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Social Learning and Distributed Hypothesis Testing

Anusha Lalitha
Anand D. Sarwate

Abstract—This paper considers a problem of distributed
hypothesis testing over a network. Individual nodes in a network
receive noisy local (private) observations whose distribution
is parameterized by a discrete parameter (hypothesis). The
marginals of the joint observation distribution conditioned on
each hypothesis are known locally at the nodes, but the true
parameter/hypothesis is not known. An update rule is analyzed
in which nodes first perform a Bayesian update of their belief
(distribution estimate) of each hypothesis based on their local
observations, communicate these updates to their neighbors, and
then perform a ‘“non-Bayesian™ linear consensus using the log-
beliefs of their neighbors. Under mild assumptions, we show
that the belief of any node on a wrong hypothesis converges
to zero exponentially fast. We characterize the exponential rate
of learning, which we call the network divergence, in terms of
the nodes’ influence of the network and the divergences between
the observations’ distributions. For a broad class of observation
statistics which includes distributions with unbounded support
such as Gaussian mixtures, we show that rate of rejection of
wrong hypothesis satisfies a large deviation principle, i.e., the
probability of sample paths on which the rate of rejection
of wrong hypothesis deviates from the mean rate vanishes
exponentially fast and we characterize the rate function in terms
of the nodes’ influence of the network and the local observation
models.

Index Terms— Distributed algorithms, message passing, rate
of learning, large deviation principle.

I. INTRODUCTION

EARNING in distributed settings is more than a phenom-

enon of social networks; it is also an engineering chal-
lenge for networked system designers. For instance, in today’s
data networks, many applications need estimates of certain
parameters: file-sharing systems need to know the distribution
of (unique) documents shared by their users, internet-scale
information retrieval systems need to deduce the criticality of
various data items, and monitoring networks need to compute
aggregates in a duplicate-insensitive manner. Finding scalable,
efficient, and accurate methods for computing such metrics
(e.g. number of documents in the network, sizes of database
relations, distributions of data values) is of critical value in a
wide array of network applications.
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Fig. 1. Example of a parameter space in which no node can identify the
true parameter. There are 4 parameters, {61, 62, 63,64}, and 2 nodes. The
node 1 has fi (- 61) = f1 (- 63) and fi (- 62) = fi (- 64), and the node 2
has f (-1 61) = f2 (< 62) and f3 (5 63) = f2 (-; 64).

distinguish
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We consider a network of nodes that sample local obser-
vations (over time) governed by an unknown true hypothesis
O* taking values in a finite discrete set ®. We model the i-th
node’s distribution (or local channel, or likelihood function)
of the observations conditioned on the true hypothesis by
fi (-;0%) from a collection {f; (-;8) 6 € ©}. Nodes
neither have access to each others’ observations nor the joint
distribution of observations across all nodes in the network.
Every node in the network aims to learn the unknown true
hypothesis #*. A simple two-node example is illustrated
in Figure 1 — one node can only learn the column in which
the true hypothesis lies, and the other can only learn the row.
In this example, the local observations of a given node are
not sufficient to recover the underlying hypothesis in isolation.
In this paper we study a learning rule that enables the nodes to
learn the unknown true hypothesis based on message passing
between one hop neighbors (local communication) in the
network. In particular, each node performs a local Bayesian
update and send its belief vectors (message) to its neighbors.
After receiving the messages from the neighbors each node
performs a consensus averaging on a reweighting of the log
beliefs. Our result shows that under our learning rule each
node can reject the wrong hypothesis exponentially fast.

We show that the rate of rejection of wrong hypothesis
is the weighted sum of Kullback-Leibler (KL) divergences
between likelihood function of the true parameter and the
likelihood function of the wrong hypothesis, where the sum
is over the nodes in the network and the weights are the
nodes’ influences as dictated by the learning rule. Furthermore,
we show that the probability of sample paths on which the rate
of rejection deviates from the mean rate vanishes exponentially
fast. For any strongly connected network and bounded ratios
of log-likelihood functions, we obtain a lower bound on this
exponential rate. Furthermore, for any aperiodic network we
characterize the exact exponent with which probability of
sample paths on which the rate of rejection deviates from the
mean rate vanishes (i.e., obtain a large deviation principle)
for a broader class of observation statistics which includes

0018-9448 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



6162

distributions with unbounded support such as Gaussian mix-
tures and Gamma distribution. The large deviation rate func-
tion is shown to be a function of observation model and the
nodes’ influences on the network as dictated by the learning
rule.

Outline of the Paper: The rest of the paper is organized
as follows. We provide the model in Section II which defines
the nodes’ observation model and network. This section also
contains the learning rule and assumptions on model. We then
provide results on rate of convergence and their proofs in
Section III. We apply our learning rule to various examples in
Section IV and discuss some practical issues in Section I'V-C.
We conclude with a summary in Section V.

A. Related Work

The literature on distributed learning, estimation and detec-
tion can divided into two broad sets. One set deals with
the fusion of information observed by a group nodes at
a fusion center where the communication links (between
the nodes and fusion center) are either rate limited [4]-[12]
or subject to channel imperfections such as fading and packet
drops [13]-[15]. Our work belongs to the second set, which
models the communication network as a directed graph whose
vertices/nodes are agents and an edge from node i to j
indicates that i may send a message to j with perfect
fidelity (the link is a noiseless channel of infinite capacity).
These “protocol” models study how message passing in a
network can be used to achieve a pre-specified computational
task such as distributed learning [16], [17], general function
evaluation [18], or stochastic approximations [19]. Message
passing protocols may be synchronous or asynchronous (such
as the “gossip” model [20]-[24]). This graphical model of
the communication, instead of assuming a detailed physical-
layer formalization, implicitly assumes a PHY/MAC-layer
abstraction where sufficiently high data rates are available to
send the belief vectors with desired precision when nodes are
within each others’ communication range. A missing edge
indicates the corresponding link has zero capacity.

Due to the large body of work in distributed detection,
estimation and merging of opinions, we provide a long yet
detailed summary of all the related works and their relation
to our setup. Readers familiar with these works can skip to
Section II without loss of continuity.

Several works [25]-[29] consider an update rule which uses
local Bayesian updating combined with a linear consensus
strategy on the beliefs [30] that enables all nodes in the
network identify the true hypothesis. Jadbabaie ef al. [25]
characterize the “learning rate” of the algorithm in terms of
the total variational error across the network and provide
an almost sure upper bound on this quantity in terms of
the KIL-divergences and influence vector of agents. In Corol-
lary 2 we analytically show that the proposed learning rule
in this paper provides a strict improvement over linear con-
sensus strategies [25]. Simultaneous and independent works
by Shahrampour ef al. [31] and Nedi€ ef al. [32] consider a
similar learning rule (with a change of order in the update
steps). They obtain similar convergence and concentration
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results under the assumption of bounded ratios of likelihood
functions. Nedi¢ ef al. [32] analyze the learning rule for time-
varying graphs. Theorem 3 strengthens these results for sta-
tic networks by providing a large deviation analysis for a
broader class of likelihood functions which includes Gaussian
mixtures.

Rahnama Rad and Tahbaz-Salehi [28] study distributed
parameter estimation using a Bayesian update rule and average
consensus on the log-likelihoods similar to (2)—(3). They
show that the maximum of each node’s belief distribution
converges in probability to the true parameter under certain
analytic assumptions (such as log-concavity) on the likelihood
functions of the observations. Our results show almost sure
convergence and concentration of the nodes’ beliefs when the
parameter space is discrete and the log-likelihood function is
concave. Kar ef al. in [33] consider the problem of distributed
estimation of an unknown underlying parameter where the
nodes make noisy observations that are non-linear functions
of an unknown global parameter. They form local estimates
using a quantized message-passing scheme over randomly-
failing communication links, and show the local estimators
are consistent and asymptotically normal. Note that for any
general likelihood model and static strongly connected net-
work, our Theorem 1 strengthens the results of distributed
estimation (where the error vanishes inversely with the square
root of total number of observations) by showing exponentially
fast convergence of the beliefs. Furthermore, Theorem 2 and 3
strengthen this by characterizing the rate of convergence.

Similar non-Bayesian update rules have been in the context
of one-shot merging of opinions [29] and beliefs in [34]
and [35]. Olfati-Saber ef al. [29] studied an algorithm for
distributed one-shot hypothesis testing using belief propaga-
tion (BP), where nodes perform average consensus on the
log-likelihoods under a single observation per node. The
nodes can achieve a consensus on the product of their local
likelihoods. A benefit of our approach is that nodes do not
need to know each other’s likelihood functions or indeed
even the space from which their observations are drawn.
Saligrama ef al. [34] and Alanyali ef al. [35], consider a sim-
ilar setup of belief propagation (after observing single event)
for the problem of distributed identification of the MAP esti-
mate (which coincides with the true hypothesis for sufficiently
large number of observations) for certain balanced graphs.
Each node passes messages which are composed by taking
a product of the recent messages then taking a weighted
average over all hypotheses. Alanyali et al. [35] propose mod-
ified BP algorithms that achieve MAP consensus for arbitrary
graphs. Though the structure of the message composition
of the BP algorithm based message passing is similar to
our proposed learning rule, we consider a dynamic setting
in which observations are made infinitely often. Our rule
incorporates new observation every time a node updates its
belief to learn the true hypothesis. Other works study collective
MAP estimation when nodes communicate discrete decisions
based on Bayesian updates [36], [37]. Harel ef al. in [36]
study a two-node model where agents exchange decisions
rather than beliefs and show that unidirectional transmission
increases the speed of convergence over bidirectional exchange
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of local decisions. Mueller-Frank [37] generalized this result
to a setting in which nodes similarly exchange local strategies
and local actions to make inferences.

