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Distributed Learning of Distributions
via Social Sampling

Anand D. Sarwate, Member, IEEE, and Tara Javidi, Senior Member, IEEE

Abstract—A protocol for distributed estimation of discrete dis-
tributions is proposed. Each agent begins with a single sample
from the distribution, and the goal is to learn the empirical
distribution of the samples. The protocol is based on a simple
message-passing model motivated by communication in social
networks. Agents sample a message randomly from their current
estimates of the distribution, resulting in a protocol with quan-
tized messages. Using tools from stochastic approximation, the
algorithm is shown to converge almost surely. Examples illustrate
three regimes with different consensus phenomena. Simulations
demonstrate this convergence and give some insight into the effect
of network topology.

Index Terms—Distributions, independent and identically dis-
tributed (i.i.d.).

I. INTRODUCTION

HE emergence of large-network paradigms for communi-

cations and the widespread adoption of social networking
technologies has resurrected interest in classical models of
opinion formation and distributed computation as well as new
approaches to distributed learning and inference. In this paper
we propose a simple message passing protocol inspired by
social communication and show how it allows a network of
individuals can learn about global phenomena. In particular, we
study a situation wherein each node or agent in a network holds
an initial opinion and the agents communicate with each other
to infer the distribution of their initial opinions. Our model of
messaging is a simple abstraction of social communication in
which individuals exchange single opinions. This model is a
randomized approximation of consensus procedures. Because
agents collect samples of the opinions of their neighbors, we
call our model social sampling.
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In our protocol agents merge the sampled opinions of their
neighbors with their own estimates using a weighted aver-
age. Averaging has been used to model opinion formation for
decades, starting with the early work of French [3], Harary [4],
and DeGroot [5]. These works focused on averaging as a means
to an end—averaging the local opinions of a group of peers
was a simple way to model the process of negotiation and com-
promise of opinions represented as scalar variables. A natural
extension of the above work is that where all agents are inter-
ested in the local reconstruction of the empirical distribution of
discrete opinions. Such locally constructed empirical distribu-
tions not only provide richer information about global network
properties (such as the outcome of a vote, the confidence
interval around the mean, etc.), but from a statistical estimation
perspective provide estimates of local sufficient statistics when
the agents’ opinions are independent and identically distributed
(i.i.d.) samples from a common distribution.

For opinions taking value in a finite, discrete set, we can
compute the empirical distribution of opinions across a network
by running an average consensus algorithm for each possible
value of the opinion. This can even be done in parallel so
that at each time agents exchange their entire histogram of
opinions and compute weighted averages of their neighbors’
histograms to update their estimate. In a social network, this
would correspond to modeling the interaction of two agents as
a complete exchange of their entire beliefs in every opinion,
which is not realistic. In particular, if the number of possible
opinions is large (corresponding to a large number of bins or
elements in the histogram), communicating information about
all opinions may be very inefficient, especially if the true
distribution of opinions is far from uniform.

In contrast, this paper considers a novel model in which
agents’ information is disseminated through randomly selected
samples of locally constructed histograms [1], [2]. The use of
random samples results in a much lower overhead because it
accounts for the popularity/frequency of histogram bins and
naturally enables finite-precision communication among neigh-
boring nodes. It is not hard to guarantee that the expectation of
the node estimates converges to the true histogram when the
mean of any given (randomized and noisy) shared sample is
exactly the local estimate of the histogram. However, to ensure
convergence in an almost sure sense we use techniques from
stochastic approximation. We identify three interesting regimes
of behavior. In the first, studied by Narayanan and Niyogi [6],
agents converge to atomic distributions on a common single
opinion. In the second, agents converge to a common consensus
estimate which in general is not equal to the true histogram.
Finally, we demonstrate a randomized protocol which, under
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mild technical assumptions, ensures convergence of agents’
local estimates to the global histogram almost surely. The
stochastic approximation point of view suggests that a set of
decaying weights can control the accumulation of noise along
time and still compute the average histogram.

Related Work

In addition to the work in mathematical modeling of opinion
formation [3]-[5], there has been a large body of work on
consensus in terms of decision making initiated by Aumann [7].
Borkar and Varaiya [8] studied distributed agreement protocols
in which agents are trying to estimate a common parameter.
The agents randomly broadcast conditional expectations based
on all of the information they have seen so far, and they find
general conditions under which the agents would reach an
asymptotic agreement. If the network is sufficiently connected
(in a certain sense), the estimates converge to the centralized
estimate of the parameter, even when the agents’ memory is
limited [9]. In these works the questions are more about whether
agreement is possible at all, given the probability structure of
the observation and communication.

There is a significant body of work on consensus and in-
formation aggregation in sensor networks [10]-[18]. From the
protocol perspective, many authors have studied the effect of
network topology on the rate of convergence of consensus
protocols [10]-[12], [16]-[21]. For communication networks
the speed can be accelerated by exploiting network properties
[22]-[25] (see surveys in [19], [26] for more references). Others
have studied how quantization constraints impact convergence
[27]-[34]. However, in all of these works the agents are as-
sumed to be some sort of computational devices such as robotic
networks or sensor networks. A comprehensive view of this
topic is beyond the scope of this paper. Instead, we focus on
a few papers most relevant to our model and study: consensus
with quantized messages and consensus via stochastic approx-
imation. However, it is important to note that in contrast to
all the studies discussed below, our work primarily deals with
an extension of the classic consensus (linear combination of
private values) in that we are interested in ensuring agreement
over the space of distributions (histograms).

