
Contemporary Mathematics

Some binomial formulas for non-commuting
operators

Peter Kuchment and Sergey Lvin

Dedicated to the memory of our beloved teacher, colleague, and co-author Selim Krein

Abstract. Let D and U be linear operators in a vector space (or more
generally, elements of an associative algebra with a unit). We establish
binomial-type identities for D and U assuming that either their com-
mutator [D,U ] or the second commutator [D, [D,U ]] is proportional to
U .

Operators D = d/dx (differentiation) and U - multiplication by eλx

or by sinλx are basic examples, for which some of these relations ap-
peared unexpectedly as byproducts of an authors’ medical imaging re-
search [2–5].

Introduction

While working on range conditions for a Radon type transform arising in
emission medical imaging, the authors [3,4] (see also [5]) discovered that one
of their theorems was equivalent to an infinite series of puzzling nonlinear
combinatorial-differential identities for the classical exponential, linear, and
some trigonometric functions (sic!). Here are the examples:

• For any non-negative integer n and u = eλx, one has

(0.1)

n∑
k=0

(
n

k

)[(
d

dx
− u+ 0λ

)
◦ · · · ◦

(
d

dx
− u+ (k − 1)λ

)]
un−k = 0.

• For u = sinλx, similar identities hold for any odd natural n:

(0.2)

n∑
k=0

(
n

k

)[(
d

dx
− u+ 0λ

)
◦ · · · ◦

(
d

dx
− u+ i(k − 1)λ

)]
un−k = 0.
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2 PETER KUCHMENT AND SERGEY LVIN

In order to avoid quite possible misunderstanding, let us explain briefly the
meaning of various terms of these identities.

Remark 0.1. The factors in the ◦-products are understood as operators
on smooth functions on the line. In particular, u there means the multipli-
cation operator by the function u (exponential or sine). The circle ◦ means
the composition of operators, and the order of factors is important, due to
them non-commuting. On the other hand, un−k at the end is considered as
a function, to which the operator [...] is applied. If one tries to understand

un−k also as an operator and thus considers
∑(

n

k

)
[· · · ]◦un−k, the resulting

operator is NOT identically equal to zero. It needs to be applied to the
function identically equal to 1 to preserve the identity. This understanding
will be important throughout the text.

It is also why, to avoid misinterpretation, we use later the notation

f̃ for the operator of multiplication by the function f .

In the paper, we significantly extend the results of [3–5]), as well as
generalize them to a much wider algebraic situation. Namely, the setting in
which we obtained these results before was of a commutative algebra (where
u belongs to) with differentiation D and u satisfying “differential equations”
Du = λu or D2u = λ2u. Now we show that the results have generalization
to elements D and U of any associative algebra with a unit, with appropriate
conditions on their first and second commutators of D and U .

When these identities appeared in medical imaging, they have attracted
quite a lot of attention, especially after discovering their relations to unusual
Hartogs type analytic continuation theorems in several complex variables
[1,7,8,10]. It is fair to notice that, in spite of a variety of different proofs
and generalizations of the identities available, the authors still feel that they
do not have good understanding of the origins of such formulas.

Here is the structure of the paper: The main notions are introduced
and results stated in Section 1. Section 2 is devoted to particular cases of
elementary functions. The proofs are delegated to Section 3, followed by a
final remarks section.

1. Formulation of main results

Let D and U be elements of an associative algebra A over a field Q with
identity I (for instance, the algebra of all linear operators in a vector space
F).

Let us introduce, lead by (0.1)-(0.2), an nth order binomial-type combi-
nation of D and U

(1.1) B(n, λ, U,D) :=

n∑
k=0

(
n

k

)k−1∏
j=0

(D − U + jλI)

Un−k,
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where n ≥ 0 is an integer, λ ∈ Q, and

(
n

k

)
is the binomial coefficient. When

k = 0, the product is understood as I.

Due to non-commutativity of A, we will adhere to the following
agreement: The products

∏
j · · · are understood in the order of

the index j increasing from the left to the right.