Several recently-proposed models study distributed sequen-
tial binary hypothesis testing detecting between different
means with Gaussian [38] and non-Gaussian observation mod-
els [39]. Jakovetic ef al. [39] consider a distributed hypoth-
esis test for i.i.d observations over time and across nodes
where nodes exchange weighted sum of a local estimate
from previous time instant and ratio of likelihood functions
of the latest local observation with the neighbors. When the
network is densely connected (for instance, a doubly stochastic
weight matrix), after sufficiently long time nodes gather all the
observations throughout network. By appropriately choosing a
local threshold for local Neyman-Pearson test, they show that
the performance of centralized Neyman-Pearson test can be
achieved locally. In contrast, our M-ary learning rule applies
for observations that are correlated across nodes and exchanges
more compact messages i.e., the beliefs (two finite precision
real values for binary hypothesis test) as opposed to messages
composed of the raw observations (in the case of R Gaussian
observations with d > 2, d finite precision real values for
binary hypothesis test). Sahu and Kar [38] consider a variant
of this test for the special case of Gaussians with shifted mean
and show that it minimizes the expected stopping times under
each hypothesis for given detection errors.

II. THE MODEL

Notation: We use boldface for vectors and denote the i-th
element of vector v by v;. We let [n] denote {1,2,...,n},
P(A) the set of all probability distributions on a set A,
|A| denotes the number of elements in set A, Ber(p) the
Bernoulli distribution with parameter p, and D(Pz||Pé) the
Kullback—Leibler (KL) divergence between two probability
distributions Pz, P, € P(Z). Time is discrete and denoted
by t € {0,1,2,...}. If a € A, then 1,(.) € P(A) denotes
the probability distribution which assigns probability one to
a and zero probability to the rest of the elements in A. For
vectors X,y € R, let x < y denote x; < y; for each i-th
element of vector x and y and let (x,y) denote Zf=] X;Vi-
Let 1 denote the vector of where each element is 1. For any
subset F ¢ RM—1 let F° be the interior of F and F the
closure. For € > 0 let F.+ = {x+J1,¥0 < J < € and x € F},
F-={x—-01,V0 <d<eand x € F}.

A. Nodes’ Observation Model

Consider a group of n individual nodes. Let ®
{61,601, ...,0y) denote a finite set of M parameters which
we call hypotheses: each 6; denotes a hypothesis. At each
time instant f, every node i € [n] makes an observation
X}‘) e A}, where A; denotes the observation space of node
i. The joint observation profile at any time ¢ across the
network, {th), Xg), e, X,f)}, is denoted by x® ¢ X, where
X =& x A2 x ... x A,. The joint likelihood function for all
X e X given 0 is the true hypothesis is denoted as [ (X; k).
We assume that the observations are statistically governed by
a fixed global “true hypothesis” #* € ® which is unknown to
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the nodes. Without loss of generality we assume that 8* = .
Furthermore, we assume that no node in network knows the
joint likelihood functions { f (; 6;;)}#‘: ; but every node i € [n]
knows the local likelihood functions {f; (-;6';()}}:!:1, where
fi (-; 6k) denotes the i-th marginal of f(-; ). Each node’s
observation sequence (in time) is conditionally independent
and identically distributed (i.i.d) but the observations might
be correlated across the nodes at any given time.

In this setting, nodes attempt to learn the “true hypothesis™
Oy using their knowledge of {f; (- ﬂk)}}:”‘:]. In isolation,
if fi(60k) # fi(:;0y) for some k € [M — 1], node i
can rule out hypothesis &, in favor of #y exponentially fast
with an exponent which is equal to D (f; (; Oum)|l fi (- Ok))
[40, Sec. 11.7]. Hence, for a given node the KL-divergence
between the distribution of the observations conditioned over
the hypotheses is a useful measure of the distinguishability of
the hypotheses. Now, define

0; = {k € [M]: f; (60) = fi (- 0m)}
= {k e [M]: D (fi GO fi (:;6k)) #0}.

In other words, let ®; be the set of all hypotheses that are
locally indistinguishable to node i. In this work, we are
interested in the case where |®;| > 1 for some node i, but the
true hypothesis Oy is globally identifiable (see (1)).

Assumption 1: For every pair k # j, there is at
least one node i € [n] for which the KL-divergence
D (fi (: 00l fi (-: 6;)) is strictly positive.

In this case, we ask whether nodes can collectively go
beyond the limitations of their local observations and learn
Oy. Since

By} =01N02N...NO,, (1

it is straightforward to see that Assumption 1 is a sufficient
condition for the global identifiability of &y when only mar-
ginal distributions are known at the nodes. Also, note that this
assumption does not require the existence of a single node
that can distinguish 8y from all other hypotheses 6, where
k € [M — 1]. We only require that for every pair k # j, there
is at least one node i € [n] for which f; (; 6¢) # f; (-3 6;).

Finally, we define a probability triple (Q,.F , PM ), where
Q={o:o=X9XD ) vX®O c x v}, Fis
the o— algebra generated by the observations and PoM s
the probability measure induced by paths in Q, i.e., P =
[1520 f (-3 0m). We use EM[.] to denote the expectation
operator associated with measure P?¥ . For simplicity we drop
Oy to denote PP by P and denote E?M[.] by E[-].

B. Network

We model the communication network between nodes via a
directed graph with vertex set [n]. We define the neighborhood
of node i, denoted by A(i), as the set of all nodes which
have an edge starting from themselves to node i. This means
if node j € N(i), it can send the information to node i along
this edge. In other words, the neighborhood of node i denotes
the set of all sources of information available to it. Moreover,
we assume that the nodes have knowledge of their neighbors
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N(i) only and they have no knowledge of the rest of the
network [41].

Assumption 2: The underlying graph of the network is
strongly connected, i.e. for every i, j € [n] there exists a
directed path starting from node i and ending at node j.

We consider the case where the nodes are connected to every
other node in the network by at least one multi-hop path, i.e.
a strongly connected graph allows the information gathered to
be disseminated at every node throughout the network. Such
a network enables learning even when some nodes in the
network may not be able to distinguish the true hypothesis
on their own, i.e. the case where |C:),'| > 1 for some nodes.

C. The Learning Rule

In this section we provide a learning rule for the nodes to
learn Oy by collaborating with each other through the local
communication alone.

We begin by defining the variables required in order to
define the learning rule. At every time instant f each node
i maintains a private belief vector q(‘) € P(®) and a public
belief vector b(‘) € P(®), which are probability distributions
on @. The soc1al interaction of the nodes is characterized by a
stochastic matrix W. More specifically, weight W;; < [0, 1] is
assigned to the edge from node j to node i such that W;; > 0
if and only if j € N(i) and W;; = 1 — Z‘;‘:l Wij. The
weight W;; denotes the (relative) confidence node i has on
the information it receives from node j.

The steps of learning are given below. Sup
starts with an initial private belief vector g
t =1,2,... the following events happen:

1) Each node { draws a conditionally i.i.d observation

2) Each node i performs a local Bayesian update on q(t l)
to form b(‘) using the following rule. For each k € [M],

£i (x5 0c) 4!~
2 aeim fi (X(t) 9) - l](5')

se each node i
). At each time

b @) = @

3) Each node i sends the message Yi('} = bi(t) to all nodes
Jj for which i € N'(j). Similarly receives messages from
its neighbors A/ (7).

4) Each node i updates its private belief of every 0O,
by averaging the log beliefs it received from its neigh-
bors. For each k € [M],

exp (Zj"zl Wij logb') Ok ))
2 ac[M] €XP (Z?:] Wij log b?}(@a))
Note that the private belief vector qim remain locally with
the nodes while their public belief vectors b(t) are exchanged
with the neighbors. The objective of leammg rule is to ensure
that the private belief vector q( of each node i € [n]
converges to 1p(-).

Given the weight matrix W, the network can be thought
of as a weighted strongly connected network. Assumption 2,

G,-(t)(ﬁ'k) =
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implies that weight matrix W is irreducible. In this context we
recall the following fact.

Fact 1 (Sec. 2.5, [42]): Let W be the transition matrix of a
Markov chain. If W is irreducible then the stationary distribu-
tion of the Markov chain denoted by v = [vy,v2, ..., v,] is the
normalized left eigenvector of W associated with eigenvalue
1 and it is given as

n
U,’:ZD}WJ;;‘. 4)
j=1
Furthermore, all components of v are strictly positive. If the
Markov chain is aperiodic, then

)

If the chain is periodic with period d, then for each pair
of states i, j € [n], there exists an integer r < [d] such
that W'(i, j) = O unless t = md + r for some nonnegative
integer m, and

. Fee ooy .
tE%W(z,j)_vJ, i, jelnl

(6)

In the social learning literature, the eigenvector v also known
as the eigenvector centrality; it is a measure of social influence
of a node in the network. In particular we will see that v;
determines the contribution of node i in the collective network
learning rate.