Our goal in this paper is to ensure the convergence of each
agent’s local estimate to a true and global discrete distribution
via a low-overhead algorithm in which messages are chosenin a
discrete set. Our work is therefore related to the extensive recent
literature on quantized consensus [28], [30], [31], [33]. In these
works, as in ours, the communication between nodes is dis-
cretized (and in some cases the storage/computation at nodes as
well [30]) and the question is how to ensure consensus (within
a bin) to the average. This is in sharp contrast to our model
which uses discrete messages to convey and ensure consensus
on the network-wide histogram of discrete values. As a result,
in contrast to the prior work on quantization noise [27], [31],
[35], the “noise” is manufactured by our randomized sample
selection scheme and hence plays a significantly different role.

Our analysis uses similar tools from stochastic approxima-
tion as recent studies of consensus protocols [34], [36], [37].
However, these works use stochastic approximation to address

the effect of random noise in network topology, message trans-
mission, and computation for a scalar consensus problem, while
our use of standard theorems in stochastic approximation is to
handle the impact of the noise that comes from the sampling
scheme that generates our random messages. In other words,
our noise is introduced by design even though our technique to
control its cumulative effect is similar.

II. MODEL AND ALGORITHMS

Let [n] denote the set {1,2,...,n} and let e; € RM denote
the -th elementary row vector in which the i-th coordinate is
1 and all other coordinates are 0. Let 1(-) denote the indicator
function and 1 the column vector whose elements are all equal
to 1. Let ||(-)|| denote the Euclidean norm for vectors and the
Frobenius norm for matrices. We will represent probability
distributions on finite sets as row vectors, and denote the set
of probability distributions on a countable set A by P(A).

A. Problem Setup

Time is discrete and indexed by ¢ € {0, 1,2,...}. The system
contains n agents or “nodes.” At time ¢ the agents can commu-
nicate with each other according to an undirected graph G(t)
with vertex set [n] and edge set £(¢). Let N;(t) = {7 : (i,j) €
E(t)} be the set of neighbors of node i. If (z,7) € £(t) then
nodes i and j can communicate at time £. Let G(£) denote the
adjacency matrix of G(¢) and let D(t) be the diagonal matrix of
node degrees. The Laplacian of G(¢) is L(t) = D(t) — G(¢).

At time 0 every node starts with a single discrete sample
X; € X = [M]. The goal of the network is for each node to
estimate the empirical distribution, or normalized histogram, of
the observations {X; : i € [n]}:

II(z) = %Z 1(X;=1)-e, Vre[M].
i=1

To make it simpler to characterize the overall communication
overhead, we assume the following:

» Agents can exchange messages Y;(¢) lying in a finite
set ).

* At each time ¢ =1,2,... agents can transmit a single
message to all of their neighbors.

Ateach time £ = 0,1, 2, ..., each node 7 maintains an internal
estimate Q;(t) of the distribution II, and we take Q;(0) = ex,.
Every node : generates its message Y;(¢) € ) as a function of
this internal estimate (;(¢). Furthermore, each node 7 receives
the messages {Y;(t) : 7 € N} from its neighbors and use these
messages to perform an update of its estimate Q;(t + 1) using
Qi(0). (Y;(t) : 5 € N3},

Since in a single time ¢ there are potentially 2|£(¢)| mes-
sages transmitted in the network, a first approximation for the
communication overhead of this class of schemes is simply
proportional to the number of edges in the network multiplied
by the logarithm of the cardinality of set ).

We are interested in the properties of the estimates (J;(¢) as
t — oo. In particular, we are interested in the case where every
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element in the set {Q;(¢) : i € n} converges almost surely to a
common random variable q*. In this case, we call the random
vector g* the consensus variable. Different algorithms that we
consider will result in different properties of this consensus
variable. For example, the we will consider the support of the
distribution of q* as well as its expectation.

B. Social Sampling and Linear Updates

In this paper we assume that ) = {0, ey, eq,...ep}, with
the convention that node 2 transmits nothing (or remains silent)
when Y;(t) = 0. Furthermore, we consider the class of schemes
where the random message Y;(t) € V of node i at time ¢ is
generated according to a distribution P;(t) € P()) which itself
is a function of the estimate (;(t). In other words, F;(t) is
a row vector of length M where P(Y;(t) = en,) = P m(t).
We frequently refer to the random messages Y;(t) € V,1 € [n],
t =0,1,...as social samples because they correspond to nodes
obtaining random samples of their neighbor’s opinions. Note
that although the random variable Y;(t) takes values in R,
it is supported only on the finite set ) and hence requires
communicating log |}| information bits.

For simplicity in this paper, we often rely on matrix represen-
tation across the network. Accordingly, let Y (¢) be the n x M
matrix whose i-th row is Y;(¢). Then we have E[Y (¢)] = P ().

