, suppose the observations are generated from a
true dictionary D € R™ %P consisting of the Kronecker product
of K coordinate dictionaries, DY € R™*Px k< {1,..., K},
where m = [[1_, mx and p = [[1_, px. Our results imply that
N = maxge(x| Q(mrp} £;2) samples are sufficient (with high
probability) to recover the underlying coordinate dictionaries
DY up to the given estimation errors &,k € {1,...,K}.

B. Relationship to Prior Work

Among existing works on structured DL that have focused
exclusively on the Tucker model for tensor data, several have
only empirically established the superiority of KS DL in various
settings for 2nd and 3rd-order tensor data [8]-[13].

In the case of unstructured dictionaries, several works do
provide analytical results for the dictionary identifiability prob-
lem [14]-[21]. These results, which differ from each other in
terms of the distance metric used, cannot be trivially extended
for the KS-DL problem. In this work, we focus on the Frobe-
nius norm as the distance metric. Gribonval ef al. [20] and Jung
et al. [21] also consider this metric, with the latter work provid-
ing minimax lower bounds for dictionary reconstruction error.
In particular, Jung ef al. [21] show that the number of sam-
ples needed for reliable reconstruction (up to a prescribed mean
squared error £) of an m x p dictionary within its local neigh-
borhood must be at least on the order of N = Q(mp?s~?). Gri-
bonval ef al. [20] derive a competing upper bound for the sample
complexity of the DL problem and show that N = Q(mp?c~2)
samples are sujficient to guarantee (with high probability) the
existence of a local minimum of the DL cost function within the
¢ neighborhood of the true dictionary. In our previous works,
we have obtained lower bounds on the minimax risk of KS
DL for 2nd-order [22] and Kth-order tensors [23], [24], and
have shown that the number of samples necessary for recon-
struction of the true KS dictionary within its local neighbor-
hood up to a given estimation error scales with the sum of the
product of the dimensions of the coordinate dictionaries, i.e.,
N=Q(p Ele myppe~?). Compared to this sample complex-
ity lower bound, our upper bound is larger by a factor max; p;.

In terms of the analytical approach, although we follow
the same general proof strategy as the vectorized case of
Gribonval ef al. [20], our extension poses several technical chal-
lenges. These include: (z) expanding the asymptotic objective
function into a summation in which individual terms depend
on coordinate dictionary recovery errors, (i7) translating iden-
tification conditions on the KS dictionary to conditions on its
coordinate dictionaries, and (¢2:) connecting the asymptotic ob-
jective function to the empirical objective function using con-
centration of measure arguments; this uses the coordinate-wise
Lipschitz continuity property of the KS-DL objective function
with respect to the coordinate dictionaries. To address these
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challenges, we require additional assumptions on the generative
model. These include: (z) the true dictionary and the recovered
dictionary belong to the class of KS dictionaries, and (27) dic-
tionary coefficient tensors follow the separable sparsity model
that requires nonzero coefficients to be grouped in blocks [24],
[25].

C. Notational Convention and Preliminaries

Underlined bold upper-case, bold upper-case and lower-case
letters are used to denote tensors, matrices and vectors, respec-
tively, while non-bold lower-case letters denote scalars. For a
tensor X, its (i1, . .., 4 )-th element is denoted as z;, _,;, . The
i-th element of vector v is denoted by v; and the 7j-th element
of matrix X is denoted as z;;. The k-th column of X is denoted
by x; and X7 denotes the matrix consisting of the columns of
X with indices 7. We use |Z| for the cardinality of the set 7.
Sometimes we use matrices indexed by numbers, such as X,
in which case a second index (e.g., X ;) is used to denote its
columns. We use vec(X) to denote the vectorized version of
matrix X, which is a column vector obtained by stacking the
columns of X on top of one another. We use diag (X) to de-
note the vector comprised of the diagonal elements of X and
Diag (v) to denote the diagonal matrix, whose diagonal ele-
ments are comprised of elements of v. The elements of the sign
vector of v, denoted as sign(v), are equal to sign(v; ) = v; /|vs],
for v; # 0, and sign(v;) = 0 for v; = 0, where ¢ denotes the in-
dex of any element of v. We also use sin(v) to denote the vector
with elements sin(v;) (used similarly for other trigonometric
functions). Norms are given by subscripts, so ||v|o, ||v|/1, and
|Iv||2 are the £y, £1, and £5 norms of v, while || X||2 and || X||#
are the spectral and Frobenius norms of X, respectively. We use
[K] to denote {1,2,...,K} and X;.x to denote {X; }5 .

We write X @ Y for the Kronecker product of two matrices
X eR™™andY < RP*7, where the result is an mp x ng ma-
trix and we have | X @ Y||r = || X|r||Y ||z [26]. We also use
®kEK Xk ES X ®@---@ Xk . We define Hx e (XTX)_I,
X+ £ HxX',and Px £ XX for full rank matrix X. In the
body, we sometimes also use Af(X;Y) £ f(X) — f(Y).

For matrices X; and X, of appropriate dimensions, we define
their distance to be d(X,Y) = || X — Y||p. For X° belonging
to some set X', we define

S(X) &2 {XeX: |X-X|p=¢},
B.(X)2{XeX:|X-Xr <¢},
B:(X) 2 {XeX:|X-X|r <e}. (1)

Note that while S.(X") represents the surface of a sphere, we
use the term “sphere” for simplicity. We use the standard “big-
O (Knuth) notation for asymptotic scaling.

1) Tensor Operations and Tucker Decomposition for Ten-
sors: A tensor is a multidimensional array where the order of
the tensor is defined as the number of dimensions in the array.

Tensor Unfolding: A tensor X € RP1*P2>"*PK of order K
can be expressed as a matrix by reordering its elements to form
a matrix. This reordering is called unfolding: the mode-% un-
folding matrix of a tensor is a pp x Hx‘;é &, i matrix, which
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we denote by X(;). Each column of X, consists of the
vector formed by fixing all indices of X except the one in the
k th-order. The k-rank of a tensor X is defined by rank(X));
trivially, rank(Xx)) < pg.

Tensor Multiplication: The mode-k matrix product of the
tensor X and a matrix A € R™+*Pt_ denoted by X x;
A, is a tensor of size p; X ...pr_1 X Mg X Ppaq - X
pi Whose elements are (X xp A)i, iy 1jips1.ix = f:zl
iy iy yigipsr.ix Qjie - The mode-k matrix product of X and

A and the matrix multiplication of X ;) and A are related |3]:
Y=XxrAe Yu =AXqy. )

Tucker Decomposition: The Tucker decomposition decom-
poses a tensor into a core fensor multiplied by a matrix along
each mode [3], [5]. We take advantage of the Tucker model since
we can relate the Tucker decomposition to the Kronecker rep-
resentation of tensors [25]. For a tensor Y € R™: *Mzx-xmk
of order K, if rank(Y ) < pr holds for all k € [K] then,
according to the Tucker model, Y can be decomposed into:

Y =X x1 Dy x9 Dy x3--- xg Dg, 3)

where X € RP1*P2*"*Pk denotes the core tensor and Dy, €
R™**Pk are factor matrices. The following is implied by (3) [3]:

Y() = DiX()(Dgx @ -+ ©Dgyy @Dy @---@Dy) "

Since the Kronecker product satisfies vec(BXA™) = (A ®
B) vec(X), (3) is equivalent to

vee(Y) = (DK @Dg 1@ --- ®D1)vec(§), @)

where vec(Y) = vec(Y (1)) and vec(X) = vec(Xqy).