Definition 1 (Network Divergence): For all k € [M — 1],
the network divergence between Oy and 0O, denoted by
K (Om, Ok), is defined as

: md4r - -y
mll)mooW (i, j)=vjd.

K (6,60 = D 0D (fi GOl fi (5 60))

i=1

)

where v = [v1,v2, ..., 0v,] is the normalized left eigenvector
of W associated with eigenvalue 1.

Fact 1 together with Assumption 1 guarantees that
K (Om, 0k) is strictly positive for every k € [M — 1].

Due to the form of our learning rule, if the initial belief of
any O, k € [M], for some node is zero then beliefs of that 6
remain zero in subsequent time intervals. Hence, we require
the following assumption.

Assumprwn 3: For all i e [n], the initial private belief

(ﬂk) > 0 for every k € [M].

ITI. MAIN RESULTS
A. The Criteria for Learning

Before we present our main results, we discuss the metrics
we use to evaluate the performance of a learning rule in the
given distributed setup.

Definition 2 (Rate of Rejection of Wrong Hypothesis): For
any node i € [n] and k € [M — 11, define the following

logq, O ). ®)

The rate of rejection of O in favor of Oy at node i is defined
as

A
,0;'( DO = -

pi (@) = liminf p ). ©)
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Now, let
i 2[¢"00.¢°@).....q¢"0un] . a0
Then
p 2 log ' (11)
and the rate of rejection at node i is defined as
p; = llmmf ,o( ). (12)

If pi(6x) > 0 for all k € [M — 1], under a given learning
rule the belief vector of node i not only converges to the
true hypothesis, it converges exponentially fast. Another way
to measure the performance of a learning rule is the rate at
which the belief of true hypothesis converges to one.

Definition 3 (Rate of Convergence to True Hypothesis):
For any i € [n] and k € [M — 1], define the rate of
convergence u; to Oy by

(13)

Definition 4 (Rate of Social Learning): The total varia-
tional error across the network when the underlying true
hypothesis is O (where we allow the true hypothesis fo vary,
i.e. 0* = O for any k € [M] instead of assuming that it is
fixed at 0* = Oy ) is given as

Z 190 — kOl = Z > qP0)). (14

i=1 j#k

This equals the total probability that all nodes in the network
assign to “wrong hypotheses”. Now, define

A e 1 0)
pi = liminf ——log(1 —g; " (Om)).

e(’)(k)

e® 2 max D (k).
ke[M]

(15)

The rate of social learning is defined as the rate at which total
variational error, e®), converges to zero and mathematically
it is defined as
A, 1 ¢
pL = lltﬂlo%f -7 loge( ). (16)
This measure of performance for the learning rule has
been used in the social learning literature [27]. For a given
network and a given observation model for nodes, p;, gives the
least rate of learning guaranteed in the network and therefore
provides a worst case guarantee. It is straightforward to see
that with a characterization for p; () for all k € [M — 1] we
obtain a lower bound on rate of convergence to true hypothesis,
ui, and on the rate of social learning, py, under a given
learning rule.

B. Learning: Convergence fo True Hypothesis

Theorem 1 (Rate of Rejecting Wrong Hypotheses, p;): Let
Oy be the true hypothesis. Under the Assumptions 1-3, for
every node in the network, the private belief (and hence the
public belief) under the proposed learning rule converges
fo true hypothesis exponentially fast with probability one.
Furthermore, the rate of rejecting hypothesis 0y in favor of
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Oy is given by the network divergence between Oy and 0.
Specifically, we have

tl_lg{)q —IM P-a.s. (17)
and
p; = _rl_lfgo ; logq =K P-as. (18)
where
K = [K©Oum.01), KOm,02), ..., KOu,0u-1)]" . (19)

The proof of Theorem 1 is provided in Appendix A.
Theorem 1 establishes that the beliefs of wrong hypotheses, 0
for k € [M — 1], vanish exponentially fast and it characterizes
the exponent with which a node rejects 6 in favor of Oy.
The rate of rejection is a function of the node’s ability to
distinguish between the hypotheses, which is given by the
KIL-divergences and structure of the weighted network,
weighted by the eigenvector centrality of the nodes. Hence,
every node influences the rate in two ways. Firstly, if the node
has higher eigenvector centrality (i.e. the node is centrally
located), it has larger influence over the beliefs of other
nodes as a result has a greater influence over the rate of
exponential decay as well. Secondly, if the node has high
KL -divergence (i.e highly informative observations that can
distinguish between ¢ and 6y), then again it increases the
rate. If an influential node has highly informative observations
then it boosts the rate of rejecting 0 by improving the
rate. We will illustrate this through numerical examples in
Section IV-A.

We obtain lower bound on the rate of convergence to the true
hypothesis and rate of learning as corollaries to Theorem 1.

Corollary 1 (Lower Bound on Rate of Convergence to Oy):
Let Oy be the true hypothesis. Under the Assumptions 1-3, for
every i € [n], the rate of convergence to Oy can be lower-
bounded as

i > mm K(GM,Bk) P-a.s.

Wi (20)

Corollary 2 (Lower Bound on Rate of Learning): Let Oy
be the true hypothesis. Under the Assumptions 1-3, the rate
of learning py across the network is lower-bounded by,

pL =  min K(G,,é‘ ) P-a.s.
i, j€[M

Remark 1: Jadbabaie et. al. proposed a learning rule in [25],
which differs from the proposed rule at the private belief vector
q(t) formation step. Instead of averaging the log beliefs, nodes
average the beliefs received as messages from their neighbors.
In [27], Jadbabaie et. al. provide an upper bound on the rate
of learning p; obtained using their algorithm. They show

pL < a min K(&,,é‘) P-a.s. 21)

i, j€[M
where a is a constant strictly less than one. Corollary 2 shows
that lower bound on pj, using the proposed algorithm is greater
than the upper bound provided in (21).
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C. Concentration under Bounded Log-Likelihood Ratios

Under mild assumptions, Theorem 1 shows that the belief
about a wrong hypothesis 6 for k € [M — 1] converges to
zero exponentially fast at rate equal to the network diver-
gence, K (Oy, 0;), between Oy and O with probability one.
We strength this result for periodic networks with period d
under the following assumption.

Assumption 4: There exists a positive constant L such that

fi (X: ;)
fl (X'J Bk)

Theorem 2 (Concentration of Rate of Rejecting Wrong
Hypotheses, p("\(ﬂk )): Let Oy be the true hypothesis. Under

Assumptions 14, for periodic networks with period d, for
every node i € [n], k € [M — 1], and for all € > 0 we have

2
2L%d°

max max sup |log———=

<L (22)
ig[n] j,ke[M] XeX;

1 (®)
Jim —10gP (p(@) < KOw, 00— €) < —5 5. (23)
For 0 <€ <L — K(0y,6), we have

o1
Jim i log P (p,v(r}(ﬁ’k) > K(Oum, 0k) + *‘5)

. 2 . RYS
< 3734 mm[e :J_EI[T;}E]]K(GM:BJ) ] (24)

For € = L — K (0, 6;) we have

!
Jim p logP (pl-(t)(ﬁk) > K(Oum,6k) + E)
[ KOu,0)°
kelﬁ'glll] 212%d
Corollary 3 (Rate of convergence to True Hypothesis): Let

Oy be the true hypothesis. Under Assumptions 14, for every
i € [n], we have

[ —

(25)

Li = min]]K(ﬂM,ﬂk) P-a.s.

ke[M—

Proofs of Theorem 2 and Corollary 3 are provided in
Appendix B. From Theorem 1 we know that p(‘ (6) converges
to K (0, Ok) almost surely. Theorem 2 strengthens Theorem 1
by showing that the probability of sample paths where pJ (ﬂk)
deviates by some fixed € from K (Oum, Or) vanishes exponen-
tially fast. This implies that p (9;() converges to K (Ou, k)
exponentially fast in probability. Theorem 2 also characterizes
a lower bound on the exponent when the probability of such
events vanishes and shows that periodicity of the network
reduces the exponent.

D. Large Deviation Analysis

We require a technical assumption that relaxes the assump-
tion of bounded ratios of the likelihood functions in prior
work [1], [2], [31], [43].

Assumption 5: For every pair 0; # 0; and every node k <
Si(Xe:6i)
fi (X1:0)
generating function under distribution fi (-; 0;).

Next, we give examples of families of distributions which
satisfy Assumption 5 but violate Assumption 4.

[n], the random variable |log | has finite log moment
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Remark 2: Distributions f(X;#;) and f(X;80;) fori # j
for which the following properties hold for some positive
constants C and f, satisfy Assumption 5

FXO) N _C o (fX:0)
Fi (f(X e)—x)—x_ﬁ’ P(

) <<
fX:0) =) = xF
(26)
Note that (26) is a sufficient condition but not a necessary
condition. Examples 1-2 below do not satisfy (26) yet satisfy
Assumption 5.
Example 1 (Gaussian Mixtures): Let f(X;6))=N(u1,0)
and f(X;6h) = N(uz,0). Then

J(x; 61)
g1(x) == |log —————| < cilx| + ¢2, (27)

fx;62)
h _ | H1—p2 d _ ‘u%—,u% H for i 1.2
where ¢; = |=5=| and ¢ = |=_7*|. Hence, for i e {1,2}

and for A > 0 we have

E; [eigl(x)] < e, [ec'“‘“] < 00. (28)
More generally for i € {1,2}, and p € [0, 1], let
)4 —(x —ai)z)
0) = ——=
(x5 6) e exp( 252
1—p —(x = $)*
. 2
-I—o_ = exp( 252 (29)
f(X:61)

Then the log moment generating function of |log FX:0)
finite for all 1 > 0.