Let {W(t):t=0,1,2,...} beasequence of n x n matrices
with nonnegative entries, such that W;;(¢) = 0 for all (7, j) #
£(t). We study linear updates of the form

Qi(t+1) = (1—6(t)Aui(t)) Qi(¢) — 8(¢) Bus(£)Yi(t)

+ ) dOWu®)Y;(). (1)
JeN;(t)

Here the parameter §(t) is a step size for the algorithm. Let
Q(t) be the n x M matrix whose i-th row is Q;(¢). We can
write the iterates more compactly as

Q(t +1) = (I = d(1)A(1) Q1) — () B@)Y(?)
+(OWR)Y (),

where A(t) and B(t) are diagonal matrices.

In the next section we will analyze this update and identify
conditions under which the estimates Q;(¢) converge to a com-
mon ¢* € P()) and additional conditions under which ¢* = II.
To provide a unified analysis of these different algorithms, we
transform the update equation into a stochastic iteration

Q(t+1) = Q(t) +4(t) [Ht)Q(t) + C(t) + M(t)] . (2)

In this form of the update, the matrix H () represents the mean
effect of the network connectivity, M(t) is a martingale differ-
ence term related to the randomness in the network topology
and social sampling, and C(¢) is a correction term associated
with the difference between the estimate (Q(¢) and the sampling
distribution P(¢).

Lemma 1: The iteration in (1) can be rewritten as (2), where

H(t) 2W(t) - B(t) — AQt) 3)
C(t) = (W(t) - B(t)) (P(t) — Q(t))
+ (W(t)— B(t) - W(t) + B(#) Y (1) “
AN

M(t) = (W(t) - B(t) — A(t) - W(1)+ B(t)+ A(1)) Q(t)
+ (W) — B(®) (Y () - P(2))
+(W(t) - B(t) - W(t) + B()) P(2). ®

and the term M(¢#) is a martingale difference sequence
E [M(t)|Fe] = 0.
Proof: Rewriting the iterates, we see that
Q(t+1)=Q(1)+6(t) [-A(H)Q(1)+(W (1) =B(1)) Y (¢)] (6)
and the term multiplied by 4(¢) can be expanded:

—A@)Q(t) + (W (t) — B(¢)) Y ()
= (W(t) - B(t) — A(t)) Q(t)
+ (W(t) — B(t) — A(t) — W(t) + B(t) + A(1)) Q(2)
+(W(1) - B(t) (Y(t) - Q(1))
= (W(t) — B(t) — A(t)) Q(t)
+ (W(t) = B(t) — A(t) = W(t) + B(t) + A(t)) Q(¢)
+ (W(t) — B(?)) (P(t) — Q%))
+ (W(t) - B(t) (Y () — P(t))
= (W(t) — B(t) — A(t)) Q(t)
+ (W(t) — B(t) — A(t) — W(t) + B(t) + A(t)) Q(¢)
+(W() - B(?)) (P(¢) — Q(2))
+ (W(t) - B()) (Y(t) - P(1))
+ (W(t) — B(t) — W(t) + B(t)) P(¢)
+ (W(t) — B(t) — W(t) + B(t)) Y(¢)]. @)
Define H, C, and M(#) as in (3)—(5). Furthermore, define
M(t) = (W(t) — B(t) — A(t) — W(t)+ B(t)+ A(t)) Q(t)
+ (W () - B(®)) (Y(t) - P(t))
+ (W(t) — B(t) - W(t) + B(t)) P(t).

Taking conditional expectation of both sides of (6) and noting
that E[Y (¢)|F¢] = P(t), we have the result. O

Loosely speaking, the term C(¢) will be asymptotically
vanishing if P(¢) — Q(¢) and the matrices W (t) and B(t)
are asymptotically independent of Y (¢). In the next section,
we show that this stochastic approximation scheme converges
under certain conditions on update rule.

C. Example Algorithms

There are many algorithms which have the general form
of the update rule (1). Before we proceed with the analysis
of (1), however, we look at three examples in which we can
see interesting regimes of consensus-like behavior stemming
from the update rule. In these numerical examples, the graph
G(t) is a5 x 5 grid, so the maximum degree of any node is
dmax = 4. The initial values in the grid were drawn i.i.d. from
the distribution (0.4, 0.3, 0.2, 0.1) on M = 4 elements.
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Estimate at a single node vs. time
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Fig. 1. Trace of estimate of (Q;(t) for a single node i and M = 4, using
the algorithm in (8) on a 5 x 5 grid graph. The four lines correspond to the
4 entries of the vector (; (). The estimates of all nodes converge to a random
elementary vector * € V; furthermore, E[q*] = TI.

Node estimatess of a single bin vs. time
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Fig. 2. Trace of estimate of (Q; m (t) over all i € [n] for a single m € [M]
with M = 4, using the algorithm in (9) ona 5 x 5 grid graph. The estimates
of all nodes converge to a common random distribution g* € () whose
expectation is equal to the true distribution IT.

