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Abstract—This paper provides fundamental limits on the
sample complexity of estimating dictionaries for tensor data.
The specific focus of this work is on Kth-order tensor data
and the case where the underlying dictionary can be expressed
in terms of K smaller dictionaries. It is assumed the data are
generated by linear combinations of these structured dictionary
atoms and observed through white Gaussian noise. This work
first provides a general lower bound on the minimax risk of
dictionary learning for such tensor data and then adapts the
proof techniques for specialized results in the case of sparse
and sparse-Gaussian linear combinations. The results suggest
the sample complexity of dictionary learning for tensor data
can be significantly lower than that for unstructured data: for
unstructured data it scales linearly with the product of the dictio-
nary dimensions, whereas for tensor-structured data the bound
scales linearly with the sum of the product of the dimensions
of the (smaller) component dictionaries. A partial converse is
provided for the case of 2nd-order tensor data to show that
the bounds in this paper can be tight. This involves developing
an algorithm for learning highly-structured dictionaries from
noisy tensor data. Finally, numerical experiments highlight the
advantages associated with explicitly accounting for tensor data
structure during dictionary learning.

Index Terms— Dictionary learning, Kronecker-structured dic-
tionary, minimax bounds, sparse representations, tensor data.

I. INTRODUCTION

ICTIONARY learning is a technique for finding sparse
representations of signals or data and has applications
in various tasks such as image denoising and inpainting [3],
audio processing [4], and classification [5], [6]. Given input
training signals {y, € R™)N_ | the goal in dictionary learning

n=1-
is to construct an overcomplete basis, D € R™*?, such that

each signal in Y = [y1,...,y~] can be described by a small
number of atoms (columns) of D [7]. This problem can be
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posed as the following optimization program:

min [Y — DX||r subject to Va, [[Xa[lo <s, 1)
where x,, is the coefficient vector associated with y,, || - [lo
counts the number of nonzero entries and s is the maximum
number of nonzero elements of x,,. Although existing literature
has mostly focused on dictionary learning for one-dimensional
data [3]-[7], many real-world signals are multidimensional and
have a tensor structure: examples include images, videos, and
signals produced via magnetic resonance or computed tomog-
raphy systems. In traditional dictionary learning literature,
multidimensional data are converted into one-dimensional data
by vectorizing the signals. Such approaches can result in poor
sparse representations because they neglect the multidimen-
sional structure of the data [8]. This suggests that it might be
useful to keep the original tensor structure of multidimensional
data for efficient dictionary learning and reliable subsequent
processing.

There have been several algorithms proposed in the
literature that can be used to learn structured dictionaries
for multidimensional data [8]-[16]. In [9], a Riemannian
conjugate gradient method combined with a nonmonotone line
search is used to learn structured dictionaries. Other structured
dictionary learning works rely on various tensor decomposition
methods such as the Tucker decomposition [10], [12]-[14],
[17], the CANDECOMP/PARAFAC (CP) decomposition [16],
[18], the HOSVD decomposition [11], [19], the t-product
tensor factorization [15], and the tensor-SVD [8], [20]. Fur-
thermore learning sums of structured dictionaries can be used
to represent tensor data [12], [13].

In this paper, our focus is on theoretical understanding
of the fundamental limits of dictionary learning algorithms
that explicitly account for the tensor structure of data in
terms of Kronecker structured (KS) dictionaries. It has been
shown that many multidimensional signals can be decomposed
into a superposition of separable atoms [21]-[23]. In this
case, a sequence of independent transformations on different
data dimensions can be carried out using KS matrices. Such
matrices have successfully been used for data representation
in hyperspectral imaging, video acquisition, and distributed
sensing [23].

To the best of our knowledge, none of the prior works
on KS dictionary learning [9]-[12] provide an understanding
of the sample complexity of KS dictionary learning algo-
rithms. In contrast, we provide lower bounds on the minimax
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risk of estimating KS dictionaries from tensor data using
any estimator. These bounds not only provide means of
quantifying the performance of existing KS dictionary learning
algorithms, but they also hint at the potential benefits of explic-
itly accounting for tensor structure of data during dictionary
learning.

A. Our Contributions

Our first result is a general lower bound for the mean
squared error (MSE) of estimating KS-dictionaries consisting
of K > 2 coordinate dictionaries that sparsely represent
Kth-order tensor data. Here, we define the minimax risk
to be the worst-case MSE that is attainable by the best
dictionary estimator. Our approach uses the standard proce-
dure for lower bounding the minimax risk in nonparametric
estimation by connecting it to the maximum probability of
error on a carefully constructed multiple hypothesis testing
problem [24], [25]: the technical challenge is in constructing
an appropriate set of hypotheses. In particular, consider a
dictionary D € R™*P consisting of the Kronecker product
of K coordinate dictionaries Dy € R™>*Pk k< {1,...,K},
where m = H,‘:‘;] my and p = l_]f=1 Pk, that is generated
within the radius r neighborhood (taking the Frobenius norm
as the distance metric) of a fixed reference dictionary. Our
analysis shows that given a sufficiently large r and keeping
some other Kparamelers constant, a sample ccumple,){ilyfl of
N = Q(Q ;_ mipk) is necessary for reconstruction of the
true dictionary up to a given estimation error. We also pro-
vide minimax bounds on the KS dictionary learning problem
that hold for the following distributions for the coefficient
vectors {x,}:

s {x,} are independent and identically distributed (i.i.d.)
with zero mean and can have any distribution;

s {x,} are i.i.d. and sparse;

s {x,]} are i.i.d., sparse, and their non-zero elements follow
a Gaussian distribution.

Our second contribution is development and analysis of an
algorithm to learn dictionaries formed by the Kronecker prod-
uct of 2 smaller dictionaries, which can be used to represent
2nd-order tensor data. To this end, we show that under certain
conditions on the local neighborhood, the proposed algorithm
can achieve one of the earlier obtained minimax lower bounds.
Based on this, we believe that our lower bound may be tight
more generally, but we leave this for future work.

B. Relationship to Previous Work

In terms of relation to prior work, theoretical insights into
the problem of dictionary learning have either focused on
specific algorithms for non-KS dictionaries [26]-[32] or lower
bounds on minimax risk of dictionary learning for one-
dimensional data [33], [34]. The former works provide sample
complexity results for reliable dictionary estimation based
on appropriate minimization criteria. Specifically, given a

IWe use f(n) = O(g(n)) and f(n) = Q(g(n)) if for sufficiently large
nel, f(n) < Cig(n) and f(n) > Cog(n), respectively, for some positive
constants Cy and C,.
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probabilistic model for sparse coefficients and a finite number
of samples, these works find a local minimizer of a nonconvex
objective function and show that this minimizer is a dictionary
within a given distance of the true dictionary [30]-[32].
In contrast, Jung ef al. [33], [34] provide minimax lower
bounds for dictionary learning from one-dimensional data
under several coefficient vector distributions and discuss a
regime where the bounds are tight in the scaling sense for
some signal-to-noise (SNR) values. In particular, for a given
dictionary D and sufficiently large neighborhood radius r,
they show that N = Q(mp) samples are required for reliable
recovery of the dictionary up to a prescribed MSE within its
local neighborhood. However, in the case of tensor data, their
approach does not exploit the structure in the data, whereas
our goal is to show how structure can potentially yield a lower
sample complexity in the dictionary learning problem.

To provide lower bounds on the minimax risk of KS
dictionary learning, we adopt the same general approach that
Jung et al. [33], [34] use for the vector case. They use the
standard approach of connecting the estimation problem to
a multiple-hypothesis testing problem and invoking Fano’s
inequality [25]. We construct a family of KS dictionaries
which induce similar observation distributions but have a
minimum separation from each other. By explicitly taking
into account the Kronecker structure of the dictionaries,
we show that the sample complexity satisfies a lower bound
of Q(Z;‘f:]mkpk) compared to the Q(mp) bound from
vectorizing the data [34]. Although our general approach is
similar to that in [34], there are fundamental differences in
the construction of the KS dictionary class and analysis of
the minimax risk. This generalizes our preliminary work [1]
from 2nd-order to Kth-order and provides a comprehensive
analysis of the KS dictionary class construction and minimax
lower bounds.

Our results essentially show that the sample complexity
depends linearly on the degrees of freedom of a Kronecker
structured dictionary, which is Z}:‘;l my pk, and non-linearly
on the SNR and tensor order K. These lower bounds also
depend on the radius of the local neighborhood around a
fixed reference dictionary. Our results hold even when some
of the coordinate dictionaries are not mfv:rccumplele.2 Like the
previous work [34], our analysis is local and our lower bounds
depend on the distribution of multidimensional data.

We next introduce a KS dictionary learning algorithm
for 2nd-order tensor data and show that in this case, one
of the provided minimax lower bounds is achievable under
certain conditions. We also conduct numerical experiments
that demonstrate the empirical performance of the algorithm
relative to the MSE upper bound and in comparison to the
performance of a non-KS dictionary learning algorithm [34].

C. Notational Convention and Preliminaries

Underlined bold upper-case, bold upper-case and lower-case
letters are used to denote real-valued tensors, matrices and
vectors, respectively. Lower-case letters denote scalars. The

2Note that all coordinate dictionaries cannot be undercomplete, otherwise
D won’t be overcomplete.
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k-th column of X is denoted by x; and its ij-th element
is denoted by x;;. Sometimes we use matrices indexed by
multiple letters, such as X, p ), in which case its j-th column
is denoted by X(, ) j. The function supp(.) denotes the
locations of the nonzero entries of X. Let X7 be the matrix
consisting of columns of X with indices 7, X7 be the matrix
consisting of rows of X with indices 7 and I; be the d x d
identity matrix. For a tensor X € RPVXPK its (iy,...,ig)-
th element is denoted as x;, ;. Norms are given by subscripts,
so |lullp and ||lul| are the £y and £> norms of u, respectively,
and |X||> and [|X||r are the spectral and Frobenius norms
of X, respectively. We use vec(X) to denote the vectorized
version of matrix X, which is a column vector obtained by
stacking the columns of X on top of one another. We write
[K] for {1,..., K}. For matrices X and Y, we define their
distance in terms of the Frobenius norm:

dX,Y)=[X-Y]|F.

