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Abstract

We prove that with a high probability (whp) nearly optimal solution of the highly important
problem of Linear Least Squares Regression (LLSR) can be computed at sub-linear cost for a
random input. Our extensive tests are in good accordance with this result.

Key Words: Least Squares Regression, Sub-linear cost, Gaussian random matrices

2000 Math. Subject Classification: 65Y20, 65F05, 68Q25, 68W20, 68W25

1 Introduction

The LLSR problem. LLSR is a hot research subject, fundamental for Matrix Computations and
Big Data Mining and Analysis. The matrices that define Big Data are frequently so immense that
realistically one can access and process only a tiny fraction of their entries and thus must perform
computations at sub-linear cost – by using much fewer arithmetic operations and memory cells than
the input matrix has entries.

Our progress. Although all LLSR algorithms running at sub-linear cost fail on the worst
case inputs, we prove that sub-linear cost extension of Sarlòs algorithm of [S06] approximates an
optimal solution of the problem arbitrarily closely with a high probability (whp) in the case of a
random Gaussian input matrix, filled with independent identically distributed Gaussian (normal)
random variables. Hereafter we call such a matrix just Gaussian and call the LLSR problem for
random input dual.

Our numerical tests are in a good accordance with this theorem, thus suggesting that the LLSR
problem can be solved at sub-linear cost for a large class of inputs.

Related works. Our transition to dual matrix computations in this paper extends the earlier
work in [PQY15] and [PZ16] and is extended in [PLSZa], [PLSZb], [PLa], and [LPSa] to the solution
at sub-linear cost of the dual problem of Low Rank Approximation of a matrix.
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Organization of the paper. In the next section we recall the LLSR problem and its random-
ized approximate solution by Sarlos’ of [S06]. We cover its variation running at sub-linear cost in
Section 3. In Section 4, the contribution of the second author, we cover numerical tests.

2 Linear Least Squares Regression

Problem 2.1. [Least Squares Solution of an Overdetermined Linear System of Equations or Linear
Least Squares Regression (LLSR).] Given two integers m and d such that 1 ≤ d < m, a matrix
A ∈ R

m×d, and a vector b ∈ R
m, compute and output a vector x ∈ R

d that minimizes the spectral
norm ||Ax− b|| or equivalently outputs the subvector x = (yj)

d−1
j=0 of the vector

y = (yj)
d
j=0 = argmin

v
||Mv|| such that M = (A | b) and v =

(

x

−1

)

. (2.1)

The minimum norm solution to this problem is given by the vector x = A+b for A+ denoting
the Moore–Penrose pseudo inverse of A; A+b = (ATA)−1ATb if a matrix A has full rank d.

Algorithm 2.1. [Randomized Approximate LLSR from [S06].

Input: An m× (d+ 1) matrix M .

Output: A vector x ∈ R
d approximating a solution of Problem 2.1.

Initialization: Fix an integer s such that d ≤ s ≪ m.

Computations: 1. Generate a matrix F ∈ R
s×m.

2. Compute and output a solution x of Problem 2.1 for the s× (d+ 1) matrix FM .

The following theorem shows that the algorithm outputs approximate solution to Problem 2.1
for M whp if

√
s F is the linear space Gs×m of s×m Gaussian matrices.1

Theorem 2.1. (Error Bound for Algorithm 2.1. See [W14, Theorem 2.3].) Let us be given two
integers s and d such that 0 < d ≤ s, two matrices M ∈ R

m×(d+1) and F ∈ Gs×m, and two tolerance
values γ and ǫ such that

0 < γ < 1, 0 < ǫ < 1, and s = ((d+ log(1/γ) ǫ−2) η (2.2)

for a constant η. Then

Probability
{

1− ǫ ≤ 1√
s

||FMy||
||My|| ≤ 1 + ǫ for all vectors y 6= 0

}

≥ 1− γ. (2.3)

For m ≫ s the transition from M to the matrix FM substantially decreases the size of Problem
2.1; the computation of the matrix FM , however, involves order of dsm ≥ d2m flops, and this
dominates the overall arithmetic computational cost of the solution.

The current record upper estimate for this cost is O(d2m) (see [CW17], [W14, Section 2.1]),
while the record lower bound of [CW09] has order (s/ǫ)(m+ d) log(md) provided that the relative
output error norm is within a factor of 1 + ǫ from its minimal value.

1Such approximate solution serve as pre-processors for practical implementation of numerical linear algebra algo-
rithms for Problem 2.1 of least squares computation [M11, Section 4.5], [RT08], [AMT10].
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3 Dual LLSR at Sub-linear Cost

If an LLSR algorithm runs at sub-linear cost, then it does not access an entry mi,j for some pair i
and j and so cannot minimize the norm |My|. Indeed we can decrease it by modifying the input
entry mi,j, and this would not change the output of the algorithm. Therefore no algorithm can
solve the LLSR problem at sub-linear cost for the worst case input M , but next we solve whp its
dual variant where we assume that the input matrix M is scaled Gaussian and allow any orthogonal
multiplier F , including sparse ones with which the algorithm runs at sub-linear cost.