Example 2 (Gamma Distribution): Let  f(X;6y) =
ﬂﬁa—)x‘” le=£* and f(X;6y) = %a—)xaz l¢=Bx then

JF(x; 61)
2(x) := |log ————| < c1|logx| + c2, (30)
¢ & 70 00) &
where ¢; = |a; — az| and ¢ = ‘(al — az) log B + log Ll&2)

[(a1) |
Hence, for i € {1, 2} and for A > 0 we have

E; [eigz(x)] < ¢, [efli“Ug X|] < 0. (31)
The above examples show that Assumption 5 is satisfied
for distributions which have unbounded support. In order to
analyze the concentration of p}’} under Assumption 5 we
replace Assumption 2 with the following assumption.
Assumption 2': The underlying graph of the network is
strongly connected and aperiodic.
Next we provide few more definitions. Let

YO@) £ (v, LO@)), 32)

where L) (6}) is the vector of log likelihood ratios given by

fi ( (f) Bk)

m...,lo

LY @)
o ( (f) 91:)
¢ Jn (X;(f}; 9M)

= | log . (33)
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Definition 5 (Moment Generating Function): For every
Ak € R, let Ai(Ar) denote the log moment generating function
of YO () by

Ac(k) 2 log E[e#*Y” @] — og E[e™-LED) ] (34)

For every A € RM-1 let A(L) denote the log moment
generating function of Y by

AQ) £ log E[e™Y. (35)

Note that each entry of vector Y() is a function of joint
observation vector X'¥) whose distribution is governed by
£ 0m).

Definition 6 (Large Deviation Rafe Function): For all x €
R, let I} (x) denote the Fenchel-Legendre transform of Ar(-):

I(x) & sup {ix — Ar(As)} .
).kER

(36)

For all x € RM-1 Jet 1(x) denote the Fenchel-Legendre
transform of A(-):

I)2 sup {(h,x)— AQ)}.
reRM-1

(37)

Theorem 3 (Large Deviations of p?) ): Let Oy be the true
k}(rporhesis. Under Assumptions 1, 2, 3, 5, the rate of rejection
,oit) satisfies an Large Deviation Principle with rate function
J(-), i.e., for any set F ¢ RM=1 we have

. 1 (f) .
liminf - logP (p{” € F) = — inf J().  (38)
and
1
limsup —logP (o € F) < —inf J(y), (39
t—soo I yeF
where large deviation rate function J(-) is defined as
J¥)E&  inf  I(x), VyeRM-I, (40)

xeRM-1l:g(x)=y
where g : RM=1 — RM-1 is q continuous mapping given by

2(x) 2 [g1(x), ©2), - .., gu—1®]" 1)

and

A
gk(x) = xx — max{0,x1,x2, ..., xp—1}. (42)

The proof of Theorem 3 is provided in Appendix C.
Theorem 3 characterizes the asymptotic rate of concentration
of p?} in any set F C RM~!. In other words, it characterizes
the rate at which the probability of deviations in each pi(f)(ﬂ;c)
from the rate of rejection K(Oum,0) for every O # Oy
vanish simultaneously. It characterizes the asymptotic rate as
a function of the observation model of each node (not just
the bound L on the ratios of log-likelihood function) and as a
function of eigenvector centrality v. The following corollary
specializes this result to obtain the individual rate of rejecting
a wrong hypothesis at every node. It can be obtained by
repeating the proof of Theorem 3 for each hypothesis alone.
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Corollary 4: Let Oy be the true hypothesis. Under Assump-
tions 1,2, 3, 5, for 0 < € < K(Owm, 6), k € [M— 1], we have

o1
Jim —log P (pl-(t)(ﬂk) < K(Oum,6k) — 5)

=— I (K(Om,6) —€). (43)
For € > 0, we have
.1 (6
Jim n log P (pi (6k) = K (Om, 6k) + 5)
=—I (K(Om,0) +€). (44)

Using Theorem 3 and Hoeffding’s Lemma, we obtain the
following corollary.

Corollary 5: Suppose Assumption 4 is satisfied for some
finite L € R. For € as specified in Theorem 2, we recover the
exponents of Theorem 2 under aperiodic networks, given by

1 €2
im - ® B
Jim - log P (,0,- k) = K(Om, 0k) + e) == @
and
lim 1logF’ (pv(’}(ﬂk) < KOum,0) — e) o< (46)
t—oo [ i - ’ - 2L

Remark 3: Under Assumption 4, Corollary 5 shows that
lower bound on the asymptotic rate of concentration of p?)
as characterized by Theorem 2 is loose in comparision to
that obtained from Theorem 3. Shahrampour et al. [31] and
Nedic et al. [32] provide non-asymptotic lower bounds on the
rate of concentration of p i‘ whose asymptotic form coincides
with the lower bound on rate characterized by Theorem 2
for aperiodic networks. This implies that under Assumption 4
Theorem 3 provides a tighter asymptotic rate than their results
in [31] and [32]. Hence, Theorem 3 strengthens Theorem 2
by extending the large deviation to larger class of distributions
and providing a tighter bound that captures the complete effect
of nodes’ influence in the network and the local observation
statistics.

IV. EXAMPLES

In this section through numerical examples we illustrate how
nodes learn using the proposed learning rule and examine the
factors which affect the rate of rejection of wrong hypotheses
and its rate of concentration.

A. Factors Influencing Convergence

Example 3: Consider a group of two nodes as shown
in Figure 1, where the set of hypotheses is @ = {01, th, 03, 04}
and true hypothesis 8* = @s. Observations at each node
at time f, XE‘), take values in R!% and have a Gaussian
distribution. For node 1, fi (;601) = fi1 (;63) = N(u1q, X)
and f1 (5 62) = fi(364) = N(yp, £), and for node 2,
f2(::01) f2(562) = N(up,X) and f2(;63)
f2(502) = N(uy, X). where pyy, fyg, g, oy € RO
and X is a positive semi-definite matrix of size 100-by-100.
Here, node 1 can identify the column containing s, and node
2 can identify the row. In other words, 0 = {6,604} and
©; = {65,04). Also, 64 = @1 N O, hence 4 is globally
identifiable.
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Fig. 2. For the set of nodes described in Figure 1, this figure shows the
evolution of beliefs for one instance using the proposed learning rule. Belief
of the true hypothesis &4 of node 2 converges to 1 and beliefs of all other
hypotheses go to zero.

10} N o 4
L o=
20k ~z i
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Number of iterations, t

Fig. 3. Figure shows the exponential decay of beliefs of 8, #» and 63 of
node 2 using the learning rule.

1) Strong Connectivity: Nodes are connected to each other
in a network and the weight matrix is given by

0.9 0.1
W= (0.4 0.6) '
Figure 2 shows the evolution of beliefs with time for node
2 on a single sample path. We see that using the proposed
learning rule, belief of 64 goes to one while the beliefs of
wrong hypotheses go to zero. This example shows that each
node through collaboration is able to learn 4. Figure 3 shows
the rate of rejection of wrong hypotheses. We see that the rate
of rejection & for k € {1, 2, 3} closely follows the asymptotic
rate K (04, 6).
Suppose the nodes are connected to each other in a network
whose weight matrix is given by

1 0
W= (0.5 0.5)'

Since there is no path from node 2 to node 1, the network
is not strongly connected. Node 2 as seen in Figure 4 does
not converge to f4. Even though node 1 cannot distinguish
the elements of ©; from 6y, it rejects the hypotheses in

(47)

(48)
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Fig. 4. Figure shows the beliefs of node 2 shown in Figure 1. When the
network is not strongly connected node 2 cannot learn #y.

log Belief Vector, log
&

log qg}(ﬂz) Averaging log-beliefs
|| - — — Slope -K[e4, ez)

log q‘z"‘(azj Averaging beliefs
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Fig. 5. Figure shows that the rate of rejection of # using the proposed
learning rule (averaging the log beliefs) is greater than the rate of rejection
of ¢, obtained using the learning rule in [25] (averaging the beliefs).

{61, 63} in favor of @4. This forces node 2 also to reject the set
{61, 63}. For node 1, 6, and 04 are observationally equivalent,
hence their respective beliefs equal half. But node 2 oscillates
between &> and #4 and is unable to learn #4. Hence, when the
network is not strongly connected both nodes fail to learn.

In this setup we apply the learning rule considered in [25],
where in the consensus step public beliefs are updated by
averaging the beliefs received from the neighbors instead of
averaging the logarithm of the beliefs. As seen in Figure 5,
rate of rejecting learning using the proposed learning rule is
greater than the upper bound on learning rule in [25]. Note that
the precision of the belief vectors in the simulations is 8 bytes
(64 bits) per hypothesis. This implies the nodes each send
32 bytes per unit time, which is less than the case when nodes
exchange local Gaussian observations which may require data
rate as high as 800 bytes per observation.