2) Definitions for Matrices: We use the following defini-
tions for a matrix D with unit-norm columns: é,(D) de-
notes the restricted isometry property (RIP) constant of order
s for D [27]. We define the worst-case coherence of I as
p1 (D) = max;; |d,-de | We also define the order-s cumula-

i#]

tive coherence of D as
D) £ max max |[D5d;|;. 5
#a(D) |7|<s 72T ID7d;ll ©)
Note that for s = 1, the cumulative coherence is equivalent to
the worst-case coherence and p, (D) < spq (D) [20]. For D =
®kE[K] D, where D;’s have unit-norm columns, p; (D) =
maxye(x) 1 (D) [28, Corollary 3.6] and it can be shown that!:

&8 < 8
7 (D)_gﬁm(m)

IT O+pea@)|. ©

i€[K],
ik

The rest of the paper is organized as follows. We formulate the
KS-DL problemin Section II. In Section III, we provide analysis
for asymptotic recovery of coordinate dictionaries composing
the KS dictionary and in Section IV, we present sample com-
plexity results for identification of coordinate dictionaries that
are based on the results of Section III. Finally, we conclude

IThe proof of (6) is provided in Appendix C.
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the paper in Section V. In order to keep the main exposition
simple, proofs of the lemmas and propositions are relegated to
appendices.

II. SYsTEM MODEL

We assume the observations are Kth-order tensors Y
RMmxmaexmi - Given generating coordinate dictionaries
Dg e R™k*Px_coefficient tensor X. € RP1*P2>"*PK and noise
tensor W, we can write y = vec(Y) using (4) as?

Q) DY | x+w, |x[o<s, )

ke[K]

y:

where x = vec(X) € R? denotes the sparse generating co-
efficient vector, D% = ®D§'c e R™*P denotes the under-
lying KS dictionary, and w = vec(W) € R™ denotes the
underlying noise vector. Here, D) € Dy = {Dj, € R™*Pk |
ldijllz = 1,95 € [pi]} for k € [K], p = [ x) Px and m =
er[a'] my.3 We use ) for ®kE[K] in the following for sim-
plicity of notation. We assume we are given N noisy ten-
sor observations, which are then stacked in a matrix Y =
[¥1,--.,¥n]. To state the problem formally, we first make the
following assumptions on distributions of x and w for each
tensor observation.

Coefficient distribution: We assume the coefficient tensor X
follows the random “separable sparsity” model. That is, x =
vec(X) is sparse and the support of nonzero entries of x is
structured and random. Specifically, we sample s; elements
uniformly at random from [pg], k € [K]. Then, the random
support of x is {7 C [p],|J| = s} and is associated with

{Th xTa - xTg + Tk < pl, | Te| = se, k € [K]}

via lexicographic indexing, where s = [] ke|K] Sk> and the sup-
port of x;.x’s are assumed to be independent and identically
distributed (i.i.d.). This model requires nonzero entries of the
coefficient tensors to be grouped in blocks and the sparsity level
associated with each coordinate dictionary to be small [2514
We now make the same assumptions for the distribution
of x as assumptions A and B in Gribonval er al. [20]. These
include: (1) E {x;x|7} =E{z?} 1, (1) E {x50;|T} =
E {|x|} I, where o = sign(x), (i21) E {7 70 }|T } = L, (iv)
magnitude of x is bounded, i.e., ||x|j2 < M, almost surely,
and (v) nonzero entries of X have a minimum magnitude, i.e.,
minje 7 |T;| > Tmin almost surely. Finally, we define k. e
E {|z|} /+/E {z?} as a measure of the flatness of x (k, < 1,
with x, = 1 when all nonzero coefficients are equal [20]).
Noise distribution: We make following assumptions on the
distribution of noise, which is assumed i.i.d. across data
samples: (i) E{ww'} =E {w?}L,, (ii)) E{wx"|J} =

2We have reindexed D 's in (4) for ease of notation.

3Note that the Dy, ’s are compact sets on their respective oblique manifolds
of matrices with unit-norm columns [20].

“In contrast, for coefficients following the random non-separable sparsity
model, the support of the nonzero entries of the coefficient vector are assumed
uniformly distributed over {7 C [p| : |J| = s}.
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E{wo'|J} =0, and (iii) magnitude of w is bounded, i.e.,
[[wl[s < M, almost surely.

Our goal in this paper is to recover the underlying coordinate
dictionaries, DE, from N noisy realizations of tensor data. To
solve this problem, we take the empirical risk minimization
approach and define

fy (Drx) 2 1&%{ |y - (QD:)x | +l|x’|1},and
1 N

Fy (Dix) % 5 > fy. (Dix), ®
n=1

where A is a regularization parameter. In theory, we can recover
the coordinate dictionaries by solving the following regularized
optimization program:

min Fy (Dy.x).

DDy
ke[K]

®

More specifically, given desired errors {ey }le, we want a
local minimum of (9) to be attained by coordinate dictio-
naries Dy, € B, (DY),k € [K]. That is, there exists a set
{Di breire) € {Dr € B, (D7) } ) Such that Fy(Dix) <
Fy (Dy.x).” To address this problem, we first minimize the
statistical risk:

Dl'l’lEll'l fp (Dl K] = m_m ]E {fy (Dl K )} (10)
ke[K] ke[ﬁ]

Then, we connect Fy (D1.x) to fp (D1.x) using concentra-
tion of measure arguments and obtain the number of samples
sufficient for local recovery of the coordinate dictionaries. Such
a result ensures that any KS-DL algorithm that is guaranteed
to converge to a local minimum, and which is initialized close
enough to the true KS dictionary, will converge to a solution
close to the generating coordinate dictionaries (as opposed to
the generating KS dictionary, which is guaranteed by analysis
of the vector-valued setup [20]).

III. ASYMPOTOTIC IDENTIFIABILITY RESULTS

In this section, we provide an identifiability result for the KS-
DL objective function in (10). The implications of this theorem
are discussed in Section V.

Theorem 1: Suppose the observations are generated accord-
ing to (7) and the dictionary coefficients follow the separable
sparsity model of Section II. Further, assume the following con-
ditions are satisfied:

Pk

<—
s (D, +1)°

max {jte (DN} < =, (D) <z, (11)
kelK] 4 2

Swe focus on the local recovery of coordinate dictionaries (i.e., Dk €

B, (D )) due to ambiguities in the general DL problem. This amblgmty is
a result |:|f the fact that dictionaries are invariant to permutation and sign flips of
dictionary columns, resulting in equivalent classes of dictionaries. Some works
in the literature on conventional DL overcome this issue by defining distance
metrics that capture the distance between these equivalent classes [15]-[17].
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and
E{z?}  24V3455/K
ME{|z|} = (1—2p,(D%)
max {2 D2 "D - 1], (D], +1)}.
(12)
Define

Cran 2 86" () D2 DL 1], (D2, +1),

=]

1 _ E{| |}(1_ 9 s(DO))-

Cnax = 3SK(1.5)52 M,

(13)
Then, the map Dy.x — fp (D1.x) admits a local minimum
D = ®yc(x) Dr such that Dy € B, (DY), k € [K], for any
€r > 0 as long as

LTmin
* S SE o
AOrmin o o ACmax @ o1 (15)
E{l=l} E {|z[}’ ’
and
M, /2 [ MK Cuax
< 3(1.5) ] Y e (16)

ke[K]

A. Discussion

Theorem 1 captures how the existence of a local minimum
for the statistical risk minimization problem depends on vari-
ous properties of the coordinate dictionaries and demonstrates
that there exists a local minimum of fp (D;.x ) that is in lo-
cal neighborhoods of the coordinate dictionaries. This ensures
asymptotic recovery of coordinate dictionaries within some lo-
cal neighborhood of the true coordinate dictionaries, as op-
posed to KS dictionary recovery for vectorized observations
[20, Th. 1].

