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a b s t r a c t

Biological drinking water treatment technologies offer a cost-effective and sustainable approach to
mitigate microcystin (MC) toxins from harmful algal blooms. To effectively engineer these systems, an
improved predictive understanding of the bacteria degrading these toxins is required. This study reports
an initial comparison of several unstructured kinetic models to describe MC microbial metabolism by
isolated degrading populations. Experimental data was acquired from the literature describing both MC
removal and cell growth kinetics when MC was utilized as the primary carbon and energy source. A novel
model-data calibration approach melding global single-objective, multi-objective, and Bayesian opti-
mization in addition to a fully Bayesian approach to model selection and hypothesis testing were applied
to identify and compare parameter and predictive uncertainties associated with each model structure.
The results indicated that models incorporating mechanisms of enzyme-MC saturation, affinity, and
cooperative binding interactions of a theoretical single, rate limiting reaction accurately and reliably
predicted MC degradation and bacterial growth kinetics. Diverse growth characteristics were observed
among MC degraders, including moderate to high maximum specific growth rates, very low to sub-
stantial affinities for MC, high yield of new biomass, and varying degrees of cooperative enzyme-MC
binding. Model predictions suggest that low specific growth rates and MC removal rates of degraders
are expected in practice, as MC concentrations in the environment are well below saturating levels for
optimal growth. Overall, this study represents an initial step towards the development of a practical and
comprehensive kinetic model to describe MC biodegradation in the environment.

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

The quality of freshwater resources has become progressively
challenged by the increasing frequency and severity of harmful
cyanobacterial blooms (Paerl and Huisman, 2009; Paerl and Paul,
2012; O'Neil et al., 2012). Bloom events associated with toxic spe-
cies of the Microcystis, Anabaena, Planktothrix, and Nostoc genera
result in the release of biotoxins into receiving reservoirs or lake
ecosystems (Huisman et al., 2006; Merel et al., 2013; Schmidt et al.,
2014). The microcystin (MC) class of cyanobacterial toxins,
composed of seven amino acids in a cyclical structure, are the most
common and toxic in the environment. Over one hundred
Environmental Engineering,
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structural congeners of MC have been identified to date (Huisman
et al., 2006; Puddick et al., 2014). MCs are both hepatotoxic and
known human carcinogens, prompting the World Health Organi-
zation (WHO) and US EPA to develop guidelines for total MCs in
drinking water of 1 mg/L (US EPA, 2015).

Of the broad class of MC toxins produced during cyanobacterial
blooms, MC-LR (L and R standing for Leucine and Arginine,
respectively, for two of the variable amino acids in the cyclical
structure) is the most common and toxic (Edwards et al., 2009;
Cheung et al., 2013). The high stability of the cyclical structure of
MCs leads to their persistence in the environment and poses a
human health threat through exposure to recreational and drinking
water. Although conventional drinking water treatment technolo-
gies, such as coagulation, flocculation, and sedimentation can
effectively remove intracellular MCs from source water, the extra-
cellular fraction is sparingly removed (Westrick, 2008; Westrick
et al., 2010). Advanced treatment technologies to remove total
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MCs from drinking water, such as granular activated carbon (GAC)
or ozonation are effective, yet energy intensive, costly, and subject
to some treatment variability (Westrick et al., 2010; Ho et al., 2012).

Bioremediation strategies, such as biological filtration (bio-
filtration), which specifically target the removal of MCs from
drinking water, have advanced as a viable alternative (Li et al., 2011,
2012, 2015; Ho et al., 2007, 2012). Bio-based treatment strategies
rely on the metabolism of MCs as auxiliary or sole carbon, energy,
and nutrient (nitrogen) sources by microbial communities indige-
nous to the source water (Li et al., 2011, 2017; Ho et al., 2012).
However, high variability in indigenous bacteria composition,
temperature, pH, and the presence of exogenous nutrients pose
formidable barriers to consistent removal of MC in these systems
(Li et al., 2017).

To overcome these limitations and progress toward “engi-
neered” bio-based MC remediation systems, an improved predic-
tive understanding of MC biodegradation is required. A practical
approach is tomodel MC biodegradation using existing theory from
the fields of biochemical engineering, bioremediation, and waste-
water treatment (Esener et al., 1983; Kov�arov�a-Kovar and Egli,
1998; Alexander, 1999; Shuler and Kargi, 2002; Tchobanoglous
et al., 2003; Okpokwasili and Neweke, 2006). Unstructured ki-
netic models (i.e., the Monod kinetic equation) to describe
biodegradation in field and laboratory settings, have gained wide
acceptance in applications ranging from the prediction of microbial
degradation of contaminants in the environment to treatment
system design (Simkins and Alexander, 1984; Rittmann et al., 1986;
Suarez and Rifai, 1999; Al-Khalid and El-Naas, 2012; El-Naas et al.,
2014). The popularity of unstructured kinetic models in these en-
gineering applications stems from the avoidance of unnecessary
complexity and computational burden associated with many
structured models (Esener et al., 1983).

Despite the practicality of unstructured kinetic models, the
great number of models available describing different growth
mechanisms, uncertainty associated with parameter estimates, and
difficulties arising from non-linear regression during model cali-
bration often limit their use in an environmental context (Koch,
1982; Robinson, 1985; Grady et al., 1996; Kov�arov�a-Kovar and
Egli, 1998; Knightes and Peters, 2000). Of the number of chal-
lenges, identifying the mechanisms to include (i.e., the appropriate
model) and arriving at accurate and reliable parameter estimates
are primary issues undermining the predictive utility of unstruc-
tured kinetic models. For example, a broad range of unstructured
model frameworks, from theoretical single, rate limiting enzyme
catalyzed reactions (i.e., Monod, 1949) to those that account for
transport and uptake of substrate (i.e., Powell, 1967), have been
developed to describe microbial growth. In addition, reaching un-
correlated estimates of the maximum specific growth rate (mmax)
and half saturation constant (Ks) parameter values of many un-
structured kinetic models has remained a well-known challenge
over the years (Nihtil€a and Virkkunen, 1977; Holmberg, 1982;
Robinson and Tiejde, 1983; Liu and Zachara, 2001).

In this study, we address the following questions as a pre-
liminary step toward the development of a practical and compre-
hensive MC biodegradation model in natural or engineered
treatment systems. Importantly, we anticipate that the unstruc-
tured kinetic modelling framework reviewed herein will serve as a
foundation for futuremodelling efforts focused on integratingmore
complex mechanisms to better reflect MC biodegradation in envi-
ronmental settings:

1) What underlying mechanisms in existing unstructured kinetic
growth model frameworks most reliably describe MC biodeg-
radation kinetics?
2) What range in parameters (i.e., mmax, Ks) are associated with
these MC degrading organisms and how do they compare to
other xenobiotic, micropollutant, or other organic chemical
degrading organisms?