1) Averaging With Social Samples: Suppose P(t)
for all £ and consider the update

Qa(t+1)——Qa(t)+ > ——=Y(t). ®
o dmax+1

=Q(t)

This corresponds to 6(t) =1, Ay (t)=di/(dmax +1), Bii(t) =0,
and W;;(t) = 1/(dmax + 1). A trace of a single node’s esti-
mates for M = 4 is shown in Fig. 1. The four lines correspond
to the 4 elements of @Q;(¢). As shown in [6], this procedure
results in all Q;(¢) converging to a consensus value that is a
random singleton g* in {e1, s, ..., exr} such that E[q*] = 11

2) Averaging With Social Samples and Decaying Step Size:

Suppose P(t) = Q(¢) for all ¢ and consider the update
Qule+1) = Qult) - T—5()Qu(0)
+6(t) Y 71 Y;(t) ©)
JEN:()

with §(¢)=10/(¢+1). This corresponds to A;; (t) =d; /(dmax+1),
B;i(t)=0, and W;;(t)=1/(dmax+1). Fig. 2 shows the esti-
mates of all agents in a 5 x 5 grid tracking the estimate of [I(m)
for a single m. The estimates of the agents converge to a con-
sensus q* which is not equal to the true value I but E[q*]=1II
More generally, we will show that under standard assumptions
on the step size and weights, if P(¢)=Q(¢) then the iteration
(1) converges to a consensus state whose expectation is II.

3) Exchange With Social Samples and Censoring: Let
4(t) = 1/t and suppose that for each (i, m), m # 0, we set

_ _Jo Qim(t) < diaxd(t)
Pim(t) = {Qi,m(t)

otherwise.

Node estimatess of a single bin vs. time
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Fig. 3. Trace of Qi m(t) for a few different ¢ and a single m € M with
M = 4, using the algorithm in (10) on a 5 x 5 grid graph. For this update
rule, the estimates of all nodes converge almost surely to [T.

That is, under P(¢) node 7 sends random messages cor-
responding to those elements of (Q(¢) that are larger than
dmaxd(t) while it remains silent with probability P;o(t) =
1 =3 mzo Pim(t). Let Ny(t) =3 ,cp, 1(Y;(2) # 0) denote
the total number of neighbors of node ¢ which did not remain
silent at time £. Node 2 updates its local estimate of the global
histogram according to the following rule:

Qi(?) Yi(t) =
Qi(t +1) = { Qu(t) — s(H)N:(D)Yi(t) (10)
T0(8) Y jen: Yi(®)  Yi(t) #0.

The behavior of (10), when 6(¢) = 10/(¢ + 1) is illustrated in
Fig. 3. The estimates ();(¢) of all agents converge to II almost
surely under this update rule. More generally, we show that
given certain technical conditions, the mean across the agents
of the sample paths Q(¢) is always equal to II and the estimate
of each agent converges almost surely to II. In this case we
show that the rate of convergence is on the order of 1/%.

These examples illustrate that the algorithms can display
different qualitative behaviors depending on the choice of the
step size §(t) as well as the choice of P. In the first case,
all agent estimates converge to a common random singleton,
whereas under the second scenario they seem to converge to
a common estimated histogram, even though this common
estimated histogram might be far from the true histogram of the
given initial values. Finally, in the case where agents “censor”
their low values and follow update rule (10), Fig. 3 suggests an
almost sure convergence to II. In the next section, we analyti-
cally confirm these empirical findings in with a unified analysis.

III. ANALYSIS

We now turn to the analysis of the general protocol in (1).
We will need a number of additional conditions on the iterates
in order to guarantee convergence. Condition 1 is that the agents
compute convex combinations of their current estimates and the
messages at time £. This guarantees that the estimated distribu-
tions of the agents ();(¢) are proper probability distributions
on [M].

A. Mean Preservation

Let F; be the o-algebra generated by
{Qi(s) : s <t} U{G(s)
so Q(t + 1) is measurable with respect to F;.

ts <t}
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Condition 1 (Mixing Coefficients): Forallt>0and alli € [n],

Z Wij(t) — Ay(t) — By(t) = 0. (11
JEN;

A(t) =E[A(#)|F]
B(t) =E[B(#)|F:]
W(t) =E[W(t)|F] -

Note that the coefficient W (¢) and A(¢) can, in general, depend
on the messages Y (¢) as well as the graph G(¢).

Our first result is a trivial consequence of the linearity of the
update rule, and does not require any conditions beyond the fact
that the estimate Q is itself a distribution.

Lemma 2: Suppose Condition 1 holds. If P(¢) = Q(¢) and
W(t) and B(¢) are independent of Y (¢), then for all ¢

E[17Q(t)] =17Q(0) = nlL
Proof: Given Condition 1
E[Q(t +1)|Fe] = (I - (1)A(t)) Q(t) — 6(t) B(1)Q(2)
+ 3(6)W(1)Q(1).
And therefore
E[17Q(t+1)|F] =1"Q(¢).

On the other hand, since 1" Q(0) =nlIL, the proof is complete. [J

This result is simple to see—if the expected message Y;(t)
is equal to Q;(t), then the mean of the dynamics are just those
of average consensus. However, it is not necessarily the case
that the nodes converge to a consensus state, and if they do
converge to a consensus state, that state may not be equal
to IT on almost every sample path. The expected average of
the node estimates will be equal to II, and if they do reach
a consensus the expected consensus value will be II. In this
latter case it is sometimes possible to characterize the consensus
value more explicitly. For example, Narayanan and Niyogi [6]
show that in one version of this update rule, for all i € [n],
Qi(t) - q* € Y — {0} and E[q*] =1L.