Theorem 3.1. [Error Bounds for Dual LLSR.] Suppose that we are given three integers s, m, and
d such that 0 < d < s < m, and two tolerance values γ and ǫ satisfying (2.2). Define an orthogonal
matrix Qs,m ∈ R

s×m and a matrix Gm,d+1 ∈ Gm×(d+1) and write

F := a Qs,m and M := b Gm,d+1 (3.1)

for two scalars a and b such that ab
√
s = 1. Then

1− ǫ ≤ Probability
{ ||FMz||

||Mz|| ≤ 1 + ǫ for all vectors z 6= 0
}

≥ 1− γ.

Proof. Observe that the theorem is equivalent to Theorem 2.1 because the s×(d+1) matrix 1
abFM

is Gaussian by virtue of orthogonality invariance of Gaussian matrices.

The theorem shows that for any orthogonal matrix F of (3.1) the transition M → FM changes
the error of LLSR within a factor of about 1 + ǫ except for a narrow class of matrices M .

We can increase chances for avoiding this class by trying to solve the LSSR problem repeatedly
for the same multiplier F and a sequence of input matrices Mi or equivalently, for the same matrix
M and various multiplier Fi such that FMi = FiM for all i = 1, 2, . . . , u. The latter way should
be preferred because it runs at sub-linear cost in the case of sparse multipliers F1, . . . , Fu and a
sufficiently small integer u.

4 Numerical Tests for LLSR

In this section we present the results of our tests of Algorithm 2.1 for LLSR on both synthetic and
real-world data. We worked with random orthogonal multipliers, let x̄ := argmin

x
||FAx − Fb||,

and computed the relative residual norms

||Ax̄− b||
minx ||Ax − b|| .

In our tests these ratios quite closely approximated one from above.
We used the following random multipliers F ∈ R

k×m:
(i) submatrices of m×m random permutation matrices,
(ii) products of random matrices of Givens Rotation, and
(iii) ASPH matrices from [PLSZa] and [PLSZb], which are output after 4 recursive steps out of

k steps of generation of subsampled matrices of Hadamard thansform.
(iv) For comparison we also included the test results with Gaussian multipliers.
We generated a multiplier of class (ii) as the matrix F =

∏h
t=1 G(it, jt,

π
4 ), where G(i, j, φ)

denotes the matrix of Givens rotation with the 2× 2 Givens block in the ith row and jth column,
φ is the angle of rotation (cf. [GL13, Section 5.1.8]), it and jt are two indices chosen uniformly
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from 1 to m and independently over t, and h = o(m). Such a product F is very sparse and can be
multiplied by matrix M = (A | b) at sub-linear cost.

We performed our tests on a machine with Intel Core i7 processor running Windows 7 64bit;
we invoked the lstsq function from Numpy 1.14.3 for solving the LLSR problems.

4.1 Synthetic Input Matrices

For synthetic inputs, we generated input matrices A ∈ R
m×n by following (with a few modifications)

the recipes of extensive tests in [AMT10], which compared the running time of the regular LLSR
problems and the reduced ones with WHT, DCT, and DHT pre-processing.

We used input matrices A of size 4096 × 200 and 16834 × 500, and of the following types:
Gaussian matrices, ill-conditioned random matrices, and semi-coherent matrices. We generated
the input vectors b = 1

||Aw||Aw + 0.001
||v|| v, where w and v were random Gaussian vectors of size d

and m, respectively, and so b is in the range of A up to a smaller term 0.001
||v|| v.

Table 4.1 displays the test results for Gaussian input matrices.
Table 4.2 displays the results for ill-conditioned random inputs generated through SVD A =

UV ∗ where the orthogonal matrices U and V of singular vectors were given by the Q factors in
QR-factorization of independent Gaussian matrices and where Σ = diag(σj)j with σj = 105−j for
j = 1, 2 . . . , 14 and σj = 10−10 for j > 14.

Table 4.3 displays the test results for the input matrices

Am×d =

[

G(m−d/2)×d/2

Dd/2

]

where G(m−d/2)×d/2 is a random Gaussian matrix and Dd/2 is a diagonal matrix with diagonal
entries chosen independently uniformly from ±1. We call these matrices Am×d semi-coherent.

Remark 4.1. The coherence of a matrix Am×n with SVD UΣV ∗ is defined as the maximum squared
row norm of its left singular matrix U , with 1 being its maximum and n/m being its minimum. If the
test input has coherence 1, then in order to have an accurate result the multiplier must ”sample”
the corresponding rows with maximum row norm in the left singular matrix. The semi-coherent
inputs have coherence 1 and are the harder cases.

Our input matrices A are highly over-determined, having many more rows than columns. We
have chosen k = rd , r = 2, 4, 6 for the multipliers F . By decreasing the ratio r = k/d we would
accelerate the solution, but we had to keep it large enough in order to yield accurate solution.