We now explicitly compare conditions in Theorem 1 with
the corresponding ones for vectorized observations [20, Th. 1].
Given that the coefficients are drawn from the separable sparsity
model, the sparsity constraints for the coordinate dictionaries in
(11) translate into

Sk 1

- < (17
P P 8 TL (DRI, +1)*

Therefore, we have & = O(m—pre L) = O(-=r). Using the
IAEHE I|D [H

fact that | D |z = ||D°||p/\/ﬁ = /P/+/m, this translates into

sparsity order s = O(m). Next, the left hand side of the condi-

tion in (12) is less than 1. Moreover, from properties of the

Frobenius norm, it is easy to show that |[D? DY —1I||z >
pk(pk — mk)/mk The fact that ||]:]2||2 > ‘;pk/,fmk and

the assumption p,, (DY) < 1/4 imply that the right hand side of

(12) is lower bounded by Q) (maxy. sg+/(pr — mi )/’mkE ). There-
fore, Theorem 1 applies to coordinate dictionaries with dimen-
sions p; < m? and subsequently, KS dictionaries with p < m?.
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Both the sparsity order and dictionary dimensions are in line
with the scaling results for vectorized data [20].

B. Proof Outline

For given radii 0 <e; <2,/px,k € [K], the spheres
8., (DY) are non-empty. This follows from the construction
of dictionary classes, Dj’s. Moreover, the mapping Dy.x —
fp (Dy.x) is continuous with respect to the Frobenius norm
|Dy — D||r onall Dy, D), € R™:*Pk ke [K] [29]. Hence,
it is also continuous on compact constraint sets D;.’s. We derive
conditions on the coefficients, underlying coordinate dictionar-
ies, M,,, regularization parameter, and &, ’s such that

Afp (erx) 2 Afp (Dyx; DY) > 0.

inf
D Gssk (Dz )

(18)

This along with the compactness of closed balls B., (DY) and
the continuity of the mapping D1.x — fp (D1.x) imply the
existence of a local minimum of fp (D;.x ) achieved by D,.x
in open balls, B., (D?)’s, k € [K].

To find conditions that ensure A fp (¢1.x ) > 0, we take the
following steps: given coefficients that follow the separable spar-
sity model, we can decompose any D 7, |7 | = s, as

Dy =) Ds.x,

where |Ji| = s for k€ [K].° Given a generating o =
sign(x), we obtain X by solving fy (D1.x ) with respect to x’,
conditioned on the fact that sign(X) = & = o. This climinates
the dependency of f, (D1.x ) on infy, by finding a closed-form
expression for fy (D1.x) given & = o, which we denote as
qﬁy (DI:K |O-) Defining

¢p (Di.x|o) = E {¢y (Di.x|0)},

(19)

(20)

we expand A¢p (D1.x; DY« |o) using (19) and separate the
terms that depend on each radius £ = ||[Dy — DY|r to ob-
tain conditions for sparsity levels s,k € [K], and coordi-
nate dictionaries such that A¢p (D;.x; DY, |o) > 0. Finally,
we derive conditions on M, coordinate dictionary coher-
ences and &,’s that ensure & = o and Afp (Di.x; DY ;) =
Adp (Di:x; DY i |o).

Remark 1: The key assumption in the proof of Theorem 1
is expanding D 7 according to (19). This is a consequence of
the separable sparsity model for dictionary coefficients. For a
detailed discussion on the differences between the separable
sparsity model and the random sparsity model for tensors, we
refer the readers to our earlier work [22].

Remark 2: Although some of the forthcoming lemmas
needed of Theorem 1 impose conditions on Dy’s as well as
true coordinate dictionaries Dg ’s, we later translate these con-
ditions exclusively in terms of D}’s and &;,’s.

The proof of Theorem 1 relies on the following propositions
and lemmas. The proofs of these are provided in Appendix A.

5The separable sparsity distribution model implies sampling without replace-
ment from columns of D .
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Proposition 1: Suppose the following inequalities hold for
ke [K]:

P Y 1

< ———0——— and 5. (D <2

= (DLl + 12 max {5, (DD} < 7. @)
Then, for

5 : ; (22)

< -
E{lz]] ~ 8x3& /2’

any collection of {g : g; < 0.15,k € [K]}, and for all Dy, €
S., (DY), we have :

E{z? € _
A¢p (Di:x; DY |o) > %I} Z =X (ex — exmin(A))
ke|K]
(23)
where

_, 3&-D/2

£k, min (A) = (1.5¥ + 2(K+1)J_\) I-Ck,min-

In addition, if

x< L , (24)
maXge| K] Ch min
then £k min (X) < 0.15. Thus, A¢p (Dy.x; DY, |o) > Oforall
Er € (gk‘min(i),O.IS], ke [K]

The proof of Proposition 1 relies on the following lemmas
as well as supporting lemmas from the analysis of vectorized
data [20, Lemmas 4,6,7,15,16].

Lemma 1: Let D = ® Dy, where 6,(Dy) < 1 for k € [K],
and J be a support set generated by the separable sparsity
model. Then any D7, |J| = s, can be decomposed as Dy =
@Dy 5. where |Jx| = s and rank(Dy 5, ) = sk, for k €
[K]. Also, the following relations hold for this model:’

PD.T' - ®PDk‘Jk DD} - ®D;—?Jk aHD_jI' - ®HD"-5& 3
(25)

where P and H are defined in Section I-C.
Lemma 2: Given Dq.x and D'IJ: i » the difference

XD - Qs

= Z D1 @@ (D — D) ® - @Dy x, (26)
ke[K)

where without loss of generality, each f)k,i is equal to either
D! or D, for k € [K].

We drop the k index from f)k i for ease of notation throughout
the rest of the paper.

Lemma 3: Let o € {—1,0,1}” be an arbitrary sign vector
and 7 = J (o) be its support. Define®

¢y (Di.x|o) £ %”y— (@Dk))c”z—klaTx.

@7

inf
xcRP
supp(x)CJ

TThe equations follow from basic properties of the Kronecker product [26].
8The quantity ¢y (D1.x |o) is not equal to ¢y, (D1.x ) conditioned on &
and the expression is only used for notation.
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If D] ;7 Dy 5 is invertible for k € [K], then X minimizes
¢y (Dy.x|0), where

%7 = (QDis)y—*(Q (DiaDes) ') os, @9

and Xy = 0. Thus, ¢y (D1.x|0) can be expressed in closed
form as:

¢y Drxclor) = 51— 53" (®Pouy )y
+10] (QDis )y - JJ(®HD”)55 (29)

Lemma 4: Assume max {d,, (D}),d,, (Dy)} <1 for k €
[K] and let Dy, be equal to either DY or Dy. For

A¢p (Di:x; DYk |0) £ ¢p (Di:k o) — ¢p (DY |0),
(30)

we have

A¢p (Di:x; Dix |o)

_ E{=} > B {T[D{"P, DY}

kelK]

]EJ}.- {Tr {DET(ITM - PDk,jk )Dg]}
Eg {Tr [D%-T Bx . Dk ]}

—AE{lz]} 3" Eg {T} [ﬁ;?JID?]}...

ke[K]

Eg {Tr [T, - Di 5 D}]} .. Eac {Tr [Dc 5, DK |}
2y e (s, )

ke[K]
R
(31)

Lemma 5: For any Dy € D;, satisfying RIP of order sy,
given Ji C [pr] and |Ji | = sk, the following relations hold:

IDe,gilly = Dz '[ly € V1I+60.(Dr)y  (32)
ésk (Dk) < “Sk—l(Dk)- (33)

Lemma 6 ([20] Lemma 4): Let D;.’s be coordinate dictio-
naries such that é;, (D) < 1. Thenforany 7 C pk, |Jk| = sk,
Hp, ; exists and