We define the outer product of two vectors of the same

dimension, u and v, asu Qv = uv' and the inner product

between matrices of the same size, X and Y, as (X,Y) =

Tr(X'Y). Furthermore, P, (u) denotes the projection of u
on the closed unit ball, i.e.,

=

P, (u) = ["’L if fJull2 < 1,

ull2

We now define some important matrix products. We write

X ® Y for the Kronecker product of two matrices X € R™*”

and Y € RP*9, defined as
xlnY-I

Iran x12Y
|_xm1Y Xm2 Y meJ
where the result is an mp xnq matrix and we have | X®Y|r =

IX|[sIY||F [35]. Given matrices X, X2, Y1, and Y2, where
products X;Y; and X»>Y> can be formed, we have [36]

X1 @Xo)(Y1 @ Y2) = (X1Y1) ® (X2Y2). “4)

Given X € R™*" and Y € RP*", we write X % Y for their
mp x n Khatri-Rao product [36], defined by

2

otherwise.

XY= 3)

XxY=[x1®y1 %@y Xn ® Y. 5)

This is essentially the column-wise Kronecker product of
matrices X and Y. We also use @y g Xk = X1 ®... ® Xk
and *ke[[(]xk =Xj*...%xXg.

Next, we review essential properties of Kth-order tensors
and the relation between tensors and the Kronecker product
of matrices using the Tucker decomposition of tensors.

1) A Brief Review of Tensors: A tensor is a multidi-
mensional array where the order of the tensor is defined
as the number of components in the array. A tensor X €
RP1*P2XXPK of order K can be expressed as a matrix by
reordering its elements to form a matrix. This reordering is
called unfolding: the mode-k unfolding matrix of a tensor is a
Pk X ]_Lv# pi matrix, which we denote by X(). Each column
of X(x) consists of the vector formed by fixing all indices of X
except the one in the kth-order. For example, for a 2nd-order
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tensor X, the mode-1 and mode-2 unfolding matrices are X
and X, respectively. The k-rank of a tensor X is defined by
rank (X, ); trivially, rank (X)) < pr.

The mode-k matrix product of the tensor X and a matrix
A e Rm>*Pk denoted by X xi A, is a tensor of size p; x
.o Pk—1 X Mf X Pi41 ... X pg whose elements are

Pk
@ Xk A)ill--‘.k—ljik+lu-ik' = Z £:'|,..fk_|fkf;‘-+| ..,l'xaj‘.k' (6)
ip=1
The mode-k matrix product of X and A and the matrix
multiplication of X() and A are related [37]:

Y=XxA & Yqu =AXp). @]

2) Tucker Decomposition for Tensors: The Tucker decom-
position is a powerful tool that decomposes a tensor into a
core tensor multiplied by a matrix along each mode [17], [37].
We take advantage of the Tucker model since we can relate
the Tucker decomposition to the Kronecker representation of
tensors [38]. For the tensor Y € RMixm2x..Xmk qof order K,
if rank(Y)) < pi holds for all k € [K] then, according to
the Tucker model, Y can be decomposed into:

Y=Xx1Dy xpD2 x3... xg Dg,

®)

where X ¢ RP1*P2X--XPK denotes the core tensor and Dy €
R™k*Pk are factor matrices. Here, (8) can be interpreted as a
form of higher order principal component analysis (PCA):

Y= > ... > x4 O...0dkg,

irelp1]l  ikelpk]

®)

where the Dy’s can be interpreted as the principal components
in mode-k. The following is implied by (8) [37]:

Yo =DiXp)Dx ®...8 D1 ®Dr_1 ®...@Dy)". (10)

Since the Kronecker product satisfies vec(BXA) = (A ® B)
vec(X), (8) is equivalent to

vec(Y) = (Dx ® Dx_1 ® ... ® Dy) vec(X), (11)

where vec(Y) £ vec(Y (1)) and vec(X) = vec(X(1y) [371-[39].

The rest of the paper is organized as follows. We formulate
the KS dictionary learning problem and describe the procedure
for obtaining minimax risk lower bounds in Section II. Next,
we provide a lower bound for general coefficient distribution
in Section III and in Section IV, we present lower bounds for
sparse and sparse Gaussian coefficient vectors. We propose a
KS dictionary learning algorithm for 2nd-order tensor data and
analyze its corresponding MSE and empirical performance in
Section V. In Section VI, we discuss and interpret the results.
Finally, in Section VII, we conclude the paper. In order to keep
the main exposition simple, proofs of most of the lemmas and
theorems are relegated to the appendix.

II. PROBLEM FORMULATION

In the conventional dictionary learning model, it is assumed
that the observations y, € R™ are generated via a fixed
dictionary as

Yo = DXp + 1, (12)
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in which the dictionary D € R™*? is an overcomplete basis
(m < p) with unit-norm columns? and rank m, x,, € R? is the
coefficient vector, and 5, € R™ denotes observation noise.
Our focus in this work is on multidimensional signals.
We assume the observations are Kth-order tensors Y, €
Rmixmax...xmk - According to the Tucker model, given coor-
dinate dictionaries Dy € R™*Pk_ a coefficient tensor X, €
RP1*P2%--XPK and a noise tensor N,, we can write y, ES

vec(Y,,) using (11) as*

Yn = ( X Dk)xn + W (13)
ke[K]
where x, = vec(X,) and 5, = vec(N,). Let
m= Hm;c and p = 1_[ Pk- (14)

ke[K] ke[K]

Concatenating N i.i.d. noisy observations {yn}g‘r:], which are
realizations according to the model (13), into Y € R™V,
we obtain

Y = DX +N, (15)
A

where D = @) g De is the unknown KS dictionary,
X € RP*V s a coefficient matrix consisting of i.i.d. random
coefficient vectors with known distribution that has zero-mean
and covariance matrix X,, and N € R™*N ig assumed to be
additive white Gaussian noise (AWGN) with zero mean and
variance 2.

Our main goal in this paper is to derive necessary conditions
under which the KS dictionary D can possibly be learned from
the noisy observations given in (15). We assume the true KS
dictionary D consists of unit-norm columns and we carry out
local analysis. That is, the true KS dictionary D is assumed
to belong to a neighborhood around a fixed (normalized)
reference KS dictionary

Do = X) Dop)- (16)
ke[K]
and Dy € D, where
DAID eR™P . D = @ D}, D) € R™>Pk,
ke[K]
"d;f,j la=1Vk e[K], jelpl (17)

We assume the true generating KS dictionary D belongs to a
neighborhood around Dy:

DeXDo,r)={D' eD: D -Dof, <r} (18)

for some fixed radius r.°> Note that Do appears in the analysis
as an artifact of our proof technique to construct the dictionary

3The unit-norm condition on columns of D is required to avoid solutions
with arbitrary large norms for dictionary columns and small values for X.

4We have reindexed Dy’s in (11) for ease of notation.

SNote that our results hold with the unit-norm condition enforced only on
D itself, and not on the subdictionaries Dg. Nevertheless, we include this
condition in the dictionary class for the sake of completeness as it also
ensures uniqueness of the subdictionaries (factors of a K-fold Kronecker
product can exchange scalars yj freely without changing the product as long

as ]._.I.kG[K] Tk = ])
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class. In particular, if r is sufficiently large, then X'(Dg, r) =~ D
and effectively D € D.

A. Minimax Risk

We are interested in lower bounding the minimax risk for
estimating D based on observations Y, which is defined as the
worst-case mean squared error (MSE) that can be obtained by
the best KS dictionary estimator ﬁ(Y ). That is,

*

e* =inf sup ]EY{||B(Y)_D”.2F}’

it (19)
D DeX(Do,r)

where ﬁ(Y) can be estimated using any KS dictionary
learning algorithm. In order to lower bound this minimax
risk ¢*, we employ a standard reduction to the multiple
hypothesis testing used in the literature on nonparametric
estimation [24], [25]. This approach is equivalent to generat-
ing a KS dictionary D; uniformly at random from a carefully
constructed class Dy = {Dy,...,Dr} € X(Do,r),L = 2,
for a given (Do, r). To ensure a tight lower bound, we must
construct Dy, such that the distance between any two dictionar-
ies in Dy is large but the hypothesis testing problem is hard;
that is, two distinct dictionaries D; and Dy should produce
similar observations. Specifically, for I,!" ¢ [L], and given
error ¢ > ¢*, we desire a construction such that

VL #1,ID — Dyllp = 2,/7¢ and
Dir (forMlifo, (V) <ar,  (20)

where Dir. (f, (Y)||fp,(Y)) denotes the Kullback-Leibler
(KL) divergence between the distributions of observations
based on D; € Dy and Dy € Dy, while y, ar, and ¢ are non-
negative parameters. Observations Y = D;X+N in this setting
can be interpreted as channel outputs that are used to estimate
the input D; using an arbitrary KS dictionary algorithm that
is assumed to achieve the error . Our goal is to detect the
correct generating KS dictionary index [. For this purpose,
a minimum distance detector is used:

T= min |D(Y) - Dr

Ir- e
Then, we have ]P(?(Y ) #.1) = 0 for the minimum-distance
detector [(Y) as long as [[D(Y) —Di|lr < ,/7¢. The goal then
is to relate ¢ to P(||D(Y) — Dy||r = /7€) and P(I(Y) # 1)
using Fano’s inequality [25]:

(1 —PA(Y) # D)logy L — 1 < I(Y: 1), 22)

where 7(Y;[) denotes the mutual information (MI) between
the observations Y and the dictionary D;. Notice that the
smaller a7 is in (20), the smaller 7(Y;[) will be in (22).
Unfortunately, explicitly evaluating 7(Y; /) is a challenging
task in our setup because the underlying distributions are mix-
ture of distributions. Similar to [34], we will instead resort to
upper bounding /(Y; /) by conditioning it on some side infor-
mation T(X) that will make the observations Y conditionally
multivariate Gaussian (in particular, from [34, Lemma A.1],
it follows that 1(Y; 1) < I(Y;1|T(X))).® We will in particular

6Instead of upper bounding I(Y;|T(X)), similar results can be derived
by using Fano’s inequality for the conditional probability of error, P(I(Y) #
{|T(X)) [40, Th. 2].
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focus on two types of side information: T(X) = X and
T(X) = supp(X). A lower bound on the minimax risk in
this setting depends not only on problem parameters such as
the number of observations N, noise variance o2, dimensions
{mi}K, and {pr}K | of the true KS dictionary, neighborhood
radius r, and coefficient covariance X,, but also on the
structure of the constructed class Dy [24]. Note that our
approach is applicable to the global KS dictionary learning
problem, since the minimax lower bounds that are obtained for
any D € X' (Dg, r) are also trivially lower bounds for D € D.