2) Periodicity: Now suppose the nodes are connected to
each other in periodic network with period 2 and the weight
matrix given by

(49)
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Fig. 6. Figure shows the exponential decay of beliefs of 8y, 65, and 65 of

node 2 connected to node 1 in a periodic network with period 2.

From Figure 6, we see that the belief on wrong hypotheses
converges to zero but beliefs oscillate significantly about the
expected value of rate of rejection as compared to the case of
an aperiodic network considered in (47).

Even though nodes do not have a positive self-weight (W;;),
the new information (through observations) entering at every
node reaches its neighbors and gets dispersed in throughout
the network; eventually reaches every node. Hence, nodes
learn even when the network is periodic as long as it remains
strongly connected.

3) Eigenvector Centrality and Extent of Distinguishability:
From Theorem 1, we know that a larger weighted sum of the
KL divergences, i.e. a larger network divergence, K Oy, k),
yields a better rate of rejecting hypothesis 0. We look at a
numerical example to show this.

Example 4: Let ® = {0),6h,03,04,05} and 0* = 0.
Consider a set of 25 nodes which are arranged in 5 x 5 array
to form a grid. We obtain a grid network by connecting every
node to its adjacent nodes. We define the weight matrix as,

if j e N(i)

50
otherwise (30)

1

Wi = WO(iT,
Consider an extreme scenario where only one node can
distinguish true hypothesis 6 from the rest and to the remain-
ing nodes in the network all hypotheses are observationally
equivalent i.e. ®; = O for 24 nodes and ©; = {61} for only
one node. We call that one node which can distinguish the
true hypothesis from other hypotheses as the “informed node”
and the rest of the nodes called the “non-informed nodes”.
For the weight matrix in (50), the eigenvector centrality of
node i is proportional to A(i), which means in this case,
more number of neighbors implies higher social influence.
This implies that the corner nodes (namely node 1, node 5,
node 20 and node 25 at the four corners of the grid) have least
eigenvector centrality among all nodes. Hence, they are least
influential. The nodes on four edges have a greater influence
than the corner nodes. Most influential nodes are the ones with
four connections, such as node 13 which is located in third
row and third column of the grid. It is also the central location
of the grid.
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Fig. 7. Figure illustrates the manner in which rate of rejection of &, at
node 5 is influenced by varying the location of an informed node. As seen
here when the informed node is more central i.e. at node 13, rate of rejection
is fastest and when the informed node is at the corner node 1, rate of rejection
is slowest.

Figure 7 shows the variation in the rate of rejection of &>
of node 5 as the location of informed node changes. We see
that if the informed node is at the center of the grid then the
rate of rejection is fastest and the rate is slowest when the
informed node is placed at a corner. In other words, rate of
convergence is highest when the most influential node in the
network has high distinguishability.

B. Factors Influencing Concentration

Now to examine the results from Theorem 2 and Theorem 3,
we go back to Example 3, where two nodes are in a strongly
connected aperiodic network given by (47). Observation model
for each node is defined as follows. For node 1, fi (-;01) =
f1(:63) ~ Ber(3) and fi (56;) = fi (- 64) ~ Ber(}), and
for node 2, f>(:;61) = f2(-;62) ~ Ber() and f> (-;63) =
f2 (5 04) ~ Ber(}T). Figure 8 shows the exponential decay of
6, for 25 instances. We see that the number of sample paths
that deviate more than € = 0.1 from K (f4, #) decrease with
number of iterations. Theorem 2 characterizes the asymptotic
rate at which the probability of such sample paths vanishes
when the log-likelihoods are bounded. This asymptotic rate
is given as a function of L and period of the network.
From Corollary 5 the rate given by Theorem 2 is loose
for aperiodic networks. A tighter bound which utilizes the
complete observation model is given by Theorem 3. Figure 9
shows the gap between the rates.

Figure 9 in the context of Example 3 shows the rate at which
the probability of sample paths deviating from rate of rejection
can be thought of as operating in three different regimes. Here,
each regime denotes the hypothesis to which the learning rule
is converging. In order to see this consider the rate function
of 8y, i.e. Ji(-) from Corollary 4;

Ni1(y) = I(x),

inf

i Yy eR.
xelR:g(x)=y

The behavior of the rate function J;(-) depends on the function
g1(x) = x; — max{0, x1, x2, x3}. Whenever gi(x) X1,
the rate function is I7(-). This shows that whenever there
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Fig. 8. Figure shows the decay of belief of &) (wrong hypothesis) of
node 2 for 25 instances. We see that the number of sample paths on which
the rate of rejecting #; deviates more than 5 = 0.1 reduces as the number of
iterations increase.

0.09

Exponent from Theorem 2
0.08 | ——— Exponent when qI‘"(e ) goes to 1
——— Exponent when g'(9,) goes to 1

0.07 ]
= Exponent when qlm{ez) goes to 1
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Fig. 9. Figure shows the asymptotic exponent with which the probability of
events where rate of rejecting # deviates by 5 from K (64, 61); 64 is the true
hypothesis. The black curve shows the asymptotic exponent as characterized
by Theorem 2. The colored curve shows the exact asymptotic exponent as
characterized by Theorem 3, where the exponent depends on the hypothesis
to which the learning rule is converging. This shows that small deviations
from K (64, #1) occur when the learning rule is converging to #4 and larger
deviations occur when the learning rule is converging to a wrong hypothesis.

is a deviation of x — k(fs, 6) from the rate of rejection of
0, the sample paths that vanish with slowest exponents are

a’@1)
a" (1)

small deviations occur when the learning rule is converging
to true hypothesis 04 and they depend on 7;(-) (and hence &)
alone. Whereas large deviations occur when the learning rule
is mistakenly converging to a wrong hypothesis and hence,
the rate function depends on #; and the wrong hypothesis to
which the learning rule is converging. Hence, we have three
different regimes corresponding to the three wrong hypotheses.

those for which % log < 0 as t — oo. In other words,

C. Learning With Communication Constraints

Now, we consider a variant of our learning rule where the
communication between the nodes is quantized to belong to a
predefined finite set. Each node i starts with an initial private
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belief vector qi(ﬂ) and at each time f = 1, 2, ... the following

events happen:
1) Each node i draws a conditionally i.i.d observation
X?) ~ fi (:; Om).
2) Each node i performs a local Bayesian update on qi(‘_l)
to form bi(') using the following rule. For each k € [M],

fi (X,m; 9&) gV
Zae[M] fi (th); Ba) qi{t_l)(ga) -

3) Each node i sends the message Yi(‘)(ﬂk) = [Db}’)(ﬂk)l,
for all k € [M], to all nodes j for which i € N(j
where D € Z1 and

_ |+
Lx1,
where [x]| denotes the largest integer less than x.

4) Each node i normalizes the beliefs received from the
neighbors A/(i) as

b ) = (51)

£l

if x > |[x]+0.5,

[x] if x < [x] +0.5,

(52)

Y, i(t)(gk)

t
S actn ¥ 60)
and updates its private belief of 6, for each k € [M],

exp (Z;;] Wijlog ?i(f)(ﬂk))

2 ac[M) €XP (Z?:l Wij f,-(t](ﬁ’a))

In the above learning rule, the belief on each hypothesis
belongs to a set of size D + 1. Hence transmitting the entire
belief vector, i.e., transmitting the entire message requires
M log(D + 1) bits.

Note that all of our simulations so far, we have used 64-bit
precision to represent the belief on each hypothesis, meaning
our simulations can be interpreted as limiting the communi-
cation links to support 64 bits, or equivalently 8 bytes, per
hypothesis per unit of time. Our previous numerical results
show a close match with the analysis using this level of quan-
tization. Next we show the impact of a coarser quantization.

Example 5: Consider a network of radars or ultrasound
sensors whose aim is to find the location of a target. Each
sensor can sense the target’s location along one dimension
only, whereas the target location is a point in three-dimensional
space. Consider the configuration in Figure 10: there are two
nodes along each of the three coordinate axes at locations
[+£2,0,0], [0, 2, 0], and [0, 0, £2]. The communication links
are given by the directed arrows. Nodes located on the x-
axis can sense whether x-coordinate of the target lies in
the interval (—2, —1] or in the interval (—1,0) or in the
interval [0, 1) or in the interval [1,2). If a target is located
in the interval (—oo, —2]U[2, c0) on the x-axis then no node
can detect it. Similarly nodes on y-axis and z-axis can each
distinguish between 4 distinct non-intersecting intervals on the
y-axis and the z-axis respectively. Therefore, the total number
of hypotheses is M = 4% = 64.