1 1
| — + &
HHD""’k 2~ 1—0,, (Dg)’ ”D"»"’k 2~ /T3, (Dr)
(34)
and for any Dj, such that [|[D, — D} ||r <& < /1 —4,, (Ds):
1—68,, (D) > (V1 —4d,,(Dr) —€x)* 21 -0k, (35

Lemma 7 ([20] Lemma 6): Given any D}c, D% £ Dy, there
exist Vi eR™+*?% with diag(D}'Vy) = 0 and diag (V] Vi)
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= I,,, and a vector 8 = 0; (D}, D?) € [0, ]P¥, such that
D = D;Cy(6x) + ViiSi(6y), (36)

where C, (8}.)
Moreover,

2 Diag(cos(8y)) and S (6y) £ Diag (sin(8y)).

2 Ok, j
;6’ij < Hdi di:‘.”f! _2SLD( D) ) <9kj,and

2
=[16xl> < D} — Dillr < [|6]lo, 37

where j € [pi]. Similarly, there exists V), such that D} =
D2Cy(6r) + V,Sk(0x), where diag(D%TV;c) =0

Lemma 8: Fix Dy.x and D?:K, and suppose {Ag},
{Bg}, {0 } satisfy the following:

Ap 2 max {[ID{Dg ~ Ty, 17, DYDY ~ Ty, 1 }
By > max {||[D||2,||D} |2 } ,and

& > max {8y, (Dx), 8, (DY)} - (38)
Then for all 8, £ 8 (Dy,,
A¢p (Di.x; DYk o)

. sE{#?} 3 162 ( e BE o )
;. [ E——

ke[K]

DY), k € [K], we have

(39)

= 2 Sk 2AkB;c
— O

(a k + 21 H

1E[K]

- 154,
where 1. £ gy and 6 £ Hi;g:;] \ T8

Proposition 1 shows A¢p (D1.x;DY.x|o) > 0. However,
given X, the solution of ¢y (D1.x ), & = sign (X) is not nec-
essarily equal to the sign of the generating o. We derive con-
ditions that ensure X is almost surely the unique minimizer of
fy (D1.x) and & = o. We introduce the following proposition
for this purpose.

Proposition 2: Let the generating coordinate dictionaries
{DY € Dy} satisfy:

1 1
ps(D°) < 5, max{d,, (DR)} < 7. (40)
Suppose A = BT < oty and
max {€x } < min {ACyay,0.15}. (41)
ke|K]

If the following is satisfied:

M,

Kj2[ 3 .
I <3019) (chm

> sk), “2)

ke[K]

then for any Dj.x such that Dy ESgk(Dg), for ke
[K], X that is defined in (28) is almost surely the min-
imizer of the map X' — %[ly — (® Dy)X/|3 + A|[x/[; and
A¢p(Dyg; DY lo) = Afp(Dix; DY g )
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Remark 3: Note that p,(D?) < % in (40) can be satisfied
by ensuring that the right hand side of (6) is less than % One
way this can be ensured is by enforcing strict conditions on
coordinate dictionaries; for instance, 15, (DY) < .

The proof of Proposition 2 relies on the following lemmas
and [20, Lemmas 10-13].

Lemma 9 ([20] Lemma 13): Assume p.(D) < % If

min|z;| > 24, and |y ~ Dx|l, < (1~ 2u (D)) (43)
hold for generating x, then X defined in (28) is the unique
solution of miny & ||y — (& D) x|, + A[[x'||1-

Lemma 10: For any D° = @ DY and D = ) D, such that
D, € B,, (DY), fork € [K], suppose the following inequalities
are satisfied:

and max e, < 0.15.

: (44)
ke[K]

8., (DY)} <
;g&zc]{ L(Di)} <

L M

Then, we have

pa(D) < e (D) + 2(1-5)"'”\/5(

> sk). (45)

ke[K]

Proof of Theorem 1: To prove this theorem, we use
Proposition 1 to show that Aqﬁp(Dl;K;D?:Klﬂ') > (0, and
then use Proposition 2 to show that A¢p (D.x; DYy |o) =
Afp(Dy.g; DY ). The assumptions in (11) ensure that the
conditions in (21) and (40) are satisfied for Proposition 1 and
Proposition 2, respectively. Assumptions (12) and (14) ensure
that the conditions in (22) and (24) are satisfied for Proposition 1,
A< Tﬁﬁ:‘ﬁ holds for Proposition 2, and max ¢ (x| {Ck,min} <
Cmax. Hence, according to Proposition 1, A¢p(Di.x;
DY.xlo) > Oforalle; € (ACy 1in, 0.15], k € [K]. Finally, us-
ing the assumption in (16) implies A¢p(Di.x; DY |o) =
Afp(Dy.x; DY) forall e < ACax, k € [K]. Furthermore,
the assumption in (14) implies Craxh < 0.15. Consequently,
for any {e; > 0,k € [K]} satisfying the conditions in (15),
Di.x — fp(Di.x ) admits a local minimum D= ®f)k such
that D;, € B., (DY), k € [K].

IV. FINITE SAMPLE IDENTIFIABILITY RESULTS

We now focus on leveraging Theorem 1 and solving (9) to
derive finite-sample bounds for KS dictionary identifiability.
Compared to Gribonval ef al. [20], who use Lipschitz continuity
of the objective function with respect to the larger KS dictionary,
our analysis is based on “coordinate-wise Lipschitz continuity”
with respect to the coordinate dictionaries.

Theorem 2: Suppose the observations are generated accord-
ing to (7) and the dictionary coefficients follow the separable
sparsity model of Section IT such that (11) to (16) are satisfied.
Next, fix any £ € (0, oc). Then, for any number of observations
satisfying

2
. P (€ + mpepr)
V= Q((ek ——y)e
M,

(L () o
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with probability at least 1 — e~¢, Dy.x — Fy (Dy.x ) admits
a local minimum D = @ Dy, such that Dy € B, (DY), for
ke [K].

A. Discussion

Let us make some remarks about implications of Theorem 2.
First, sample complexity has an inverse relationship with signal
to noise ratio (SNR),® which we define as

onp o EUXI3) _ sE{z"}

— . 47
E(w3]  mE{u?} @7

Looking at the terms on the right hand side of (46) in Theorem 2,
M, /(sE {”}) is related to the deviation of || x||» from its mean,
E {||x||2}, and depends on the coefficient distribution, while
M, /(sE {z?}) is related to 1/ SNR and depends on the noise
and coefficient distributions.

Second, we notice dependency of sample complexity on the
recovery error of coordinate dictionaries. We can interpret £, as
the recovery error for DY. Then, the sample complexity scaling
in (46) is proportional to maxy egz. We note that the sam-
ple complexity results obtained in [20] that are independent of
e2 “D — DD” » only hold for the noiseless setting and the
dependency on 2 is inevitable for noisy observations [20].
Furthermore, given the condition on the range of £;’s in (15),
€x’s cannot be arbitrarily small, and will not cause N to grow
arbitrarily large.

Third, we observe a linear dependence between the sample
complexity scaling in (46) and coordinate dictionaries’ dimen-
sions, i.e., maxy O(myp} ). Comparing this to the O(mp?) =
(@] (H £ Tk pi) scaling in the unstructured DL problem [20], the
sample complexity in the KS-DL problem scales with the di-
mensions of the largest coordinate dictionary, as opposed to the
dimensions of the larger KS dictionary.

We also compare this sample complexity upper bound scal-
ing to the sample complexity lower bound scaling in our
previous work [22, Corollary 1], where we obtained N =
Q (pX"x mepre?/K) as anecessary condition for recovery of
KSdictionaries.\° In terms of overall error £, our result translates
into N = max; Q {25 K2p(myp})e~2} as a sufficient condi-
tion for recovery of coordinate dictionaries. The lower bound
depended on the average dimension of the coordinate dictio-
naries, Ek mipi /K, whereas we observe here a dependence
on the dimensions of the coordinate dictionaries in terms of the
maximum dimension, max; mypx. We also observe an increase
of order max;, p? in the sample complexity upper bound scaling.
This gap suggests that tighter bounds can be obtained for lower
and/or upper bounds. A summary of these results is provided in
Table I for a fixed K.

