Imbalanced Transition States from α -H/D and β -Type N-CH/D Secondary Kinetic Isotope Effects on the NADH/NAD⁺ Analogues in Their Hydride Tunneling Reactions in Solution

Li Ma, Nader Sakhaee, Shabnam Jafari, Samantha Wilhelm, Paniz Rahmani, Yun Lu*

Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, IL 62026, United States

Supporting Information Placeholder

ABSTRACT: The α-H/D (if available) and β-type N-CH₃/CD₃ 2° KIEs on 10-methylacridine (MAH), 9,10-dimethylacridine (DMAH), 1,3-dimethyl-2-phenylbenzimidzole (DMPBIH) and oxidized forms (D)MA+ in their hydride transfer reactions with several hydride acceptors/donors in acetonitrile were determined. The corresponding equilibrium isotope effects (EIEs) were computed. Hammett correlations of several closely related hydride transfer reactions were constructed using the literature data. The α -2° KIEs on both MAH and MA+ are inflated relative to the semiclassical prediction on the basis of the KIE/EIE comparison and Hammond's postulate. This together with previously published unusual 1° and 2° KIE behaviors strongly suggest a H-tunneling mechanism. By comparing with the EIEs, the α -2° KIEs were used to analyze the rehybridization of the reaction C-center and the N-CH₃/CD₃ 2° KIEs to calculate the charge distribution on the structure containing N during H-tunneling. The rehybridization appears to lag behind the charge development in the donor moiety. The charge distribution at the tunneling ready TS is in agreement with the Hammett correlations; the donor is product-like and acceptor is reactant-like, indicative of partial negative charge borne by the "in-flight" nucleus being "hydridic" in character. Results were compared with the α -2° KIEs on NADH/NAD⁺ and the Hammett correlations in closely related enzymes. The comparison implicates that the H-tunneling probability would be enhanced by these enzymes.

Secondary (2°) hydrogen (H) kinetic isotope effect (KIE) is important to the understanding of the structure of the transition state (TS).^{1,2} In organic reactions, most reported 2° KIEs are at the α - or β -H/D positions of the C reaction centers. By comparison with the equilibrium isotope effect (EIE), 2° KIE has been used to estimate the position of the TS on the reaction coordinate. It is expected to fall in the range from unity to EIE. When it is closer to unity, the TS is reactant-like; when closer to EIE, the TS is productlike.^{1,3-8} This empirical prediction, however, often fails for Htransfer reactions, especially in enzymes. One of the earliest such observation was in 1984 by Cleland and coworkers who found a normal α -2° KIE of 1.23 at the 4-H/D position of the NAD⁺ in its oxidation of formate ion via hydride transfer catalyzed by a formate dehydrogenase. 9 The KIE value for a sp2 to sp3 conversion, which is supposed to be inverse, is outside of the EIE-unity range. This was then explained by a H-tunneling mechanism in which the 2° H/D vibrations are coupled with the 1° H-tunneling. 10,11 The explanation was confirmed by Huskey and Schowen as well as

Saunders by theoretical calculations. ^{12,13} Subsequently, study of the 2° KIEs on a variety of enzyme catalyzed H-transfer reactions was carried out to prove or disapprove the H-tunneling effect and 1°/2° H coupled motions. ¹⁴⁻²² In the meantime, other H-tunneling models were also attempted to explain the inflated 2° KIEs. ^{19,21-25} Moreover, a comparison of 2° KIEs on some enzymes *vs.* their model reactions in solution has showed that the 2° KIEs in solution were less inflated or even not inflated, making enzymologists conclude that the H-tunneling is enhanced by enzymes. ^{26,27} On the other hand, other workers also provided evidence that H-transfer in both solution and enzymes take place by H-tunneling effects, but no apparent enhancement of the H-tunneling was shown in enzymes. ^{28,29}

We have recently made a comparison of the 2° KIEs on the oxidation of alcohols with NAD+ mediated by alcohol dehydrogenases with those on the model reactions. ^{23,30} The model reactions are the hydride transfers from alcohols to xanthylium ion (Xn⁺BF₄⁻) and its 9-phenyl substituted analogue (PhXn⁺BF₄⁻) that mimic the NAD⁺. Several nonclassical behaviors of the KIEs were found, including: inconsistency with Hammond's postulate, and inflated $9-\alpha-2^{\circ}$ KIEs on Xn^{+} but deflated 2° KIEs on alcohols ($\alpha-2^{\circ}$ KIE on benzyl alcohol or β-2° KIE on isopropyl alcohol). (Here, inflated and deflated could mean being relative to the predicted classical values and not necessarily outside of the unity-EIE range.) These behaviors, together with the observed other nonclassical behaviors of 1° and 2° KIEs in these reactions suggest H-tunneling effect. ^{23,31} Together with the Hammett correlations, we found that the rehybridization in alcohol lags behind the charge development in the tunneling TS, which is opposite to the order in enzymes.²³ This implicates that enzymes reorganize the reaction coordinate for efficient H-tunneling by advancing the necessary geometry change through protein motions. While this is a start to systematically compare the 2° KIEs on between NAD⁺ and model reactions, there are still many unanswered questions. (1) The NAD⁺ models above are (Ph)Xn⁺ that use O to replace N in NAD⁺. What are the 2° KIEs on the close NAD⁺ analogues containing N? (2) The α -2° KIE on the NADH donor was found to be inflated in the dihydrofolate reductase of Escherichia coli (ecDHFR).32 What is the behavior of 2° KIEs on the NADH models? (3) While the imbalance of rehybridizations in between donor and acceptor has been observed both with enzymes and models involving H-tunneling, what is the difference in charge development on the donor vs. acceptor? (4) Lastly, the β-type CH/D KIE on the other reaction center N has never been studied on either NADH/NAD+ or analogues. What mechanistic information can this KIE bring us?

The last question is particularly interesting. To our best knowledge, the β-N-CH/D KIE has not been reported on any reactions by far, although the N-CH/CD isotope effects for the protonation of CL₃-NR₂ (L = H or D) amine bases have been long known. 33,34 The latter are EIEs not KIEs though. It was found that the CD₃ base is stronger than the CH₃ base, leading to EIE < 1. Current explanation uses the concept of negative hyperconjugative effect between the lone pair electrons in sp³ hybridized N and the empty σ^* orbital of the β -C-L bond. 35,36 This effect weakens the C-L bond (via S_N2-like mechanism, Scheme 1). When CL₃-NR₂ is protonated becoming CL₃-N⁺HR₂, this effect disappears strengthening the C-L bond thus resulting in an inverse EIE. Therefore, a comparison of the N-CH/D KIE with EIE could give information about the charge development at the N during the reaction. Note that in these protonation processes the hybridization of N is not expected to change (sp³ to sp³).

Scheme 1. Negative hyperconjugation between the lone pair electrons on N and the empty σ^* orbital of the β -C-L bond weakens the said bond (L = H or D)

In this paper, we studied a series of NADH/NAD+ model reactions in attempt to answer the questions above. We determined the 2° N-CH/D KIEs (β -type) on the N center of the NADH/ NAD⁺ analogues in their hydride transfer reactions in acetonitrile. We also determined the 2° H/D KIEs at the α-C center of the compounds, if available. The NADH/NAD+ analogues for the KIE study include 10-methylacridine (MAH) and its oxidized form 10methylacridinium ion (MA⁺) (counter ion: BF₄-, below same), their 9-methyl substituted structures, 9,10-dimethylacridine (DMAH), 9,10-dimethylacridinium ion (DMA+), as well as 1,3-dimethyl-2phenylbenzimidazole (DMPBIH) (eqn. (1) in Scheme 2). The (D)MAH, (D)MA+ and DMPBIH have N-CH3/CD3 groups but only the MAH/MA⁺ contain the α-H/D group. In the (D)MAH reactions (eqn. (1A)), the hydride acceptors include tropylium ion (Tr⁺) and 9-phenylxanthylium ion (PhXn⁺). In the (D)MA⁺ reactions (eqn. (1B)), the hydride donors include 1-(substituted)benzyl-1,4-dihydronicotinamide (GBNAH) (G = Hand CH₃), Hantzsch ester (HEH), and DMPBIH. Note that these hydride donors and acceptors (except Tr+) are also close NADH/NAD+ analogues. The reactions are all exergonic (see Results section) and kinetic studies of all of them have been reported.^{31,37-40} We also computed the relevant EIEs to compare with the KIEs. Furthermore, by using the literature data, 40 we constructed the Hammett correlations for both the donor and acceptor of the hydride transfer reactions, from 1,3-dimethyl-2-(para-substituted phenyl)benzimidazole (G-DMPBIH) to MA⁺, from HEH to 9-(para-substituted phenyl)-MA⁺ (9-ArMA⁺) and to 10-(para-substituted phenyl)-MA+ (10-ArMA+), in acetonitrile (Scheme 3).