The sensors receive signals which are three dimensional
Gaussian vectors whose mean is altered in the presence of

76 = (53)

@) = (54)
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Sensor
Targel

Fig. 10. Figure shows a sensor network where each node is a low cost radar
that can sense along the axis it is placed and not the other. The directed edges
indicate the directed communication between the nodes. Through cooperative
effort the nodes aim to learn location of the target in 3 dimensions.
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Fig. 11. The solid lines in figure show the evolution of the log beliefs of
node 3 with time for hypotheses 6>, #5 and & when links support a maximum
of 12 bits per hypothesis per unit time. This is compared with the evolution
of the log beliefs with no rate restriction case (dotted lines) which translates
a maximum of 64 bits per hypothesis per unit time. Figure also shows the
confidence intervals (one standard deviation above and below) around log
beliefs over 500 instances of learning rule with 12 bits per hypothesis. We see
the learning rule with link rate 12 bits per hypothesis converges in all the
instances.

a target. In the absence of a target, the ambient signals have a
Gaussian distribution with mean [0, 0, 0]. For the sensor node
along x-axis located at [2, 0, 0], if the target has x-coordinate
6, € (—2,2), the mean of the sensor’s observation is
[[3+6;],0,0]. If a target is located in (—oo, —2] U [2, c0)
on the x-axis, then the mean of the Gaussian observations is
[0, 0, 0]. Local marginals of the nodes along y-axis and z-axis
are described similarly, i.e., as the target moves away from
the node by one unit the signal mean strength goes by one
unit. For targets located at a distance four units and beyond
the sensor cannot detect the target. In this example, suppose
0, is the true hypothesis.

Consider D = 2'2 — 1 which implies that belief on
each hypothesis is of size 12 bits or equivalently 1.5 bytes.
Figure 11 shows evolution of log beliefs of node 3 for
hypotheses for 6, 05 and & for 500 instances when the link
rate is limited to 1.5 bytes per hypothesis per unit time. We see
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Fig. 12. The solid lines in the figure show the evolution of the log beliefs of
node 3 with time for hypotheses 6>, #5 and & when links support a maximum
of 8 bits per hypothesis per unit time. This is compared with the evolution of
the log beliefs with no rate restriction case (dotted lines) which translates a
maximum of 64 bits per hypothesis per unit time. For this sample path, we see
that learning rule converges to a wrong hypothesis &5 when the communication
is restricted to 8 bits per hypothesis.
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Fig. 13.  The solid lines in figure show the evolution of the beliefs of
node 3 with time for hypotheses 6>, #5 and & when links support a maximum
of 12 bits per hypothesis per unit time. This is compared with the evolution of
the beliefs with no rate restriction case (dotted lines) which in our simulations
translates to the case when the links support a maximum of 64 bits per
hypothesis per unit time. On the same sample path in Figure 12, we see
that learning rule converges to true hypothesis when the communication is
restricted to 12 bits per hypothesis.

that the learning rule converges to the true hypotheses on all
500 instances. Similarly, Figure 12 shows the evolution of
beliefs of node 3 for hypotheses b, 05 and 6 when the link
rate is limited to 1 byte per hypothesis per unit time, i.e., when
D = 23— 1. We see that the learning rule converges to a wrong
hypothesis 6>. However, on the same sample path in Figure 13
we see that if the link rate is 1.5 bytes per hypothesis per
unit time, the learning rule converges to true hypothesis.
This happens because on every sample path our learning rule
has an initial transient phase where beliefs may have large
fluctuations during which the belief on true hypothesis may
get close to zero. For low link rates (small D), even when the
belief on true hypothesis is strictly positive but less than %,
it gets quantized to zero. Recall that for our learning rule,
when a belief goes to zero, it propagates the zero belief to
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all subsequent time instants. This shows that as we increase
link rate (increase value of D), the quantized learning rule is
more robust to the initial fluctuations. Moreover, we observe
that for both Examples 3 and 5, when link rates are greater
than or equal to 1.5 bytes per hypothesis per unit time the
learning rule converges for all instances and its performance
coincides with the prediction of our the analysis under the
assumption of perfect links.

V. DISCUSSION

In this paper we study a learning rule through which a
network of nodes make observations and communicate in
order to collectively learn an unknown fixed global hypothesis
that statistically governs the distribution of their observations.
Our learning rule performs local Bayesian updating followed
by averaging log-beliefs. We showed that our rule guaran-
tees exponentially fast convergence to the true hypothesis
almost surely. We showed the rate of rejection of any wrong
hypothesis has an explicit characterization in terms of the
local divergences and network topology. Furthermore, under
the (mild technical) Assumption 5 on the tail of the log-
likelihood ratios of observations, we provide an asymptotically
tight characterization of rate of concentration for the rate
of rejection of wrong hypotheses. This assumption admits a
broad class of distributions with unbounded support such as
Gaussian mixtures. In the next subsections we address two
important aspects of our algorithm construction and network
model.

A. Lack of Knowledge of Joint Observation Distribution

Our algorithm does not require that the the nodes in the
network (a) have knowledge of the full joint distribution of
the observations nor (b) share their raw local observations.
These two properties of our algorithm are highly desirable
in many social network settings due to privacy considera-
tions. The performance of our algorithm seems to be overtly
pessimistic compared to the performance of a fully coop-
erative network with identically distributed and independent
observations across the nodes (where the rate of rejecting
the wrong hypothesis is n times our rate K (6*, #)). However
interestingly, in the case of fully correlated identical observa-
tions across the network, our algorithm performs as well as a
centralized aggregator would perform. In short, our work can
be viewed as a first step towards addressing these questions in
settings where nodes keep their local observations and mar-
ginal distributions and completely prioritizing local privacy.
Nonetheless, we acknowledge that many non-trivial questions
remain: (i) what is the trade-off between privacy preservation
and learning rate and (ii) what are the cost/benefits of learning
the joint distribution in order to optimally combine the local
observations.

B. Availability of Perfect Communication Links

In this work, we have assumed that communicating pub-
lic beliefs among the neighbors can occur with an infinite
precision. Although this is a hard assumption to justify in
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resource-constrained settings, we believe that it is a reasonable
abstraction for a practical “protocol-level” model of commu-
nication constraints, in which sufficiently high data rates are
available to send messages when nodes are within each others’
communication range, whereas no communication is possible
for physically distant nodes. In Section I'V-C, we have provided
detailed simulations to show that the gap between the true
model and the idealized protocol model is not of significant
practical consequence. In particular, Examples 3 and 5 show
the impact of quantizing the beliefs before exchanging them is
negligible at even low link rates. However, from a theoretical
perspective, a study of distributed hypothesis testing with
constraints on communication is a major topic of ongoing
research [10], [44].

Furthermore, through Example 5, we have also highlighted
the practical gains, in terms of communication, associated
with communicating the beliefs instead of the raw local
observations where the observations are in a high dimensional
space. In other words, the nodes that rely on our learning
rule do not need to keep track of their neighbors’ reported
observations, but only the beliefs.

APPENDIX

A. Proof of Theorem 1

We begin with the following recursion for each node i and
keM-1]:

lo q." Om)
t}’,-( ) 6r)
i b\ (0m)
= Wi; log
S e

5 (x%0m)  qf V)
08 —= ,
“=D @)

G

=D W |log (55)
j=1

where the first and the second equalities follow from (3)
and (2), respectively. Now for each node j we rewrite
log a9 6om)

)
ples at the previous instants. We can expand in this way
until we express everything in terms of the samples col-
lected and the initial estimates. Noting that W'(i, j) =

in terms of node j’s neighbors and their sam-

2 =1+ 2n=1 Wii ... Wi, it is easy to check that (55)
can be further expanded to obtain the following:
®
1 ()
lim - log 7‘1‘(,)( )
oot q;" (k)
(t—t+1),
1 n t f} (XJ ; BM)
= lim — > > W'(i, j)log
—r+1
t—oo f o f) (Xfrt T+ };9;()

ﬁ]}(-m On)

. (56)
ﬁ]}(-m (6k)

I
—u%;gwmnm
J’:
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From Assumption 3, the prior q}(_{)) (Gk) is strictly positive for
every node j and every k € [M]. Since Wi, j) <1, we have

a4\ Om)

11m - Zw‘(; jlog—L _——— q}")(ek) =0. (57

Let W be perlodlc with period d. If W is aperiodic, then
the same proof still holds by putting d = 1. Now, we fix node
i as a reference node and for every r € [d], define

A, = {j € [n]: W™+ (i, j) > O for some m € N}.

In particular, (A1, A2, ..., Ag) is a partition of [r]; these sets
form cyclic classes of the Markov chain. Fact 1 implies that
for every 6 > 0, there exists an integer N which is function
of d alone, such that for all m = N, for some fixed r € [d],
if j € Ay, then

wmd+r (i ) — 9jd| <5 (58)
and if j € A,

0 < W™ (i, j) < é. (59)

Using this the first term in (56) can be decomposed as follows

fi (Xff_ﬂr]); ﬂm)
flL‘F.‘or ZZW (i, j)log P (Xf.“‘“);ﬂk)

j=1r=1
n Nd—1 fj (ng—r+1);9M)
li wt I
=X ,; ; (- e fi (Xf;r_r+]};6'k)

1 < fi (Xff_m);ﬂm)

+ lim - W@, j)1 .

=% ngr;d - Dloe fi (Xﬁ-‘_’“};ﬂk)
(60)

j)y=1

Using the triangle inequality and the fact that W* (i,
for every 7 € N we have

Nd—-1 f;
Jim — > WG, j)log
=1 fi

For every j e [n], log 1, (Xj:0m) is integrable, implying

55K s00) £ (Xj36k)
(X jim . . .. .
‘log 7 (45500 is almost surely finite. This implies that
Nd—1 f ( x% .9 )
/ =0 P-as.