For instance,

B(0, λ, U,D) = I,

B(1, λ, U,D) = U + (D − U) = D,

B(2, λ, U,D) = U2 + 2(D − U)U + (D − U)(D − U + λI), etc.,

with formulas getting more complex with n increasing.

1.1. First order commutator. In the following theorems we make
certain assumptions about the commutator [D,U ] = DU − UD.

The following rather surprising result holds:

Theorem 1.1. Suppose that [D,U ] = λU . Then B(n, λ, U,D) does not
depend on U . Moreover,

(1.2) B(n, λ, U,D) = B(n, λ, 0, D) =
n−1∏
j=0

(D + jλI) .

Remark 1.2.

• If D and U commute (λ = 0), then the theorem states that

B(n, 0, U,D) = Dn,

which is an obvious consequence of the standard binomial formula.
Indeed, when D and U commute,

B(n, 0, U,D) =
n∑
k=0

(
n

k

)
(D − U)k Un−k = (D − U + U)n = Dn.

• The equality [D,U ] = λU is homogeneous of degree one with re-
spect to (D,λ). Homogeneity is not obvious for the originally de-
fined B(n, λ, U,D), however the statement of the theorem implies
that the homogeneity does hold:

(1.3) B(n, λ, U,D) = λnB(n, 1, U,D/λ),

This shows that essentially the study boils down to only the cases
when λ = 0 (considered above) and λ = 1, which simplifies consid-
erations.

Here are some immediate consequences of the Theorem:

Corollary 1.3. Suppose [D,U ] = λU . Then,
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(1) If V ∈ A and for some j ∈ {0, ..., n− 1}, one has (D + jλI)V = 0,
then

(1.4) (B(n, λ, U,D))V = 0.

If A is the algebra of linear operators on a vector space, the
equivalent reformulation, under the same assumptions, is:

Ker(D + jλI) ⊂ Ker(B(n, λ, U,D)).

(2) If [V,W ] = 0 and [D,W ] = λW , then B(n, λ, V + W,D) does not
depend on W :

B(n, λ, V +W,D) = B(n, λ, V,D).

Indeed, just substitute D in the Theorem with D − V .

For what follows, it is interesting to understand what happens with
B(n, λ, U,D) when [D,U ] = −λU (notice the wrong sign in the commuta-
tion relation, and thus Theorem 1.1 describes B(n,−λ, U,D), rather than
B(n, λ, U,D)). Things get more complicated here.

In the following results we denote by F0 the set of all V ∈ A is such that
DV = 0. We use the standard notation (2m − 1)!! for 1 · 3 · ... · (2m− 1).

Theorem 1.4. Let [D,U ] = −λU , then

• B(n, λ, U,D)|F0 = 0 for any odd n,

• B(n, λ, U,D)|F0 = (n− 1)!!(−2λU)n/2|F0 for even n > 0, and
• (2D + λnI)B(n, λ, U,D)|F0 = 0 for all n ≥ 0.

The reason why we interested in this case will be clear in the proof of
Theorem 1.5 below.

1.2. Second order commutators. Here we will be interested in us-
ing conditions on the second order commutators [D, [D,U ]] and [U, [D,U ]].
Here, the condition [D,U ] = λU is replaced with

[D, [D,U ]] = λ2U

(notice that we preserve the (D,λ)-homogeneity)1. We are interested in
behavior of the polynomials B(n, λ, U,D) in this situation.

Theorem 1.5. Suppose [D, [D,U ]] = λ2U and [U, [D,U ]] = 0. Then

• B(n, λ, U,D)|F0 = 0 for all odd n,

• B(n, λ, U,D)|F0 = (n − 1)!!([D,U ] − λU)n/2|F0 for all even n > 0,
and
• (2D + λnI)B(n, λ, U,D)|F0 = 0 for all n ≥ 0.