After providing minimax lower bounds for the KS dictio-
nary learning problem, we develop and analyze a simple KS
dictionary learning algorithm for K = 2 order tensor data.
Our analysis shows that one of our provided lower bounds is
achievable, suggesting that they may be tight.

B. Coefficient Distribution

By making different assumptions on coefficient distribu-
tions, we can specialize our lower bounds to specific cases.
To facilitate comparisons with prior work, we adopt some-
what similar coefficient distributions as in the unstructured
case [34]. First, we consider any coefficient distribution and
only assume that the coefficient covariance matrix exists.
We then specialize our analysis to sparse coefficient vectors
and, by adding additional conditions on the reference dictio-
nary Dy, we obtain a tighter lower bound for the minimax risk
for some SNR regimes.

1) General Coefficients: First, we consider the general
case, where X is a zero-mean random coefficient vector with
covariance matrix X, = E, {xx'}. We make no additional
assumption on the distribution of x. We condition on side
information T(X) = X to obtain a lower bound on the
minimax risk in the case of general coefficients.

2) Sparse Coefficients: In the case where the coefficient
vector is sparse, we show that additional assumptions on the
non-zero entries yield a lower bound on the minimax risk
conditioned on side information supp(x), which denotes the
support of x (the set containing indices of the locations of the
nonzero entries of x). We study two cases for the distribution
of supp(x):

« Random Sparsity. In this case, the random support of x

is distributed uniformly over & = {S < [p] : |S| = s}
P(supp(x) = S)

for any S € &;. (23)

1
(%)
« Separable Sparsity. In this case we sample s; elements
uniformly at random from [p;], for all k € [K]. The
random support of x is & = {§ < [p] : |S]| = s},
where S is related to {S1 x ... x Sk : Sk € [pil, |Sk| =
sk, k € [K]} via lexicographic indexing. The number of
non-zero elements in X in this case is s = [ [y x; Sk The
probability of sampling K subsets {Si, ..., Sk} is
P(supp(x)=S)=

forany S € &. (24)

1
HkE[K ] (pk)
In other words, separable sparsity requires non-zero coeffi-
cients to be grouped in blocks. This model arises in the case
of processing of images and video sequences [38].
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Remark 1: If X follows the separable sparsity model with
sparsity (s1, ..., Sx), then the columns of the mode-k matrix
Y of Y have si-sparse representations with respect to Dy,
for k € [K] [38].

For a signal x with sparsity pattern supp(x), we model
the non-zero entries of x, i.e., Xg, as drawn independently
and identically from a probability distribution with known
variance ¢

Ey{xsx5|S} = 021,. (25)

Any x with sparsity model (23) or (24) and nonzero entries
satisfying (25) has covariance matrix

T, = —021 (26)
p

III. LOWER BOUND FOR GENERAL DISTRIBUTION

We now provide our main result for the lower bound for
minimax risk of the KS dictionary learning problem for the
case of general coefficient distributions.

Theorem 1: Consider a KS dictionary learning problem
with N i.i.d. observations generated according to model (13).
Suppose the true dictionary satisfies (18) for some r and
Jixed reference dictionary Dq satisfying (16). Then for any
coefficient distribution with mean zero and covariance X,,
we have the following lower bound on £*:

r2 2

a
—a (my — 1) k)
2K’ 4NK|Z, ||2( (MZK] P

K
— - logy 2K — 2)] 27

ro
£* > — min

4 P35k

1—1¢
8log2’
The implications of Theorem 1 are examined in Section VL.
Outline of Proof: The idea of the proof is that we construct
a set of L distinct KS dictionaries, Dy = {Dy,...,Dr} C
X (Do, r), such that any two distinct dictionaries are separated
by a minimum distance. That is for any pair /,!" € [L] and

Jorany0 <t <landany 0 < ¢ <

an iti P minlr2, 2|
y positive ¢ < min { r=, :
4 2Kp
Dy — DE||F >242¢e, forl £, (28)
In this case, if a dictionary D; € Dp is selected

uniformly at random from Dp, then conditioned on side
information T(X) = X, the observations under this dic-
tionary follow a multivariate Gaussian distribution. We can
therefore upper bound the conditional MI by approximat-
ing the upper bound for KL-divergence of multivariate
Gaussian distributions. This bound depends on parameters
e, N, imi ), {pi}X |, Zx, 5,1, K, and 2.

Assuming (28) holds for DL, if there exists an estimator
achieving the minimax risk &* < ¢ and the recovered dic-
tionary D(Y) satisfies ||D(Y) D;|lr < +/2¢, the minimum
distance detector can recover D;. Then, using the Markov
inequality and since £* is bounded, the probability of error
P(D(Y) # DI) < P(ID(Y) — Dyl > +/2¢) can be upper
bounded by . Further, according to (22), the lower bound
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for the conditional MI can be obtained using Fano’s inequal-
ity [34]. The lower bound is a function of L only. Finally,
using the obtained bounds for the conditional MI, we derive
a lower bound for the minimax risk &*.

Remark 2: We use the constraint in (28) in Theorem 1 for
simplicity: the number 2+/2 can be replaced with any arbitrary
y > 0.

The complete technical proof of Theorem 1 relies on
the following lemmas, which are formally proved in the
appendix. Although the similarity of our model to that of
Jung et al. [34] suggests that our proof should be a simple
extension of their proof of Theorem 1, the construction for
KS dictionaries is more complex and its analysis requires a
different approach. One exception is Lemma 3 [34, Lemma 8],
which connects a lower bound on the Frobenius norms of
pairwise differences in the construction to a lower bound on
the conditional MI used in Fano’s inequality [25].

Lemma I: Leta > 0and p > 0. Let {A; e R™*P : [ € [L]}
be a set of L matrices where each A contains m x p inde-
pendent and identically distributed random variables faking
values +a uniformly. Then we have the following inequality:

P31y e [L] x [L1,1 #1": (A1, Ap)| = B)

2
<2L%exp (—%fmp ) (29)

Lemma 2: Consider the generative model in (13). Fix
r > 0 and a reference dictionary Dy satisfying (16). Then
there exists a set DL c X(Do,r) of cardinality L =
211 ey (mi— l)pk) §1o0.CK) gy that for any 0 <t < 1,
any 0 < c1 < 810g'2.’ any &' > 0 satisfying

r2
¢ <r’min{l, — (30)
"2Kp )’
and all pairs 1,1' € [L], with | # I', we have
2
§Urn4wﬁmhfjﬁf @31)

Furthermore, if X is drawn from a distribution with mean 0
and covariance matrix £, and conditioning on side informa-
tion T(X) = X, we have

2NKpl2«ll2

IOV UTX) < =53

(32)

Lemma 3 (Lemma 8 [34]): Consider the generative model
in (13) and suppose the minimax risk e* satisfies e* < ¢
for some ¢ > 0. If there exists a finite set D < D with L
dictionaries satisfying

ID; — Dy |7 > 8¢ (33)

for L £, then for any side information T(X), we have

1
TV ITX)) = 2 logy (L) — 1. (34)
Proof of Lemma 3: The proof of Lemma 3 is identical to
the proof of Lemma 8 in Jung ef al. [34]. [ ]
Proof of Theorem 1: According to Lemma 2, for any &’
satisfying (30), there exists a set D € A'(Dg, r) of cardinality

L = 2l9Ckantu—r)—5102:CK)] hat satisfies (32) for

2711

Let t =

anyO-cr’-clandanycl-f,Sl 5 11—t
o

If there exists an estimator with worstg-;case MSE satisfying
2tp
8
t 2tp e =

2
e*¥ < min { 1, T then, according to Lemma 3, if we
2Kp

se 8¢*, (33) is satisfied for Dy and (34) holds.
Comblnmg (32) and (34) we get

1I6NKp||Zxl2 ,

%logz(L) —1=<I(Y;lITX)) < e, (35)

coro?

2t
where ¢3 = —f We can write (35) as
r

to
> (my —1) k)
I6NK| X, Ilz( (kE[Z‘K] P

K
— 5 logy 2K — 2). (36)

IV. LOWER BOUND FOR SPARSE DISTRIBUTIONS

We now turn our attention to the case of sparse coefficients
and obtain lower bounds for the corresponding minimax risk.
We first state a corollary of Theorem 1 for sparse coefficients,
corresponding to T(X) =X

Corollary 1: Consider a KS dictionary learning problem
with N i.i.d. observations generated according to model (13).
Suppose the true dictionary satisfies (18) for some r and
Jixed reference dictionary Dy satisfying (16). If the random
coefficient vector x is selected according to (23) or (24),
we have the following lower bound on &*:

2 2
* r r o°p

o= gmin . S swgsaz (1 2 - 0m)
kelK]
- %logZZK —2)], 37)

1—1¢
8log2’

This result is a direct consequence of Theorem 1, obtained
by substituting the covariance matrix of sparse coefficients
given in (26) into (27).

Jorany0 <t <landany 0 < ¢ <

A. Sparse Gaussian Coefficients

In this section, we make an additional assumption on the
coefficient vectors generated according to (23) and assume
non-zero elements of the vectors follow a Gaussian distribu-
tion. By additionally assuming the non-zero entries of x are
i.i.d. Gaussian distributed, we can write xg as

xs ~ N0, a1,). (38)
As a result, conditioned on side information T(x,) =
supp(x,), observations y, follow a multivariate Gaussian dis-

tribution. Part of our forthcoming analysis relies on the notion
of the restricted isometry property (RIP) for a matrix.
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Restricted Isometry Property (RIP) [41]: A matrix D with

unit £2-norm columns satisfies the RIP of order s with constant
ds if

(1= d)IIxI3 < IDx[13 < (1 + d5)Ix113, (39)

for all x such that ||x]|o < s.