Lemma 3 (Singleton Convergence [6]): Suppose Condition 1
holds. If P(¢) = Q(¢) and W (t) = W and B(¢) = B are inde-
pendent of time ¢ and (random) social samples Y (¢), then

P{tli@oqu) — 1 q* ey - {0}} ~1.

(12)

B. Almost Sure Convergence

The main result of this paper is obtaining sufficient condi-
tions under which the update rule in (1) converges to a state
in which all agents have the same estimate of the histogram
I1. In general, the limiting state need not equal I, but in some
cases the process does converge almost surely to II. To show
almost sure convergence we will need some additional con-
ditions. Condition 2 is a standard assumption from stochastic

approximation on the step size used in the iteration. A typical
choice of step size is 6(¢t) = O(1/t) which we used in the
examples earlier.

Condition 2 (Decreasing Step Size): The sequence 6(¢) — 0
with 4(¢) > O satisfies

Z&(t)zoo and )" 4(t)* < oo
t=1 t=1

Condition 3 states that the expected weight matrices H (t)
at each time are perturbations around a fixed time-invariant
contraction matrix H. This condition is satisfied in all three ex-
amples of interest above. Furthermore, it allows us to simplify
the analysis. Note that it seems to us that this condition is rather
technical and can be relaxed at the cost of more cumbersome
notation and complicated analysis. As a result, relaxing this
assumption remains an area of future work.

Condition 3 (Limiting Dynamics): There exists a symmetric
matrix A such that

H(t)=H + H(t),

where ﬁ}j(t) = O(6(t)). Furthermore, if A is an eigenvalue of
H then we have |A| < 1 and in particular H1 = 0. That is, H
is a contraction.

Condition 4 implies that the perturbation term C(t) in (2)
vanishes as the step size decreases. This condition guarantees
that the mean dynamics given by A govern the convergence to
the final consensus state.

Condition 4 (Bounded Perturbation): We have

[E[C@)|F]Il =0 (5(¢) -

Given these three conditions and the conditions on the coef-
ficients we can show that the agent estimates in (1) converge
almost surely to a random common consensus state whose ex-
pected value, by Lemma 2, is equal to II. Thus for almost every
sample path of the update rule, the estimates converge to a com-
mon value, but that value may differ across sample paths. The
expectation of the random consensus state is the true average.

Theorem 1: Suppose Conditions 1, 2, 3, and 4 hold. Then
the estimate of each node i governed by the update rule
(1) converges almost surely to a random variable g* € P(}))
which is a consensus state. That is Q(¢) -+ Q" = 1q™ where
E[Q*] =1IL

Proof: The result follows from a general conver-
gence theorem for stochastic approximation algorithms
[38, Theorem 5.2.1]. Define

V(t) = H)Q(t) + C(t) + M(t).

Several additional conditions are needed to guarantee proper-
ties of V(¢) which ensure convergence of the update in (2).
Condition 2 guarantees that the step sizes decay slowly enough
to take advantage of the almosl sure convergence of stochastic
approximation procedures. The limit point is a fixed point of
the matrix map H and Conditions 1 and 3 show that this map
is a contraction so the limit points are consensus states. The
final condition is that the noise in the updates can be “averaged
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out.” This follows in part because the process is bounded, and
in part because Condition 4 shows that the perturbation must be
decaying sufficiently fast.

We must verify a number of conditions [38, p. 126] to use
this theorem.

1) Condition 2 shows that the step sizes not summable but
are square summable [38, (5.1.1) and (A2.4)].

2) The iterates are bounded in the sense that
sup, E[||V(#)||?] < co. This follows because Q;(t)
is a probability distribution for all ¢, so the updates must
also be bounded [38, (A2.1)].

3) If we take the expected update

E[V@®)|F]=H®)Q(t) + E[C(t)|F]
=HQ(t) + H(t)Q(t) + E[C(®)| F],

we can write this conditional expectation as the sum
of a measurable function HQ(t) and a random yet
diminishing perturbation H (¢)Q(t) + E[C(t)|F;]. Fur-
thermore, from Condition 3, the map H is continuous
[38, (A2.2)(A2.3)].

4) The final thing to check [38, (A2.5)] is that the random
perturbation in the expected update decays sufficiently
quickly:

S5 |A0Qw +ElCw)F)
t=1

<> s |[ao|| 1@+ Y80 IEC@IFI
t=1 t=1

< 00Q.

The last step follows from Conditions 2 and 4 as well
as boundedness of Q(¢).

Applying Theorem 5.2.1 of Kushner and Yin [38] shows that
the estimates converge to a limit set of the linear map H.
Furthermore, from Condition 3 we know H is a contraction
with a single eigenvector at 1. In other words, the limit points
are of the form Q* = 1q* where every row is identical. O

The preceding theorem shows that the updates converge
almost surely to a limit when the step sizes are decreasing, even
though as shown in [6], we know that decreasing step size is not
necessary for almost sure convergence. So far the algorithm has
no provable advantage to that of [6], in that each node’s estimate
converges to a consensus state q*, but q* need not equal IIL.
However, by ensuring that the sample path of the algorithm is
“mean preserving” (the sum of the j-th components of all
Q;(t)’s is equal to I1;), this consensus limit becomes equal to IT.