?Sufficient conditioning on N implies O-scaling for sample complexity.
10We have the following relation between & and £}, ’s:

c< 3 (TLIB ) Ioe=ntl < 3

ke[K]| “ig[K] ke[K ]
itk

Assuming all £ 's are equal, this then implies .-:gc =>e2/(K2p).
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TABLEI
COMPARISON OF UPPER AND LOWER BOUNDS ON THE SAMPLE COMPLEXITY
OF DICTIONARY LEARNING FOR VECTORIZED DL AND KS DL

Vectorized
DL KS DL
Minimax Lower Bound % [21] PZJ;# [24]
N mp3 mip;
Achievability Bound —— [20] 3
22 kel

B. Proof Outline

We follow a similar approach used in [20, Th. 2] for vectorized
data. We show that, with high probability,

AF K) = inf  AFy (Dy.x; DYy 48
v (e1:x) Dke-;:, o) Y ( LK 1.1;) (48)
converges uniformly to its expectation,
Afplerx) 2 inf Afp (Dig; DY) . 49
felerx) D;,eé‘i(ng) fe (D1g; DY) (49)
In other words, with high probability,
|AFy (e1.6) — Afp(erx)| < v, (30)

where 77y is a parameter that depends on the probability and
other parameters in the problem. This implies AFy (1.5 ) >
Afp(e1:x) — 2nn. In Theorem 1, we obtained conditions that
ensure A fp(e1.x) > 0. Thus, if 29y < Afp(e1.x ) is satisfied,
this implies AFy (1.5 ) > 0, and we can use arguments similar
to the proof of Theorem 1 to show that D.; — Fy (Dy.x)
admits alocal minimum D = @ Dy, such that D, € B, (DY),
fork € [K].

In Theorem 1, we showed that under certain conditions,
f]P(Dl K 7D1,K) = Aqls]l) (Dl K,D?;JU) To find v, We
uniformly bound deviations of Dy .5 + Ad)y (Dy.x; DYk |o)

from its expectation on {S; , (DY )}k ;- Our analysis is
based on the coordinate-wise Lipschitz continuity property of
Ady (Di:x; DY.x|o) with respect to coordinate dictionaries.
Then, to ensure 2y < A¢p (Di.x:D{.|0), we show that
27y is less than the right-hand side of (23) and obtain conditions
on the sufficient number of samples based on each coordinate
dictionary dimension and recovery error.

The proof of Theorem 2 relies on the following definition and
lemmas. The proofs of these are provided in Appendix B.

Definition 1 (Coordinate-wise Lipschitz continuity): A
function f : Dy x --- x Dg — R is coordinate-wise Lipschitz
continuous with constants (Lq,...,Lg) if there exist real
constants {Lj > 0}, , such that for {Dj, D} € D; }f=1:

|f Dix) = fF(Dig)l < Y Le|IDe =Dz (5D
ke[K]

Lemma 11 (Rademacher averages [20]): Consider F to be

a set of measurable functions on measurable set X" and NV i.i.d.

random variables X;,...,Xy € X. Fix any £ € (0,0). As-

suming all functions are bounded by B, i.e., |f(X)| < B, almost
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surely, with probability at least 1 — e~:

1
sup | —=
feF (N

T 1
§21|,'—]Ex, v sup | =
2 .GI.N{IE‘? N

where ;.5 ’s are independent standard Gaussian random vari-
ables.

Lemma 12: Let 'H be a set of real-valued functions on Dj. €
B., (D)), k € [K], that are bounded by B almost everywhere
and are coordinate-wise Lipschitz continuous with constants
(L1,...,Lg) .Lethy, ho, ..., hy be independent realizations
from H with uniform Haar measure on H. Then, fixing £ €
(0, 00), we have with probability greater than 1 — e~¢ that:

Y f(Xa) ~Ex {f(X)})

ne[N]

> an(Xn))} +By%,

ne[N]
(52)

¥ 3 (i) - E(h(D1x)}|

s1
Dkegs;,( k) ne[N]
ke[K|
g41/2N(kz[£]LksM/Kmkpk)+B\/ 2 (53
[

Lemma 13 ([20] Lemma 5): For any & < 1, Dy, D}, such
that max(d, (D), ds, (D)) < 6., and Jx C pr, |Te| = s,
we have

IT—D; 5 Dj s llz < (1= 8)7"/?D; — Dilp,

|Hp, 5, —Hp; ;2 <2(1 - 8¢)~%/*| Dy — Dl
ID{ 7 =D’ g ll2 < 2(1 = 6x)~"|Dg — D ||, and
IPp, 5, —Poy , lla < 21— &) /2Dy — Dillr. (54)
Lemma 14: Consider DE €D, and &.’s such that

er < /1—6,, (DY), for ke [K] and define /1— o, =
/1 =65, (DY) — & > 0. The function Ady (D1.x;DY.x|0)

is almost surely coordinate-wise Lipschitz continuous on
{B., (D{)},_, with Lipschitz constants

L 2 (1—6,)71/2 (MI( IT 1+ (Dg)) + M,
ke[K]

2
+2v5 [] (1—6k)—1f2) . (55)

ke[K ]

and |Aq5y (DLK;DE': K |ar)| is almost surely bounded on
-
{BEk (DE)}k:l by EkE[K] LkEk-
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Proof of Theorem 2: From Lemmas 12 and 14, we have that
with probability at least 1 — e<:

|Ady (D1.x; DY |o) — Agp (Dix; DY g |or) |

sup
D;€eB., (D})
kelK]

< \/% > Liex (2vmmim +VE),  (56)

ke[K]
where Ly is defined in (55). From (56), we obtain Ady
(Dl:K ; D[IJ:K |O') > AQBP (Dl:K H D?K |D’) — QT}N where N =

2 Pkei) Lrex (2y/mmxpr + V). In Theorem 1, we de-
rived conditions that ensure A fy (D1.x ; Dﬁ': x) = Ady(Di.k;
Di.xlo) and Afp(Dix;D}y) = A¢p (Dix;Dl|o).
Therefore, given that the conditions in Theorem 1 are satisfied,
AFy (e1:x) > Afp(e1:x ) — 27, and the existence of a local
minimum of Fy (D;.x ) within radii £ around DY, k € [K], is
guaranteed with probability at least 1 — e~¢ as soon as 2ny <
Afp(e1:x). According to (23), A¢p (DLK ; D'f:K |cr) >
31F‘812 EkE[K] ﬁh (ex — €k,min (A)); therefore, it is sufficient to
have for all k € [K]:

E{z? — in (A
Vs pasi (2y/mmeme + VE) < LG Gt ®)
N 8py,
which translates into N > max; x| N, where

245, )2
SE{x2}(ek — €k min (X))
(57)

Ny = (2\/W+\/E)2(

Furthermore, we can upper bound L; by

(a) ) ) 2
Ly < \/5(1.25“% + M, + 2“?1\/5)

(b) . -
<V2¢ ((1.25" +2522) M2 + Mj), (58)
where ¢; is some positive constant, (a) follows from the fact
that given the assumption in (21), assumptions in Lemma 14
are satisfied with /1 — dx > 1/1/2 for any & < 0.15, and (b)
follows from the following inequality:

! AE{|x|l,} < ! AM.
Ve SV

Substituting (58) in (57) and using (\/E + 2./ TmEpr 2 <
¢ (€ + my,py,) for some positive constant ¢y, we get
2K (14+22)M2 + M2 ))
sE{z?}2 (e} — Ek,min(z))z
_qof _pilmepe +6) (2K(1+2%)M7 N M2
(ek — ekmin(A)?\  $2E{z2}? sE{z2}2 ) )
and N > maXge[K] Ni..
Remark 4: To bound deviations of A¢y (Di.x; DY i |0)
from its mean, we can also use the bound provided in [29, Th. 1]

that prove uniform convergence results using covering number
arguments for various classes of dictionaries. In this case, we get

mppp+£)log N
oy < c\/gE*—V—L for some constant ¢, where an extra

A =TE {[z]} = ZAE {x],} <

N, = Q(P%(mkpk + 5)(
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\/Tog N term appears compared to (53). Therefore, Lemma 12
provides a tighter upper bound.