We now provide a lower bound on the minimax risk in the
case of coefficients selected according to (23) and (38).

Theorem 2: Consider a KS dictionary learning problem
with N ii.d. observations generated according to model (13).
Suppose the true dictionary satisfies (18) for some r and
Jixed reference dictionary satisfying (16). If the reference
coordinate dictionaries {Dog,k € [K1} satisfy RIP(s, %)
and the random coefficient vector x is selected accord-
ing to (23) and (38), we have the following lower bound
on g*:

r o,
e* > —min

p r? a'p
4

s’ 2K’ 36(3*K)Ns2o 2
1
(cl( > (mg— l)pk) — 5 logy 2K —2)], (40)
ke[K]

1—1t
8log2’

Note that in Theorem 2, D (or its coordinate dictionaries)
need not satisfy the RIP condition. Rather, the RIP is only
needed for the coordinate reference dictionaries, {Do,k €
[K]1}, which is a significantly weaker (and possibly trivial to
satisfy) condition. We state a variation of Lemma 2 necessary
for the proof of Theorem 2 — the proof is provided in the
appendix.

Lemma 4: Consider the generative model in (13). Fix
r > 0 and reference dictionary Dy satisfying (16). Then,
there exists a set DL c X(Do,r) of cardinality L =

s let (kerry (me—1)pi)— } logy (2K)) such that for any 0 <t < 1,

Jorany0 <t <landany0 <c¢| <

any 0 < c1 < 8]02g?,’ any &' > 0 satisfying
r?
0 <& <r’min (41)
s 2Kp
and any 1,1' € [L], with | #I’, we have
2 4K
Pa-ne < ip - Dpiy = Sl 42)
r r

Furthermore, assuming the reference coordinate dictionaries
{Dok, k € [K1} satisfy RIP(s, %), the coefficient matrix X
is selected according to (23) and (38), and considering side
information T(X) = supp(X), we have:

HO T0) < 36G6) (%) N
a

5 @3)

Proof of Theorem 2: According to Lemma 4, for any &’
satisfying (41), there exists a set D; € A'(Dg, r) of cardinality
L = 211 Cketir(me=1)pi)— ’f]"gﬁ(ﬂm that satisfies (43) for any
0 <t < 1and any ¢; < SIugz- Denoting t = 1 — 1
and provided there exists an estimator with worst case MSE

. tp . 1 . 2tp
satisfying &* < Imln[; if we set r—zg’ = B8e*,

r
> m]s
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(33) is satisfied for Dy, and (34) holds. Consequently,
36(34K) (aa )4 Ns?
2

%log?'(f_,) -1 =I(Y;!|T(X)) =

a r2 ’
(44)
p(1—1) _
where ¢ = ———. We can write (44) as
4r2
ot > (1)4”’ (€1 (Zhepry(me — Dpr) — 5 logy 2K —2)
T tog 144(34K)N52 .
(45)
|

Focusing on the case where the coefficients follow the
separable sparsity model, the next theorem provides a lower
bound on the minimax risk for coefficients selected according
to (24) and (38).

Theorem 3: Consider a KS dictionary learning problem
with N i.i.d. observations generated according to model (13).
Suppose the true dictionary satisfies (18) for some r and fixed
reference dictionary satisfying (16). If the reference coordinate
dictionaries {Do i, k € [K1} satisfy RIP(s, 5) and the random
coefficient vector X is selected according fo (24) and (38),
we have the following lower bound on &*:

r? op

2K’ 36(3*K)Ns2o}
1
(cl( > i — l)pk) — 5 logy 2K —2)], (46)
ke[K]

1—1¢
8log2’

We state a variation of Lemma 4 necessary for the proof
of Theorem 3. The proof of the lemma is provided in the
appendix.

Lemma 5: Consider the generative model in (13).
Fix r > 0 and reference dictionary Dy satisfying (16). Then,
there exists a set of dictionaries D;, < D of cardinality
L = zlcl(z.&e[l(](mk D) pr)— TIDSZ(EK)J such that for any
O<t<l,any0<cy < Slozgz’ any ¢’ > 0 satisfying

&* > L min D,
— 4

Jorany0 <t <landany0 <c¢| <

' 2_ - rZ
O<ée <=rminil, — 1, 47)
2Kp
and anyl I' e [L], withl #I', we have
= 22 (1~ 1)’ < Dy — Dy < r—ps’ 48)

Furthermore, assuming the coefficient matrix X is selected
according to (24) and (38), the reference coordinate dictio-
naries {Do i, k € [K1} satisfy RIP (s, %), and considering side
information T(X) = supp(X), we have:
FOG 1T00) < 366) (22) X
o r
Proof of Theorem 3: The proof of Theorem 3 follows
similar steps as the proof of Theorem 2. The dissimilarity
arises in the condition in (47) for Lemma 5, which is different
from the condition in (41) for Lemma 4. This changes the
range for the minimax risk ¢* in which the lower bound in (45)
holds. [ |

(49)
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In the next section, we provide a simple KS dictionary
learning algorithm for 2nd-order tensors and study the cor-
responding dictionary learning MSE.

V. PARTIAL CONVERSE

In the previous sections, we provided lower bounds on the
minimax risk for various coefficient vector distributions and
corresponding side information. We now study a special case
of the problem and introduce an algorithm that achieves the
lower bound in Corollary 1 (order-wise) for 2nd-order tensors.
This demonstrates that our obtained lower bounds are tight in
some cases.

Theorem 4: Consider a dictionary learning problem with N
i...d observations according to model (13) for K = 2 and let
the true dictionary satisfy (18) for Do =1, and some r > 0.
Further, assume the random coefficient vector X is selected
according to (23), x € {—1,0,1}?, where the probabilities
of the nonzero entries of X are arbitrary. Next, assume noise
standard deviation o and express the KS dictionary as

D= (Ip1 + A]) ® (lpg + AE),

where p = p1p2, ||A1llF < r1 and ||Az||r < ra. Then, if the
Jollowing inequalities are satisfied:

nyp2t+n/prt+nr =r,
(ri+r2+rir)/s <0.1

s"]2 r% 1
maxqy—, — ¢ = —,
P2 P 3N

o <04,

(30)

(5D

there exists a dictionary learning scheme whose MSE satisfies

= 8 1mi + pamy
Ey {IDY) - DI}} < =& (ﬁ +3(p1+ Pz))

N
0.08pN
+8pexp| — 2 , (52)

for any D € X(Do, r) that satisfies (50).

To prove Theorem 4, we first introduce an algorithm to learn
a KS dictionary for 2nd-order tensor data. Then, we analyze
the performance of the proposed algorithm and obtain an
upper bound for the MSE in the proof of Theorem 4, which
is provided in the appv:ndi:l;.T Finally, we provide numerical
experiments to validate our obtained results.

A. KS Dictionary Learning Algorithm

We analyze a remarkably simple, two-step estimator that
begins with thresholding the observations and then ends with
estimating the dictionary. Note that unlike traditional dictio-
nary learning methods, our estimator does not perform iterative
alternating minimization.

a) Coefficient Estimate: We utilize a simple thresholding

technique for this purpose. For all n € [N]:

1 if yu; > 0.5,
Rn=@nls s Xnp) s Fng = {—1 if yoy < =05, (53)
0 otherwise.

TTheorem 4 also implicitly uses the assumption that max {pj, p2} < N.
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b) Dictionary Estimate: Denoting A = I,, + Ay and
B £ I, + Ap, we can write D = A @ B. We estimate the
columns of A and B separately. To learn A, we take advantage
of the Kronecker structure of the dictionary and divide each
observation y, € RP'P2 into p, observations yin, i) € RP1:

Yoo jy = Dnmiti )l » j€lpal, n NI (54)

This increases the number of observations to Np;. We also
divide the original and estimated coefficient vectors:

Xonjy = Pnmisi g -

Ry = Fnmiti )5 jelpal, ne NI (55)
Similarly, we define new noise vectors:

Wiy = (mnpisi) g s j €lp2l, n NI (56)

To motivate the estimation rule for the columns of A,
let us consider the original dictionary learning formulation,
¥n = Dx, + 13,, which we can rewrite as y, = X,;d; +
Zi# Xn,id; + 1,. Multiplying both sides of the equation
by x,; and summing up over all training data, we get
Z:;V:] Xn,i¥n = Zf;](xi,-dl-l-z,-# Xn,fxn,idi"i‘xn,fnn)- USiﬂg
the facts Ex{xﬁ’l] = 5 Ex {xXniXni} = 0 for I # i,
and Ey  {xn,m,} = 0, we get the following approximation,
d ~ 22;1 Xn,1¥n-S This suggests that for estimating the
columns of A, we can utilize the following equation:

N m
~ P , ,
= E zzx(ksj),fy(n,j)a I e[p1].

n=1 j=1

(37)

To estimate the columns of B, we follow a different proce-
dure to divide the observations. Specifically, we divide each
observation y, € RP!172 into p; observations y(,, ;~ € RP2:

Yuj) = {mitmG-n}iz,s j€lpil, ne[Nl.  (58)

This increases the number of observations to Np;. The coef-
ficient vectors are also divided similarly:

p1—1
X(n,j) = (XitmG-1)izo

~ -1 .
Xy = FnitmG-n)it » j €lp1l, n €[N (59)
Similarly, we define new noise vectors:

N, jy = {??n,i+p|(j—l}};-vi] , jelpil, ne[N]. (60)

Finally, using similar heuristics as the estimation rule for
columns of A, the estimate for columns of B can be obtained
using the following equation:

N p
b = % 22 XYy L € 1P2) (61)
n=1 j=1
The final estimate for the recovered dictionary is
D=A®B,
K =(@@,... :ﬁm), a = P.Bl(ai),
B =(bi,....by), b = Ps (), (62)

8Notice that the ii.d. assumption on Xp s is critical to making this
approximation work.



2714

where the projection on the closed unit ball ensures that
[@;]l2 < 1 and |[bs]|2 < 1. Note that although projection onto
the closed unit ball does not ensure the columns of D to have
unit norms, our analysis only imposes this condition on the
generating dictionary and the reference dictionary, and not on
the recovered dictionary.