Remark 1.6. Theorem 1.5 (unlike Theorem 1.1) remains nontrivial even
when λ = 0.

1For elementary functions example (see the next section), this means switching from
exponential to trigonometric functions.
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2. Differential identities for some elementary functions

Here we apply the above results to the algebra of linear operators acting
in the vector space F := C∞(R) of all smooth functions on the real line.

Definition 2.1.

• We denote by f̃ the operator of multiplication by such a
function f(x).
• We use the notation 1 for the function that is identically equal to

1.
• We also denote D := d/dx.

2.1. Exponential functions. It is clear that e−jλx belongs the kernel
of D + jλI and, in particular, 1 is an element in the kernel of D.

Now one clearly has

[D, ẽ±λx] = ±λẽ±λx.

Thus, the results of Section 1.1 apply to produce the following formulas:

Theorem 2.2.

(2.1) B(n, λ, d/dx, ẽλx)e−jλx = 0 for all n > 0 and 0 ≤ j ≤ n− 1,

(2.2) B(n, λ, d/dx, ẽ−λx)1 = 0 for all odd n,

(2.3) B(n, λ, d/dx, ẽ−λx)1 = (n− 1)!!(−2λ)n/2e−nλx/2 for all even n > 0,

(2.4) (2d/dx+ λnI)B(n, λ, d/dx, ẽ−λx)1 = 0 for all n > 0.

2.2. Trigonometric functions. Since multiplications by functions com-

mute, we have in this case the condition [f̃ , [D, f̃ ]] = 0, needed in Section
1.2, automatically satisfied for any smooth function f .

Let us now check the condition [D, [D, f̃ ]] = λ2f̃ for the natural candi-
dates: trigonometric and hyperbolic sine and cosine.

It is an easy computation that when U = s̃inλx is the operator of mul-

tiplication by sin λx, then [D,U ] = λc̃osλx, [D, [D, s̃inλx]] = (iλ)2s̃inλx,
and as we have mentioned above, [U, [D,U ]] = 0 is automatic.

Thus, the results of section 1.2 provide the following set of differential
identities for sine functions:

Theorem 2.3.

•

(2.5) B(n, iλ, d/dx, s̃inλx)1 = 0 for all odd n,

•

(2.6) B(n, iλ, d/x, s̃inλx)1 = (n− 1)!!λn/2e−inλx/2 for all even n > 0,
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•
(2.7) (2d/dx+ iλnI)B(n, iλ, d/x, s̃inλx)1 = 0 for all n > 0.

Remark 2.4. Similar identities hold for any solutions of the differential

equation
d2u

du2
= λ2u, including cosines, hyperbolic sine and cosine, and linear

functions.
In particular, here are the binomial-type identities for linear functions:

•

(2.8) B(n, 0, d/dx, ˜(ax+ b))1 = 0 for all odd n,

•

(2.9) B(n, 0, d/dx, ˜(ax+ b))1 = (n− 1)!!an/2 for all even n > 0,

•

(2.10) (d/dx)B(n, 0, d/dx, ˜(ax+ b))1 = 0 for all n > 0.

2.3. Change of variables. One can play with changes of variables in
the formulas of Theorems 2.2 and 2.3, to get a variety of new identities. For
instance, the change x→ x2/2 and correspondingly d/dx→ x−1d/dx gives

(2.11) B(n, λ,
1

x

d

dx
, ẽλx2/2)e−jλx

2/2 = 0 for all n > 0 and 0 ≤ j ≤ n− 1,

while x→ lnx, d/dx→ x d/dx produces

(2.12) B(n, λ, x
d

dx
, λ̃x)x−λj = 0 for all n > 0 and 0 ≤ j ≤ n− 1.