V. CONCLUSION

In this paper, we focused on local recovery of coordinate dic-
tionaries comprising a Kronecker-structured dictionary used to
represent K th-order tensor data. We derived a sample complex-
ity upper bound for coordinate dictionary identification up to
specified errors by expanding the objective function with respect
to individual coordinate dictionaries and using the coordinate-
wise Lipschitz continuity property of the objective function.
This analysis is local in the sense that it only guarantees ex-
istence of a local minimum of the KS-DL objective func-
tion within some neighborhood of true coordinate dictionaries.
Global analysis of the KS-DL problem is left for future work.
Our results hold for dictionary coefficients generated according
to the separable sparsity model. This model has some limita-
tions compared to the random sparsity model and we leave the
analysis for the random sparsity model for future work also.
Another future direction of possible interest includes providing
practical KS-DL algorithms that achieve the sample complexity
scaling of Theorem 2.

APPENDIX A

Proof of Lemma 2: To prove the existence of such a forma-
tion for any K > 2, we use induction. For K = 2, we have

(D; ® Dy) — (D} ® D)
= (D, — DY) ® D + D; ® (Dy — DY)
= (D; —D}) ® D, + D} ® (D, — DJ) . (59)
For K such that K > 2, we assume the following holds:
® D Dl
ke[K| ke[K)

= Z f)k,l ®---®(Dy—DY)® %f)ka (60)
ke[K]

Then, for K + 1, we have:

® Di- Q D

ke[K +1] ke[K +1]

- ( ® Dk) @Dy 41— ( ® DE) ®D?c+1
ke[K ] ke[K]

@ ( Q- ® na) ®D.,
ke[K] ke[K ]

X Dk) (DK+1 _DE(+1)

--® (Dr — D) @"'@f}k,K)

®D% 1 + ( X Dk) (DK+1 _DE(+1)

© Y Do @ (De-Di)@ @Dk, 61)
ke[K+1]
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where (a) follows from (59), (b) follows from (60) and (c) fol-
lows from replacing D% , ; with Dy x 1 in the first K terms

of the summation and D;.’s with f)KH,k, for k € [K], in the
(K + 1)th term of the summation.

Proof of Lemma 3: Using the same definition as Gribonval
et al. [20, Definition 1], taking the derivative of ¢y (Dy.x|0)
with respect to x and setting it to zero, we get the expression
in (28) for X. Substituting X in (27), we get

~ 5| I¥ - (®Dis)y—ies)’
(®(Dmnm ) (®Di)y=2)]
D il - (®Pm i)Y

+10; (®Dk.ﬂ) UJ' (@an J;,)UJ1

where (a) follows from (25).

Proof of Lemma 4: We use the expression for ¢y (Dy.x |0)
from (29). For any D = @ D, D' = @ D}, Di, D}, € Dy,
we have

Ady (Di.x;Dyglo) = ¢y (Di:k|o) — ¢y (Do)
1
=57 (Q®Po;, ~@Po.s)y
— Aoy (@ ea — QD Jk)
l?
+ ?U} (®HDLJ’;¢ — ®HDk,Jk ) ag.

We substitute y = (QD))x +w =
break up the sum in (62) into 6 terms:

Apy Dy Diglo) = Agi (Drx; Diglo),
i€[6]

¢y (D1:x|o)

(62)

(®D} 45 )x7 +w and
(63)
where
A¢y (Dr.k; Diglo) = %XT (® Dg)T
(®Pos,, - ®Po..s ) (RDE)x
ol T(®D2)T(Z Ps,, 00

ke[K]

(PDi,Jk - PD,,w,,k) ®---

Poes, )(@DD)
=5 (2 (e o) oo

)
(D Poy,

(DE"TPf’wx D?") )L

_ PDk,Jk )Dg) [l
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Ady (Dy.x; Dy g |o) = (

kg] (P . Dﬁ') ® --®
D?{))x,

1
Ad3 (Di:x; Diglo) = EWT( Z P5,, ® - ®

kelK ]

(®Po; ,, —Po, ,)DF) 00 (P

DKJ

(PDLJ@ - PD*Jk) @ OPpy g )W’

Ady (Dl:KiDi:K'|U) = _J\O'}( Z (D-F;JlD?) ®---®

ke[K]

/ A2
Aéﬁ (DI:K ; D];K |0') = ?U}(

S Hy, ©--®

ke[K]
(HD;‘ _Hp, Jk)(@...WHD” )a,,f, (64)

where (a) follows from Lemma 2 and analysis for derivation
of {A¢; (Dix; Dige|o)}>_, are omitted due to space con-
straints. Now, we set D’ = D and take the expectation of
Ady (Dy.4; {D} }|o) with respect to x and w. Since the coef-
ficient and noise vectors are uncorrelated,

E {A‘W (Dl:K§ D?;K IO')} =E {Af,f?s (D];K;D[lJzKlrJ')} = 0.
We can restate the other terms as:

Ady (Dix; DY ko)

1
(bz)ETr [XJX} Z (DOTPﬁl 7 D[ll) R---®
ke[K]

DKJ

(D} (Tny =P, )D}) @+ @ (D P

D?f[) ]:
Ads (Dy.x; DYk |o)

1 T

ke[K]

® (PDg:jk — PD}.-jk)

@---2P=

e )|
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A¢y (D1.x; DYk |o)

9 Ty [XJUJ( Z (DTJIDE') @ ®
ke[K]

(L. -Df ;Df) @
Ads (D1.x; DYk |o)

A2 _
:—Tr [UJGJ( Z Hf)url @---Q

ke|K]
(Hpy, —Hp,, ) oHy ﬂ 65)

D} =D}
and DO , DY =1, , respectively. Taking the expectation of
the terms in (65), we get

where (b) and (c) follow from the facts that Png J
Tk

E {A¢: (D1.x;Di.x|o)}

@ ]E{J { ST [D”TP~I , D'f]
ke[K) .

T T
Tr [Dg (In, — P, , )Dg] T [Di. 5e . Dk ] }
_E{z%}

25 o fnfot v, o1}

ke|K]
Ej {Tr [DET
Ej, {Tr [DgTPﬁK’

E{Ag¢s (DI:K ; D?:K |°')}

]E{wg} { ZPD1J & --®

ke[K]

(In, —Pp. )Dg]}...

T D‘c""]} ’

E{wﬂ}EJ{ 3 Tr[ B ],_.Tr [PDM —PD,,,Jk]
kelK]

T [Ps, | }

{6)0

E {A¢s (D1.x;DV.xl0)}

= E{|z]} Y Eg4 {Tr [DTJID?}}...
ke|K ]
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E; {Tr [I Dgﬂng]}...mﬁ {Tr [D; JKDi.]},
E {Aég (Dr; DY i |o)}

:g > Es{m[Hs, |}

ke[K]
E; {Tr [H,;,gmt —HDk:Jk]} ...Ez, {Tr [Hﬁx‘ﬂ]}.
(66)

where (d) follows from the relation Tr(A @ B)=
Tr[A] Tr[B] [26] and (e) follows from the fact that Pp, ; ’s
are orthogonal projections onto subspaces of dimension s; and
Tr[PDﬂ,;;k —Pp, 5, | = sk — s = 0. Adding the terms in (66),
we obtain the expression in (31).

