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ABSTRACT

Deep neural networks (DNNs) have emerged as an important
artificial intelligence technique. However, the computation-
intensive and storage-intensive DNNs pose severe challenges
on efficient execution over the underlying hardware platform.
In this paper we propose to impose Toeplitz structure on DNN
models to achieve high compression ratio with negligible per-
formance loss. Accordingly, the hardware performance can be
significantly improved after performing model compression.
We evaluate the proposed approach on speech recognition and
implement the corresponding compressed model on FPGA.
Experimental results show that our approach enables high
hardware performance while retaining high task performance.

Index Terms— Toeplitz matrix, DNN Compression,
FPGA

1. INTRODUCTION

Deep neural networks (DNNs) have gained great success in
various applications such as object detection [1], machine
translation [2], speculative execution [3] and etc. Based on
their strong feature extraction and representation capability,
DNNs can achieve very high accuracy, and achieve even be-
yond human-level performance in certain tasks [4].

The current unprecedented success of DNNs highly relies
on the adoption of large-size network models. Both theoretical
analysis [5] and experimental results [6][7] show that increas-
ing the depth or width of networks can significantly improve
the learning capability of models. Motivated by this discov-
ery, nowadays both academia and industry are continuing to
propose deeper or wider DNNs to pursue even better task
performance.

However, simply scaling up DNNs is not free. Because
DNNs are computation intensive and storage intensive, the
large model sizes directly cause huge computational and mem-
ory cost, thereby imposing severe challenge on the perfor-
mance and efficiency of the underlying hardware platform that
executes DNNs. In particular, such challenge is very realis-
tic for embedded platforms since these types of hardware are
resource constraint and energy constraint.

To address this challenge, many efforts have been pro-
posed on both algorithm and hardware communities. Among
numerous strategies, model compression is viewed as an impor-
tant technique since it can efficiently reduce model size with
negligible performance loss, thereby improving the hardware
performance for network execution while retaining high task
performance. The essence of network compression is based on
the observation that many well-trained DNN models contain
redundancy: for instance, part of neurons or connections of
networks can be removed without affecting accuracy [8]. En-
couraged by this phenomenon, researchers are actively explor-
ing efficient network compression methods at different levels.
To date, various types of compression approaches, ranging
from pruning [9], regularization [10], network decomposition
[11], low bit-width quantization [12], have been proposed in
numerous works.

In this paper, we propose a new approach to perform model
compression on DNNs. By utilizing the elegant mathematical
property of Toeplitz matrix [13][14], we propose to impose
Toeplitz structure on the topology of DNN models, thereby
leading to simultaneous reduction in both computational and
storage requirement. To accommodate this structure-imposing
approach, Toeplitz matrix-based forward and backward prop-
agation schemes are developed. To validate the proposed
method, we evaluate its task performance on long short-term
memory (LSTM) for speech recognition. Experimental re-
sults show that our approach can enable 28.7 times reduction
in LSTM model size with negligible task performance loss.
Further, we develop hardware architecture of block Toeplitz
matrix-based long short-term memory (LSTM) and implement
it on FPGA board. With 200MHz clock frequency and 20W
power consumption, the FPGA design takes 7.35 µs for pro-
cessing one data, which corresponds to over 130000 frame/s
throughput.

2. PRELIMINARIES

2.1. Deep Neural Network

The pipeline of DNNs typically contains DNN training and
inference. During the training phase, DNNs learn from input
data by optimizing an objective function. For instance, in the



image classification task the objective function of DNNs is
usually minimizing the cross-entropy loss [6]. To achieve that,
gradient-based optimizer is typically used to perform optimiza-
tion process. After being well trained in training dataset, in the
inference phase DNN models receive the test data and perform
classification or regression according to different applications.

Specifically, both training and inference procedure require
the computation flow called forward propagation. In general,
for a fully connected layer in the DNN, forward propagation
can be described as follows:

y=f(a)=f(Wx+ b), (1)

where y∈Rm, W∈Rm×n, x∈Rn and b∈Rm are the out-
put, weight matrix, input of the current layer and bias, respec-
tively. Also, a is the inner product of W and x and f(·) is an
activation function such as sigmoid.

Besides forward propagation, DNN training also requires
backward propagation to update model weights after each
iteration. The general principle of such update is as follows:

W←−W − α ∂L

∂W
, (2)

where L is the objective function to optimize, ∂L
∂W is the gradi-

ent of objective function with respect to the weight matrix and
α is usually a small constant number.

2.2. Toeplitz Matrix

In this paper the proposed approach is to utilize Toeplitz matrix
to represent weight matrices in DNN models. Mathematically,
a Toeplitz matrix W∈Rn×n can be defined by a vector w=
(w1−n, w2−n, . . . , w0, . . . , wn−1), where wi is a scalar for
1− n≤ i≤n− 1:

W=


w0 w−1 . . . w1−n

w1 w0
. . .