Remark 3: In addition to the heuristics following (56),
the exact update rules for A and B in (57) and (61) require
some additional perturbation analysis. To see this for the
case of K, notice that (57) follows from writing A ® B as
A ® (Ip, + A»), rearranging each y, and (A ® I,,)x, into
Y(n.j)’s and AX(, .,’s, and using them to update A. In this case,
we treat (A ® Ag%x,, as a perturbation term in our analysis.
A similar perturbation term appears in the case of the update
rule for B. The analysis for dealing with these perturbation
terms is provided in the appendix.

B. Empirical Comparison to Upper Bound

We are interested in empirically seeing whether our achiev-
able scheme matches the minimax lower bound when learning
KS dictionaries. To this end, we implement the preceding
estimation algorithm for 2nd-order tensor data.

Figure 1(a) shows the ratio of the empirical error of the
proposed KS dictionary learning algorithm in Section V-A to
the obtained upper bound in Theorem 4 for 50 Monte Carlo
experiments. This ratio is plotted as a function of the sample
size for three choices of the number of columns p: 128, 256,
and 512. The experiment shows that the ratio is approximately
constant as a function of sample size, verifying the theoretical
result that the estimator meets the minimax bound in terms of
error scaling as a function of sample size. Figure 1(b) shows
the performance of our KS dictionary learning algorithm
in relation to the unstructured dictionary learning algorithm
provided in [34]. It is evident that the error of our algorithm
is significantly less than that for the unstructured algorithm for
all three choices of p. This verifies that taking the structure of
the data into consideration can indeed lead to lower dictionary
identification error.

VI. DISCUSSION

We now discuss some of the implications of our results.
Table I summarizes the lower bounds on the minimax rates
from previous papers and this work. The bounds are given in
terms of the number of component dictionaries K, the dictio-
nary size parameters (mj’s and pyi’s), the coefficient distribu-
tion parameters, the number of samples N, and SNR, which
is defined as

_E{IxIZ} _ Te(Ey)
Ey {Imiz} ~ mo?

These scalings result hold for sufficiently large p and neigh-
borhood radius r.

SNR

(63)

A. Comparison of Minimax Lower Bounds for Unstructured
and KS Dictionary Learning

Compared to the results for the unstructured dictionary
learning problem [34], we are able to decrease the lower
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Fig. 1. Performance summary of KS dictionary learning algorithm for
p = {128,256,512}, s = 5 and r = 0.1. (a) plots the ratio of the empirical
error of our KS dictionary learning algorithm to the obtained error upper
bound along with error bars for generated square KS dictionaries, and (b)
shows the performance of our KS dictionary learning algorithm (solid lines)
compared to the unstructured leamning algorithm proposed in [34] (dashed
lines).

bound for various coefficient distributions by reducing the
scaling Q(mp) to Q(2 ;. x;mkpx) for KS dictionaries. This
is intuitively pleasing since the minimax lower bound has a
linear relationship with the number of degrees of freedom of
the KS dictionary, which is 3 ;g Mk Pk.

The results also show that the minimax risk decreases with a
larger number of samples, N, and increased number of tensor
order, K. By increasing K, we are shrinking the size of the
class of dictionaries in which the parameter dictionary lies,
thereby simplifying the problem.

Looking at the results for the general coefficient model in
the first row of Table I, the lower bound for any arbitrary zero-
mean random coefficient vector distribution with covariance
X, implies an inverse relationship between the minimax risk
and SNR due to the fact that || Z,|]» < Tr(Z,).
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TABLE I
ORDER-WISE LOWER BOUNDS ON THE MINIMAX RISK FOR VARIOUS COEFFICIENT DISTRIBUTIONS

Dictionary mfoii::li:tion Unstructured [34] | Kronecker (this paper)
Distribution T(X)
1. General X NT;:cI"'z JZ(%;;ﬁ;gﬁT:m)
2. Sparse X NIS);IR %
3. Gaussian Sparse supp(X) Nm};:NR2 %

B. Comparison of General Sparse and Gaussian Sparse
Coefficient Distributions

Proceeding to the sparse coefficient vector model in the sec-
ond row of Table I, by replacing X, with the expression
in (26) in the minimax lower bound for the general coefficient
distribution, we obtain the second lower bound given in (37).
Recall that for s-sparse coefficient vectors,

sl

SNR = —%.
mao

(64)

Using this definition of SNR in (37), we observe a seemingly
counter-intuitive increase in the MSE of order Q (p/s) in the
lower bound in comparison to the general coefficient model.
However, this increase is due to the fact that we do not require
coefficient vectors to have constant energy; because of this,
SNR decreases for s-sparse coefficient vectors.

Next, looking at the third row of Table I, by restricting
the class of sparse coefficient vector distributions to the case
where non-zero elements of the coefficient vector follow a
Gaussian distribution according to (38), we obtain a minimax
lower bound that involves less side information than the prior
two cases. However, we do make the assumption in this case
that reference coordinate dictionaries satisfy RIP(s, %). This
additional assumption has two implications: (1) it introduces
the factor of 1/3%K in the minimax lower bound, and (2)
it imposes the following condition on the sparsity for the
“random sparsity” model: s < mingex){pr}. Nonetheless,
considering sparse-Gaussian coefficient vectors, we obtain a
minimax lower bound that is tighter than the previous bound
for some SNR values. Specifically, in order to compare bounds
obtained in (37) and (40) for sparse and sparse-Gaussian
coefficient vector distributions, we fix K. Then in high SNR
regimes, i.e., SNR = Q(1/m), the lower bound in (37) is
tighter, while (40) results in a tighter lower bound in low
SNR regimes, i.e., SNR = O(1/m), which correspond to low
sparsity settings.

C. Comparison of Random and Separable Sparse
Coefficient Models

We now focus on our results for the two sparsity pattern
models, namely, random sparsity and separable sparsity, for the

case of sparse-Gaussian coefficient vector distribution. These
results, which are reported in (40) and (46), are almost identi-
cal to each other, except for the first term in the minimization.
In order to understand the settings in which the separable
sparsity model in (24)—which is clearly more restrictive than
the random sparsity model in (23)—turns out to be more
advantageous, we select the neighborhood radius r to be of
order O(m; since we are dealing with dictionaries that lie on
the surface of a sphere with radius ,/p, this effectively ensures
X (Dg, r) = D. In this case, it can be seen from (40) and (46)
that if s = Q(K) then the separable sparsity model gives a
better minimax lower bound. On the other hand, the random
sparsity model should be considered for the case of s = O(K)
because of the less restrictive nature of this model.

D. Achievability of Our Minimax Lower Bounds
Jor Learning KS Dictionaries

To this end, we provided a simple KS dictionary
learning algorithm in Section V for the special scenario of
2-dimensional tensors and analyzed the corresponding MSE,
]Ey{||ﬁ(Y) — D||%}. In terms of scaling, the upper bound
obtained for the MSE in Theorem 4 matches the lower
bound in Corollary 1 provided pj + py < L2IER2P2 holds.
This result suggests that more general KS dictionary learning
algorithms may be developed to achieve the lower bounds
reported in this paper.

VII. CONCLUSION

In this paper we followed an information-theoretic approach
to provide lower bounds for the worst-case mean-squared
error (MSE) of Kronecker-structured dictionaries that generate
Kth-order tensor data. To this end, we constructed a class of
Kronecker-structured dictionaries in a local neighborhood of a
fixed reference Kronecker-structured dictionary. Our analysis
required studying the mutual information between the obser-
vation matrix and the dictionaries in the constructed class.
To evaluate bounds on the mutual information, we considered
various coefficient distributions and interrelated side informa-
tion on the coefficient vectors and obtained corresponding
minimax lower bounds using these models. In particular,
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we established that estimating Kronecker-structured dictionar-
ies requires a number of samples that needs to grow only
linearly with the sum of the sizes of the component dictionaries
(2_ke[k) Mk Pk), Which represents the true degrees of freedom
of the problem. We also demonstrated that for a special case
of K = 2, there exists an estimator whose MSE meets the
derived lower bounds. While our analysis is local in the sense
that we assume the true dictionary belongs in a local neighbor-
hood with known radius around a fixed reference dictionary,
the derived minimax risk effectively becomes independent of
this radius for sufficiently large neighborhood radius.

Future directions of this work include designing general
algorithms to learn Kronecker-structured dictionaries that
achieve the presented lower bounds. In particular, the analysis
in [42] suggests that restricting the class of dictionaries to
Kronecker-structured dictionaries may indeed yield a reduction
in the sample complexity required for dictionary identification
by replacing a factor mp in the general dictionary learning
problem with the box counting dimension of the dictionary
class [32].

APPENDIX

Proof of Lemma 1: Fix L > 0 and a > 0. For a pair
of matrices A; and Ay, with [ # [I’, consider the vectorized
set of entries a; = vec(A;) and ay = vec(Ay;) and define the
function

@, a)) 2 (A, Ar)| = |(as, ar)] - (65)

For d £ (a,a)) € R, write @ ~ @ if @ is equal to &
in all entries but one. Then f satisfies the following bounded
difference condition:

sup | @) — f@)] = (@ — (—o))a = 247,

a~a’

(66)

Hence, according to McDiarmid’s inequality [43], for all
£ = 0, we have

P (|(As, Ap)| > B) < 2exp _
T > (2a2)?