Jlim 1 Z W (i, j)log (61)

fi (x47:00)

Using (57) and (61), (60) becomes

1. g 0m)
lim — 0
oot q;" (6k)
(t—1+41),
Ji (X,,' :f»’M)
= lim — z Z We(i, j)log
ool =N fi (XSI_HI);BJ&)
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with probability one. It is straightforward to see that the above
equation can be rewritten as

)
lim —log 7‘1‘(,)( u)
oot q; " (k)
md-+r
SR 39 3 D)
j=1m=N | r=I
f;( x (Td—md—r+1), -0 )
x log

fi (XE_Td—md—r—l—]); 6';()

with probability one. For every d > 0 and N such that for all
m € N equations (58) and (59) hold true, using Lemma 1 we
get that

ﬁ}’,-(t] Onm)
qi(r) (k)

with probability one lies in the interval with end points

Jim, 7l

Ji ( J’QM)
K(Om,0) — E v Ay
Z |: f (Xjs 6k)
and
S < fi (X 0m)
KOu,0h)+= > Ef|log=——F——1].
d E{ [ [i (X5 k)
Since this holds for any 6 > 0, we have
t)
lim - lo m( M) _ K. 0) P-as.
t—00 f ‘L (9

Hence, with probability one, for every € > 0 there exists a
time T’ such that ¥Vt > T’, Vk € [M — 1] we have

1 t)( Om)
lo

qf”w

— K(Owm, 0k)

EE'J

which implies

1+ >

kelM—1]

1
—K(GM Ok )t et

<qWom) < 1.

Hence we have the assertion of the theorem.

Lemma 1: For a given é > 0 and for some N € N for
which (58) and (59) hold true for all m > N, the following
expression

Z Wmd—l—r (I j )

£ (XSTd—md—r+l); BM)
£ (Xfird_md—rﬂ); Bk)

with probability one lies in an inferval with end points

K Owm,01) — ZE[ M]

x log

fi (ngk)
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and
fi (X3 0m)
fi (Xjs06) ||

Proof: To the given expression we add and subtract v ;d
from W™+ (i, j) for all j € A, to obtain

6 n
K Om,00) + 5 >'E [ log

j=1

a3 3 | 2w

j=1m=N | r=1
£ (Xfird—md—wr]); 6'M)

x log 5 (X(.Td—md—r-l—]};gk)

lim — Z W™ (i )

fi (XETd—md—r—l—]}; 9M)

x log £ (Xﬁrd_md—r+1); 9;;)

d -1

. 1 .
33 e S -
r=1 jeA, m=
fj (X‘E_Td—md—r—l—]}; 'GM)
x log (Td—md—r+1)
fi (XS0 )
d Tr—1
3 s B
r=1 jeA, m=N

fi (XETd—md—r—l—]}; GM)

x log 5 (XETd_md_r+l]; 9&)

(62)

For each r and some j € A,, using (58) and the strong law
of large numbers we have

71
. 1 ..
Tlemﬁ Z (Wmd_l—r(l-,})_ﬂjd)
(Td—md—r+1),
i (x¢ 0
x log J( J(Td—md—r—l—]} )
Ji (Xj ;"9’()
< é[EI log i (X3 Om) P-as..
d fi (X 6k)

Similarly for j € A,, using (59) we have

Td—md—r+1
im LS Wiy g (xS 0y
im — i, j) log
Tooo Td & f; (XETd—md—r+l); 9;;)

Ji (stgM)

log L2 2
fi (Xj; 9")

o
SEE[

] P-a.s..
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Again, by the strong law of large numbers we have

d T—1 fi (X(Td md—r+1). )
i{ lim — 1
Ejér ojy lim — % og (Xﬁfd_md—i"l‘l];gk)
fi (st 5M)]
= log 2L\ 7
-3z m G

= KOy, 0;) P-as..

Now combining this with (62) we have the assertion of the
lemma. [ |

B. Proof of Theorem 2

Recall the following equation:

®
A q; @m)
Jim ¢ 1on 0
n Nd—1 fi (XE-“H']};GM)
= lim W™ (i, j)log
t—»mr;; fj(jt t+l]6)
R
+ lim - W’(i,j)log
t—=o0 f grgd fj ( t '[-I-l); 6}:)
(63)

where N is such that for all m = N,m € N equations (58)
and (59) are satisfied. For any fixed ¢, using Assumption 4,
the first term in the summation on the right hand side of (63)
can be bounded as

n N ,f(Xﬁ-’_’J’”;ﬂM) ANdL
W' (i, j)log < .
; ; fi (X?_t_l_l); 6}:) t

Also, the second term in the summation on the right hand side
of (63) can be bounded as

(X(t T41), .0 )
j( X r+1)_9)

Z Z Z fi (X(Td —md—r41), -0 )
- og

(X(Td —md—r+1), 6)

n t
}Zzwmm

j=11=Nd

r= IJEA;-
T_1 . X(_Td—md—r—l—]};g
SﬁLZIngJ(J M)
Td = fi (XETd—md—r+l); 6';;)

Using Assumption 4 we have

£ (Xfird—md—wr]); 9M)
fi (XE_Td—md—r—l—]}; 6';;)

T-1

Td

m=0

log

L
< =.
d
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Therefore, we have

1 ) Om)
0k
f( (Tdm,dr—l—l)g)
— 1
;J; Z 0g ( de —md—rt1), 6)
6nL
< —
d

Applying Hoeffding’s inequality ([45, Th. 2]), for every 0 <
€ < K(Oy, 6), we can write (63) for t > Nd as

®
1 (0, 1
n q!(t)( M) EK(BM,QE)_E +0(_55)
q;" (6k) 4
with probability at most exp (— %}) where o (%, 5) = J"TL +

%. Similarly, for 0 < € < L — K(Oy, 6;) we have

1 1 ‘Ii{t)(gM )
q,-(t)(ﬁ'k)

zK(BM,ek)+e+o(§,5)

2252) and for € > L —

with probability at most exp(
K (O, 6r) we have

1 q"0um)
ﬁ}’,-(t] (k)

1
> K(Om,0) + € +o(;,5)

with probability 0. Now, taking limit and letting J go to zero,
for 0 < € < K(0y, 0;) we have

Jlim ; togP (p @)~ " Om) <K 0,01 —e) 5—%,
for 0 < € < L — K(0y,6;) we have

1 €2
Jim —1ogP(p” @) —p" ) > K On, 00 +¢) <— 375,
and for € > L — K(6y, 6¢) we have
Jlim ; logP (p" @) — p Ou) > K 0w, 60) + €) = —o0.

Since q.(‘)(ﬂy) < 1, all the events @ which lie in the set
{w : pi‘)(ﬂk) < K(Oy,6;) — €} also lie in the set {w :
p}‘)(é';c) < K@um,0) — € + pl.(‘)(ﬂy)}. Hence, for every
0 <€ < K(6y, ;) we have

2

2L%d° 64

o1
[Jim —log P (Pi(r}(gk) < KOum,0k) — 6) < -
For k € [M — 1] and any a > 0, the set
{Pf(t](ﬁ’k) > K(Om,0k) + E}

lies in the complement of the following set:

{p@0 = pOn) < KOu,0) + € — a}n| o Om) <a}.

6175
This implies that
P (@) > K(On,00) +e)
P (Pf(r)(gk) - P,'(t)(BM) > K(Om,0k) +€— a)
+P (P!t)(BM) > a) : (65)

Using Lemma 2 we have that for every é > 0 there exists a
T such that forall t = T

P (P}t)(ak) > K (Oum, 6k) +€)

(e — a)?
——— L t+ 4t 66
< eXP( g T (66)
. K (Om, 6)*
— " tt+dt). 67
+exp ( ke[Ml’nll [ 2L2%d * 67

Taking the limit as @ — 0 for 0 < € < L — K Oy, 6) we
have

C 1
Jim i log P (p,-(t)(Bk) > K(Om,0k) + E)

—2L2dmin[£2, I[nm ]K (6M,9-)]. (68)

For € > L — K (O, 6r) we have
C 1
Jim i log P (p,-(t)(ﬁk) > K(Om,0k) + E)
K (Ou, k)
m e ——
ke[M—1] 2L2%d

Lemma 2 For all a > 0, we have the following for the
sequence ¢; )(QM)

E_

(69)

. K (Om,600)*
Z (1) _ ~ VM, TR
M ¢ - logP (p* On) = “) = }celﬁ'glll]l 212d ]
(70)
Proof: For any a > 0, consider
P (P;(t)(ﬁ'M) > a)
1 —at (t)
< > P(ﬁ(l_ ) <4 (6'k))
ke[M—1]
= > P(P00 < KOm,00 - @), D)
ke[M—1]
where 7, (k) = K (Om, 0k) — + log(M — 1) + 1 log (1 — e=*).

For every € > 0, there exists T (¢) such that for all t = T'(¢)
we have

P (Pft)(ﬁk) > a)

> P (p@) < KOw, 00 — KOw, 00 +e)
ke[M—1]

0 |
ke%}} P (p, @) < e)

Therefore, for every € > 0, 6 > 0, there exists T
max{T (¢), T (5)} such that for all t > T we have

P (" Om) > )

=(M-1 —
=D, Ji o

=

(K (Om,0k) — €)?