We performed 100 tests for every triple of the input class, multiplier class, and test sizes, and
computed the mean of the relative residual norm.

The test results displayed in Tables 4.1–4.3 show that our multipliers were consistently effective
for random matrices. The performance was not affected by the conditioning of input matrices.
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Size of A Multiplier k = 2n k = 4n k = 6n

4096 × 200

Gaussian 1.4132 1.1553 1.0956
ASPH 1.3984 1.1308 1.0725
Product of GRs 1.3972 1.1342 1.0713
SubPerm 1.3973 1.1332 1.0706

16384 × 500

Gaussian 1.4070 1.1556 1.0958
ASPH 1.4056 1.1412 1.0817
Product of GRs 1.4043 1.1420 1.0814
SubPerm 1.4041 1.1394 1.08281

Table 4.1: Relative error norm in tests with Gaussian inputs

Size of A Multiplier k = 2n k = 4n k = 6n

4096 × 200

Gaussian 1.0186 1.0089 1.0055
ASPH 1.0172 1.0065 1.0040
Product of GRs 1.0167 1.0067 1.0039
SubPermu 1.0155 1.0070 1.0039

16384 × 500

Gaussian 1.0072 1.0032 1.002
ASPH 1.0056 1.0029 1.0016
Product of GRs 1.0066 1.0027 1.0017
SubPermutation 1.0060 1.0029 1.0018

Table 4.2: Relative error norm in tests with ill-conditioned random inputs

Size of A Multiplier k = 2n k = 4n k = 6n

4096 × 200

Gaussian 1.4148 1.1519 1.0976
ASPH 6.0446 2.5770 1.2943
Product of GRs 10.4066 8.6045 6.9614
SubPerm 13.1626 12.2729 11.6731

16384 × 500

Gaussian 1.4179 1.1545 1.0946
ASPH 5.1576 3.1368 1.9406
Product of GRs 7.0490 6.0421 5.2992
SubPerm 8.1964 7.9180 7.6295

Table 4.3: Relative error norm in tests with semi-coherent inputs

Multiplier k = 2n k = 4n k = 6n

Gaussian 1.437 1.155 1.090
ASPH 1.430 1.157 1.090
Product of GRs 1.555 1.204 1.124
SubPerm 2.190 1.324 1.170

Table 4.4: Relative residual norms in tests with Red Wine Quality Data
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Multiplier k = 2n k = 4n k = 6n k = 8n k = 10n

Gaussian 1.4196 1.1569 1.0944 1.0735 1.0495
ASPH 1.4760 1.1822 1.1055 1.0691 1.0541
Product of GRs 1.5883 1.1890 1.1186 1.0892 1.0686
SubPerm 1.6738 1.3418 1.1698 1.1237 1.1039

Table 4.5: Relative residual norms in tests with California Housing Prices Data
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4.2 Red Wine Quality Data and California Housing Prices Data

In this subsection we present the test results for real-world inputs, namely the Red Wine Quality
Data and California Housing Prices Data. For each triple of the dataset, multiplier type and
multiplier size, we repeated the test 100 times and computed the mean relative residual norm. The
results for these two datasets are displayed in Tables 4.4 and 4.5.

The Red Wine Quality Data includes 11 physiochemical feature data (input variables), such
as fixed acidity, residual sugar level, and pH level, and one sensory data wine quality (output
variable) for 1599 different variants of the Portuguese ”Vinho Verde” wine. See further information
in [CCAMR09]. This dataset is often applied in regression tests that use physiochemical data of a
specific wine in order to predict its quality, and among various types of regression LLSR is regarded
as a popular choice.

From this dataset we constructed 2048 × 12 input matrix A with each row representing one
variant of red wine, and with columns consisting of a bias column and eleven physiochemical
feature columns. The input vector b is a vector consisting of the wine quality level (between 0 and
10) for each variant. For simplicity, besides the 1599 rows of the original data, we padded the rest
of rows with zeros and performed a full row permutation of A.

The California Housing Prices data appeared in [PB97] and were collected from the 1990 Cal-
ifornia Census, including 9 attributes for each of the 20,640 Block Groups observed. This dataset
is used for regression tests in order to predict the median housing value of a certain area given
collected information of this area, such as population, median income, and housing median age.

We randomly selected 16,384 observations from the dataset in order to construct independent
input matrix A0 of size 16384 × 8 and dependent input vector b ∈ R

16384. Furthermore, we
augmented A0 by a single bias column, i.e. A =

[

A0 1
]

.

The result presented in Table 4.4 and 4.5 shows that the approximate solution obtained by
applying our multipliers is almost as accurate as the optimal solution. Moreover, the reference
multipliers (Gaussian) only provide marginal improvement in terms of relative residual norm com-
paring to proposed sparse multipliers.

Acknowledgements: Our work was supported by NSF Grants CCF–1563942 and CCF–1733834
and PSC CUNY Award 69813 00 48.
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