2
=2exp|— b .
4a*mp

Taking a union bound over all pairs [, I’ € [L],] # I’, we have
P (30,1 e [L1x [L1,1 #1' : (A1, Ar)| = B)

(67)

2 p
<2L — . (68
- exp( 4a4mp) (68)
|
Proof of Lemma 2: Fix r > 0 and t € (0, 1). Let Dg be
a reference dictionary satisfying (16), and let {U(k,j]}fk=1 €
Rmexmk -k e [K], be arbitrary unitary matrices satisfying

(69)

d(,0),; = U, je1,

where d(0),; denotes the j-th column of D g).
To construct the dictionary class Dy, € X' (Do, r), we follow
several steps. We consider sets of

Ly = 2L61(mk—l)pk—% logy 2K | (70)
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generating matrices G, j;):

1 1
G €1 ’
(k,lx) | rVK fimpy — 1) rV/K J/imp — 1)

](mk—l)xpk

(7D

for k € [K] and [} € [L]. According to Lemma 1, for all
k € [K] and any g > 0, the following relation is satisfied:

P (30, 1) € L1 % Ll L £ 1+ |(Geeas Gy )| = )
Y mi — 1)
212 —’k—). 72
=< kﬁXp( ape (72)

To guarantee a simultaneous existence of K sets of generating
matrices satisfying

|(G(k,fk)a G(k,:;)>

we take a union bound of (72) over all k € [K] and choose
parameters such that the following upper bound is less than 1:

<p, kelKl, (73)

4/K _ a2
r m
4py
4/K _ a2
r* % (m
—exp (_—( DB o ~/2_KL;C), (74)
4py
which is satisfied as long as the following inequality holds:
YEmy—1pr 1 1
r*f (m
logy Ly < = DE L 1o k. a5
8pilog2 2 2
r
Now, setting f = %, the condition in (75) holds and there
r

exists a collection of generating matrices that satisfy:

Pkt
|(G(k,fk)= G(k,f;))

=gk K
for any distinct g, I,’c € [Lgl, any t € (0,1), and any ¢1 > 0
such that

€ [K], (76)

rz
8log2’

We next construct matrices that will be later used for the
construction of unit-norm column dictionaries. We construct
D) € R™k>Pk column-wise using G y) and unitary
matrices {U(k’j]}?i]. Let the j-th column of D ) be
given by

c1 < (77)

0
dk,1,, 'ZUk'( ), k € [K], 78
RON AL P (78)
for any Iy € [Li]. Moreover, defining
D = I ® D) s lk € [Lk]], (79)
ke[K]
and denoting
LE(, ..., 1K) Ik € (L]}, (80)
any element of D; can be expressed as
D,y = ® D,1,y), VIe[Ll], (81)

ke[K]
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where || =L £ [ Txeix) Lk and we associate an / € [L] with
a tuple in £ via lexicographic indexing. Notice also that

11

ldanil; 2 T ldermils = TT -z = = and
ke[K] ke[K]

Ipanly = 5. (82)

where (a) follows from properties of the Kronecker product.
From (78), it is evident that for all k¥ e [K], d,0),; is
orthogonal to d,1,5,),; and consequently, we have

(Dk,0), Dk, 1,4)) = 0, k € [K] (83)
Also,
(D(k,l,fua D(k,l,f;)>

Pk
= (d(kalafk)af’d(hhﬁ-):j)

j=1

Pk

0 0

Sl ) oo ()

o (k). i (k. 1E),

Pk
(&)
- g(k Ik)n” g(k I( 1j

j=1
= (G(k,lk), G(kafi))’ (84)

where (b) follows from the fact that {U_;} are unitary.
Based on the construction, for all k € [K], lk,l;‘ c [Lgl,
Ix # I}, we have

Dy — D | 5
2 2
= |Day || r + PanlF —2Dan, Dan)

_ £ 4 r_2 -2 H (D(k,l,fﬂ}J D(ksl»fk))
ke[K]
(2 I o)
ke[K]
(2 T foum)
ke[K]
@ (p Pk
> 2(}_—2 - kE[HK] r2/K )
=5 (1)

where (c) and (d) follow from (84) and (76), respectively.
We are now ready to define Dy. The final dictionary class
is defined as

DL = [ ® Dy i lk € [Lk]l (86)
kelK]
and any D; € Dy, can be written as
D; = ® D) (87)
ke[K]
where Dy ) is defined as
Dicu) = Do) + D@11y, k€Kl (88)
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and
n n Z/K '
£ s = 89
Vi-5 V (89)
for any
4
' . 2 T
0<é& <min{r-, — (90)
2Kp

which ensures that 1 — fé > 0 and D; € X(Dp, r). Note that

the following relation holds between » and v:
2
2, Vo

We can expand (87) to facilitate the forthcoming analysis:

Z ’?K_||i|||v||illl( ® D(k,i;.-,fk))’

i]0,1}X ke[K]

92)

where i £ (i1,i2,...,ix) and Dg04) = D0). To show
Dy < X(Dg,r), we first show that any D; € Dy, has unit-
norm columns. For any j € [p] and ji € [pil.k € [K]
(associating j with (ji, ..., jx) via lexicographic indexing),

we have
lail; = TT ldea.il
ke[K]

- 11

ke[K]

It

@,

(nz lde,0y,c 13 +v2 a0, )

=1, (93)
where (e) follows from (91). Then, we show that
ID; —Dollp <r:
ID; — Do}
” Do— > pKliliylil Q) . i
i€0,1}X kelK]
” L yKDg— 3 Kl ®D(km)
i}, 1}¥ ke[K]
llill1 70
k)2 2
= (1=7) 1poli;
i ; 2
+ > KL TT D@l ©4)
ic[0,1}¥ ke[K]
lill1 0
We will bound the two terms in (94) separately. We know
A=x"=0—-x)A+x+x>+...+x"H. (95

Hence, we have

2
(1=7%) " 1mol =
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—_—

&) (1 — :;2) (1 +??2+...+?12(K_]})P

SJ’
(h)
=

Kpe'

Ea (96)

where (f) and (h) follow from the fact that y < 1 and (g)

follows from (95).
Similarly for the second term in (94),

IT P, wlF
ke[K]
= ( I1 ||D(k,0}||%r)( I1 ||D<k,1,fk)||%)
ke[K] ke[K]

=0 ir=1
Pk

ke[K] ke[K]

ir=0 ip=1

o7

() )"

Replacing values for # and v from (89) and using (97) and
the fact that [ [;x; Pk = p, we can further reduce the second
term in (94) to get

S P& TT D, 123

ie{0,1)¥ ke[K]
llill1 0
K—1 ink 4o\ K—k
K £ £
-2 () (%) (5)
— k r r
&\ K
! ' ry K—1
1] £ £
= — 1 1——= 1— =
P (5 (-2))
K !
< I (98)
r

where (i) follows from (95). Adding (96) and (98), we get

Kp

D;—-D <e
ID; — Dol < ( p )

()

< 99)
where (j) follows from the condition in (90). Therefore, (93)
and (98) imply that Dy, < X'(Do, r).

We now find lower and upper bounds for the distance

between any two distinct elements Dy, Dy € Dy.

A. Lower Bounding |D; — Dy ||%

We define the set Z; € [K] where |I;| =i,i < [K]. Then,
given distinct I, l,’(, k € I;, we have

(;c)21—r‘
®D(k1m—®0(klfk) E rz;/x HP"
_20-1

[T px. 100

T 2i/K
r
keT;
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where (k) follows using arguments similar to those made
for (85).

To obtain a lower bound on ||D; — Dp||§;, we emphasize
that for distinct /,/" € [L], it does not necessarily hold that
I # I,’c for all k£ € [K]. In fact, it is sufficient for D; #£ Dy
that only one k € [K] satisfies [; # I,’c. Now, assume only
K1 out of K coordinate dictionaries are distinct (for the case
where all smaller dictionaries are distinct, K1 = K). Without
loss of generality, we assume [y,...,[g, are distinct and
lk,+1, - - .,k are identical across D; and Dy. This is because
of the invariance of the Frobenius norm of Kronecker products
under permutation, i.e.,

& Ac

ke[K]

= [T 1Al =

ke[K]

Q) Az

ke[K]

. (101)

where 7 (.) denotes a permutation of [K]. We then have
ID; — Dy |
= “ D) @ .- @Dy ig,)

®D(Ki+1.1k,+1) ® - - - ® Dk 1x))
-Dup®...® D(Ku,l}(l)
2
®D(ky+1,1k,41) ® -+ - @ Dk 1))
F

( ® Dk i) — ® D(k,:;_}))

ke[K1] ke[K1]
2
QDK +1,1g,41) ® - - - ® D(k 1))
F
2 K ,
=] @ Puiy— @ Duyy| 1 IPwwls
ke[K1] ke[K1] Fr=K1+1
K
:( Il Pk)H S Kl
k=K;+1 i{0,1}¥1
[HIE
2
( ® D (ki 1) — ® D(k,ik,f;))
ke[K,] ke[K,] F
(m) 2(K1—lill1),, 2]l 2
m) > K2 TT Do |
ic(0,1}%1 ke[K)]
llill #0 =0
2
® v~ @ D))
ke[K1] ke[K ] F
ir=1 =1
() K -
@ ( T Pk)( 3 P20
k=Ki+1 ie{0,1}1
[HIE
2
[T pe)(zmme 11 )0
ke[Kq] ke[Ky]
=0 =1

K1—1 k K-k
o K ’ ’ 1
@008 () (-2) ()
k=0
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1y K1
(QZp(l—r)(l—(l—f—z) )
8}'
> 2p(1—r)(]—(1—r—2))

2
= La-ne, (102)
-

where (1) follows from the distributive property of Kronecker
products, (m) follows the fact that terms in the sum have
orthogonal columns (from (4) and (83)), (n) follows from
(100), (o) follows from substituting values for  and v, and
(p) follows from the binomial formula.

B. Upper Bounding |D; — Dy ||%
In order to upper bound ||D; — Dy ||‘2,_~, notice that

ID; — Dy ||
Z ”Z(K—Ililll)DZIIilll
ic[0,1}¥
llill1 0
2
& D) — @ D)
ke[K] ke[K] F
@ KTl 20l
i]0,1}X
lill1 #0
2
( ® Dk, Wl @ Dkiy i) )
ke[K] ke[K]
—4 > KB G Dy,
ic[0,1}¥ ke[K]
lill1 70
— 4 Z ”E(K—Ililh}v?ﬂilll
ic[0,1}¥
llill1 0
[T Peolz [T 1De1mlE
ke[K] kel K]
i=0 =1
2K—lilly),, 20 Pk
—4 Y K, ||-||.( Il pk)( Il rE/K)
ic[0,1}¥ ke[K] ke[K]
lilli 0 =0 =1
- K-1 K e\ 7\ KK
S22\ )\ 2) 2
k=0
(
%} r—zp-‘l , (103)

where (q) follows from the triangle inequality, (r) follows from
substituting values for x and v, and (s) follows from similar
arguments as in (98).