...
...

. . . . . . w−1
wn−1 . . . w1 w0

 . (3)

It should be noted that there are 2n − 1 parameters when
defining a square Toeplitz matrix; while the conventional un-
structured matrix with the same size contains n2 parameters.

3. PROPOSED APPROACH

3.1. Impose Toeplitz Structured on DNNs

Section 2.2 shows that the Toeplitz matrix has much lower
space complexity (O(n)) than conventional matrix (O(n2)).
Encouraged by this characteristics, we propose to impose
Toeplitz structure on the construction of DNN models. In other
words, the weight matrices of layers of DNNs are now enforced
to be Toeplitz matrices. To accommodate this change, both the
forward propagation and backward propagation schemes need
to be reformulated as follows.

Forward propagation: To perform Toeplitz matrix-based
forward propagation, a straightforward method is to simply
replace W in Eqn. 1 with Toeplitz format and conduct matrix-
vector multiplication. Although this simple change works,
it is not optimal in efficiency. This is because as a type of
structured matrix, Toeplitz matrix is inherently affiliated with
fast matrix-vector multiplication. Specifically, as pointed out
in [14], the multiplication between Toeplitz matrix and vector
can be performed using Fast Fourier Transform (FFT) and its
inverse (IFFT) as follows:

a=Wx= IFFT(FFT(w′) ◦ FFT(x′))1:n, (4)

where w′=(w0, . . . , w1−n, 0, wn−1, . . . , w1)∈R2n, x′=
(x, 0, . . . , 0)∈R2n, x∈Rn is the original input, and ◦ means
the element-wise product. The subscript 1 :n means that we
take the first n elements from IFFT result as vector a∈Rn. No-
tice that because the computational complexity of FFT/IFFT is
O(n log n), the overall computational complexity is reduced
fromO(n2) toO(n log n) and the space complexity is reduced
from O(n2) to O(n) too. This means that imposing Toeplitz
structure on DNN models can save the storage and accelerate
the execution simultaneously.

Backward propagation: The essence of backward prop-
agation is to calculate gradients. Similar to the procedure
proposed in [15], we derive the gradient computation given
objective function L with respect to w′ as follows:

∂L

∂w′
= IFFT(FFT(

∂L

∂a′
) ◦ FFT(x′′)), (5)

where x′′=(x1, 0, . . . , 0, xn, . . . , x2)∈R2n, and ∂L
∂a′ =(∂L∂a ,

0, . . . , 0)∈R2n. Moreover, the gradients of input x can be
also calculated as:

∂L

∂x
= IFFT(FFT(

∂L

∂a′
) ◦ FFT(w′′))1:n, (6)

where w′′=(w0, w1, . . . , wn−1, 0, w1−n, . . . , w−1)∈R2n,
and the first n elements of IFFT result will be vector ∂L

∂x .

3.2. Impose Block-Toeplitz Structure on DNNs

From the perspective of deployment, simply imposing square
Toeplitz structure on DNN models is challenging. This is be-
cause using Toeplitz matrix renders a fixed compression ratio
while in practice it always requires flexibility for compression
effect. To address this challenge, we propose to impose block-
Toeplitz structure on the construction of DNNs. In general,
a block-Toeplitz matrix consists of multiple square Toeplitz
matrices, and it can fit weight matrices in any shape 1. Accord-
ingly, the forward and backward propagation schemes need to
be re-investigated in more general scenarios.

Forward propagation: Let W∈Rm×n be the weight ma-
trix, which is divided into multiple square blocks in size b× b.
There are m/b× n/b blocks and each is a Toeplitz matrix wij

1Zero-padding may be required If one dimension of matrix is not the
multiple of another one. This will not cause storage or computation overhead.



that can be defined using 2b − 1 weight parameters, where
i∈{1, . . . ,m/b}, j∈{1, . . . , n/b}. Similarly we can divide
the input vector x into different xj ∈Rb, and output vector a
into different ai∈Rb. Then the product of matrix and vector
can be re-written as follows:

a=Wx=

 a1
...

am/b

=


∑n/b

j=1 w1jxj

...∑n/b
j=1 wm/b,jxj

 , (7)

where the calculation of ai can be accelerated with FFT/IFFT
as in Eqn. 4. Algorithm 1 summarizes the scheme of block-
Toeplitz matrix-based forward propagation.