2.4. Vector functions. The results easily translate to vector-valued
functions. Let F is the space of all smooth Cm-valued functions. Then the
kernel of D = d/dx consists of constant column vectors −→c . Let A be an
m×m constant matrix. Then the following set of statements hold:

(1)

B(n, λ, d/dx, ẽλxA)e−jλxI = 0 for all n > 0 and 0 ≤ j ≤ n− 1,

(2)

B(n, λ, d/dx, ẽ−λxA)−→c =
−→
0 for all odd n,

(3)

B(n, λ, d/dx, ẽ−λxA)−→c = (n−1)!!(−2λ)n/2e−nλx/2An/2−→c for all even n > 0,

(4)

(2d/dx− λnI)B(n, λ, d/dx, ẽ−λxA)−→c =
−→
0 for all n > 0,

(5)

B(n, iλ, d/dx, ˜sinλxA)−→c =
−→
0 for all odd n,
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(6)

B(n, iλ, d/x, ˜sinλxA)−→c = (n− 1)!!λn/2e−inλx/2An/2−→c for all even n > 0,

(7)

(2d/dx+ iλnI)B(n, iλ, d/x, ˜sinλxA)−→c =
−→
0 for all n > 0.

(8) If A1 and A2 are commuting m×m matrices, then

B(n, 0, d/dx, ˜A1x+A2)
−→c =

−→
0 for all odd n,

B(n, 0, d/dx, ˜A1x+A2)
−→c = (n− 1)!!A

n/2
1
−→c for all even n > 0,

(d/dx)B(n, 0, d/dx, ˜A1x+A2)
−→c =

−→
0 for all n > 0.

3. Proofs

3.1. Proof of Theorem 1.1. We start with the following lemma,
which can be easily proved by induction.

Lemma 3.1.

(1) If [D,U ] = λU , then [D,Um] = λmUm for all integer m ≥ 0.
(2) If [D,U ] = V , [U, V ] = 0, and [D,V ] = 0, then [D,Um] =

mV Um−1 for all natural m.

We now provide a different representation for B(n, λ, U,D).

Lemma 3.2. For all n > 0

(3.1) B(n, λ, U,D) =
n−1∑
k=0

(
n− 1

k

)k−1∏
j=0

(D − U + λj)

 (D+λkI)Un−1−k.

Proof Using

(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
, we can rewrite B(n, λ, U,D)

as follows:
n−1∑
k=0

(
n− 1

k

)(
k−1∏
j=0

(D − U + jλI)

)
Un−k

+
n∑
k=1

(
n− 1

k − 1

)(
k−1∏
j=0

(D − U + jλI)

)
Un−k.

(We remind the reader that in the products the order is in
increasing j (or k) from the left to the right! ) Changing k to k + 1
in the second sum and combining both sums proves the lemma. �.

Proof of Theorem 1.1. By definition, B(0, λ, U,D) = I andB(1, λ, U,D) =
D.
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Let now n > 1 and [D,U ] = λU . Using Lemma 3.1, we get

(D + λkI)Un−1−k = Un−1−k(D + λ(n− 1)I).

Substituting this into (3.1), we obtain the recurrent formula

(3.2) B(n, λ, u,D) = B(n− 1, λ, u,D)(D + λ(n− 1)I).

By induction, (3.2) implies Theorem 1.1 for all n. �

3.2. Proof of Theorem 1.4. The following lemma (appeared in a
somewhat more restricted and implicit form in [4]) provides an important
insight on the nature of B(n, λ, U,D), and the technique of its proof will be
used below. It uses an additional assumption that U is invertible. It is easy
to see that if [D,U ] = λU , then

[
D,U−1

]
= −λU−1, and the statement of

Lemma 3.1 holds now for all integers m, including m < 0.
The following lemma provides a useful recurrent relation for B(n, λ, U,D)

in the case when [D,U ] = −λU .

Lemma 3.3. If [D,U ] = −λU, then
(3.3)
B(n, λ, U,D) = B(n− 1, λ, U,D)(D + λ(n− 1)I)− 2(n− 1)λUB(n− 2, λ, U,D)
+2(n− 1)(n− 2)λ2UB(n− 3, λ, U,D)

for all n > 1, with the last term absent when n = 2.