I+ot;.
21.2d + ]
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By taking the limit and making e arbitrarily small, we have

I K (Oum, 0k)?

tl—l>rgo ; log P (P,v(r)(ﬂM) > a) < — min 5174

ke[M—1]

1) Proof of Corollary 3: From Theorem 2, we have

1
lim — logP(p,z r[rﬂn K(GM,G;C)—l—e)

t—0o0

2 : 2
< - K(Oum,0 .
= —5 2, min IE i (Om, 6k) ]
Now, applying the Borel-Cantelli Lemma to the above equa-
tion we have

i < min K(Oy,6) P-as.
Hi fomin (Om, 6r)

Letting € — 0 and by combining this with Corollary 1 we
have

min K (Opy,6) P-as.

Hi= M

C. Proof of Theorem 3

Fact 2 (Cramer’s Theorem, Theorem 3.8 [46]): Consider
a sequence of d-dimensional i.i.d random vectors {X,}5°,
Let S, = %ZLI X;. Then, the sequence of S, satisfies a
large deviation principle with rate function A*(-), namely:
For any set F c R¢,

liminf — ! log P(S, € F) = — inf A*(x), (72)
n—0o0 xeF?
and
llmsup logP(S, € F) < — 1nf A*(x), (73)
n—00
where A*(-) is given by
A*(x) 2 sup {(A, %) — AV} (74)

reRd

and A(-) is the log moment generating function of S, which
is given by

AQ) £ log Efe™ V). (75)

Fact 3 (Contraction Principle, Theorem 3.20 [46]): Let
{P¢} be a sequence of probability measures on a Polish space
X that satisfies LDP with rate function I. Let

y be a Polish space
T:X—=Y a continuous map
Q =P;oT! an image probability measure.

Then {Q;} satisfies the LDP on ) with rate function J given
by

(76)

J(y)= inf

I(x).
xeX:T(x)=y ( )

a7

To prove that }log Elm satisfies the LDP, first we establish
the LDP satisfied by the following vector:

Q¥ — [ 9" 4@ qx'(f}(e”_l)]jr- (78)
: O6m) ¢P0m) " 4P 6m)
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© _ @
Note that Q;” = W

1 + log Q(‘) satisfies the LDP with rate function 7(-), as given
by (37). Now we apply the Contraction Principle (Fact 3), for

From Lemma 3, we obtain that

X :RM_] y:RM—l
T(x)=g((x), Vx c RM-1,

P; = P( logQ(‘) )

Q=P (g (; log Qf‘]) [ ) ,

and we get that g G log Q?)) satisfies an LDP with a rate
function J (), i.e., for every F ¢ RM~1 we have

liminf —
t—00

! log P (g (1 logQ?)) c F) > — inf J(y), (79)
t yeFe
and

limsup I log P (g (1 log Q}’)) c F) < —inf J(y). (80)
t—oo I t yeF

Combining Lemma 4 with (79) and (80), we obtain that
1 + log ('j(') satisfies the LDP with rate function J(-) as well.
Hence we have the assertion of the theorem

Lemma 3: The random vector log Q sarisﬁes the LDP
with rate funcrwn given by I(-) m (36). That is, for any set
F c RM-1 with interior F° and closure F, we have

1
llmmf—logP( logQ() € F) > — lﬂf I(x), (81)

and
llmsup log P( logQ(‘) c F) < —inf I'(x). (82)
f—00 xeF
Proof: Using the learning rule we have
1 ( 1 t n (
1 n _ L A L aa)
TlogQ)” = 7 Z“Z]W i, L]
= _ZZ (We@, j) —vj) L] LU=+
=1 j=1
1 o
->y® 83
+ ;1 , (83)

where L is given by (33) and Y by (32). Using Cramer’s
Theorem (Fact 2) in RM—1, for any set F ¢ RM~!  we have

1
logP|{ —
og (r
1
?logP(

llmlI’lf
—00

t
> Y e F) > — inf I(x), (84)
xeF?

=1

and

limsup
t—00

>y e F) <— 1nf I1(x). (85)

=1
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Consider

ZZ Wr(t _)‘)—UJ)L(I —1+1)

f]J']

W)| (86)

t
<2 |t
=1

From Assumption 5, we have that A() is finite for A € R”.
Now, using Lemma 5, we have

ZZ WG, j) —

r];l

S ( D)
f—1+
Z |Lj |
j=1

1
lim —logP vj) L?_H']} >34

t—0o0 f

= —0CQ.

87)

Using Lemma 6 on %log QE‘), we have the assertion of the
theorem. [ |

Lemma 4: For every set F ¢ RM~1 and for all i € [n],
we have

1
L 10
lltl’ll}loréf logP ( logq,” e F)

1 1
> liminf — logP (g (? log Q}r)) € F) , (88)

( logqm S F)
(g (% log Qf‘)) IS F). (89)

Proof: For all t > 0, we have

and

llmsup —logP

t—00

1
< limsup — logP
—00 f

log i =g ( log Q“’)
M-
1 _c® ( log Q! )
1 oy 1 0
Slog | e ; , (90)
where
(1) (1)
O (
Cc® — max 0,110g q(’t]( ]),1 q{,t)(ﬂz),_”,
Emg’Om) T g Om)
1 ) (Om-1)
r g om

Also for all t = 0, we have
M—1
(1 0]
1<e Yy E eg”(flogof )r <M.

j=1

Hence for all € > 0, there exists T (¢) such that for all t >
T (¢) we have

1
g( IOgQ(‘]) —el < - logq < g( IOgQ(’})- 1)

Forany F C RM-1 let F.+ = {x +J1,YV0 <d<eandx
F}, F- = {x—61,V0 < d < € and x € F}. Therefore, for
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every € > 0 we have

o1 1 (1)
l}rgloréf;logP(g (—logQi ) € F)

1
< llmmf — log P ( log ﬁ.“)

) . (92)

Making e arbitrarily small, F,- — F, and by monotonicity
and continuity of probability measure we have

iminf 1 ioe0®
lltﬂlo%f ; logP(g( log Q; ) € F)

< liminf 1 log P ( logq q ) . (93
t—00
For t > T(¢) we also have
logq(” g( log Q(‘]) < %logﬁi(” +el.  (94)
This implies for every € > 0 we have
limsup » (0
imsup — logP logq eF
t—00
< limsup — logP (g (1 log QE‘)) € FE+) . (93)
t—oo [ f
Again, by making e arbitrarily small we have
limsu ll P( log g F)
p —log 0gq;” €
t—00
1msup logP (g i logQ;" e F). (96)
t—00
Hence, we have the assertion of the lemma. [ |

D. Proof of the Lemmas

Lemma 5: Let q be a real number such that g < (0,1).
Let X; be a sequence of non-negative i.i.d random vectors
in R”, distributed as X and let A(\) denote its log moment
generating function which is finite for . € R", then for every
d > 0, we have

1 L i o 5
lim — logP(? ;(q) Xi = 51) =—

o7

t—oo [

Proof: Applying Chebychev’s inequality and using the
definition of log moment generating function, for A € R”,
we have

LS yix. = 51 ) < o~ (901 St A
P(;g(q)xrzal) . (98)

From conve)uty of A, we have ZJ lA((q)‘)u) <
A Z; ](q)‘ Since A(X) is finite and > 20 l(q)‘ < 00, for
all § > 0 we have

1 1,
lim —logP| — 'X; > 41 —(A, o1).
Jim - log (rg(‘” > )s (A1) (99)

Since, the above equation is true for all A € R", we have the
assertion of the lemma. [ |
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Lemma 6: Consider a sequence {Z}>, where ") ¢ R

such that

70 _ x® T+ Y(f),

where sequences {X(‘)}f’io and {Y(t)}?i[]
properties:

1) The sequence {X(‘)}gﬁﬂ satisfies

(100)

have the following

1
liminf—logP (x(‘) e F) > — inf Ix(®), (10D

limsup L logP (x(‘) e F) < —inf Ix(9,  (10)

t—00

where Ix : R? — R is a well-defined LDP rate function.

2) For every € > 0, sequence {Y(’}}?io satisfies

lim 1log PIY®| > el) = —0 (103)
t—oo |
Then {Z(‘)} 2 satisfies
liminf 1 log P(Z(‘) €F)=>— inf Iy (x), (104)
llmsup log P(Z(‘) € F) < —inf Ix(x). (105)

t—00 xeF

Proof: For every t = 0, we have
P(2 e Fer UF.-)
> P (X0 e Fyn(IYY)] < e1))
> P (x(‘) e F) _Pp (|Y(f)| > el) .

For all § > 0, there exists a T'(J) such that for all > T(d)

we have

P (X(:) c F) > e~ infxero Ix (x)t—5t

For all B > 0, there exists a T(B) such that for all t > T'(B)

we have

P (|Y(‘)| > el) > Bt

Now choose B > infycpo Iy (x)+d and t > max{T (§), T (B)},

then we have

P (z(‘) € F+ U FE—)

= o infycpo Ix (x)t—ot (1 .

Sending € to zero and taking the limit we have

1
liminf — 1 P(Z(’) F)>—'f! .
1708 €F)z— inf Ix(x)

o—Bt-+infyepo Ix(x)r—l—éit) _

Similarly, using the fact that P({Z®) € F}n {]Y®)] < €1}) <

P (X® e F_+) we have the other LDP bound.
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