3) What is the relative level of confidence and certainty in the
model predictions and estimated parameters?

4) Which parameters of these models are most sensitive, and can
we identify any parameters that are non-influential?

In addressing these questions, we seek to compare the predic-
tive performance of, and obtain reliable parameter estimates for,
several unstructured kinetic models describing MC biodegradation.
To this end, experimental data was mined from the literature
describing growth and MC metabolism of various isolated
degrading bacterial populations using MC as the sole carbon and
energy source. An optimization framework merging global, single-
objective, multi-objective, and Bayesian methods was developed
and applied to these datasets to quantify the predictive and
parameter uncertainty associated with each model. A combination
of Bayes information criteria as well as a Bayesian approach to
hypothesis testing and parameter correlation allowed for an
objective approach to model selection, model predictive accuracy
quantification, and an assessment of the strength of dependencies
between calibrated parameters. Finally, a variance-based approach
to global sensitivity, explicitly accounting for dependencies be-
tween estimated parameters, was employed to assess the influence
of model parameters on model predictions describing cellular
growth and MC metabolism.
2. Materials and methods

A roadmap is presented to first illustrate the workflow of the
Materials and Methods section (Fig. 1). First (Section 2.1), we pre-
sent a brief overview of the unstructured kinetic modelling
framework as well as a complete description of the experimental
data collection effort. Section 2.2 introduces the primary compo-
nents of the model-data fitting approach, which is thoroughly
detailed in a companion paper (Manheim and Detwiler, 2018).
Bayes information criteria, that were used to objectively compare
and select the appropriate model describing MC biodegradation,
are reviewed in Section 2.3. Furthermore, the Bayesian approach to
hypothesis testing and correlation analysis, which quantified dif-
ferences in model predictive accuracy and the strength of de-
pendencies between calibrated parameters, is presented in Section
2.4. Lastly, the variance-based approach to global sensitivity anal-
ysis (GSA), quantifying the influence of input parameters on the
model output variance, is introduced in Section 2.5.
2.1. Summary of selected unstructured kinetic models and data
collection effort

A total of eight unstructured kinetic models were reviewed in
this study to predict MC biodegradation. The main assumption of
these unstructured kinetic models is that bacterial growth is
limited by a single substrate (i.e., MC). Coupled substrate depletion
and bacterial growth kinetics for thesemodels are described by two
ordinary differential equations (ODEs) (Eqs. (1) and (2)), where the
endogenous decay of bacterial cells during growth is explicitly
considered (Rittmann et al., 2002; van Bodegom, 2007):

dS
dt

¼ �1
Y
mX (1)



Fig. 1. A roadmap of the primary methods used in this research starting from the
model selection and experimental data collection effort (Section 2.1) to the calibration
(Section 2.2), model comparison and selection methods (Section 2.3), moving to the
Bayesian hypothesis testing (Section 2.4), and ending in a GSA (Section 2.5).
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dX
dt

¼ mX � kdX (2)

Where S is the limiting substrate concentration (mg/L), X is the
biomass concentration (mg/L), m is the specific growth rate of
bacterial cells (1/hr), Y is the cell yield coefficient (unitless), and kd
is the endogenous decay coefficient (1/hr). Importantly, X ¼ b*C,
where b is a linear scaling factor used to convert optical density or
cell concentration data (C) into biomass concentrations (X).

Table 1 contrasts the unstructured kinetic models surveyed in
this study to define the nonlinear relationship between limiting
substrate concentration (S) and specific growth rate (m). Here, we
briefly compare the differences in mathematical structure and
mechanisms accounted for by each model:

� The classical model of Monod, (1949), analogous to the
Michaelis Menten enzyme kinetic model, defines the specific
growth rate (m) as a hyperbolic function of substrate concen-
tration (S) with three main parameters: the maximum specific
growth rate, half saturation constant, and the yield coefficient
(mmax, Ks, and Y) (Table 1);

� The Tessier model (Tessier, 1942) describes the specific growth
rate as an exponential function of the substrate concentration,
mmax, and Ks (Table 1);
� The Contois model (Contois, 1959) accounts for changes in
population density that affect the net specific growth rate
through inclusion of the biomass concentration, X, into the
existing Monod framework (Table 1);

� The Blackman model (Blackman, 1905) defines a first-order
relationship between specific growth rate (m) and substrate
concentration at low substrate concentrations and a zero-order
relationship at higher substrate concentrations (above a
threshold concentration, 2*Ks) (Table 1);

� The Moser (1958) model accounts for potential interactions
between binding sites on the enzyme molecule by integrating a
tunable parameter n into the Monod framework (analogous to
Hill's enzyme kinetic equation, Panikov and Pirt, 1978).

� Powell (1967) considered the effect of passive diffusion of a
given substrate as the main rate limiting step affecting bacterial
growth, deriving the equation in Table 1;

� Dabes et al. (1973) derived a “three-parameter” model
describing bacterial growth on a single limiting substrate by
considering that only two of the long series of catalyzed,
reversible enzyme-substrate reactions involved in substrate
metabolism had slow reaction rates (Table 1);

� By simplifying cellular processes to a coupled system of anabolic
and catabolic reactions, Heijnen and Romein (1995) developed a
universal microbial growth and substrate uptake model
(Table 1).

Experimental data were obtained from four studies quantifying
MC biodegradation kinetics of isolated bacterial populations
(Table 2) (Valeria et al., 2006; Wang et al., 2010; Xiao et al., 2011;
Zhang et al., 2015). These studies isolated bacterial populations
from the Sphingomonas, Sphingopyxis, and Bacillus genera, which
are representative of the main populations involved in MC degra-
dation via the well-known mlr pathway (Bourne et al., 1996, 2001;
Li et al., 2017). The few studies that cultured isolated bacteria using
MC as the sole carbon and energy source were selected because
they agreed with the main model assumption described above.

Each study performed batch degradation experiments, where
the initial bacterial inoculum and MC concentrations were
controlled (200 mg/L-42mg/L) (Table 2). These studies promoted
aerobic biodegradation of MC (i.e., through shaking) and were
temperature controlled (23e30 �C) (Table 2). Very few studies were
observed in the literature that reported bacterial growth in
conjunction with MC degradation, where those that did only re-
ported optical density (Wang et al., 2010; Xiao et al., 2011; Zhang
et al., 2015) or cell count measurements (Valeria et al., 2006). As
the units of cell concentration in Equation (2) are defined in mass
per volume (mg/L), optical density and cell concentration mea-
surements were converted to cell biomass concentrations during
model fitting.

2.2. Model-data fitting approach

Bivariate experimental datasets subject to model calibration in
this study described time varying concentrations in MC and
biomass. Both the sparse and noisy data as well as the highly non-
linear nature of the models presented a complex optimization
problem (Manheim and Detwiler, 2018). We applied a combination
of single objective (SO) global optimization, multi-objective (MO)
global optimization, and strictly Bayesian based evolutionary al-
gorithms to determine an accurate and defined range in model
parameters (Fig. 2, refer to Manheim and Detwiler, 2018).