C. Upper Bounding I(Y;l|T(X))

We next obtain an upper bound for 7(Y;!|T(X)) for the
dictionary set Dy, according to the general coefficient model
and side information T(X) =

Assuming side information T(X) = X, conditioned on
the coefficients x,, the observations y, follow a multivariate
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Gaussian distribution with covariance matrix ¢2I and mean
vector Dx,. From the convexity of the KL divergence [44],
following similar arguments as in [34] and [40], we have

1(Y; 1[T(X))
= I(Y;1[X)
1 1
-1 3 o (memIE X o))
le[L] I'e[L]
1
=12 > ]ExIDKL(fDx(Y|X)"po(Y|X))], (104)
Lle[L]

where fp,(Y|X) is the probability distribution of the observa-
tions Y, given the coefficient matrix X and the dictionary D;.
From Durrieu ef al. [45], we have

Dkr (fn; (Y1X)| fo, (YIX))

1
= 2 57 10 =Dp)xali3
neln] <2
1
= > 52T {®-D) O - D%} (105)
neln] <2
Substituting (105) in (104) results in
1(Y; |T(X))
1
< Ex[ > —ZTI'{(DI — D) (D _DI’)XHX;:F} ]
20
ne[N]
1
= > 55T -D) ® - D)z
netv] <2
0 1 )
< D 531 Zxl2lD — Dyl
ne[N]
W N 4Kpe'
= F”ExHE( 2 )
2NKp||Zxll2 o/
= 2,7 ¢ (106)

where (u) follows from (103). To show (t), we use the fact
that for any A € RP*P and X, with ordered singular values
6i(A) and 0;(Zy),i < [pl, we have

Tr{AZ,} < [Tr{AZ,]|

®©) <
< zﬂ'i (A)oi(Zy)

i=1

® 4
< 01(Z2) D 0i(A)
i=1

= || Zxll2 Tr{A}, (107)

where (v) follows from Von Neumann’s trace inequality [46]
and (w) follows from the positivity of the singular values
of X,. The inequality in (t) follows from replacing A with
(D; — Dy)"(D; — Dy) and using the fact that Tr{(D; —
D) " (D — Dp)} = D — Dy 7 u

Proof of Lemma 4: The dictionary class D constructed
in Lemma 2 is again considered here. Note that (41) implies
¢’ < r2, since s > 1. The first part of Lemma 4, up to (42),
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thus trivially follows from Lemma 2. In order to prove
the second part, notice that in this case the coefficient vector
is assumed to be sparse according to (23). Denoting Xxg, as
the elements of x, with indices S, = supp(x,), we have

observations y,, as
Yn =Dy s, X5, + M- (108)

Hence conditioned on S, = supp(x,), observations y,’s are
zero-mean independent multivariate Gaussian random vectors

with covariances
En) =0.D15,D/ 5, + 0L (109)

The conditional MI 7 (Y; /|T(X) = supp(X)) has the following
upper bound [34], [47]:
I1(Y; 1|T(X))
1
= ]ET(X)I 2.
ne[N]
1,I'e[L]

* T {[Z5ly ~ 2l [E e — Zan ]}

1

,NZen = Zanl, ]

(110)

< rank {Z(, 1) — Zu1)} ET(X)I

-1 1
x 2 Hz(n,n_’:(n,r)‘
LIe[L]

Since rank(X (1)) < s, rank{Z 51y — Z(n,1n} < 25 [34].

Next, note that since non-zero elements of the coefficient
vector are selected according to (23) and (38), we can write
the subdictionary D; s, in terms of the Khatri-Rao product of
matrices:

Dys, Dt 1k, S » (111)

= X
ke[K]

where S, = {jnk};F],j,,k € [pi], for any k € [K], denotes
the support of x,, according to the coordinate dictionary D 1)
and S, corresponds to the indexing of the elements of (51 x
...Sk). Note that Dy 5, < RULketx1m)%s and in this case,
the S, ’s can be multisets.” We can now write

Z(n,1)

N
=2 kK b X b 2
7a (J’flelK] (kl’&')’snk')(he[ﬁ’] (k2,lky), S, ol
(112)

We next write

|
E(E(n,n —Z@n,1)

T
(’CIE[K] 1ty ) S, k2€[K] (k2,1 ), Sy,

T
—(, & Dy X Dy,
(hE[K] (kl,fkl )’S"kl kelK] (h,sz},snkz

9Due to the fact that Spy’s can be multisets, D ).Sng s can have
duplicated columns.
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— K—[illy , llilly .
—( Z n v kljFK]D(kl,lkl,fkl),Snkl)

ief0,1}¥
(Z K=l I 3K !
=i {1, i1l
n v Dyt 1),S )
k K 2%kn 2tR o,
i'ef0,1}¥ €Ik : ?
_ K—[lilly , lilly .
( Z ?? v klzifK] D(kl y*kl afil )’S"kl )
ie{0,1)¥
K—li'lly, Il '
—|r 1
( 2 i hij]D(kz,f;z,fgz),s,.@)
i'ef0,1}¥
— Z qEK—IIiIh—IIi’IhvlliI||+|Ii’I|1
ii'ef0,1}¥
lill +1i'lh #0

T
X Dy, X Dy,

(kl e[K] (k1 by afk| )’S"!q kye[K] (kzalkzafkg)asnkz

— z ,?ZK—||i|||—||i'|||v||i||1+||i'||1

ii'ef0,1}¥

lilly 41l 0
* * !
D, ;. Do i 1 .
(kl E[K] (kl a”q ’Ik| ]1Snk| ) (hE[K] (kz’lkz’sz)’snkz)
(113)
‘We now note that
A1 % Azll2 = [[(A1 ® A2)P|)2
< [[(A1 @ A2)2][P]|2

D A1121A 12, (114)

where P € RP** is a selection matrix that selects s columns of
A; ®Ajp and p; = e; for j € [s],i e [p]. Here, (a) follows
from the fact that ||P|, = 1 (PTP = I;). From (41), it is

!

2

p
3
, =V 7 || Dk, 1,1,y

where the fist inequality in (115) follows from the RIP con-
dition for {D(o,x), k € [K1} and the second inequality follows
from the fact that |Al|2 < ||A| F. We therefore have

< 1. Furthermore,

[ s
25 /K k € [K],

(115)

apparent that

||D(k,0),snk

1
P |Zen) — Z@n)

2
Y, DI e P ]
ii'ef0,1}¥
Wil -+ 0
X Dy, X Dy,
kie[K] (klalﬂ'pfh]asnkl ) kye[K] (kzalkzafkg)asnkz )
9, S K-l i
icf0,1}¥
lilli %0
x 1 IPwo.sy 2 TT 1P 1.5, 12
kie[K] kielK]

Iy = gy =
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Z ,?K—Ili’lhvlli’lh

dl

i'ef0,1}X
< [T Pwosy la TT 1P 1150, ||2)
ke[K] ke[K]
if, =0 i, =1
42 Z ,?K—Ililllvllilll
ic[0,1}¥
llill1 0
x [T IPwosy o TT Pw.1u).s, 12
kie[K] kielK]
Iy = gy =
X( S Ky
i'ef0,1}¥
li'llh#0
< [T Pwosy la TT 1P 1150, ||2)
ke[K] ke[K]
1 =0 =1

=
Ikz sz

(S0 () ()

se’
< 32K+ ,‘_,
- r

where (b) follows from triangle inequality, (c) follows
from (114), (d) follows from (115), (e) and (f) follow from

(116)
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replacing the value for v and the fact that » < 1 and
se'/r? <1 (by assumption). Denoting the smallest eigenvalue
of np 8 Amin(E(n1)s Amin(E(m) > o2 holds; thus,
we have ||zazlf}||2 = a—]; and from [48], we get

|=2.

1 2
2 Hz(n,:) Hz |Z@n = Zer)

IA

—1
— I

() 5 2
2
< S 1Zen —Zanl,- a1
Now (110) can be stated as
4Ns 2
I(Y;1|IT(X)) < m; 1Zen — Zenl
4Ns 2
= — 7 1Zen —Zanl;
2
(&) 4Ns _axio [ 2 [5€
=73 al
= ( N %a 2
4 Ns?
= 36(3%K) (2) =, (118)
a r

where (g) follow from (116). Thus, the proof is complete. B
Proof of Lemma 5: Similar to Lemma 4, the first part
of this Lemma trivially follows from Lemma 2. Also, in this
case the coefficient vector is assumed to be sparse according
to (24). Hence, conditioned on S, = supp(x,), observations
yn’s are zero-mean independent multivariate Gaussian random
vectors with covariances given by (109). Similar to Lemma 4,
therefore, the conditional MI has the upper bound given
in (110). We now simplify this upper bound further.
When non-zero elements of the coefficient vector are
selected according to (24) and (38), we can write the dictionary
D; s, in terms of the Kronecker product of matrices:

Dis, = &) Dkt
ke[K]

(119)

where S,, = {j,,k};’;=l,j,,k e [px], for all k € [K], denotes
the support of x, on coordinate dictionary D) and S,
corresponds to indexinﬁ of the elements of (S; x ... x Sg).
Note that D; 5, € RTketx1™)>s 1y contrast to coefficient
model (23), in this model the S, s are not multisets anymore
since for each D 1,), k € [K], we select s; columns at random
and D y,),s,, are submatrices of D). Therefore, (109) can
be written as

2
L, =0a( X D(k..fk,),snkl)
kie[K]

.
x( X D(;Q,;kz),s,,kz) + 0%, (120)
kyelK]

In order to find an upper bound for || X1y — X 1)ll2, notice
that the expression for X (,, 1y — X (»,1) is similar to that of (113),
where K is replaced by (¥). Using the property of Kronecker
product that |[A; ® Az|[2 = ||A1]]2]|A2]|2 and the fact that

3 Sk
< \g [Pk s, ], = /= Ve < 151,

(121)