Proof of Lemma 5: Equation (32) follows from the definition
of RIP and (33) follows from Gerschgorin’s disk theorem [26],
[301, [31].

Proof of Lemma 8: To lower bound A¢p (D1.x;D{ .4 |0),
we bound each term in (31) separately. For the first term
E {A¢; (Dy.x; D). |0)}, we have

2
F } ’

(67)

Ey {T [DY'Pp, , DY} =Ey, {HPm 2 Dk

If D;, = DY, then

(a) Sk
B {[Pot,, Dbl } £ IDE =0 69
where (a) follows from [20, Lemma 15]. If f);c = D, then
() _ 2
{HPD;, T Dk Tk } :]EJk {ll[Dkal]Jk||p}
Pk
(e) (d) Sk 1 (e) Sk
= Dk -1 = — — > —Pk = Sk,
” ”F Pk ; 0032(9&‘1)) Pk

where (b) is a direct consequence of Lemma 7; we can write
Dg = DkCEI — Vka where Ck = Diag (CDS(Q;C)), Tk =
Diag (tan(#)) and 6 X denotes the angle between d,. ; and
d} ;. Hence Pp, , D ; =[D;C; "]z . Moreover, (c) fol-
lows from [20, Lemma 15], (d) follows from the fact that
[[di ]l = 1, and (e) follows from the fact that cos(fy ;) < 1.
Similarly, we have

Eg {Tr [DgT(Imk —Po,y, )Dﬂ}

= EJk {”(Imk - PDk,,j"k )DE,J;,

(f) Sk _ Sk Bg
=z _HGkHQ ;
Pel— 0

N

(69)
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where (f) follows from similar arguments as in Gribonval
et al. [20, eq. (72)]. Putting it all together, we have

E {Aﬁf’l (Dl:K ; D[IJ:K |0')}

E{*} Sk 2 BJ%
il Sl i el _Zk
72 kz. IR e e

e[K] \ ig[K]
i#k
ke[K] pk Pk k

Next, to lower bound E { Apy (D1.x; D5 o) }, we upper
bound |E {A¢y (D1.x; DY,y o) }|- If D; = DY, we have

Es {Tr[D% Dbz} =Ea (Tt (L]} = s, (7D

otherwise, if f),;c = Dy, we get

[Eq {Tr [De.z " Di]}|

(g) + 0
<sEa {|DLsDEa .}

< siEg {ID} 4, 121D g, }

2o (7o) (Ve 00)

(7) 146,
<
= S 1_6.&,

(72)

where (g) follows from the fact that for a square matrix A €
R Tr [A] < q||Alj2, (f) follows from (32) and (34) and (i)
follows from (38). Similar to [20, eq. (73)], we also have

B {1 - DE4 DI}
sk ||6%]13 Sk Ay By
< £
S R R te N
Thus, defining 5_g £ [Tk j we get
Hﬂc
E {Ady (DI:K;D?:K|U)}
> —aB{|zl} Y o] [] s
ke|K] i€[K]
i#k
Sk 11613 Sk Ay By
(Pk 2 + 5 2 1— ”0 HQ
0 A B
:—;R.S]E{‘.El} Z (” ;”2+Sk1k kHG ||2)
Pr
ke[K]
(74)
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To lower bound E {Aq&s (Dl ;DY K |o’)} we upper bound
|]E {Aqb.; (Dl K 1 xlo }| For any Dk, we have

|]EJ'° {Tr [Hf)k-.ﬂ ]H <Ea {Sk 2} Ug) lj—kc‘ik’
(75)

where (j) follows from (34) and (38). Similar to Gribonval
et al. [20, eq. (74)], we also have

|IEJ';¢ {TI [HDng N HD"‘“"*]H <
Thus, we get
E{A¢s (D1.x; DY i |o) }

s; s2 4A.B
125 | (o)

‘Hﬁkﬂk

Sk 4AkBk

iﬁ”‘%”z

ke[K] \ ig[K]
i#k
;\23 1 1 (Sk 4_AkBk
D D [ | 26l )
2 rer) P\ ieik) 14 pe 1
(76)
Adding (70), (74), and (76), we get (39).
Proof of Proposition 1: To  show  that Ag¢p(Di.x;

DY, |o) >0, we use Lemma 8 and prove that the right
hand side of (39) is positive under certain conditions. First,
we ensure the conditions in (35) and (38) hold for Lemma 6

and Lemma 8, respectively. We set & = 3, d;, (Dy) = & and
8, (DY) = 1, for k € [K]. For g; < 0.15, this ensures:
V1 -6, (Dg) > /1 — 6, (D)) — &k, and
max {ds; (D}). bs: (D)} < . (77

and implies §; < 1 (condition for Lemmas 4 and 13). Next, we
find conditions that guarantee:

Sk B a} 2B Sk
pr1— 6 Dr

1
21
(78)
1 &
5. If we take 5‘; <
<1, (78) is

+AR20 g + k2 (3)HD/2 <

where (a) follows from replacing &; with

W and 2 < given the fact that &2

1
TaE O
satisfied.!! Consequently, we can restate (39) as

sE{z? o
Ade (Duxi Diclo) = L 5 Lty

ke[K]

_8 (3(.&'—1)/2 +2(K+1)1) ;ﬁgs_kAkBk]_ (79)
Dr:

From [20, Proof of Proposition 2], we use the following rela-

tions:

Br <Bp +ex <By+1, A <A)+2Biei, kelK],

(80)

" These numbers are chosen for a simplified proof and can be modified.
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where A% £ |D?'DY — L, || and B? £ ||D?||y and (80)
follows from matrix norm inequalities [20]. Defining -~ £
16(3(K-1/2 4 2“““)1&%2;& for k € [K] and using k2 <
1, we have

. 3{K—l),"2 N 2[K-+1) 1
Th = 8x 3E-1/2 )\ g% 3E-1)/2

<9 1+4 <1
- 8 64) — 2

(DY), k € [K], we get
Aop (Dl:K ; Dcll:K |‘7)
e Ax
2 By

(b) s]E{IQ} Z £k
’}'k A+ ZBkEk)

k
SE{.L‘Z}

A
2 B
Eg
> —3 > =

Aﬂ
( ’TkB_k) ]
reix] PF k

where (b) follows from (79), (c) follows from (80), and (d)
follows from (81). Hence, we can write

(81)

Then, for D, € S.,

kE[K]

© S]E{J;?} Y (
w (

relx) P¥

> S]E{_[jz} Z Ek Ek(l—"}(}c

ke[K]

(82)

skE{x
AQSP (DI:K ; D'I:L’K |U) > { Z —_— (Ek — Ek mm(l))
kE[K]
(83)
where we define
_ Al
€k, min (A) é’TkB_:
=16 (3“"—”” 4 2“””1) 2%k A B,
Pk
2 - C L) =
= W (3(K D72 + 2(K+1))L) J\Ok,miu: (84)

and Cj min is defined in (13). The lower bound in (83)
holds for any &; < 0.15 and Dy, € S-, (DY), k € [K]. Finally,
since 3(K-1/2 4 92(K+1)3 < 05 x 3(K+1 k’/g the assumption
A < 0.15/(maxye(x | Ck,min) implies that sk‘mm()t) < 0.15 for
k € [K]. Therefore, A¢p (DI;K;D[IJ:K|0') >0 for all g €
(Ek‘min(i)u 015], ke [K] [ |