Condition 5 (Mean Preservation): The average of the node
estimates is II

1'Q@) =1 Vi

Corollary 1: Suppose Conditions 1, 2, 3, 4, and 5 hold. Then
Q(t) — QF almost surely, where Q* = 11I almost surely.

C. Rate of Convergence

We now turn to bounds on the expected squared error of in
the case where Q(t) — Q almost surely.

Theorem 2 (Rate of Convergence): Suppose that Conditions
1, 2, 3, and 4 also hold. Then there exists a constant C' such that

E[lQ() - Q'] < cs.

Proof: First note that in the process (1), @;(¢) is a prob-
ability distribution, so the entire process lies in a bounded
compact set, and under Conditions 3 and 4 we can write the
iteration as

Q(t+1) = Q(t) + é(t) [HQ(t) + D(t) + M(t)]

where the perturbation term ||E[D(¢)|F]|| = O(4(t)). We can
now apply Theorem 24 of Benveniste ef al. [39, p. 246], which
requires checking similar conditions as the previous Theorem.

1) Condition 2 shows the step sizes are not summable
[39, (A.1)].

2) Treat the tuple of random variables (A (t), B(¢), W(?),
Y (t)) as a state variable S(¢). This state is measurable
with respect to F;, and there exists a conditional proba-
bility distribution corresponding to the update [39, (A.2)].

3) Let

N(t) = M(?) + C(¢t) - E[D(¢)|F]

so N(¢) is still a martingale difference. If we define
J(t) = (1/4(¢))E[C(¢)|F;] we can rewrite the iterates as

Q(t+1) = Q(¢t) + 6(t) [HQ(t) + N(t)] + 8()2I(¢).

Again, the terms |HQ(t)+ N(t)|| and |J(¢)| are
bounded by a constant [39, (A.3) and (A.5)].

4) Since H is a linear contraction, it is also Lipschitz, and
the martingale difference IN(¢) is bounded, which implies
condition (A.4) of Benveniste ef al. [39, p. 216].

With the validity of the above conditions, the assertion of the
theorem follows directly [39, p. 216]

E[llQ@) - Q'] =0 (6®).

D. Example Algorithms Revisited

We can now describe how the results apply to the algorithms
described in Section II-C.

1) Averaging With Social Samples: Our first algorithm in
(8) was one in which the nodes perform a weighted average of
the distribution of the messages they receive with their current
estimate. The general form of the algorithm was

Qt+1)=U-A)Q(t)+WYI(t),

which corresponds to choosing d6(t) =1 and B(t) =0.
For the specific example in (8), A =1/(dmax +1)D and
W =1/(dmax + 1)G, where G is the adjacency matrix of the
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graph and D is the diagonal matrix of degrees. Furthermore,
P(t) = Q(¢) forall ¢ and

Qt+1)=Q)+(W-A4)Q(#) + W (Y(#)-Q()- (13)

The term W — A is the graph Laplacian of the graph with edge
weights given by W. The following is is a corollary of Lemma 2
and Lemma 3.

Corollary 2: For the update given in (13), the estimates Q —
Q" almost surely, where Q* is a random matrix taking values
in the set {1q* : q* € Y} such that E[Q*] = 11I.

Examining (13), we see that the the Laplacian term drives
the iteration to a consensus state, but the only stable consensus
states are those for which Y () — Q(¢) = 0, which means Y (t)
must be equal to Q(¢) almost surely. This means each row
of Q(t) must correspond to a degenerate distribution of the
form e,,.

2) Averaging With Social Samples and Decaying Step Size:
The second class of algorithms, exemplified by (9), has the
following general form:

Qt+1)=(1-46)A4)Q(t) +o(()WY(2)

and again P(¢) = Q(¢) for all ¢. This is really the same as (13)
but with a decaying step size §(¢):

Qt+1)=Q() +o(t)(W—-A)Q(t) + o)W (Y (1) -Q(?)) -
(14)

However, the existence of a decreasing step size means that the
iterates under this update behave significantly differently than
those governed by (13). The convergence of this algorithm is
characterized by Theorems 1 and 2.

Corollary 3: For the update given in (14) with §(¢) = 1/¢,
the estimates Q(¢) — Q" almost surely, where Q" is a ran-
dom matrix in the set {1q" : ||q||s = 1, gm > 0} and E[Q"] =
111" Furthermore, E[||Q(t) — Q*||] = O(1/¢).