HD(;(,u},s,,k
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we have

1
p 1Ze0 — Z@nll,

<2 Z ,?ZK—IIiIII—Ili’lllvlli||1+lli'I||
i,i'ef0,1}K
lilli 40170
x ® D(k"ik"fkl)’s"h ® D("‘?’iiz’sz)»sﬂkz
k1 €[K] kr€[K] 2
=2 Z ,rK—IIilllvllilll
ie[0,1}¥
lill1 0
x [T IPaonsy, I TT 1P 10,8, I
ki€lK] ki e[K]
fk|=0 ik|=]
x( Z ,?K—Ili’lllvlli’lll
ire(0,1}X
x [T IPwo.s,, [ TT Pe.i.s, ||2)
k€[K] kae[K]
ik, =0 if, =1
Z(qﬁ’ H ||D(k1,0),8,.kl "2)( Z ”K—Ili’lllvlli’lll
ki €[K] ief0,1}¥
li'lly #0
< [T IPwo.s,, [ TT Pe.i.s, ||2)
kyelK] kae[K]
ity =0 i, =1

2o (E 0 (3 () )
)l ) - ()
() ()
SEEOU)

Q jor [38 (122)

where (a) follows from (121), (b) follows from replacing the
value for v and the fact that < 1, &’/r? < 1 (by assumption),
and (c) follows from similar arguments in (116). The rest of
the proof follows the same arguments as in Lemma 4 and
(118) holds in this case as well. [ |

Proof of Theorem 4: Any dictionary D € X'(I,,, r) can be
written as

D=A®B

= (I, + A1) @Iy, + Ay), (123)
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We have to ensure that ||D

ID—IpllF

—I,||F < r. We have

= I, ® A2+ A1 @Iy + A1 @ Az|lF
< [Ip @ Az2llr + |1A1 @ I llF + [|A1 ® Azl
= |Ip IFllA2llFHI A F I |F I A FIlA2I P

= nyp1triyp2+rnrn
(d)

E r‘)

(124)

where (d) follows from (51). Therefore, we have

De |A®B = (Ip, + A1) ® (I, + A2)| A1llF <11,
|A2llF <12, ro/pr+ri/p2+rr2<r,

lagllz = 1,0 € [p1l, byl = 1,1 € [p2] ;-

(125)

In this case, the new observation vectors yiﬂ j) can be
written as

Yn,j) = AX(n, jy + ApXn, j €[p2l, n€[N], (126)
where A, £ A® Ag)T" denotes the matrix consisting of the
rows of (A ® Ay) with indices 7, = ip2 + j, where i =
{0}U[p1 —1]and j = ((n — 1) mod pp) + 1.

Similarly, for y(, ., we have

=Bx(, jy + BpXa, jelpil, n€[N], (127)

Yen.)
where B, 2 A ® B)I" denotes the matrix consisting of the
rows of (A; ® B) with indices 7, £ jp2 + i, where i =
{0}U[p2 — 1] and j = (n — 1) mod p;. Given the fact that
Xp € {—1,0,1}7, 62 =1 and ||x, |13 = s, after division of the
coefficient vector according to (55) and (59), we have

2 12 2
Ex, {xn,f} =By, {x (n,jl),f.} =Eq {x (n,,fz),fz}
M
= -, (128)
p

for any n € [N], j1 € [p2], j2 € [p1l,1 € [pl, 11 € [p1], and
I € [p2]. The SNR is

Ex{IxI3} s
T, {Inlg)  me?

We are interested in upper bounding Ey || D(Y) — Dlli

(129)

. For
this purpose we first upper bound Ey {[A(Y) — A"i and

Ey {“ﬁ(Y) - B"il We can split these MSEs into the sum
of column-wise MSEs:

P1
Ev {|Aw) - a3} = 2 By [lmon - a3} as0)
I=1

By construction:

@) —arl < 2 (@13 + arl2)

b
D4, (131)
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where (b) follows from the projection step in (62). We define
the event C to be

& () {lmml <0.4}.

ne[N]

lelp]
In order to find the setting under which P {X = X|C} = 1,
i.e., when recovery of the coefficient vectors is successful,
we observe the original observations and coefficient vectors
satisfy:

(132)

— Xt = (I, ® As + A1 ® Ly + A1 ® A2) Xy + 70
(133)

Yn,i

and

|15 ® A2+ A1 @1y, + A1 ® A2) %0 + 70,

< |t ® A2+ Av @1 + AT ® A2)'| Il + 17
< (IA1llF + I A2llF + | ALFIA20IF) [Xnll2 + 7,0
< (ri +r2+r1r)V/s + gl

By using the assumption (r; + ra + rir2)y/s < 0.1 and

conditioned on the event C, |5,,| < 0.4, we have that for
every n € [N] and [ € [p]:

(134)

Yn > 0.5 if x,; =1,
—0.5 < yu1 <05 ifx,; =0, (135)
Yng < —0.5 if x,; =—1,

thus, ensuring correct recovery of coefficients (i = X)

using the thresholding technique (53) when conditioned on C.
Using standard tail bounds for Gaussian random variables [34,
(92)], [49, Proposition 7.5] and taking a union bound over all
PN iid. variables {#,;},n € [N],] € [p], we have

P (7] < exp (_O.OSpN)_

o2
To find an upper bound for Ey {[[a;(Y) — a3}, we can
write it as

Ev {1 - a3}
= Evx {Im) —alfic} Pe)
+Ey,n {I@(Y) — aili} 0} PCo)

(136)

c N
(5) Ey,N {Ilﬁr(Y) — a3 IC} +46KP( Tp) (137)

where (c) follows from (131) and (136). To
Ev,n {I@(Y) — a]13 |C}, we have

Exx {I@(Y) - arl IC}
= Evx {[Ps @Yy — a5 Ic]

(d) -
< Eyn {”aI(Y) —ayll3 IC}

N p2
2 e[

bound

2

£l

Z Z @)Y (n, A

n])]
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2

N m
f) '
=1 j=1
® A
Ex, ”| 2D Kl jy (X ) + ApXan
n=1 j=1
2
0, jy) — 2 CI
2
N m 2
(h) P
ZEXV[ Ve 2o 2 X)) CI
n=1 j=1
N m
+4Ex,NI :——ZZ (n,mZarx<nm1 ’C]
n=1 j=1
N p
+4EX,NI ZZ (n’”fzap,rxnt ’C]: (138)
n=1 j=1

where (d) follows from the fact that [|a;||2 = 1, (e) follows
from (57), (f) follows from the fact that conditioned on the
event C, X = X, (g) follows from (126) and (h) follows from
the fact that ||x; + xg||2 2(||1i£1||2 + ||xz||2) We bound the
three terms in (138) separatcly Deﬁmng v = Q( 04/c) —

Q(0.4/0), where Q(x) = fo_ox Wors exp(—% 2 )dz, we can
bound the noise variance conditioned on C, er " by [34]
2 a?

T < (139)

The first expectation in (138) can be bounded by

Ex,N ’—ZZ (n,;):'?(n,n C
n=1 j=I1
N m
1\2
- (%) Z Z Ex,"[x’(n,f),xx'(nzj’),f
nn'=1j,j'=l

fT !
1 (n’,j')”(n,,fﬂcl

P12 Y 2 2
- (E) ZZZEX,N {x!(n,j),ﬂcl Ex N [q’(n,’;]’,lc}

n=1 j=I t=1
9 (%)2 NpEx [X’fn,j),:] En {’r’%n,j)ﬂc ]

) 7 p1y\2 § mio?
2N z
= (Ns) P2 (p)( v )

& 2
({) 2mip1o ,
- Ns

(140)

where (i) follows from the fact that x is independent
of the event C, (j) follows from (128) and (139), and (k)
follows from the fact that v > 0.5 under the assumption that
o = 0.4 [34].
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To bound the second expectation in (138), we use similar
arguments as in Jung ef al. [34]. We can write

Ex {X(a, 1%, i), %o, 1% oyt
(%)2 if (n,j)=(',j)andt =1t #1,
542 - : roer o
_ ) ff(n,,r_)aé(n,,{)andr—t—f, (141)
% if(n,j)=@,j)andt =t =1,
0 otherwise,

and we have

a = o ZZ (n,;}fzarx(n i

ﬂljl
N p p

a,— a— — Zzzaf a;Bx {x(n il (H,J} f}

n_lj 1t=1

PSS S

nn'=1j,j'=1tt'=1

EXN[

IA

Ex {IE,;: X, ), %o, ), rxfn,j),r}

(NS)( zN)( ) (st (p2N) 2
(oo o) o o(2))

1 1 2
()
N\s p» p
B
- N
To upper bound the third expectation in (138), we need to
bound the £ norm of columns of A,. We have

(142)

0]
Vi € [pl: llap:ll3 < (A ® Ao)il3
< laull3 Azl
=r2, (143)
where (A ® Aj); denotes the t-th column of (A ® A») and (1)
follows from the fact that A, is a submatrix of (A ® A2).
Moreover, similar to the expectation in (141), we have
]Ex {xin,j],fxiﬂ’,j'),fxnstx”’«f’}
() it )=, j)andt =1 £
532 : o ' '
< if (n n', andr=t' =1,
_ 1 .(,)t)#( j.) (144)
% if(n,j)=@,jYandt =1t =10,
0 Otherwise,

where I’ denotes the index of the element of x, corresponding
to xEﬂ hYe Then, the expectation can be bounded by

ZZ (M):Zaprxnr

n= ]) 1
2
1
= (%) Z > > Al
n,n'=1j,j'=1t,t'=1

r f
Ex {x(n,n,ex(n*,m,fx"sfx"”"}
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2
92 (1‘313) Np> (% +(p—1) (%)
2
+(Npy—1) (%) )

(145)

(Nt % +)

| A

INE

2
r
) p1
N’

where (m) follows from (143) and (n) follows from the
assumption in (51). Summing up (140), (142), and (145),
we have

Ey {I@(Y) - aull3}

4py m102
< — 3 4ex
< ( 7y )+ p(

08pN
4 ) (146)
O’
Summing up the MSE for all columns, we obtain:
<~ 2
Ev [JAw) - A3

4p?
<A (mla —|—3) +4piexp (—
s

- N
We can follow similar steps to get

0 OSfN)- (147)
o

By {[Bv) B[}
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< = 3 4
=N ( S + +4paexp

From (147) and (148), we get

SPN) (148)
a

By | [BY) - o[}
- Ev {JAm @ Bv) - a@ B[]
- B {|GW) - 4) e BY) + A@ BY) - B2
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N k=1
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m SNR
(149)

where (0) follows from (129). [ |
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