The sign (normal or inverse) and magnitude of the 2° KIEs, the comparison between the KIEs and EIEs, the relationship between KIE/EIE comparison and predictions from Hammond's postulate, the synchronicity between the charge development at N (or on the N-ring) and the rehybridization at the α -C, as well as the charge development in between the donor and acceptor in the TS will be discussed, both semiclassically and within a H-tunneling mechanism. The N-CH₃/CD₃ KIE/EIE comparison will be used to calculate the charges on the donor and acceptor moieties. The resulting charge distribution at the hydride tunneling TS for the reaction between DMPBIH and MA+ will be compared with those

gained from the Hammett correlations (Scheme 3). These results will be compared with the α -2° KIEs and Hammett correlations for the hydride transfer reactions involving NADH/NAD⁺ in the closely related enzymes. The possible role of these enzymes in H-tunneling and catalysis will be discussed.

DMA+

Hydride Acceptors (Acc+)

DMAH: R = CH₃

Don-H +
$$\begin{pmatrix} R \\ 9 \\ N \\ 10 \end{pmatrix}$$
 $\begin{pmatrix} k \\ L = H \text{ or } D \end{pmatrix}$ Don⁺ + $\begin{pmatrix} R \\ N \\ CL_3 \end{pmatrix}$ (2)

MA⁺: R = H or D

DMA⁺: R = CH₃

DMAH

Hydride Donors (Don-H)

Scheme 2. The hydride transfer reactions studied in this work; The α -2° H/D and β -type 2° N-CH/D KIEs on (D)MAH, (D)MA⁺ and DMPBIH were determined.

Scheme 3. Hammett analysis of the reaction systems to derive the electronic structure of the TS for the hydride transfer reaction from DMPBIH to MA^+ in acetonitrile. This is used to compare with the same information gained from the N,N-2CH₃/2CD₃ 2° KIE on DMPBIH and N-CH₃/CD₃ 2° KIE on MA^+ for their reaction in this work.

Results

The 2° KIEs at the 10-N-CH₃/CD₃ of (D)MAH and at the 1,3-N,N-2CH₃/2CD₃ KIE of DMPBIH as well as the α -2° KIEs at the 9-CH/CD of MAH for their reactions with different hydride acceptors in acetonitrile are listed in Table 1. Note that the α -2° KIE on MAH for its reaction with Tr⁺ has been reported by us but has not been used to answer the questions raised in this paper.³¹ The 2° KIEs at the 10-N-CH₃/CD₃ of (D)MA⁺ and the α -2° KIEs at the

9-CH/CD of MA⁺ for their reactions with various hydride donors in acetonitrile are listed in Table 2.

The relevant EIEs calculated for (D)MAH and DMPBIH to release a hydride ion and for (D)MA⁺ to accept a hydride ion in acetonitrile medium are also listed in Tables 1 and 2, respectively, for comparison with the corresponding KIEs. The hybridization states computed in these structures are listed in Table 3. The gasphase EIEs were also calculated (see *SI*). The values between the two media only differ by less than about 3% per CH₃ group. The level of theory used is B3LYP/6-31+G*. We also used the MP2/ccpVTZ level of theory for some of the calculations and found that the resultant EIEs are consistent. The comparison can be found in Table S15 in *SI*.

Table 4 includes the free energy changes (ΔG°) of some reactions in acetonitrile calculated from the hydride affinity data of the relevant carbocations in literature. The data show that our reactions are exergonic reactions.

Lastly, Figure 1 shows the Hammett correlation constructed from the literature data for the hydride transfer reactions from 1,3-dimethyl-2-(para-substituted(G)phenyl)benzimidazole (G-DMPBIH) to MA⁺ in acetonitrile.⁴⁰ The Hammett plots for the other two systems in the same solvent, HEH with 10-arylsubstituted acridinium ions (10-ArA⁺), HEH with 9-aryl substituted MA⁺ (9-ArMA⁺), can be seen in SI (Figures S1, S2).⁴⁰ The Hammett constants (ρ 's) for all of these reactions are listed in Table 5.

Table 1. The β-2° KIEs at the N-CH₃/CD₃ of (D)MAH and DMPBIH and the α -2° KIEs at the 9-CH/CD of MAH for their reactions with different hydride acceptors as well as the corresponding EIEs ^a

H-acceptors	2° Isotope Effects on H-donors			
	at 10-N-CH ₃ /CD ₃	at 9-CH/D		
	2° KIEs on MAH			
Tr ^{+ c}	0.92 (0.04) ^b	1.09 (0.04) °		
	2° EIEs on MAH for releasing a hydride ion d			
	0.883 °	1.109 °		
	2° KIEs on DMAH			
$\frac{\operatorname{Tr}^{+c}}{\operatorname{PhX}}$ n ⁺	0.93 (0.03) ^b	N/A		
$PhXn^{+}$	$0.92(0.02)^{f}$	N/A		
	2° EIEs on DMAH for releasing a hydride ion d			
	0.905	N/A		
	at 1,3-N,N-2CH ₃ /2CD ₃	at 2-CH/D		
	2° KIEs on DMPBIH			
MA^+	$0.89(0.01)^{f}$	N/A		
DMA^{+}	0.88 (0.01) b	N/A		
	2° EIEs on DMPBIH for releasing a hydride ion f			
	0.814	N/A		
a In acetonitrile	ile numbers in parentheses are standard deviations: bat			

^a In acetonitrile, numbers in parentheses are standard deviations; ^b at 35 °C; ^c from ref⁵¹; ^d at 25 °C, computed with acetonitrile as medium, using the polarizable continuum model (PCM); the level of theory used is B3LYP/6-31+G*; ^c also calculated at higher MP2/cc-pVTZ level, the results are consistent (see Table S15 in *SI*); ^f at 24 °C.

Table 2. The 2° KIEs at the 10-N-CH₃/CD₃ of (D)MA⁺ and the α -2° KIEs at the 9-CH/CD of MA⁺ for their reactions with different hydride donors as well as the corresponding EIEs ^a

H-donors	2° Isotope Effect on H-acceptors		
	at 10-N-CH ₃ /CD ₃	at 9-CH/D b	
	2° KIEs o	2° KIEs on MA ^{+ c}	
BNAH	1.05 (0.01)	1.02 (0.01) ^d	
CH₃BNAH	1.02 (0.01)	1.01 (0.01)	
HEH	1.01 (0.01) °	1.02 (0.01) e	
DMPBIH	1.01 (0.02)	1.00(0.01)	
	2° EIEs on MA ⁺ for accepting a hydride ion f		
	1.133 ^g	0.902 g	
	2° KIEs on DMA+		

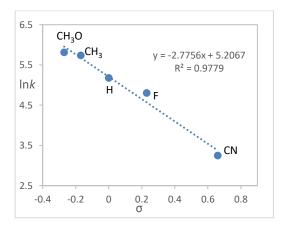
HEH	1.02 (0.01) h	N/A
DMPBIH	1.01 (0.01) i	N/A
	2° EIEs on DMA ⁺ for ac	cepting a hydride ion f
	1.105	N/A

^a In acetonitrile, numbers in parentheses are standard deviations; ^b the D content in MA(9-D)⁺ is 95% by NMR, the 9-CH/D 2° KIE values are not changed after correction; ^c at 24°C; ^d 0.99 (0.02) was reported in ref³¹ (see Table S9 in SI); ^e at 20 °C; ^{f.g} see footnotes d and e in Table 1; ^h at 30 °C; ⁱ at 35 °C.