3) Exchange With Social Samples and Censoring: The last
algorithm in (10) has a more complex update rule, but it is a
special case of the generic update

Q(t+1)=Q(t) = o@®)B()Y () + (6 )W ()Y (). (15)
For a fixed weight matrix W, define the thresholds A(t) =
a(t) ZjEN;- W;; and the sampling distribution P, ,,(t) =
1(Qim(t) > A(t)). The social samples Y (f) are sampled
according to this distribution and the weight matrices are
defined by

_ 0 i#5Yi=00rY; £0
Waj(t}_{wi- i#3j,Yi=0and¥; #0
Bﬂ'(f) = Z Wij(tJ'

JEN;

In this algorithm the iterates keep >, Q; m(t) constant over
time by changing the sampling distribution P(¢) over time
and by using the weight matrix B(t) to implement a “mass

exchange” policy between nodes. At each time, agent ¢ samples
a opinion Z;(t). If Q; z,(1)(t) is large enough, the agent sends
Yi(t) = Zi(t), giving 6(¢t)W;; mass to each neighbor j and
subtracting the corresponding mass from its own opinion. If
Qi z.(¢)(t) is not large enough it exchanges nothing with its
neighbors. The distribution P(¢) implements this “censoring”
operation. By keeping the total sum on each opinion fixed,
Corollary 1 shows that the estimates converge almost surely
to IL.

Corollary 4: For the update given in (15) with § = 1/¢, the
estimates Q(t) — 11T almost surely, and E[||Q(¢) — 111||?] =
O(1/t).

IV. EMPIRICAL RESULTS

The preceding analysis shows the almost-sure convergence
of all node estimates for some social sampling strategies, and
in some cases characterizes the rate of convergence. However,
the analysis does not capture the effect of problem parameters
such as the initial distribution of node values and the network
topology. These factors are well known to affect the rate of
convergence of many distributed estimation and consensus
procedures—in this section we provide some empirical results
about these effects.

We considered a number of different topologies for our
simulations:

» The \/n x /n grid has vertex set [\/n] x [\/n] and edge
exists between two nodes whose L, distance is 1.

» A star network has a single central vertex which is con-
nected by a single edge to n — 1 other vertices.

» An Erd6s-Rényi graph [40] on vertex set [n] contains each
edge (1, 7) independently with probability p. We choose
p = 0.6.

» A preferential attachment graph [41], [42] is constructed
by adding vertices one at a time. A new vertex is connected
to an existing vertex with a probability that is a function of
the current degree of the vertices. We allowed each new
vertex to be connected to 3 preceding vertices.

* A 2-dimensional Watts-Strogatz graph is a grid with ran-
domly “rewired” edges [43]. We chose rewiring probabil-
ity 0.1.

Details on the random graph models can be found in the
igraph package for the R statistical programming lan-
guage [44]. In the simulations we calculated the average of
(1/n)||Q(t) — 1I1||? across runs of the simulation, which is the
average mean-squared-error (MSE) per node of the estimates.

A. Network Size and Topology

We were interested in finding how the convergence time de-
pends on the step size and network topology. To investigate this
we simulated the grid, preferential attachment, Watts-Strogatz,
and star topologies described above on networks of n = 100
nodes with M = 5. The initial node values were drawn i.i.d.
from a distribution (0.1, 0.25, 0.15, 0.3, 0.2) on 5 elements.
Simulations were averaged over 100 instances of the network
and initial values.
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Fig. 4. Average MSE between the agent estimates and the true histogram initial node values versus time for 4 different 100-node graphs: a 10 x 10 grid,
preferential attachment graphs with three edges generated per new node, Watts-Strogatz graphs with rewiring probability 0.1, and a star with one central node and
99 peripheral nodes. (a) Grid. (b) Preferential Attachment. (c) Watts-Strogatz. (d) Star.

Fig. 3 shows that the estimates converge almost surely to
the true histogram II when 4(¢) = 1/¢. While our theoretical
analysis was for this case, in practice stochastic optimization
is often used with a constant step size because the algorithm
converges faster to a neighborhood of the optimal solution when
4(t) is appropriately small. In order to assess if this is the case
in our model, we simulated variants of the algorithm in (10)
with different settings for §(¢).

Fig. 4 shows the error between the local estimates and
the true histogram of initial node values under four different
topologies and four different choices for 6(¢). For §(t) =1/t
the algorithm satisfies the conditions of the theorem and we
can see the rather rapid convergence to the mean. If 4(¢) is
constant, then the error does not converge to 0 but can still be
quite small if the step size is small. This is similar to the fixed-
weight algorithm with a weight matrix that has very small off-
diagonal entries. By contrast, the weight sequence §(t) = 1/¢2
decays too quickly and there is a large residual MSE.

We see a greater effect on the convergence time by looking
at different graph topologies for the same number of nodes.
For graphs with fast mixing time such as the preferential
attachment and Watts-Strogatz model, the error decreases much
more rapidly than for the grid or star. This suggests that the
mixing time of the random walk associated with the weight
matrix of the algorithm should affect the rate of convergence,
as is the case in other consensus algorithms. The effect of
choosing weight sequences that do not guarantee almost sure

Average time to error 1e-2

40000+ )
30000- :

i Graph type ;

o | B Pref Attach | -
E 20000- ® Watls-Strogatz )
! A Grid !

! # Star !

10000+ 1

Number of bins (M)

Fig. 5. Time to get to MSE of 1072, averaged across nodes, versus M for
a uniform distribution on the four different network topologies with n = 100
nodes.

convergence also varies depending on the network topology.
For sparsely connected networks like the star, the performance
is quite poor unless the weight sequence is chosen appropri-
ately. However, for denser networks like the Watts-Strogatz
model, the difference may be more modest.
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Error versus time for different supports (Erdos—Renyi)
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B. The Effect of the Initial Distribution

The size and shape of the histogram to be estimated also
affects the rate of convergence. To illustrate this, we sampled
initial values from a uniform distribution on M items for
different values of M. Fig. 5 shows the average time to get to
an MSE of 1072 versus M for this scenario. Here the effect of
the network topology is quite pronounced; topological features
such as the network diameter seem to have a significant impact
on the time to convergence.