A SO algorithm (AMALGAM-SO, Vrugt et al., 2009) was first
applied to ascertain the location of the global minimum and the
best fits for extremely biased solutions (i.e., fitting one variable and
not the other). An MO optimization approach (using the NSGA-III



Table 1
Summary of unstructured kinetic models implemented in this study.

Model # Reference Model Structure Main Parameters

1 Monod (1949)
m ¼ mmaxS

Ks þ S
mmax , Ks

2 Tessier (1942)
m ¼ mmax

�
1� exp

��S
Ks

��
mmax , Ks

3 Contois (1959)
m ¼ mmaxS

KsX þ S
mmax , Ks

4 Blackman (1905) m ¼ mmax if S� 2Ks

m ¼ mmax

2Ks
S if S< 2Ks

mmax , Ks

5 Dabes et al. (1973)
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6 Powell (1967)
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7 Moser (1958)
m ¼ mmaxS

n

Ks þ Sn
mmax , Ks; n

8 Heijnen and Romein (1995)

m ¼ mmax

" S
Ks

S
Ks

� 1þ 21=n

#n mmax , Ks; n
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algorithm) was applied to both confirm the SO results and to define
an optimal region in the search space where the corresponding
solutions were unbiased (i.e., the “compromise” solution space)
(Wohling et al., 2008; Deb and Jain, 2014) (Fig. 2). Finally, an
Approximate Bayesian Computation (ABC) approach (using the
DREAM-ZS algorithm, Laloy and Vrugt, 2012) was adopted to
quantify the uncertainty associated with the parameter estimates
and the model predictions (Sadegh and Vrugt, 2014) (Fig. 2).
Optimization results using this method are summarized in a sup-
plementary dataset for reference (see Supplementary Material). In
addition, a range in model parameters (i.e., mmax, Ks, Y) was
compiled from relevant biodegradation literature to confine the
Table 2
Summary of experimental conditions in each study selected.

Study # Reference Taxonomic Identity Culture Conditions

1 Zhang et al. (2015) Bacillus nanhaiencis strain
JZ-2013

Batch growth, shaken at 30 �

2 Wang et al. (2010) Sphingopyxis sp.
USTB-05

Batch growth, shaken at 200

3 Valeria et al. (2006) Sphingomonas sp. CBA4 Batch growth, shaken at 23±
4 Xiao et al. (2011) Sphingopyxis sp.

USTB-05
Batch growth, shaken at 200

Fig. 2. The primary optimization methods, goals, and alg
search space to a realistic range in values (Supplementary
Information, section 1).
2.3. Bayesian model comparisons and selection

A Bayesian framework for model predictive accuracy was
applied to compare and select the best performingmodels (Gelman
et al., 2014). Two popular approaches have been detailed in Gelman
et al. (2014) and Christensen et al. (2011). The first approach cal-
culates several information criteria (i.e., AIC, BIC, DIC, WAIC, which
are defined in Section 2 of the Supplementary Information) that
have been developed to assess model predictive accuracy. Smaller
MC Variant (Media) Initial MC Conc. (mg/L) Initial Bacterium Conc.

C LR (M9) 15 OD (600 nm) ~0.514

rpm, 30 �C RR (Modified MSM) 42.3 OD (600 nm) ~0.004

2 �C RR (MSM) 0.200 1.20E06 CFU/mL
rpm, 30 �C LR (Modified MSM) 28.8 OD (600 nm) ~0.019

orithms used in this study for parameter estimation.
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values of each information criterion indicate better model perfor-
mance. The second approach is to define the log pseudo marginal
likelihood (LPML) of selecting a certain model given the data
(Geisser and Eddy, 1979). Higher values of the LPML criterion
indicate better model performance. Details concerning the calcu-
lations involved, an overview of the ranking method, and summary
of the results are presented in Section 2 of the Supplementary
Information.

2.4. Bayesian significance testing and correlation analysis

A quantitative framework for Bayesian hypothesis testing,
termed Bayesian Estimation Supersedes the T-test (BEST) was
adopted in this study to compare the predictive accuracy of the best
and next best performing models (Kruschke 2011, 2013). Using the
BEST framework, we tested the hypothesis that the predictive ac-
curacy of both models was equivalent. The BEST method relies on a
Bayesian approach to fit a t-probability distribution to the distri-
bution in log-likelihoods obtained from the calibration procedure
of both models (using the DREAM-ZS algorithm, Supplementary
Information, section 3). Next, three probability distributions are
derived from the difference in posterior distributions of central
tendencies (means), variabilities (standard deviations), and effect
sizes (see Supplementary Information, section 3). The effect size is a
statistical parameter used to quantify the size of the difference
between two different populations and is calculated using a com-
bination of the means/standard deviations between both distri-

butions

 
m1 � m2ffiffiffiffiffiffiffiffiffiffiffiffi

s12þ s22
2

p
!

(Coe, 2002). Based on the degree of overlap

between the distribution in each of these differences (using a 95%
highest density interval) with a defined region of practical equiv-
alence (ROPE, �0.1 to 0.1 for all distributions) around the null value
(0), the initial hypothesis can be accepted or rejected (Kruschke
2011, 2013).

The correlation among different model input parameters was
assessedusing a Bayesian counterpart to Pearson's linear correlation
model. A bivariate normal distributionwas used as the main model
framework to estimate several probability distributions in Pearson's
correlation coefficient (r) between different model input parame-
ters. The DREAM-ZS algorithm was used to fit the bivariate distri-
bution model to the posterior distributions in model parameters
achieved from the optimization procedure (using two parameter
values at a time) (Supplementary Information, section 4).

2.5. Global sensitivity analysis (GSA)

GSA has progressed into one of the most powerful and robust
approaches to investigate the influence of different model input
parameters on output predictions (Saltelli et al., 2008; Razavi and
Gupta 2015, 2016a; 2016b; Gupta and Razavi, 2017). GSA in-
vestigates the model response when varying each input parameter
across its entire uncertainty range, thereby allowing a compre-
hensive outlook on parameter sensitivity (see Saltelli et al., 2008 for
more complete details).

A variance based global sensitivity analysis (VBGSA) accounting
for dependent model input parameters was applied in this study to
analyze the effects of different model input parameters on pre-
dicted responses (Mara et al., 2015). This method allows the GSA to
be conducted unobstructed from the correlations that may be
present between input parameters, allowing unique sensitivity
indices to be derived. Sobol's first and total order effect indices can
be reliably calculated to rank the influence of different model pa-
rameters on resulting predictions. The “first” order effect index (Si)
represents the independent contribution of an individual
parameter to the total model output variance, while the “total”
order effect index (STi) denotes the combined interactive contri-
butions of an individual parameter with all other parameters to the
total model output variance (Saltelli et al., 2008). The specifications
and calculations of the sensitivity estimation procedure are sum-
marized in the Supplementary Information (section 5).