Table 3. Hybridization states of C-9 and N-10 in (D)MAH and (D)MA^{+ a}

	<u>MAH</u>	MA^+	
at C ₉	$sp^{3.00}$	sp ^{2.02}	
at N ₁₀	sp ^{2.31}	sp ^{2.11}	
	DAMH	DMA^+	
at C ₉	Sp ^{2.92}	sp ^{2.05}	
at N ₁₀	sp ^{2.07}	sp ^{2.03}	
	DMPBIH	DMPBI ⁺	
at C ₂	Sp ^{2.99}	$sp^{2.00}$	
at N_1, N_3	$sp^{2.62}$	sp ^{2.11}	
^a At 25 °C, same as footnotes d and e in Table 1.			

Table 4. The free energy changes of some hydride transfer reactions in acetonitrile at 25 $^{\circ}$ C a


Donor	MAH	MAH	BNAH	HEH	DMPBIH
Acceptor	Tr^{+}	$PhXn^{^{+}}$	MA^{+}	MA^{+}	MA^{+}
ΔG° (kcal/mol)	- 6.5	- 15.4	- 16.9	- 11.8	- 23.5

^a Calculated from the hydride affinity data for the corresponding cations from literature⁴⁰

Table 5. The Hammett constant (ρ) for some hydride transfer reactions in acetonitrile ^a

Donor	G-DMPBIH ^b	HEH °	HEH °
Acceptor	MA^{+}	9-ArMA ⁺	10-ArA ⁺
ρ	- 2.78	1.28	1.47

 $^{^{\}rm a}$ Constructed from the data in literature, at 25 $^{\rm o}{\rm C};^{\rm 40~b}$ see Figure 1; $^{\rm c}$ see SI for Hammett plots

Figure 1. Hammett correlation for the hydride transfer reactions from 1,3-dimethyl-2-(para-substituted(G)phenyl)benzimidazole (*G*-DMPBIH) to MA⁺ in acetonitrile (Constructed from the data in literature⁴⁰)

Discussion

The normal 9-α-H/D EIE value (1.109) for the change from MAH to MA⁺ is consistent with an sp³ to sp² conversion (Table 1 for eqn. (1A), also see the revered EIE in Table 2 for the sp² to sp³

process in eqn. (1B)). The inverse 2° N-CH₃/CD₃ EIEs (0.91 - 0.81) for the conversion from (D)MAH/DMPBIH to (D)MA+/DMPBI+ are consistent with the "negative conjugative effect" explanation, which uses the concept that the CD₃-N base is stronger than the CH₃-N base (Table 1 and Scheme 1, also see the reversed EIE in Table 2 for the eqn. (1B) process for comparison). 35,36 The 10-N-CH₃/CD₃ EIE on the conversion from MAH to MA⁺ (0.883) is more inverse than that from DMAH to DMA⁺ (0.905) (Table 1). This can be interpreted in terms of more electron density localized on N in MAH available for the negative hyperconjugative effect (due to less planar sp^{2.31} hybridization) than in DMAH (with sp^{2.07} hybridization) (Table 3). I.e., the higher electron density is on N, the more inverse the 2° EIE will be. As far as the DMPBIH is concerned, it has two CH₃/CD₃ groups and the hybridization change on N is the largest (from sp^{2.62} to sp^{2.11}) (Table 3), so the N,N-2CH₃/2CD₃ EIE has the largest inverse value (0.814). Note that the 9-α-H/D 2° EIE value (1.109) on MAH/MA⁺ agrees well with that of the 4-H/D EIE (1.12) on NADH/NAD+ that was experimentally determined.¹¹ In order to further ensure that our computed EIEs are safe to be used to compare with the observed KIEs for mechanistic information derivation, we computed the EIE for a model system closer to the NADH/NAD+ conversion, which is the conversion from 1-methyl-1,4-dihydronicotinamide (MNAH) to its oxidized form MAN $^+$. The α -2 $^\circ$ EIE at the 4-H/D position was found to be 1.111, which is close to the experimental value of EIE on NADH/NAD+ (see Table S15 in SI).

Semiclassically, the α -2° CH/D KIE is due to the hybridization change at C-9 (change between sp² and sp³), and the β-type 2° N-CH/D KIE is resulted from the change in electron density (charge) at N (N-10 in (D)MA and N,N-1,3 in DMPBI). This is based on the assumption that there is no steric effect contribution to the KIEs from other structures in the TS that can affect the CH/D vibrations. We have confirmed this for the reactions of MAH/MA+; the smallsized α -H/D is not readily accessible to other structures in the TS. Moreover, since the N-CH₃/CD₃ group is remote from the reaction center, steric effect on its C-H/D vibrations from other structures would be expected to be minimal, too. Therefore, a comparison of the two types of the KIEs with their EIEs will be expected to provide information about the rehybridization and charge development in donor or acceptor, respectively, as well as the balance/imbalance of rehybridization and charge development in between donor and acceptor during the reaction. It should be noted that, if H-tunneling is involved, its known possible contribution to the α -2° KIEs must be considered in the KIE/EIE comparison for a correct analysis of the position of the TS.25 Below the KIE/EIE comparisons will be discussed both semiclassically and within a Htunneling mechanism.

Preliminary semiclassical analysis of the 2° KIEs

The N-CH₃/CD₃ 2° KIEs for the reactions of (D)MAH and DMPBIH with all hydride acceptors are inverse and similar (0.92 – 0.93 for (D)MAH, 0.88 – 0.89 for DMPBIH) (Table 1). The KIEs at N-10 of (D)MAH for its reactions with Tr⁺ and PhXn⁺ are close to each other but the ΔG° 's of the two reactions differ by about 9 kcal/mol (Table 4). This indicates that the 2° KIE is not quite sensitive to the acceptor structures used. The inverse values are consistent with the "negative hyperconjugation" explanation (Scheme 1, again the CD₃-N base is stronger.). All of the KIEs are closer to EIE as compared to unity. This suggests that the (D)MA/DMPBI moiety of the TS's resemble the (D)MA⁺/DMPBI⁺ product in electronic structure, *i.e.* they carry closer to 1+ charge relative to a neutral structure. Moreover, the 9- α -2° KIE on MAH for its reaction with Tr⁺ (1.09) is also closer to the corresponding

EIE (1.109). This normal value is consistent with a conversion from sp³ to sp² hybridization. Semiclassically, this suggests that the changes in hybridization at C-9 and in electron density at N-10 of MAH are largely synchronous in the reaction coordinate, *i.e.*, both are consistent with a late TS. The late TS is, however, inconsistent with the exergonic reactions that have a suggested TS resembling the reactant structure according to Hammond's postulate.