To see the effect of the number of nonzero elements in a
fixed example we simulated the Erd&s-Rényi, grid, preferential
attachment, and Watts-Strogatz models for n = 100 with initial
values for the nodes sampled from a set of sparse distributions
with different values of M. More precisely, we considered a

sparse distribution over M = 150 bins where the actual distri-
bution of opinions is uniform on an (unknown) sparse subset
of M* <« M bins where in our simulations, M* ranges from
M* =2 to M* =15. The effect of this “sparsity” is shown
in Fig. 6, where the log MSE per node is plotted against the
number of time steps of the algorithm. Here the difference in the
network topologies is more stark—for the Erd6s-Rényi graph
the effect of changing the number of elements is negligible, but
the average MSE per node increases in the other three graph
models. The difference is greatest in the preferential attachment
model, where the increase in M corresponds to a nearly linear
increase in the log MSE.

Next we consider a closely related question regarding the
shape of the histogram to be estimated. In particular, we
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Fig. 7. Average MSE per node versus time (on a log () scale) versus time for different M for a distribution in (16) that is skewed with larger M. In general,
the error is dominated by the convergence on the larger elements of the histogram. (a) Erdds-Rényi. (b) Grid. (c) Preferential Attachment. (d) Watts-Strogatz.

considered initial distributions which are heavily concentrated
on a few elements but still contain many elements with rela-
tively low popularity. Specifically, in our simulations we chose
the initial values to be drawn from the following distribution:

0.24
TM-2"T

0.24

i)

for values of M ranging from M = 5to M = 26. We simulated
each network 50 times, uniformly assigning the initial values
to the nodes. The average error is shown in Fig. 7. Here we
see that when the distribution is biased such that most of the
weight is on the first two elements, the support size M does
not have an appreciable effect on the convergence time. What
Fig. 7 suggests is that the shape of the distribution is more
important than the support. This is not surprising—because we

= (0.38,0.38 (16)

are measuring squared error, elements in [T which are small will
contribute relatively little to the overall error and so in this sense
the uniform distribution is the “worst case” for convergence.
In these scenarios, different measures of convergence may be
important, such as the Kullback-Leibler divergence between the
estimated distributions and II. Other quantities related to IT may
impact the rate of convergence of the algorithm.

V. DISCUSSION

In this paper we studied a simple model of message passing
in which nodes or agents communicate random messages gen-
erated from their current estimates of a global distribution. The
message model is inspired by models of social messaging in
which agents communicate only a part of their current beliefs at
each time. This family of processes contains several interesting
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instances, including a recent consensus-based model for lan-
guage formation and an exchange-based algorithm that results
in agents learning the true distribution of initial opinions in the
network [6]. To analyze this latter process we found a stochastic
optimization procedure corresponding to the algorithm. The
simulation results confirm the theory and also show that while
the topology of the network affects the rate of convergence, the
shape of the overall histogram IT may play larger role than its
support size when considering Lo convergence.

One interesting theoretical question is whether the er-
ror v/t(Q(t) — Q*) converges to a normal distribution when
4(t) =1/t. Such a result was obtained by Rajagopal and
Wainwright [37] for certain cases of noisy communication
in consensus schemes for scalars. They showed a connection
between the network topology and the covariance of the nor-
malized asymptotic error. Such a result will not transfer imme-
diately to our scenario because of the additional perturbation
term C(¢). However, because this term decays rapidly, we do
not believe it will impact the covariance matrix. Characterizing
the asymptotic distribution of the error in terms of the graph
topology, M, and II may yield additional insights into the
convergence rates in terms of measures other than L, norm of
error vector.

The results in this paper also apply to the “gossip” scenario
wherein only one pair of nodes exchanges messages at a time.
This corresponds to selecting a random graph G(¢) which
contains only a single edge. In terms of time, the convergence
in this setting will be slower because only one pair of messages
is exchanged in a single time slot. The analysis framework is
fairly general—to get the almost-sure convergence we need
mild assumptions on the message distributions. Both finding
other interesting instances of the algorithm and extending the
analysis for metrics such as divergence and other statistical
measures are interesting directions for future work. Solving the
latter problem may yield some new techniques for analyzing
other statistical procedures which can be cast as stochastic
optimization, such as empirical risk minimization.

This model of random message passing may be useful in
other contexts such as inference and optimization. Stochastic
coordinate ascent is used in convex optimization over large data
sets; extending this framework to the distributed optimization
setting is a promising future direction, especially for high-
dimensional problems. In belief propagation, stochastic gen-
eration of beliefs can ensure convergence even when the state
space is very large [45]. Finally, the framework here can also
be applied to a model for distributed parametric inference in
social networks [46]-[48] in which agents both observe and
communicate over time. In these applications and in others,
the same ideas behind the social sampling model in this paper
appear to be useful in reducing the message complexity while
allowing consistent inference in distributed setting.
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