3. Results

3.1. Bayesian model comparison and selection

The top three best performing models, based on a ranking sys-
tem using all summarized criteria (AIC-LPML), varied across each
study (Fig. 3, Tables S4eS7). The results highlighted the consistent
and accurate performance of the Moser model for three of the four
datasets investigated, as the AIC-WAIC criteria and LPML values
were consistently lowest and highest for this model (Fig. 3,
Tables S4eS7). Results for Study 4 indicated the only exception to
this trend, where the Heijnen model performed the best (i.e.,
lowest DIC-WAIC and highest LPML, Fig. 3). The Contois model
performed reasonably well for Studies 1 and 2 (lower AIC-WAIC
and higher LPML), and the performance of the Blackman kinetic
model was worth considering based on results presented for
Studies 3 and 4 (i.e., lower overall AIC-WAIC and higher LPML,
Fig. 3). However, the Monod model demonstrated poor predictive
performance across all studies (i.e., higher overall AIC-WAIC and
lower LPML Fig. 3, Tables S4eS7).

The quantitative strength of evidence in favor of the Moser or
Heijnen models for predicting MC biodegradation was assessed
using the BEST approach (Kruschke 2011, 2013). Through Bayesian
fitting of a t-distribution to the log likelihood values obtained from
the initial calibration procedure, a posterior distribution in means
and standard deviations was reached for both competing models.
The difference in this posterior distribution of means (m1 - m2),

standard deviations (s1 - s2), and effect sizes
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the best and next best performing model provides quantitative
evidence of themagnitude of the difference in predictive accuracies
between the competing models.

Fig. 4 details the probability densities of the difference in means,
standard deviations, and effect sizes between the best and next best
performing models for each study. For Studies 1e4, the best and
second-best performing models were as follows: Moser and Con-
tois; Moser and Contois; Moser and Heijnen; as well as Heijnen and
Moser. The results demonstrated that the predictive accuracies of
the best and next best performing model were significantly
different for each study, which is supported by the following evi-
dence: 1) the distributions of the difference in means and standard
deviations between the competing models were centered well
away from zero; 2) the 95% highest density intervals (HDI) of the
differences in means/standard deviations did not overlap the “null
value” (0); 3) the magnitude of the differences in effect size was
large; and 4) the 95% HDI of the effect sizes were well outside the
range of the ROPE [-0.1, 0.1] interval (Fig. 4, McGraw and Wong,
1992; Kruschke, 2011; Kruschke, 2013). These results confirm
that: 1) there is statistically significant evidence in favor of the
Moser or Heijnen models and 2) that model selection (and associ-
ated growth mechanisms included) greatly influences predictive
performance of MC biodegradation.

3.2. Model-data fits and parameter distributions

Both the Moser (Studies 1e3) and Heijnen (Study 4) models
were able to accurately reproduce MC biodegradation and biomass



Fig. 3. Comparison of unstructured kinetic model predictive accuracy using Bayesian information criteria (AIC-WAIC) and Log Pseudo Marginal Likelihood (LPML) values calculated
for each study and model. Lower values of AIC, BIC, DIC, and WAIC or higher values of LPML are associated with improved model predictive accuracy. According to all AIC/BIC, and
LPML as well as most DIC/WAIC calculations, the Moser and Heijnen model predictions outperform all other models for Studies 1e3 and 4, respectively.

Fig. 4. Statistical differences in densities of model predictive accuracies (log likelihoods) associated with the best performing vs. the next best performing kinetic models for Studies
1e4. Using the BEST approach, the distribution in predictive accuracies (log-likelihoods) for the best and next best performing models is fitted to a t-distribution, returning a
posterior distribution in means, standard deviations, and effect sizes. The difference in the posterior distributions of fitted means (column “m1-m2”), standard deviations (column
“s1-s2”), and effect sizes (column “Effect Size”) between the best and next best performing model forms a final distribution that determines the quantitative strength of evidence in
favor of the best performing model. Both the 95% highest density intervals (in red) and the modes (black) of each final distribution are indicated on each figure. (For interpretation of
the references to color in this figure legend, the reader is referred to the Web version of this article.)

D.C. Manheim et al. / Water Research 149 (2019) 617e631622



Fig. 5. Kinetic model-experimental data fitting results of the best performing model for Studies 1e4 portraying MC removal (first column) and corresponding biomass growth
(second column). Studies 1e3 were fit using the Moser model, whereas Study 4 was fit using the Heijnen model. The red line indicates the best fitting model prediction, while the
blue dots represent the experimental data points (along with the standard deviation of replicate experiments). The light grey shading indicates the 95% predictive uncertainty
interval and the dark grey shading represents the 95% uncertainty interval associated with the parameter estimation. Narrower total and parameter uncertainty intervals are
indicative of improved model predictive accuracy. All experimental data points were observed to fall within the uncertainty intervals, indicating that the predictions afforded by
either model can reproduce the experimental data with great certainty. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of
this article.)
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growth for each of the four studies reviewed, as the experimental
data fell within the 95% total predictive uncertainty intervals
(Fig. 5). The accuracy of, and certainty in, model predictions were
highest for Study 1 (Bacillus nanhaiencis strain) and lowest for
Study 2 (Sphingopyxis sp. strain), as noted by the width of the un-
certainty intervals, the proximity of the best fitting prediction to
the experimental data, as well as the RMSE andminimum objective
function values (Fig. 5, Table S8).

Parameter uncertainty was in all cases higher for the biomass
growth data as compared to the substrate consumption data, as
demonstrated by the wide 95% uncertainty intervals (Fig. 5). This
result can be explained by both the high parameter uncertainty
associated with the yield coefficient (Y) and endogenous decay rate
(kd) parameters (Table 3) and moderate to high sensitivity of the
predicted cell concentrations to these model parameters (Fig. 8).
When an input parameter to a given model is both highly uncertain
and influential, the total predictive uncertainty of thismodel will be
higher, resulting in a wide range of predictions in biomass growth
(Fig. 5).

The posterior distributions in best performing model parame-
ters were fairly normally distributed for mmax, kd, b, and n model
parameters, indicating that they were well identified during
model-data calibration (Fig. 6). This result was further supported by
the small 95% credible interval widths and COV values obtained for
these model parameters (Table 3). The half-saturation constant (Ks)
could not be uniquely identified for Studies 1 and 4; however, Ks

was well distinguishable given the experimental data from Studies
2 and 3 (supported by the small 95% credible intervals and COVs),
although the distributions were very right-skewed (Fig. 6). The
yield coefficient values (Y) could not be uniquely identified for all
studies investigated, as all parameter values approached the upper
realistic boundary (Fig. 6). The best performing parameter values
were present close to the peak of each posterior distribution,
further verifying that the distributions converged around the best
compromise solution (Fig. 6).