When (D)MA⁺ are used as hydride acceptors, the 2° KIEs at N- CH_3/CD_3 become normal (1.01 – 1.05, Table 2). This is because the resulting stronger CD₃-N base makes (D)MA⁺ harder to accept a lone pair of electrons. The 2° KIEs are similar (except for BNAH (1.05) and CH₃BNAH (1.02) (without apparent reason)), suggesting that the 2° KIEs would not be quite sensitive to the donor structures, either (c.f. ΔG° 's in Table 4). They are close to unity, suggesting a very early TS in charge development (the positive (+) charge on (D)MA moiety in the TS is closer to 1+ charge.). This appears consistent with the exergonic nature of the reactions, i.e., consistent with Hammond's postulate that suggests an early TS. However, the normal α -2° KIEs at the 9-H/D position of MA^+ , although close to unity (1.00 – 1.02), are inconsistent with the hybridization change from sp² to sp³. The KIEs are out of the range from unity to EIE (0.904), which cannot be used to evaluate the position of the TS in the reaction coordinate. It should be noted that the α-9-H/D 2° KIEs on Xn+ in its reactions with different alcohols were also observed to be close to or slightly larger-thanunity.³⁰ For example, for the reactions with isopropyl alcohol, 3methyl-2-butnaol and cyclohexanol in acetonitrile, the α -2° KIEs on Xn⁺ are 0.99, 1.03, 1.00, respectively. These 2° KIEs are out of the range from unity to EIE as well.³⁰

The interesting finding here is that in terms of both the hybridizations and charge development on the (D)MA and DMPBI moieties, the TS's tend to be product-like in the reactions of MAH and DMPBIH (eqn. (1A)) but reactant-like in the reactions of (D)MA+ (eqn. (1B)). Semiclassically, this suggests that the rehybridization and charge development in between the donors and acceptors in this type of hydride transfer reactions, for example between DMPBIH and MA+, are nonsynchronous. Note that the TS structures for the endergonic hydride transfer reactions from alcohols to Xn+ and PhXn+ have been found to have non-perfectly synchronized rehybridizations between donor and acceptor as well.^{23,30} All these suggest that this class of hydride transfer reactions involving NADH/NAD+ models would be nonclassical. This is consistent with the findings from NADH/NAD+ model systems by other groups using different ways of analysis.⁴¹⁻⁴⁴

Analysis within a H-tunneling mechanism from inflated α -2° KIEs: Solution (less inflated) vs. enzymes (more inflated)

A close examination of the α -2° H/D KIE value (1.09) at C-9 of MAH in its reaction with Tr⁺ (close to the EIE (1.109)) shows that the KIE is inflated relative to the exergonic reaction whose KIE is supposed to be closer to unity for an sp³ to sp² process. Meanwhile, the α -2° KIEs at the C-9 position of the MA⁺ in its reactions with various donors are also inflated (1.00 to 1.02 in Table 2), which is supposed to be inverse and closer to unity for an exergonic sp² to sp³ process. We have reported that in some of these reactions, for example, DMAH/Tr⁺ and BNAH/DMA⁺, the β -2° KIEs at the 9-CH₃/CD₃ groups of DMAH/DMA⁺ are 1° isotope dependent (*i.e.*, breakdown of the Geometric Mean⁴⁵).³¹ Also, the temperature dependence of 1° KIEs in the reactions are outside of the semiclassical limits.^{23,31,41} All of these strongly suggest that the reactions take place by nonclassical H-tunneling mechanisms.

Thus far, the observed inflated 2° KIEs on NADH/NAD⁺ have been explained by three tunneling models, (i) the traditional 1°/2°

H coupled motions model within a one-dimensional Bell-type mechanism, 9,12,14,32 (ii) the tunneling contemporary multidimensional H-tunneling model within the variational TS theory, ^{19,25} and (iii) the recent activated (Marcus-like) H-tunneling model. ^{21,22,30,46} Earlier, such findings were all explained using the 1°/2° coupled motions model. All of the relevant discussions were qualitative concerning whether the reactions follow a tunneling mechanism and have 1°/2° H coupled motions. The latter two contemporary H-tunneling models, however, allowed to fit the inflated 2° KIEs to obtain the TS structures with the hybridization information. For example, in the exergonic zinc benzyl alcoholate oxidation with NAD+ mediated by a yeast alcohol dehydrogenase (yADH), the observed 2° H/T KIE at the benzylic position of the alcohol is 1.33, equal to the EIE of 1.33 (for sp³ to sp²), whereas the 2° H/D KIE at the C-4 position of the NAD⁺ is 1.08, which is also outside of the range from unity to EIE (0.89).⁴⁷ Roston and Kohen fitted the inflated KIEs to the Marcus-like H-tunneling model, and found a non-perfectly synchronized H-tunneling TS (or tunneling ready state (TRS)).⁴⁷ The hybridizations of the donor and acceptor C's were found to be sp^{2.76} and sp^{2.34}, respectively. Gao, Truhlar and co-workers calculated the TS structure for the hydride transfer reaction from NADH to dihydrofolate (DHF) mediated by the Escherichia coli (ecDHFR), using the ensemble-averaged multidimensional H-tunneling model within the variational TS theory. 25,48 Calculation showed that the 2° H/D KIE at the C-4 of NADH equals to 1.13, which is exactly the same as the observed one.³² When they "removed" the H-tunneling contribution, the KIE became 1.03 suggesting a reactant-like TS. In the TS structure, they found that the C-4 of NADH has an sp^{2.68} hybridization which is also reactant-like. Interestingly, in the latter two reactions, the 2° KIEs on the donors are equal to the EIE, but in their tunneling TS's the hybridizations are closer to the sp³ state of the reactant (relative to sp²), which seems in accordance with Hammond's postulate for an exergonic reaction (benzyl alcoholate /NAD+ or NADH/DHFH+ (acid-catalyzed)). On the other hand, the hybridizations at acceptors are close to a TS where the transferring H is in the midway between the donor and acceptor (closer to sp^{2.5}). Importantly, by comparison of the hybridizations of the donor and acceptor moieties of these tunneling TS's, it was found that the rehybridizations on the donor vs. acceptor in both H-tunneling reactions are also non-perfectly synchronized, i.e. the sum of the hybridizations of the donor and acceptor is larger than 5.

According to above analysis on enzymes, since our reactions are exergonic, the hybridizations at C-9's of both MAH and MA⁺ in the tunneling TS's are most likely reactant-like as well. Nevertheless, the less inflated $\alpha\text{-}2^\circ$ KIEs on MAH/(D)MA⁺ as well as our previously observed less inflated $\alpha\text{-}2^\circ$ KIEs on Xn⁺ than those on NADH/NAD⁺ in enzymes, such as formate dehydrogenase, yADH and ecDHFR, implicates that H-tunneling probability is most likely enhanced by these enzymes.

Imbalance between rehybridization and charge development from α -9- vs. 10-N-CH/D KIEs and Hammett analysis: Different behaviors in solution vs. in enzymes

While the α -2° KIEs on the donor/acceptor C of the (D)MAH/(D)MA⁺, after "removing" the H-tunneling effect, can provide information about the rehybridizations of the corresponding C's, the β -2° CH₃/CD₃ KIEs at the N position can provide information about the charge development on the structure containing N during the reaction, *i.e.*, can reflect the information about the electronic bond cleavage/formation, *i.e.*, extent of H-transfer (tunneling) in the tunneling ready TS. Note that unlike the α -2° KIEs, all the N-CH₃/CD₃ 2° KIEs fall in between unity and the corresponding EIEs, implicating that tunneling would not have

an extra effect on this remote 2° KIE. Therefore, its KIE/EIE comparison could be used to evaluate the charge development in the tunneling TS (see subsequent section for details). From the above analysis, the hybridization of the donor C is not closer to the product, whereas the N-CH₃/CD₃ 2° KIEs are all closer or close to the EIE (Table 2). This appears to suggest that the rehybridization at the α-C lags behind its C-H bond breakage, i.e., H-tunneling. Importantly, this is also supported by the Hammett correlations for the hydride transfer reactions from G-DMPBIH to MA+ in acetonitrile, which gives rise to a Hammett constant (p) of -2.78 (Table 5 and Figure 1). The large Hammett slope is also consistent with a late tunneling ready TS in terms of the extent of loss of electron density from the DMPBIH donor during the reaction. We have previously reported a large similar Hammett ρ value of -2.66 for the hydride transfer reaction from para-substituted benzyl alcohols to PhXn⁺ in acetonitrile.²³ In that reaction, the 2° KIE at the alcohol benzylic C also suggests that hybridization at the benzylic position in the TRS is reactant-like. The conclusion from that study is the same, i.e., the rehybridization appears to lag behind the H-tunneling in solution.