Proof of Lemma 3.3 Using Lemma 3.1, we get

(D + λkI)Un−1−k = Un−1−k(D + λ(2k − n+ 1)I)
= Un−1−k(D + λ(n− 1)I − 2λ(n− 1− k)I).

Substituting it into (3.3), we obtain

B(n, λ, U,D) =
n−1∑
k=0

(
n− 1

k

)(
k−1∏
j=0

(D − U + λjI)

)
Un−1−k(D + λ(n− 1)I)

−2λ
n−1∑
k=0

(
n− 1

k

)
(n− 1− k)

(
k−1∏
j=0

(D − U + λjI)

)
Un−1−k.

Here the first sum is equal to

B(n− 1, λ, U,D)(D + λ(n− 1)I),

in the second sum the term with k = n− 1 is zero, and(
n− 1

k

)
(n− 1− k) = (n− 1)

(
n− 2

k

)
.

Thus,

Z := B(n, λ, U,D)−B(n− 1, λ, U,D)(D + λ(n− 1)I)

= −2(n− 1)λ
n−2∑
k=0

(
n− 2

k

)(
k−1∏
j=0

(D − U + λjI)

)
Un−1−k.
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Since (D − U + λjI)U = U(D − U + λ(j − 1)I), we have

Z = −2(n− 1)λU
n−2∑
k=0

(
n− 2

k

) k−2∏
j=−1

(D − U + λjI)

Un−2−k.

When j = −1, D − U + λjI = (D − U + (k − 1)λI)− kλI. Thus,

Z = −2(n− 1)λU
n−2∑
k=0

(
n− 2

k

)(
k−1∏
j=0

(D − U + λjI)

)
Un−2−k

+2(n− 1)λ2U
n−2∑
k=1

(
n− 2

k

)
k

(
k−2∏
j=0

(D − U + λjI)

)
Un−2−k.

The first sum here is B(n− 2, λ, U,D). Using the identity(
n− 2

k

)
k = (n− 2)

(
n− 3

k − 1

)
and changing k − 1 to k, we conclude that the second sum equals (n −
2)B(n− 3, λ, U,D). Therefore,

Z = −2(n− 1)λUB(n− 2, λ, U,D) + 2(n− 1)(n− 2)λ2UB(n− 3, λ, U,D),

which coincides with (3.3) and completes the proof. �
Proof of Theorem 1.4 We know that B(0, λ, U,D) = I andB(1, λ, U,D) =

D, so B(1, λ, U,D) = 0 on F0 and the first statement of the Theorem holds
true for n = 0 and n = 1. Let [D,U ] = −λU , then on F0, the recurrence
(3.3) is reduced to

B(n, λ, U,D) = λ(n− 1)I)B(n− 1, λ, U,D)− 2(n− 1)λUB(n− 2, λ, U,D)
+2(n− 1)(n− 2)λ2UB(n− 3, λ, U,D).

From here, the statement of the Theorem follows by induction for all n > 0,
both odd and even.�

3.3. Proof of Theorem 1.5. The proof will be different for λ 6= 0
and for λ = 0. This is not that surprising, since the claim, if considered
on elementary functions, leads to differential binomial for quite different
functions: sine functions when λ 6= 0 and linear functions when λ = 0.

The case λ 6= 0. Let us introduce the elements V := (λU − [D,U ])/2λ
and W := (λU + [D,U ])/2λ. A direct calculation shows that U = V + W ,
and under the Theorem’s assumptions [D,V ] = −λV , [D,W ] = λW , and
[V,W ] = 0. From Corollary 1.3 we obtain that B(n, λ, U,D) = B(n, λ, V +
W,D) = B(n, λ, V,D). Now one applies Theorem 1.4.