Diverse kinetic and physical growth characteristics were
evidenced for each MC degrading bacterium included in this study,
especially when comparing maximum specific growth rate and
half-saturation constant model parameters (Table 3). Maximum
specific growth rates on MC were not necessarily proportional to
MC affinities (i.e., Ks). For example, the Sphingopyxis sp. USTB-05
(Study 2) strainwas characterized by a relatively low affinity for MC
(moderate-high Ks), but had the highest maximum specific growth
rate of the studies investigated. Comparably, the Sphingomonas sp.
evidenced a very high affinity for MC as a substrate but had the
lowest maximum specific growth rate of the studies investigated
(Table 3). Great differences in the magnitude of conversion con-
stants (b) implicated highly varying cell densities and physiologies
for each MC degrading bacterium. Across all studies, the magnitude
of the yield coefficient (Y), endogenous decay rate (kd), and n values
were relatively comparable (Table 3).
3.3. Parameter correlation analysis

The parameter correlation analysis indicated that for all studies
(1e4), there was a strong, positive, linear correlation between mmax

and kd as well as between b and Ymodel parameters (Fig. 7), where
distributions in Pearson's correlation coefficient varied between
0.53 and 0.92 (for mmax and kd) as well as between 0.80 and 0.90 (b
and Y). Study 1 demonstrated a strong, negative, and non-linear
correlation between mmax and n model parameters. Studies 2e4
indicated amoderate, negative, and linear correlation between mmax

and b model parameters. Studies 2e3 observed a strong, negative,
and slightly non-linear correlation between n and Ks values (Fig. 7).
Across all studies, the mostly negative correlations between pa-
rameters n and Ks/mmax were non-linear given that the n value pa-
rameters were used as exponents in the original model structures
(for Moser and Heijnen). The presence of multiple strong positive
and negative linear and nonlinear correlations was a factor that
likely prohibited the unique identification of all six model param-
eters given the experimental data from all studies.



Table 3
Summary of best performing model parameter values including the mean (m), standard deviation (s), coefficient of variation (COV), and 95% credible intervals.

Parameter mmax (1/day)

Study 1 2 3 4
m 1.48 6.11 1.43 3.31
s 0.799 0.290 0.177 0.392
COV 54 5 12 12
95% Credible Interval [0.659, 3.80] [5.53, 6.59] [1.11,1.78] [2.64,4.02]

Parameter Ks (mg/L)

Study 1 2 3 4
m 188 3.93 0.000194 30.1
s 26.2 3.52 9.37E-05 47.4
COV 14 90 48 157
95% Credible Interval [127, 219] [0.159,12.3] [0.00010,0.00043] [1.54,196]

Parameter Y (mg biomass/mg substrate)

Study 1 2 3 4
m 2.43 2.42 2.47 2.36
s 0.859 0.860 0.836 0.906
COV 35 36 34 38
95% Credible Interval [0.525, 3.48] [0.536,3.48] [0.588,3.48] [0.433,3.48]

Parameter kd (1/day)

Study 1 2 3 4
m 0.140 0.739 0.172 0.406
s 0.0584 0.1908 0.1191 0.258
COV 42 26 69 64
95% Credible Interval [0.0318, 0.245] [0.329,0.991] [0.014,0.450] [0.0278,0.925]

Parameter b ((g DW/L)/OD or (g DW/L)/(CFU/mL))

Study 1 2 3 4
m 0.0094 0.0620 9.6E-11 0.389
s 0.0044 0.0257 3.85E-11 0.176
COV 47 41 40 45
95% Credible Interval [0.00173, 0.0191] [0.012,0.109] [2.01E-11, 1.72E-10] [0.0621,0.751]

Parameter n (unitless)

Study 1 2 3 4
m 2.00 6.82 2.17 1.96
s 0.289 1.573 0.090 0.042
COV 14 23 4 2
95% Credible Interval [1.49, 2.57] [4.37,9.73] [1.98, 2.31] [1.84, 2.00]
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3.4. Global sensitivity analysis

The results of the VBGSA indicated a diverse range in input
parameter sensitivities across all studies using Sobol's first and total
order effect indices as the primary means of comparison (Fig. 8). It
is important to note that Sobol's first order effect indices closer to 1
indicated that the model output was more sensitive to the corre-
sponding input parameter, whereas indices closer to 0 indicated
little to no sensitivity. Comparably, values of Sobol's total order
effect index closer to or higher than 1 were indicative of a param-
eter that was highly interacting with other model parameters (and
not interacting when values approached 0).

Based on a unique ranking system (described in S.I., section 5.3,
the general parameter rankings across studies (using either first- or
total-effect indices), from most to least influential, depended pri-
marily on the variable of interest (i.e., substrate or cell biomass
concentrations) (Fig. 8). Using the first-order indices (Si) as ranking
criteria, predicted substrate concentrations were generally most
influenced (in descending order) by kd (1), b (2), and mmax (3), with
less influence observed from Y (4), Ks (5), and n (6) (Fig. 8I). Pre-
dicted cell biomass concentrations were most influenced (in
descending order) by parameter values of kd (1), mmax (2), and Ks (3),
with less influence observed from Y (4), b (5), and n (6) (Fig. 8II).
Using the total order effect indices (STi) as ranking criteria, inter-
active effects on substrate concentration predictions were higher
for kd (1), Ks (2), Y (3) and less significant for n (4), mmax (5), and b (6)
model parameters (Fig. 8I). Comparably, interactive effects on cell
biomass concentration predictions were higher for kd (1), mmax (2),
Ks (3) and less significant for Y (4), b (5), and n (6) model parameters
(Fig. 8II).

4. Discussion

4.1. Study contribution

This is the first study, to the best of our knowledge, to apply and
compare several unstructured kinetic growth models to describe
MC biodegradation. Coupled bacterial growth and MC removal ki-
netics were both accounted for in all unstructuredmodels, which is
a significant step forward from previous simplistic zero- and first-
order kinetic models to describe MC biodegradation. Each un-
structured model was successfully calibrated to existing experi-
mental data through a novel optimization approach to determine
an accurate and defined range in bio-kinetic parameters. These
parameters can eventually, through further refinement, model
complexity, and experimentation, be applied to the design of bio-
logical water treatment systems and prediction of the fate and
persistence of MC in the environment.