In the yADH enzyme, however, the hybridization of the benzyl alcohol donor at the tunneling ready TS is $\mathrm{sp}^{2.76}$ which is reactant-like (see above), whereas the Hammett correlations for the hydride transfer from para-substituted benzyl alcohols to NAD⁺ shows a Hammett ρ close to zero. ^{49,50} This suggests that rehybridization of the alcohol donor precedes the H-tunneling, which is opposite to the order observed from the model reactions. This latter comparison suggests that the enzyme may go through more changes in the donor and acceptor rehybridization process as part of the reorganization prior to H-tunneling, while in solution the H-tunneling occurs before the rehybridization of the substrate. This implicates a role of thermal motions of the yADH enzyme in catalysis.

The electronic structure of the tunneling ready TS's from N-CH₃/CD₃ KIEs: Supported by Hammett correlations

It should be noted that above conclusion about the non-concerted rehybridization and charge development was drawn from the 2° KIE comparison at 9-CH/CD vs. N-CH₃/CD₃ positions of the donor moiety of the TS's only. A comparison of the N-CH₃/CD₃ KIEs vs. EIE for the donor (closer to EIE) vs. acceptor (closer to unity) in their reactions suggests that the donor moiety of the TS is product-like in terms of the charge distribution, whereas the acceptor moiety is reactant-like. Interestingly, this makes the whole TS carrying more than 1+ charge. Hammett correlations show that the reactions are much more sensitive to substituent effect on the donors than on the acceptors (Table 5), consistent with these KIE observations and further indicating this type of "unbalanced" charge development at the donor and acceptor in the TS. From the subsequent discussions, we will show that the transferring H indeed bears partial negative (-) charge being "hydridic" in character, which balances the "extra" (+) charge.

The fractional positive (+) charge (ζ) carried by the (D)MA and DMPBI moieties in the tunneling ready TS's can be calculated by comparison of the N-CH₃/CD₃ 2° KIE with the corresponding EIE, *i.e.*, $\zeta = (1\text{-KIE})/(1\text{-EIE})$ for the donor and $\zeta = 1$ - (1-KIE)/(1-EIE) for the acceptor. For example, for the reaction of DMPBIH with MA⁺ (from the data in Tables 1 and 2), in the TRS the DMPBIH moiety carries 0.58+ charge (= (1-0.89)/(1-0.81)), whereas the MA moiety carries 0.92+ charge (= 1 - (1-1.01)/(1-1.13)). This leaves 0.50- charge borne by the transferring nucleus (Scheme 4). The Hammett constant on *G*-DMPBIH is -2.78 (Figure 1), seemingly consistent with the large amount of positive charge developed on

the DMPBI moiety. The hydridic nature of the in-flight H in this type of reactions was also supported by the Hammett correlation studies of the hydride transfer reactions from 1-(parasubstituted)benzyl-1,4-dihydronicotinamide (*G*-BNAH) to N-(para-substituted)benzyl-5-nitroisoquinolinium ion (*G*-BNIQ⁺) in water containing 20% acetonitrile (v/v).⁵¹ In that study, the BNAH

Scheme 4. The electronic tunneling ready TS structure of the hydride transfer reaction from DMPBIH (left) to MA⁺ (right) in acetonitrile; The nucleus in tunneling carries partial negative charge being "hydridic" in character

moiety in the TS was found to bear 0.82+ charge and the BNIQ bears 0.62+ charge, indicating that the in-flight nucleus bears 0.44-charge. Importantly, in the latter example, the donor BNAH is also product-like in charge distribution, further supporting the possibility earlier discussed that the H transfer/tunneling precedes the rehybridization in the solution reactions. In the meantime, the smaller Hammett slope on the *G*-BNIQ⁺ is also consistent with our observed close-to-unity 2° N-CH₃/CD₃ KIEs on (D)MA⁺ in their reactions with different hydride donors.

In conclusion, the α-H/D 2° KIEs on the donor C and β-type N-CH/D 2° KIEs on the basic N in the NADH analogues, as well as those on the acceptor C and N+ in the NAD+ analogues in their respective hydride transfer reactions, in acetonitrile, were determined. Classically, the α-2° KIEs on the donor/acceptor C are resulted from the rehybridization, whereas those on $N/\bar{N^+}$ resulted from the electron pair loss/gain. The corresponding 2° EIEs were computed to compare with the KIEs in attempts to examine the rehybridization and quantitative charge development in the TS on the reaction coordinate. Hammett correlations either constructed by us using the literature data or directly from literature were used to assist the electronic TS structure analysis. The results include (1) the α-2° KIEs on both the donor/acceptor C are inflated relative to the semiclassical predictions, but less inflated than those in the closely related enzymes; (2) the electronic structures of the donors in the TS's resemble product, whereas those of the acceptors resemble the reactant, indicating the electron density loss from the donors is more than its gain to the acceptors. The results, together with other observations such as the nonclassical temperature dependence of 1° KIE as well as the 1° isotope dependence of 2° KIEs, strongly support a H-tunneling mechanism in which the tunneling nucleus bears electron density being hydridic in character. In the tunneling ready TS's, the rehybridization appears to lag behind the H-tunneling on the donor side. The results and analyses were compared to those from the related enzymes. The Htunneling appears to be less probable in our model reactions in both this work and the previous work using (Ph)Xn⁺ as NAD⁺ models. In yADH, it was found that the rehybridization precedes the Htunneling. This comparison suggests that the enzyme may lead to more changes in the donor and acceptor hybridization as part of the reorganization prior to H-tunneling, whereas in solution the Htunneling occurs before the rehybridization of the substrate. Furthermore, the β -type N-CH/CD 2° KIEs on the N reaction center can be used to study the electronic structures of the relevant reactions when compared with the corresponding EIE. This can be a new approach that can play the same role as the Hammett correlation studies. The advantage is that it does not require synthesis of complex substrates that contain the bulky substituted aromatic groups and are thus less applicable for enzyme studies.