The case λ = 0. By definition, we have B(1, 0, U,D) = D and
B(2, 0, U,D) = D2 + [D,U ]. Let V := [D,U ]. Then B(1, 0, U,D) = 0
and B(2, 0, U,D) = V on F0 so the claim is true for n = 1 and n = 2. Now,
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under the assumption that [U, V ] = 0 and [D,V ] = 0, we will show that for
n > 2

(3.4) B(n, 0, U,D) = (n− 1)V B(n− 2, 0, U,D) on F0.

Then induction proves the statement for all n.
Let n > 2. According to Lemma 3.2,

B(n, 0, U,D) =

n−1∑
k=0

(
n− 1

k

)
(D − U)kDUn−1−k,

where the term with k = n − 1 is equal to zero on F0. Also, according to
Lemma 3.1, DUm = mV Um−1 on F0. Then on F0 we get

B(n, 0, U,D) =

n−2∑
k=0

(
n− 1

k

)
(D − U)k(n− 1− k)V Un−2−k.

From here we obtain (3.4) by using(
n− 1

k

)
(n− 1− k) = (n− 1)

(
n− 2

k

)
and commuting V to the left. This completes the proof. �

4. Final remarks and conclusions

• It would be interesting to figure out what can be done under the
condition of vanishing of the third commutator [D, [D, [D,U ]]] =
λ3U (maybe plus some other restrictions). It has been checked
by direct computation that the natural analog of (0.1)-(0.2) for the
solutions of the third order equation D3u = λ3u does not hold [5,9].
• As we have already mentioned, we do not truly understand the

origin of such identities. It looks like this issue is in the realm of
the techniques of [6], in which we are not experts, to say the least.
In particular, one can compare with the identity in [6, Proposition
8.65], due to O. V. Viskov [11].
• There still might be interesting relations to SCV, as the ones to

Hartogs’ type theorems in [1, 7, 8, 10]. One also wonders about
such higher dimension analogs of Hartogs’ theorems.
• We cannot help it providing a cute lemma used in [4]. An older

version of this text used it, but we have managed to avoid this. A
reader, however, could find it interesting:

Lemma 4.1. [4] For any two elements A1 and A2 of algebra A,
the following equality holds:

(4.1)
n∑
k=0

(
n

k

)
(A1 − I)k(A2 + I)n−k =

n∑
k=0

(
n

k

)
Ak1A

n−k
2 .
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If A1 and A2 commute, then both sums in (4.1) are equal to
(A1 + A2)

n and thus to each other. The Lemma states that (4.1)
still holds in the non-commutative case, when the binomial formula
does not apply.
• Another sometimes useful observation is

Lemma 4.2. Let [D,U ] = λU and U−1 exist. Then

B(n, λ, U,D) = (DU−1)nUn.

Proof Suppose U−1 exists. If [D,U ] = λU , then Lemma 3.1
implies that (D − U + jλI)U−j = U−j(D − U).

So, when k = 2

(D − U) (D − U + λI)Un−2

= (D − U)U−1(D − U)U−1Un

=
(
(D − U)U−1

)2
Un = (DU−1 − I)2Un,

when k = 3

(D − U) (D − U + λI) (D − U + 2λI)Un−3

=
(
(D − U)U−1

)3
Un

= (DU−1 − I)3Un

and so on. Thus, by induction

(4.2) B(n, λ, U,D) =

(
n∑
k=0

(
n

k

)
(DU−1 − I)kIn−k

)
Un.

Using the standard binomial formula for the commuting operators
(DU−1− I) and I we get B(n, λ, U,D) = ((DU−1− I) + I)nUn, or
B(n, λ, U,D) = (DU−1)nUn. �
• Note that if U−1 exists and [D,U ] = −λU, then the technique used

in the proof of Lemma 4.2 allows us to rewrite B(n, λ, U,D) as

B(n, λ, U,D) =

(
n∑
k=0

(
n

k

)
(DU − U2)kU2(n−k)

)
U−n,

however the standard binomial formula is not applicable to this
sum, since the operators DU − U2 and U2 do not commute.
• The authors thank NSF for the support, as well as the reviewer for

useful comments and references.
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