The results from this study represent a preliminary step toward
the development of a practical and comprehensive unstructured
kinetic model that can predict the environmental behavior of these
microorganisms. Clearly, accounting for different environmental



Fig. 6. Posterior distributions in best performing model parameters for Studies 1e4 obtained from the DREAMZS_ABC algorithm. Studies 1e3 were fit using the Moser model,
whereas Study 4 was fit using the Heijnen model structure. Distributions that appear normally distributed indicate uniquely identifiable parameters, whereas flat or left/right
skewed distributions indicate issues with unique identification (and possible correlation with other parameters). The red ‘x’ indicates the best fitting model parameter (MAP) value
for each study. In most cases, the MAP falls on the location with the highest probability density. (For interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)
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factors in the model structure, such as temperature, pH, or the
presence of other carbon substrates (as discussed in Section 4.5)
will better capture the environmental variability expected in
practice. As the complexity of these models is expected to increase
in future studies to account for various environmental factors, we
argue that issues associated with model selection, uncertainty
estimation, nonlinear regression, and parameter identification will
likely intensify. The approach presented herein for model selection
and calibration provides a robust foundation for developing MC
biodegradation models for increasingly complex environmental
conditions.
4.2. The physical case for Moser kinetics

The statistical results presented in this study have demonstrated
that the Moser model provided superior MC biodegradation pre-
dictions compared to other common unstructured kinetic models.
However, we have not emphasized the physical relevance under-
pinning the structure of the Moser model. As initially proposed by
Blackman (1905), many studies have advocated that the Monod
model is a theoretical extension of the “bottleneck concept,”
postulating that a single rate limiting “master” reaction controls the
kinetics of metabolism of any substrate (Monod, 1949; Dabes et al.,
1973; Panikov, 1995). In the simplified case of Monod kinetics, the
maximum forward rate of one reaction in the cell is order of
magnitudes smaller than the maximum forward rate of any other
enzyme catalyzed reactions involved in transport and/or meta-
bolism. This concept simplifies the description of bacterial growth
into a Michaelis Menten (or Hill) type rate equation, depending on
one enzyme and reaction of interest (Dabes et al., 1973; Panikov,
1995).

We have shown statistically that accounting for themechanisms
of saturation, binding affinity, and binding interactions between
this hypothetical enzyme and MC substrate complex can accurately
and reliably predict MC biodegradation. A “master” rate-limiting
reaction dictating MC biodegradation kinetics is further sup-
ported by the fact that the model comparison process did not select
for a more complex, multiple reaction type derivation as provided
by Dabes et al. (1973). Importantly, the mechanism of “saturation”
involves binding of substrate molecules to the active sites on the
enzyme to capacity; “binding affinity”, the relative strength of
attraction or attachment between an enzyme and substrate mole-
cule; and “interactions”, the degree of inhibition or facilitation
between binding sites on a given enzyme (Panikov and Pirt, 1978;
Cohlberg, 1979; Panikov, 1995).

Given this theoretical justification to the Moser model, it is
interesting to explore which “master” reaction may be the most
well justified rate limiting step in the MC biodegradation pathway.
MC biodegradation involves four primary genes/enzymes,
including mlrA, mlrB, mlrC, and mlrD (production of the enzyme
microcystinase (MlrA), enzyme MlrB, enzyme MlrC, and enzyme
MlrD) (Bourne et al., 1996, 2001). mlrA is responsible for the initial
linearization of cyclical MC, mlrB and mlrC for further breaking
down linearized MC into smaller peptide and amino acid products,
and mlrD for actively transporting MC into the cell (Bourne et al.,
1996, 2001).

It is probable that the linearization of cyclical MC may be the
rate limiting step in this pathway, given that the cyclical structure is
highly resistant to degradation and may require a large cellular
energy input to synthesize adequate quantities of microcystinase
(Dziga et al., 2012). Experimental evidence of the enzymatic activity
of microcystinase has indicated that Hill kinetics best describe the
linearization reaction as compared to Michaelis-Menten enzyme
kinetics. Dziga et al. (2012) results align with the statistical results
observed from this study, which advocated the Moser model over
the Monodmodel. In addition, the kinetic parameters measured for
microcystinase (Vmax¼ 95 day�1, Ks¼ 158mg/L, n¼ 1.57) were on
the same order of magnitude of those observed for various MC
degrading bacteria in this study, further strengthening our initial
presumption.



Fig. 7. Bayesian analysis of the strongest (i.e., r > 0.40, r <�0.40) linear correlations between best performing model parameters for Studies 1e4. The 99%, 95%, 75%, and 50%
highest density ellipses are overlaid on the scatter plots in red, yellow, cyan, and green, respectively. The inlet plots depict the distribution in Pearson's correlation coefficient
obtained from the Bayesian correlation analysis. Although the pairwise combinations of strongest linear correlations were not always equivalent across all studies, strong positive
correlations (higher values of Pearson's r) were generally evidenced for mmax vs. kd and Y vs. b, whereas negative correlations were generally observed for mmax vs. b. Some
nonlinearity in the correlations were also evidenced for model parameters that involved exponents in the original model structure (i.e., n). (For interpretation of the references to
color in this figure legend, the reader is referred to the Web version of this article.)
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4.3. Physical significance of model parameter estimates

The physical significance of the Moser model parameters is also
important to review. The results demonstrated that all MC
degrading bacteria possessed similar ranges in maximum specific
growth rates (1e7 per day), which are comparable to the lower
range in maximum specific growth rates reported for fast growing,
heterotrophic microorganisms in activated sludge systems
(Kov�arov�a-Kovar and Egli, 1998; Tchobanoglous et al., 2003). These
results imply that these MC degrading organisms may grow rela-
tively quickly in the environment if MC is readily available.

Very significant differences in Ks values were estimated between
MC degrading bacteria in this study. Since the inverse of the half
saturation constant can be defined physically as an enzyme's rela-
tive binding affinity for a substrate (Kov�arov�a-Kovar and Egli, 1998),
there are possibly marked preferences in MC as a substrate among
variousMC degrading bacteria. Across all MC bacteria reviewed, the
Sphingomonas species had the lowest reported half saturation
constant, which resulted in much higher specific growth rates at
lower substrate concentrations. Smaller Ks values for MC substrates
may signify a high specificity of microcystinase enzymes forMC as a
substrate, or differences in enzyme regulation at the molecular
level (i.e., induction vs. constitutive production), among many
factors (Bally and Egli, 1996). A high affinity for a given substrate
may be a physiological adaptation to improve an organism's
capability to scavenge for several carbon sources under low



Fig. 8. VBGSA results summarized for Studies 1e4, presenting Sobol's first and total order effect indices. Here, “first” order represents the independent contribution of an individual
parameter to the total model output variance, while “total” order denotes the combined interactive contributions of an individual parameter with all other parameters to the total
model output variance. We note that by implementing the method of Mara et al. (2015), the sensitivity indices are determined free of any correlations present between input
parameters. Values of the first order effect closer to 0 or 1 indicate that the model output is barely or highly sensitive to the corresponding input parameter, respectively. Values of
the total order effect closer to 0 or 1 (or above) indicate that the parameter is hardly or highly interactive with all other model parameters, respectively. The boxplots represent the
distribution in sensitivity indices across all simulated time points. Colors correspond to individual parameter values. Panel column I presents the sensitivity results for model
predictions involving substrate concentration, whereas Panel column II presents results for model predictions involving cell biomass. (For interpretation of the references to color in
this figure legend, the reader is referred to the Web version of this article.)
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nutrient conditions present in many oligotrophic environments
(Noel and Narang, 2009; Egli, 2010).