Experimental

General procedures

Syntheses of the following compounds were previously reported from our group: 10-methylacridiniumion (MA+BF₄-) and its 9-D substituted analogue (MA(9-D)⁺), 9,10-dimethylacrdinium ion (DMA⁺BF₄⁻), 10-methylacridine (MAH), 9,10-dimethylacridine (DMAH), 9-phenylxanthylium ion (PhXn+BF4-), 1-benzyl-1,4dihydronicotinamide (BNAH).^{23,31,52} The D content in MA(9-D)⁺ is $\sim 95\%$ by NMR (see footnote b in Table 2 for discussion and SI for the NMR spectrum (Figure S6)). The commercially available tropylium ion (Tr+BF₄-) was recrystallized twice from acetonitrile/ether mixture before use. The 10-(deuteratedmethyl)acridine (MAH-10-CD₃) and the 9-methyl-10-(deuteratedmethyl)acridine (DMAH-10-CD₃) were synthesized from the reduction of the 10-(deuterated-methyl)acrdinium iodide (MA⁺-10-CD₃) and 9-methyl-10-(deuterated-methyl)acridinium iodide (DMA+-10-CD3) by NaBH4 in methanol following the same procedures to synthesize MAH and DMAH.31,53 The latter two iodide salts were synthesized using the CD₃I following the same literature procedure for the synthesis of MA⁺ and DMA⁺ salts that used CH₃I.^{31,53} The NMR spectra for the latter four 10-CD₃ compounds (Figures S7 to S10) show that the H content in these deuterated (10-CD₃) compounds was not detectable. The 1-(pmethylbenzyl)-1,4-dihydronicotinamide (CH₃BNAH) synthesized according to a procedure described in literature.⁴¹ The syntheses of the Hantzsch ester (diethyl 1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate, HEH) were done by a three components coupling reaction of ethyl acetoacetate, ammonia and formaldehyde following the literature procedure.54 The 1,2dimehtyl-2-phenyl-1,2-dihydrobenzimidazole (DMPBIH) and its 1,2-di(trideuterated methyl) analogue were prepared by reduction 1,3-dimethyl(or deuterated dimethyl)-2-phenylbenzimidazolium iodide with NaBH4, following the same procedure as in literature.⁵⁵ The precursor salt for the latter, 1,3dimethyl(or deuterated dimethyl)-2-phenyl-benzimidazolium iodide. was synthesized from the reaction of phenylbenzimidazole with CH₃I or CD₃I in methanol in the presence of NaOH in a sealed tube at 120 °C for 10 hours, according to the method described in literature.⁵⁵ All compounds synthesized were usually recrystallized three times before kinetic measurements. The ¹H NMRs for CH₃BNAH, HEH, DMPBIH as well as DMPBIH-1,3-N,N-2CD₃ are in SI (Figures S11 to S14). The D content in DMPBIH-1,3-N,N-2CD3 was found to be 85% (by NMR in Figure S14). We did not look for other method to obtain the pure isotopic compound, instead, we corrected the kinetics to derive the 2° KIEs (See SI).

The HPLC grade acetonitrile was carefully redistilled twice under nitrogen, with the presence of $KMnO_4/K_2CO_3$ (to remove the reducing impurity) and P_2O_5 (to remove water) in order, for kinetic measurements.

Kinetic procedures

All kinetics were determined in acetonitrile under pseudo-first-order conditions at certain temperatures. Most measurements were conducted on an UV-Vis spectrophotometer with a cuvette connected to a rapid stopped-flow mixer (a Hi-Tech Scientific SFA-20 fast kinetic determination kit) or on a SF-61DX2 Hi-Tech KinetAsyst double-mixing stopped-flow instrument. Slow kinetics were determined with a thermostated cuvette in an Agilent 8453 UV-Vis spectrophotometer. The kinetics were determined under the pseudo-first-order conditions to give pseudo-first order rate constants (k^{pfo}) (R^2 are in the range of 0.9990 - 1.0000). The effect

of substrate concentrations on $k^{\rm pfo}$ for each reaction was examined and the reactions follow the second-order rate law. This is consistent with the literature.³⁷⁻⁴⁰ The 2° KIE was calculated using the second-order rate constants (k's). The measurements of the kinetics of the reactions of the two isotopologues for KIE derivation (= $k_{\rm H}/k_{\rm D}$) were done on the same day (back to back) using the same batch of distilled acetonitrile solvent (4-6 kinetic runs each) and were repeated at least two more times on different days (apart from months or even years for some systems, see SI). We also often used different batches of substrates in the determination of each KIE in order to test the effect of possible different impurity on the KIE measurements, and we did not find apparent differences. All the kinetic data are summarized in Tables S1 to S14 in SI. Careful measurements were done and standard deviations are relatively small.

The kinetics for the reactions of MAH and DMAH with Tr^+ (large excess) in acetonitrile has been reported in our previous publication.³¹ They were determined by spectroscopically monitoring the formation of the (D)MA⁺ at 436 nm. Here in this work, we determined the 2° N-CH₃/CD₃ KIEs of the reactions of (D)MAH vs. (D)MAH-10-CD₃ with Tr^+ following the same procedure. The k^{pfo} 's were determined by plotting $\ln(A_{\infty} - A) vs$. t. The second-order rate constant $k = k^{pfo}/[Tr^+]$. Therefore, KIE = $k_{\rm H}/k_{\rm D} = k^{pfo}/_{\rm H}/k^{pfo}$ D. (We used the same Tr^+ solution to react with the CH₃ and CD₃ substrates so that the $[Tr^+]$ is canceled in the KIE calculation for these systems using $k^{pfo}/_{\rm H}/k^{pfo}$ D.)

Kinetics for the reaction of (D)MA⁺, MA(9-D)⁺, (D)MA(10-CD₃)⁺ with BNAH, CH₃BNAH, HEH and DMPBIH were determined by following the decay of the cations at 436 nm due to MA⁺ and DMA⁺. The H-donors are in larger excess. The kinetic measurement of the BNAH reaction has been reported.³¹ The exemplified kinetic scans for the reaction of HEH and DMPBIH are shown in Figures S3 and S4 in SI. The obtained $-\ln(A - A_{\infty}) vs$. t data gave the $k^{\rm pfo}$. Second-order rate constants ($k = k^{\rm pfo}/[{\rm H-donor}]$) were used to calculate the 2° KIEs. Since the same H-donor solution was used to react with the (D)MA⁺ and its deuterated analogue, the KIE = $k_{\rm H}/k_{\rm D} = k^{\rm pfo}/k^{\rm pfo}$ D.

The kinetics for the reactions of the DMAH and DMAH-10-CD₃ (large excess) with PhXn⁺ were determined spectroscopically by following the absorbance (A) decay of the cation (the hydride acceptor) at 485 nm. A kinetic scan example is given in Figure S5 in SI. The pseudo-first-order rate constant (k^{pfo}) was derived from the slope of the -ln(A₁-A_{∞}) vs. time t. The 2° KIE was calculated using the second-order rate constant k (= k^{pfo}/[DMAH]), namely,

$$KIE = \frac{k_H}{k_D} = \frac{k_H^{pfo}}{k_D^{pfo}} \times \frac{[DMAH - CD_3]}{[DMAH - CH_3]}$$
 (2)

In order to reduce the errors from the concentration terms, so as to determine the accurate KIE, the above concentration ratio was corrected by determining the absorbance (A) value of the diluted H/D isotopic donor kinetic solutions at $\lambda_{max} = 286$ nm (at least three times each. Thus the KIE was derived according to eqn (3) (assuming $\varepsilon_{\rm H} = \varepsilon_{\rm D}$),

$$KIE = \frac{k_H}{k_D} = \frac{k_H^{pfo}}{k_D^{pfo}} \times \frac{A_D}{A_H}$$
 (3)

In the derivation of the N,N-2CH₃/2CD₃ KIE on DMPBIH for their reactions with (D)MA⁺, since the DMPBIH and DMPBH-1,3-2CD₃ are in large excess over (D)MA⁺, eqn. (3) was also used. The $A_{\rm H(313nm)}$ and $A_{\rm D(313nm)}$ were determined for the DMPBIH and DMPBIH-1,3-2CD₃ solutions. Since the D content in the latter compound is 85%, the corrected KIEs was reported (see *SI*, Tables S4 and S5 and eqns S1 to S4)

Computational methods

All computations were run at the B3LYP/6-31+G* level of theory both in gas-phase or in acetonitrile medium using the polarizable continuum model (PCM). Geometries were optimized by Gaussian 09 and Spartan 14. Molecular frequencies were calculated using Gaussian 09 and the EIEs were calculated with the ISOEFF 07 software.⁵⁶ The higher level (MP2/cc-pVTZ) of calculation was examined and the results are consistent (See Table S15 in SI).

ASSOCIATED CONTENT

Supporting Information

Hammett correlations, the exemplified UV-Vis kinetic scans, detailed kinetic data, EIE comparisons in gas phase vs. in acetonitrile medium, atom coordinates and total energies of structures, ¹H NMR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

* yulu@siue.edu

Notes

The authors declare no competing financial interests.