Proof of Lemma 10: Considering j & J, associated with
(J1s---5Jk) & (J1 x -+ x JTx ), we have

IDZd; 14
@ Do q D% "(d; — d° D, —-D%)"d;
< D7 djli + D7 (d; —d;)|li + [|[(Dg 7) dilh

.
< pe(D") + V5 IDY ' (d; — )2 + (D — DY) d o
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< ps (D) +\/_[
+|@Des -@Dtal,
11 \/1+r53k(D2))

ke[K]

I s )],

Idsl |

(b)
s,us(D”H\/EK

”dkdk di .'.?k”Q “dk JK

(2 [, s -l i, )
ke[K]

+ 3 [Bus], - IPes DLl [Br 2}
ke[K]

) (5
ke[K]

[T e,

ic[K]
ik

II

ke[K]

< (DY) + 5 (

+ 2

ke|K]

(85)

< (D) +2015)/2 /5 ( > )

kelK]

where (a) follows from the triangle inequality, (b) follows from
(26), (c) follows from (33), and, (d) follows from substituting
the upper bound value from (44) for ., (DY). For D; = DY,

”D i, ”2 \/mﬁ_ \/j< 1.5andforD; = D;, ac-

cording to (80), we have |[D; 4 ||, < ||D 7 ||2 +g < \/g-i-
015 < 1.5. |

Proof of Proposition 2: 'We follow a similar approach to Gri-
bonval et al. [20]. We show that the conditions in (43) hold for
Lemma 9. We have

o= (@p),
< |(®Dts - @Des) x5, + 1wl

=M, Z ”Dl,-?l ®---®(Dly —Drg)® @
ke[K]
f)K WJic ”2 + M,
<M, ), ”Dl Jll -|D% 5 Dkn?k“g"'Hf)K‘JK
ke[K]
+ M,
<M 3 | TI [Bua], o+ 2t
ke[K] zg_ey}c']
(g}(lﬁ}w_szx Z e + My, (6)
ke[K]
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where (a) follows from (40) and the fact that for f)i = Dg',
D¢ I, < vV1+6, (D)) < \/E < 1.5andforD; = D;,ac-
cording to (80), we have ||D; 7 ||, < ||D? , | o 16 < \/g—i—
0.15 < 1.5. Hence, we get
2(1-21,D)) - [y - (QDr) ¥
(1= 2u,(D)) — ||y — (KD« ) x|,

> A1 - 2u,(D)) — 1.5) %V, Y e — M,

ke[K]

D A1 = 20, (D) — (15)K/? (41\/§+ (1.5)‘”2MI)

(c) i
> A(1 - 2u,(D%) = 3(1.5)* M, Y e — M,

ke[K]

> sk) — M,, (87)

=3(1.5)K/2 M, (Kicmx —
ke[K]

where (b) follows from (45) and (c) follows from (43) (2h/s <
Tminy/5 < Mz) and (45). If & < Cpaxh, k € [K], the as-
sumption on the noise level in (42) implies that the right-
hand side of (87) is greater than zero and A(1 — 2p.(D)) >
[y — (& Di) x||,. Thus, according to Lemma 9, X is al-
most surely the unique solution of min % ||y — (® D) X/||, +
Al|x'|l; and Agp (Dy.x, Do) = Afp (D1.x,D)x). W

APPENDIX B

Proof of Lemma 12: According to Lemma 11, we have to up-
perbound E{supp,, 5. (pg) kc(x] & Lnepv) Bahn(Di:xc) [}
Conditioned on the draw of functions hi,...,hy, con-
sider the Gaussian processes Ap, , = % ERE[ V] Brhn(D1.x)

and Cp, :ﬁzkelffl{b* Eee[mklzgeluldumk p{)i;), Where
{Bu}n_y’s and {¢5}, k € [K],i € [mi],j € [px]’s are inde-
pendent standard Gaussian vectors. We have

S
2

> hn(Dix) = ha(Dlg)

ne[N|

2
() 1
N( Z Lk”Dk_Dk”F)

ke[K]

253 b -pi
ke[K]
:]E{|CD1:K —CD1:K|2}, (88)

where (a) follows from coordinate-wise Lipschitz continuity
of h and (b) follows from Cauchy-Schwartz inequality. Hence,
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using Slepian’s Lemma [32], we get

E sup Ap,x ¢ <E sup Cb, .k
D €B:, (D}) DB, (D})
kE[K] ke[K]

-/X ( ) LkskE{nc*np})

kelK]
\/_( Z Ly kpk)
(89)

kelK]
Thus, we obtain E{supp,, .5, (ng) |% Yonein Bafn (D1}
ke[K]

< 2\/?‘2&[;(]“‘" VETE)-

Proof of Lemma 14: We expand A¢y (Dy.; DY, |o) ac-
cording to (63) and bound each term of the sum separately.
Looking at the first term, we get

1
TDDT( Z PDl_;r R---®
ke[K]

)DUX

| Ay D1K5D1K|0)| =

- @ Px

(PDLJ;, - PD"’Jk) - Di 7y

b) 1
S E ”X”g ( H ”D?L‘,Jk |§) ( Z ”Pngw,,k _PDk,jk
ke[K] ke[K]
(I [rs,))
ic[K]
i#k
(@ 9 0
<M ] (1+6.(DY)
ke[K]
( > (1= 8) D - DEHF), (90)
kE[K]

where (a) follows from (64), (b) follows from the fact that

ol — 0
D%l = e ||Dk,Jk 2’
nition of RIP, (54), and [P, _ ||, = 1. Following a similar
approach and expanding the rest of the terms, we get

|Ad’2 (DI:K'; D[l]:K |U)|

11 Iot ﬂng)
ke[K]
(2 IPor., o, (Lo
ie[K]
ik
T (t+56., (Dﬁ))m)

and (c) follows from the defi-

< (1wl [1xll2 (

- PDk.Jk

)

ke[K]

(d)

< QMWMI(
kelK]
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Y (1—6)? Dk —DYIr |,
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APPENDIX C

Proof ofthe coherence relation for KS dictionaries: To prove

kelK] (6), we define the set A={Yjz € T,(1,.--,0x) &
1 (A, .-, Tx )} We have
0 2 1 K
|A¢3 (DI:K;D1:K|‘7)| < B) w2 Y
D)= maxmax D/ d;
ps (D) = maxmax [Dd
2 [ots ~Poral, | IT [Po.c | ma
kLT, k., T ]:l‘-";ri — 3
: =r ’ il A |(®pis) (@da)],
i#k ke[K|
2 -1/2 = max D, ,d
<2 Y2 (-5 2D~ DYx ), e x| @Dy s
kelK] ke[K]
= mmax max ||Dk dg ||
.Y _ Tk Je 1
|Ads (Dix; Dilo)| = rlloglly Xl | [T (D%, lesk A ki)
ke[K]
0+ < max D, 1+ i1 D; (92)
Z ||D p Dk 7 ke[K]‘usk( ) H ( ps;—1(Di))
Kelk] i€[K],
ik i#k
1/2
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< 204/sM, 1+4,, (DY
- \/_ * kl—;( sk( ) [1] Z.Shakeri, A. D. Sarwate, and W. U. Bajwa, “Identification of Kronecker-
€lK] structured dictionaries: An asymptotic analysis,” in Proc. IEEE 7th Int.
Workshop Comput. Adv. Multi-Sensor Adapt. Process.,Dec. 2017, pp. 1-5.
1 —1/2 0 [2] A.Smilde, R. Bro, and P. Geladi, Multi-Way Analysis: Applications in the
Z (1 B 61"') H (]' - 51) ”Dk - Dk”F ! Chemical Sciences. Hoboken, NJ, USA: Wiley, 2005.
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i€[K]
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> [Ptia - Dial, Hll%ll
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7
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