Yield coefficient (Y) parameter estimates were very high among
all MC degrading bacteria. It is important to note that the yield
coefficients estimated in this study are “observed” or “apparent”
values, not entirely corrected for the presence of maintenance costs
(Esener et al., 1983; von Bodegom, 2007). For perspective, esti-
mated yield coefficients from the literature for the biodegradation
of organic and synthetic pollutants were observed to rarely exceed
1 (i.e., 100% conversion of substrate to biomass) (Doran, 1995;
Suarez and Rifai, 1999; Shuler and Kargi, 2002). Higher values of the
yield coefficient estimated in this study may suggest that MC is a
superior carbon source for the creation of raw cellular material as
compared to the supply of the MC degrading cell's other functions.

The n parameter values for both the Moser and Heijnen models
were typically greater than 1 for most studies. For the Moser model
structure, this result signifies that the interactions between binding
sites for MC degrading enzymes are cooperative in nature. Analo-
gous to the Hill model for enzyme kinetics, cooperative interactions
imply that the binding potential of MC substrate molecules to the
enzymes involved increases as the number of previously bound
substrate molecules increase (Panikov and Pirt, 1978).

The endogenous first-order decay coefficient (kd) represents the
amount of energy diverted to a cell's maintenance requirements in
the absence of substrate from the environment, and usually in-
volves oxidation of a cell's internal reserves (Rittmann et al., 2002;
von Bodegom, 2007). Results from this study indicated that first
order decay parameter estimates are relatively high for MC
degrading populations (0.1e0.7 per day), on the same order of
magnitude of those estimated for mixed bacterial populations in
activated sludge (Tchobanoglous et al., 2003). These results imply
that in the absence of MC or other carbonaceous substrates, a swift
decline in populations may ensue in the environment.
4.4. Initial kinetic model predictions

A significant implication from initial predictions using the
Moser model is that most bacterial growth rates are far from
saturated in the environment if MC is used as a sole carbon and
energy source (Fig. 9), as at least two of the bacterial strains



Fig. 9. Predicted specific growth rates of several MC degrading bacteria in the envi-
ronment as a function of substrate concentration using the Moser (1e3) and Heijnen
(4) models. The black dashed lines indicate the minimum/maximum concentrations of
MC expected in the environment. The grey region and colored lines indicate the
predictions associated with the lowest/highest 95% credible interval and the mean of
the posterior distribution of parameter values.
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(Bacillus nanhaiencis, Sphingopyxis sp. USTB-05) will be growing at
very low specific growth rates (6E-04 to 0.2 per day). Since specific
growth rate is directly proportional to substrate removal rate, we
would expect slow biological removal of MC in the environment.
However, when MC is supplied at much higher concentrations, as
has been typically conducted in a laboratory setting (i.e., in the mg/
L range), the removal rates of MC would be expected to drastically
increase (1e4 orders of magnitude). Therefore, biological drinking
water treatment strategies for MC removal will have to consider the
disparity in specific growth rates of these organisms when faced
with low concentrations of MC generally observed in the environ-
ment. A promising solution to ensure high specific growth rates of
degrading bacteria and quick elimination of MC in bio-based
drinking water treatment systems is through bio-stimulatory
practices, like the addition of nutrients (i.e., nitrogen or phos-
phorus), which can perhaps maintain a stable and productive, year-
round community of MC-degrading and non-degrading microor-
ganisms (Tyagi et al., 2010; Lauderdale et al., 2012; McKie et al.,
2015; Li et al., 2017).
4.5. Unstructured kinetic model limitations

Even though the unstructured kinetic models were shown to
accurately characterize MC biodegradation in an ideal setting, we
recognize multiple limitations to the simplifying assumptions used.
First, MC may not be the primary growth limiting substrate
metabolized by these degrading bacteria, since it is often present in
low background concentrations (ng/L to mg/L) and not secreted
until bloom senescence or collapse (Merel et al., 2013; Francy et al.,
2015). In most freshwater environments, the presence of other
bioavailable dissolved organic carbon represents the primary car-
bon and energy source for these bacteria (Egli 1995, 2010; Eleuterio
and Batista, 2010). All unstructured kinetic models can be aptly
modified to account for other inhibiting or stimulating substrates
these bacteria may encounter in the environment (Yoon et al., 1977;
Reardon et al., 2000, 2002). Future studies should consider the
application of competitive multi-substrate models to better
describe MC biodegradation in the environment.
Clearly, the temperature (23e30 �C) and pH (~7) employed in

the batch biodegradation experiments examined in this study are
ideal cases of what would be encountered in the environment. As
MC degrading bacterial growth rate is highly sensitive to water
temperature (25e30 �C optimal, Li et al., 2017), the predictions
afforded by the current unstructured models would likely over-
estimate the rates of MC biodegradation in the environment. Un-
structured kinetic models have been successfully tailored to
account for temperature (Heitzer et al., 1991; Rosso et al., 1993;
Kov�arov�a et al., 1996), pH, or both (Rosso et al., 1995) by either
considering cardinal pH and temperature properties of bacteria
(mostly E. coli strains) or deviations of the Arrhenius equation
(Alagappan and Cowan, 2004). Future studies should consider
integrating these previous concepts into existing unstructured ki-
netic model frameworks to account for the effects of temperature
and pH.

Another limiting factor to address is the fact that these un-
structured kinetic models only consider the growth of isolated MC
degrading populations. In the environment, these populations are
part of a much more complex and interactive network of mixed
microorganisms. Single organism derived unstructured model pa-
rameters are frequently applied to wastewater treatment design
and engineering to characterize the behavior of complex microbial
communities (Tchobanoglous et al., 2003). However, more complex
mixed population models can be applied based on these single
population parameter estimates and theorized interactions among
certain populations, including, for example, Lotka-Volterra
competition models (Faust and Raes, 2012; Song et al., 2014).