ACKNOWLEDGMENT

Acknowledgment is made to the donors of the American Chemical Society Petroleum Research Fund (ACS-PRF grant #: 55140-UR4), the National Science Foundation (NSF# 1800194), the National Science Foundation for cyberinfrastructure to access the facilities of the Pittsburg supercomputing center (NSF grant #: 1541435), as well as the XSESE startup allocation (CTS170029) to support this research.

REFERENCES

- (1) Melander, L.; Saunders, W. H.: Reaction rates of isotopic molecules. In *Reaction Rates of Isotopic Molecules*; 4th ed.; Krieger, R. E.: Malabar, FL, 1987; pp 170-201.
- (2) Hengge, A. C.: Secondary Isotope Effects. In *Isotope effects in chemistry and biology*; Kohen, A., Limbach, H. H., Eds.; Taylor & Francis, CRC Press: Boca Raton, FL, 2006; Vol. Ch. 39; pp 955-974.
- (3) Streitwieser, A., Jagow, R.H., Fahey, R.C., Suzuki, F.: Kinetic isotope effects in the acetolyses of deuterated cyclopentyl tosylates. *J. Am. Chem. Soc.* **1958**, *80*, 2326-2332.
- (4) Sunko, D. E., Humski, K., Malojcic, R., Borcic, S.: Thermodynamic and kinetic secondary isotope effects in the Cope rearrangement. *J. Am. Chem. Soc.* **1970**, *92*, 6534–6538.
- (5) Lehrmann, G., Quinn, D., Cordes, E. H.: Kinetic .alpha.-deuterium isotope effects for acylation of chymotrypsin by 4-methoxyphenyl formate and for deacylation of formylchymotrypsin. *J. Am. Chem. Soc.* **1980**, *102*, 2491–2492.
- (6) Xue, L., Talalay, P., Mildvan, A. S.: Studies of the mechanism of the .DELTA.5-3-ketosteroid isomerase reaction by substrate, solvent, and combined kinetic deuterium isotope effects on wild-type and mutant enzymes. *Biochemistry* **1990**, *29*, 7491-7500.
- (7) Francisco, W. A.; Knapp, M. J.; Blackburn, N. J.; Klinman, J. P.: Hydrogen tunneling in peptidylglycine-hydroxylating monooxygenase. *J. Am. Chem. Soc.* **2002**, *124*, 8194-8195.
- (8) Cheng, M.-C.; Marsh, E. N. G.: Pre-Steady-State Measurement of Intrinsic Secondary Tritium Isotope Effects Associated with the Homolysis of Adenosylcobalamin and the Formation of 5'-

- Deoxyadensosine in Glutamate Mutase. *Biochemistry* **2004**, *43*, 2155–2158.
- (9) Hermes, J. D.; Cleland, W. W.: Evidence from multiple isotope effect determinations for coupled hydrogen motion and tunneling in the reaction catalyzed by glucose-6-phosphate dehydrogenase. *J. Am. Chem. Soc.* **1984**, *106*, 7263-7264.
- (10) Cook, P. F., Oppenheimer, N. J., Cleland, W. W.: Primary and secondary deuterium isotope effects on equilibrium constants for enzymecatalyzed reactions. *Biochemistry* **1980**, *19*, 4853-4858.
- (11) Cook, P. F.; Oppenheimer, N. J.; Cleland, W. W.: Secondary deuterium and nitrogen- 15 isotope effects in enzyme-catalyzed reactions. Chemical mechanism of liver alcohol dehydrogenase. *Biochemistry* **1981**, 20, 1817-1825.
- (12) Huskey, W. P.; Schowen, R. L.: Reaction-coordinate tunneling in hydride transfer reactions. *J. Am. Chem. Soc.* **1983**, *105*, 5704-5706.
- (13) Saunders, W. H., Jr.: Calculations of isotope effects in elimination reactions. New experimental criteria for tunneling in slow proton transfers. *J. Am. Chem. Soc.* **1985**, *107*, 164–169.
- (14) Cha, Y.; Murray, C. J.; Klinman, J. P.: Hydrogen tunneling in enzyme reactions. *Science* **1989**, *243*, 1325-1330.
- (15) Rucker, J.; Cha, Y.; Jonsson, T.; Grant, K. L.; Klinman, J. P.: Role of internal thermodynamics in determining hydrogen tunneling in enzyme-catalyzed hydrogen transfer reactions. *Biochemistry* **1992**, *31*, 11489-11499
- (16) Bahnson, B. J.; Park, D. H.; Kim, K.; Plapp, B. V.; Klinman, J. P.: Unmasking of hydrogen tunneling in the horse liver alcohol dehydrogenase reaction by site-directed mutagenesis. *Biochemistry* **1993**, *32*, 5503-5507.
- (17) Bahnson, B. J.; Colby, T. D.; Chin, J. K.; Goldstein, B. M.; Klinman, J. P.: A link between protein structure and enzyme catalyzed hydrogen tunneling. *Proc. Nat. Acad. Sci. U.S.A.* **1997**, *94*, 12797-12802.
- (18) Rucker, J.; Klinman, J. P.: Computational study of tunneling and coupled motion. *J. Am. Chem. Soc.* **1999**, *121*, 1997-2006.
- (19) Alhambra, C.; Corchado, J. C.; Sanchez, M. L.; Gao, J.; Truhlar, D. G.: Quantum dynamics of hydride transfer in enzyme catalysis. *J. Am. Chem. Soc.* **2000**, *122*, 8197-8203.
- (20) Kohen, A.; Jensen, J. H.: Boundary conditions for the Swain-Schaad relationship as a criterion for hydrogen tunneling. *J. Am. Chem. Soc.* **2002**, *124*, 3858-3864.
- (21) Nagel, Z. D.; Klinman, J. P.: Update 1 of: Tunneling and dynamics in enzymatic hydride transfer. *Chem. Rev.* **2010**, *110*, PR41–PR67.
- (22) Roston, D.; Kohen, A.: A Critical Test of the "Tunneling and Coupled Motion" Concept in Enzymatic Alcohol Oxidation. *J. Am. Chem. Soc.* **2013**, *135*, 13624–13627.
- (23) Liu, Q.; Zhao, Y.; Hammann, B.; Eilers, J.; Lu, Y.; Kohen, A.: A Model Reaction Assesses Contribution of H-Tunneling and Coupled Motions to Enzyme Catalysis. *J. Org. Chem.* **2012**, *77*, 6825–6833.
- (24) Kashefolgheta, S.; Razzaghi, M.; Hammann, B.; Eilers, J.; Roston, D.; Lu, Y.: Computational Replication of the Abnormal Secondary Kinetic Isotope Effects in a Hydride Transfer Reaction in Solution with a Motion Assisted H-Tunneling Model. *J. Org. Chem.* **2014**, *79*, 1989-1994.
- (25) Pu, J.; Ma, S.; Garcia-Viloca, M.; Gao, J.; Truhlar, D. J.; Kohen, A.: Nonperfect synchronization of reaction center rehybridization in the transition state of the hydride transfer catalyzed by dihydrofolate reductase. *J. Am. Chem. Soc.* **2005**, *127*, 14879-14886.
- (26) Alston, W. C.; Manska, M.; Murray, C. J.: Secondary H/T and D/T isotope effects in enzymatic enolization reaction. Coupled motion and tunneling in the triosephosphate isomerase reaction. *Biochemistry* **1996**, *35*, 12873-12881.
- (27) Wilde, T. C.; Blotny, G.; Pollack, R. M.: Experimental Evidence for Enzyme-Enhanced Coupled Motion/Quantum Mechanical Hydrogen Tunneling by Ketosteroid Isomerase. *J. Am. Chem. Soc.* **2008**, *130*, 6577–6585.
- (28) Chowdhury, S.; Banerjee, R.: Evidence for quantum mechanical tunneling in the coupled cobalt-carbon bond homolysis-substrate radical generation reaction catalyzed by methylmalonyl-CoA mutase. *J. Am. Chem. Soc.* **2000**, *122*, 5417-5418.
- (29) Doll, K. M.; Bender, B. R.; Finke, R. G.: The first experimental test of the hypothesis that enzymes have evolved to enhance hydrogen tunneling. *J. Am. Chem. Soc.* **2003**, *125*, 10877-10884.
- (30) Hammann, B.; Razzaghi, M.; Kashefolgheta, S.; Lu, Y.: Imbalanced Tunneling Ready States in Alcohol Dehydrogenase Model Reactions:

- Rehybridization Lags behind H-Tunneling. Chem Comm 2012, 48, 11337-11339.
- (31) Maharjan, B.; Raghibi Boroujeni, M.; Lefton, J.; White, O. R.; Razzaghi, M.; Hammann, B. A.; Derakhshani-Molayousefi, M.; Eilers, J. E.; Lu, Y.: Steric Effects on the Primary Isotope Dependence of Secondary Kinetic Isotope Effects in Hydride Transfer Reactions in Solution: Caused by the Isotopically Different Tunneling Ready State Conformations? J. Am. Chem. Soc. 2015, 137, 6653 6661.
- (32) Sikorski, R. S.; Wang, L.; Markham, K. A.; Rajagopalan, P. T. R.; Benkovic, S. J.; Kohen, A.: Tunneling and coupled motion in the *E. coli* dihydrofolate reductase catalysis. *J. Am. Chem. Soc.* **2004**, *126*, 4778-4779.
- (33) Van der Linde, W.; Robertson, R. E.: KD/KH for Base Ionization of Mono- and Dimethylamine. *J. Am. Chem. Soc.* **1964**, *86*, 4505–4506.
- (34) Northcott, D.; Robertson, R. E.: Secondary deuterium isotope effect in the ionization of trimethylamine-d9 in water. *J. Phys. Chem.* **1969**, *73*, 1559–1563.
- (35) Perrin, C. L.; Ohta, B. K.; Kuperman, J.; Liberman, J.; Erdelyi, M.: Stereochemistry of Beta-Deuterium Isotope Effects on Amine Basicity. *J. Am. Chem. Soc.* **2005**, *127*, 9641-9647.
- (36) Perrin, C. L.: The Logic behind a Physical-Organic Chemist's Research Topics. *J. Org. Chem.* **2017**, *82* 819–838.
- (37) Bunting, J. W.: Merged Mechanisms for Hydride Transfer from 1,4-dihydropyridines. *Bioorg. Chem.* **1991**, *19*, 456-491.
- (38) Lee, I.-S. H.; Jeoung, E. H.; Kreevoy, M. M.: Marcus Theory of a Parallel Effect on R for Hydride Transfer Reaction between NAD+ Analogues. *J Am Chem Soc* **1997**, *119*, 2722-2728.
- (39) Lee, I.-S. H.; Jeoung, E. H.; Kreevoy, M. M.: Primary Kinetic Isotope Effects on Hydride Transfer from 1,3-Dimethyl-2-phenylbenzimidazoline to NAD+ Analogues. *J Am Chem Soc* **2001**, *123*, 7492-7496.
- (40) Shen, G. B.; Xia, K.; Li, X. T.; Li, J. L.; Fu, Y. H.; Yuan, L.; Zhu, X. Q.: Prediction of Kinetic Isotope Effects for Various Hydride Transfer Reactions Using a New Kinetic Model. *J. Phys. Chem. A* **2016**, *120*, 1779–1799
- (41) Powell, M. F.; Bruice, T. C.: Effect of isotope scrambling and tunneling on the kinetic and product isotope effects for reduced nicotinamide adenine dinucleotide model hydride transfer reactions. *J. Am. Chem. Soc.* **1983**, *105*, 7139–7149.
- (42) Kreevoy, M. M.; Ostovic, D.; Truhlar, D. G.; Garrett, B. C.: Phenomenological manifestations of large-curvature tunneling in hydride-transfer reactions. *J. Phys. Chem.* **1986**, *90*, 3766-3774.
- (43) Kim, Y.; Kreevoy, M. M.: The experimental manifestations of corner-cutting tunneling. *J. Am. Chem. Soc.* 1992, 114, 7116-7123.
 (44) Lee, I.-S. H., Jeoung, E. H., Kreevoy, M. M.: Primary Kinetic Isotope Effects on Hydride Transfer from 1,3-Dimethyl-2-phenylbenzimidazoline to NAD+ Analogues. *J. Am. Chem. Soc.* 2001, 123, 7492–7496.
 (45) Bigeleisen, J.: The rule of the geometric mean. *J. Chem. Phys.* 1955,
- (45) Bigeleisen, J.: The rule of the geometric mean. *J. Chem. Phys.* **1955**, *23*, 2264-2267.
- (46) Klinman, J. P.: Beyond Tunneling Corrections: Full Tunnelling Models for Enzymatic C-H Activation Reactions. In *Quantum Tunnelling in Enzyme-Catalyzed Reactions*; Scrutton, N. S., Allemann, R. K., Eds.; RSC Publishing, 2009; pp 132-160.
- (47) Roston, D.; Kohen, A.: Elusive transition state of alcohol dehydrogenase unveiled. *Proc. Nat. Acad. Sci. USA* **2010**, *107*, 9572-9577.
- (48) Garcia-Viloca, M.; Truhlar, D. G.; Gao, J.: Reaction-Path Energetics and Kinetics of the Hydride Transfer Reaction Catalyzed by Dihydrofolate Reductase. *Biochemistry* **2003**, *42*, 13558–13575.
- (49) Klinman, J. P.: The Mechanism of Enzyme-catalyzed Reduced Nicotinamide Adenine Dinucleotide-dependent Reductions: Substituent and Isotope Effects in the Yeast Alcohol Dehydrogenase Reaction. *J. Biol. Chem.* **1972**, *247*, 7977–7987.
- (50) Klinman, J. P.: Isotope effect and structure-activity correlations in the yeast alcohol dehydrogenase reaction. A study of enzyme-catalyzed oxidation of aromatic alcohols. *Biochemistry* **1976**, *15*, 2018 2026.
- (51) Bunting, J. W.; Sindhuatmadja, S.: Kinetics and mechanism of the reaction of 5-nitroisoquinolinium cations with 1,4-dihydronicotinamides. *J. Org. Chem.* **1981**, *46*, 4211-4219.
- (52) Lu, Y., Qu, F., Moore, B., Endicott, D., Kuester, W.: Hydride Reduction of NAD+ Analogues by Isopropyl Alcohol: Kinetics, Deuterium Isotope Effects and Mechanism. *J. Org. Chem.* **2008**, *73*, 4763-4770.

(53) Fukuzumi, S.; Tokuda, Y.; Kitano, T.; Okamoto, T.; Otera, J.: Electron-transfer oxidation of 9-substituted 10-methyl-9,10-dihydroacridines. Cleavage of the carbon-hydrogen vs. carbon-carbon bond of the radical cations. *J. Am. Chem. Soc.* **1993**, *115*, 8960-8968. (54) Ghosh, S.; Saikh, F.; Das, J.; Pramanik, A. K.: Hantzsch 1,4-dihydropyridine synthesis in aqueous ethanol by visible light. *Tetrahedron Lett.* **2013**, *54*, 58-62.

(55) Zhu, X., -Q.; Zhang, M.-T.; Yu, A.; Wang, C.-H.; Cheng, J.-P.: Hydride, Hydrogen Atom, Proton, and Electron Transfer Driving Forces

of Various Five-Membered Heterocyclic Organic Hydrides and Their Reaction Intermediates in Acetonitrile. *J. Am. Chem. Soc.* **2008**, *130*, 2501–2516.

(56) Anisinov, V.; Paneth, P.: ISOEFF 07 2007, (Technical University of Lodz, Lodz, Poland).

Graphical Table of Contents