The scaling factor (b) required to convert either cell concentra-
tion or OD to biomass was identified as another limitation of the
kineticmodels reviewed. In this study, we assumed that therewas a
direct, linear relationship between OD or cell counts and dryweight
biomass, which is generally the case for pure microbial cultures in
practice (Kim et al., 2012; Myers et al., 2013). This assumption
resulted in biomass concentrations of MC degraders ranging from 1
to 180mg/L at stationary phase of growth. Typical dry weight
biomass for activated sludge systems range from 3000 to 6000mg/
L, whereas the biomass concentrations ranged from 8 to 50mg/L for
species of bacteria degrading mixtures of BTEX compounds and
PAHs (Tchobanoglous et al., 2003; Reardon et al., 2000, 2002;
Knightes and Peters 2000, 2003). Thus, since the ranges in biomass
predicted for this study are of similar order of magnitude to bacteria
degrading petroleum hydrocarbons and far from activated sludge
biomass concentrations, the use of a linear relation between OD or
cell counts and biomass is well justified.

Yet another limitation of unstructured kinetic models is the
assumption that the cell composition (and physiological state) re-
mains constant during growth (i.e., “balanced growth”) (Bailey and
Ollis, 1976; Clark and Blanch, 1997). In the environment, growth of
MC degrading organisms is expected to be “non-balanced,” where
cellular composition is transient with respect to fluctuations in
environmental conditions (Ramkrishna et al., 1967; Fredrickson
et al., 1971). Structured kinetic models can account for changes in
physiological state and more comprehensively describe bacterial
growth in the environment but may suffer from issues such as high
complexity and computational burden (Ramkrishna et al., 1967;
Fredrickson et al., 1971; Panikov, 1995).
4.6. Improving parameter identifiability: the S0/X0 ratio

A complete set of unique parameter estimates was not obtained
for most studies. This result indicates there were more limitations
in the quality of the experimental data collected, which resulted
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from inadequacies in the experimental design. Many studies have
stressed the importance of the initial substrate to biomass (S0/X0)
ratio when designing experiments (Dang et al., 1989; Chudoba
et al., 1992; Grady et al., 1996). These studies have determined
that the S0/X0 ratio has a drastic effect on the growth behavior and
extent of physical adaptation an organism may undergo (Grady
et al., 1996). In general, low S0/X0 ratios (<0.025 on a COD basis)
were reflective of the original environmental behavior of the bac-
terial population (“extant” behavior), while larger S0/X0 ratios (>20
on a COD basis) resembled the “intrinsic” characteristics of the
population under study (Dang et al., 1989; Grady et al., 1996).

Applying these criteria to our results (see Supplementary
Information, section 8), the experimental conditions in Studies 1,
and 3e4 resembled more “extant” behavior (S0/X0 ratios ranged
between 1 and 3), whereas the experimental conditions for Study 2
were more “intrinsic” (S0/X0 were above 20). This concept helps
explain why there were drastically different kinetic parameter es-
timates for two experiments conducted for the same species of
Sphingopyxis degrading a different MC congener (RR vs. LR), as
different S0/X0 ratios were used (Study 2 vs. Study 4). Maintaining
this S0/X0 parameter at a low value is more useful for identifying
parameters that will be used to predict MC removal in an envi-
ronmental setting, whereas high values are more useful in an
engineered setting to observe the full kinetic degradation potential
of a certain MC degrading population.

The S0/X0 ratio also affects the parameter identifiability for a
given experiment (Grady et al., 1996). Classically, there has been
much controversy over how to best design a batch biodegradation
experiment to obtain independent estimates of mmax, Ks, and Y
model parameters (Nihtil€a and Virkkunen, 1977; Holmberg, 1982;
Robinson and Tiedje, 1983; Liu and Zachara, 2001). For example,
Robinson and Tiedje (1983) found that uncorrelated estimates of
mmax and Ks could be reached when performing the batch experi-
ment in the mixed order region of the specific growth rate vs.
substrate theoretical curve (at S0/X0> 20).

Good separation of mmax and Ks was observed for our results, and
these parameters could be uniquely estimated for Studies 2 and 3.
The experimental conditions for Studies 2 and 3 were reflective of
very high S0/X0 ratios (Study 2e150 and Study 3e1000) (Table S9),
confirming the importance of this ratio on improving parameter
identifiability. However, a significant number of correlations were
observed between the scaling parameter (b) and (Y) across all
studies, resulting in non-unique estimates of Y. This result was
concerning as the sensitivity analysis indicated that Y is an inter-
active and relatively influential parameter when predicting both
substrate and biomass concentrations. Future MC biodegradation
experiments should eliminate the use of this scaling parameter by
directly measuring the biomass concentration, through dry or wet
weight, protein content, or even ATP-based methods (Velten et al.,
2007, 2011) to avoid unnecessary correlations developed between
the scaling parameter and all other remaining parameters observed
in this study.
5. Conclusions

Engineered biological treatment systems targeting the removal
of MCs rely on an in-depth predictive understanding of bacterial
growth. Wemust admit that unstructured kinetic models are not in
any way comprehensive representations of the true complexity of
most biological processes. However, the models reviewed in this
study provided an accurate and practical approach to characterize
MC biodegradation kinetics. Based on this rigorous comparison of a
broad range in unstructured kinetic models, the following main
conclusions were drawn from this study:
1) The underlying kinetic model structure (and associated growth
mechanisms accounted for) has a statistically strong effect on
model predictive accuracy and precision for MC biodegradation.
In this study, the Moser model and Heijnen and Romein model
were the most reliable and consistent out of all models
reviewed.

2) Unique parameter estimates for MC biodegradation depend on
the quality of experimental data, which is highly influenced by
the experimental design (i.e., S0/X0 ratio). Using a new, global
optimization approach, unique parameter estimates were ob-
tained for at least three (and up to five) parameters using
different experimental datasets.

3) Model predictions were generally most sensitive to the
parameter values of kd, mmax, Ks, and b in the absence of corre-
lations. Model predictions were also affected by interactions
between multiple parameters. Values of kd, mmax, Ks, and Y
demonstratedmoderate to high levels of interactions with other
parameters. These results prioritize the proper identification of
kd and Y in future studies, whichwere not identifiable for certain
studies reviewed herein.

4) Well below saturating concentrations of MC in the environment
result in minimal to no growth of MC degrading bacteria, where
sub-optimal MC removal kinetics are expected in treatment
practice.

We envision the results from this study as a stepping stone to-
ward the development of a practical and comprehensive unstruc-
tured kinetic model that can reliably predict MC biodegradation in
the environment. The MC-degrading bacterial populations
reviewed in this study are likely underrepresented members of a
more complex and dynamic community, where the clear majority
of community members are less inclined to (or cannot) utilize MC
as a primary carbon and energy source. However, we stress that the
predictive knowledge of the isolated kinetic behavior of these
bacteria metabolizing MC as a sole organic carbon source can be
integrated into more complex unstructured kinetic modelling
frameworks that consider multiple interacting substrates and
population members as well as different environmental conditions
(i.e., temperature, pH). We expect that future studies will adopt a
similar model surveying and calibration approach to identify the
necessary mechanisms to describe more complex environmental
behavior of bacteria involved in MC biodegradation.
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