Backward propagation: In the scenario of using block
Toeplitz matrix, similar to the derivation in Section 3.1, the cor-
responding calculation of gradient descent can also be written
as:

∂L

∂w′ij
= IFFT(FFT(

∂L

∂a′i
) ◦ FFT(x′′j )), (8)

∂L

∂xj
=

m/b∑
i=1

IFFT(FFT(
∂L

∂a′i
◦ FFT(w′′ij))1:b, (9)

where a′i, x
′′
j and w′ij are defined similarly as in Eqn. 5, and

w′′ij is similar to w′′ as in Eqn. 6, respectively. Algorithm 2
summarizes the scheme of block-Toeplitz matrix-based back-
ward propagation.

Notice that similar to the case of Toeplitz matrix, block-
Toeplitz matrix also achieves simultaneous reduction in space
and computational complexity. Specifically, the space com-
plexity is reduced from O(n2) to O(n2/b) and computational
complexity is reduced fromO(n2) toO(n

2

b log b). Hence such
reduction can be precisely controlled by adjusting the block
size b.

Algorithm 1: Block-Toeplitz Matrix-based Forward
Propagation

Input: w′11, ...,w′m/b,j ,x, b
Output: a
Partition x∈Rn into n/b vectors, x1, . . . ,xn/b;
for i←1 until m/b do

ai←0;
for j← until n/b do

ai←ai + IFFT(FFT(w′ij) ◦ FFT(xj))1:b;
end

end
return a;

3.3. Empirical Experiments and Compression Ratio

To evaluate the proposed approach, we perform experiment on
long short-term memory (LSTM) for a speech recognition task.
LSTM is a type of widely used DNN for various sequence-
involved tasks. In general, a LSTM takes a sequence of input

Algorithm 2: Block-Toeplitz Matrix-based Backward
Propagation

Input: L
a′

1
, . . . , L

a′
m/b

,x′′1, . . . ,x
′′
n/b, b

Output: L
x ,

L
w′′

11
, . . . , L

w′′
m/b,n/b

for j←1 until n/b do
L
xj
←0;

for i← until m/b do
L

w′
ij
← IFFT(FFT( L

a′
i
) ◦ FFT(x′′j));

L
xj
← L

xj
+ IFFT(FFT( L

a′
i
) ◦ FFT(w′′ij))1:b;

end
end
return L

x ,
L

w′′
11
, . . . , L

w′′
m/b,n/b

;

Table 1: Task performance with different compression ratio

Model Block Size WER
Overall

Comp. Ratio
Uncompressed - 18.08 [16] 1.00
Compressed-1 32 17.02 15.34
Compressed-2 64 18.12 28.76
Compressed-3 128 21.20 51.56

x1, . . . ,xT and generates a sequence of output y1, . . . ,yT ,
where T is number of time steps. The computation in LSTM
can be formulated for each time step 1≤ t≤T as follows:

it=σ(Wixxt +Uiryt−1 + bi)

ft=σ(Wfxxt +Ufryt−1 + bf )

gt=h(Wgxxt +Ugryt−1 + bg)

ct= ft ◦ ct−1 + gt ◦ it
ot=σ(Woxxt +Uoryt−1 + bo)

yt=ot ◦ h(ct)

, (10)

where W and U indicate weight matrices and b indicates
bias parameters for each gate in LSTM, respectively. The ◦
is the element-wise product. σ(·) and h(·) are sigmoid and
hypertangent functions, respectively.

From the above equation it is seen that LSTM consists
of multiple weight matrices. Therefore, we impose block-
Toeplitz structure on all weight matrices to compress model
size. Specifically, the compression is performed on the model
structure in the LSTM layers of model in [16]. The dataset
is the AN4 audio data for speech recognition, where training
utterances are 948, testing utterances are 130, and there are
in total 29 unique spoken characters. During train process,
we train 150 epochs using batch size 32, learning rate 0.0003
with annealing rate 1.01. The task performance is measured in
word error rate (WER).

Table 1 summarizes the test results with different compres-
sion ratio. It is seen that the proposed approach leads to high
compression ratio with negligible performance loss. Notice
that here the block size does not equal to overall compression
ratio. This is because after high compression on weight matrix



the uncompressed bias vectors dominates the model size.
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Fig. 1: Architecture of block-Toeplitz matrix-based LSTM. Bias vec-
tor is included in weight matrix. BTMVM represents block Toeplitz
matrix vector multiplication.

4. FPGA DESIGN AND PERFORMANCE

To demonstrate the advantage of the proposed approach for
hardware design, we implement the example block-Toeplitz
matrix-based LSTM in Section 3 and evaluate its hardware
performance for inference on FPGA. Fig. 1 shows the hard-
ware architecture of the example LSTM. Here the key module
is the block Toeplitz matrix vector multiplication (BTMVM)
module to perform matrix-vector multiplication, which is con-
ducted using FFT/IFFT as described in Algorithm 1. Notice
that according to the characteristics of forward propagation
and FFT/IFFT, three optimization approaches can be used to
improve the hardware performance:

1) Due to the linearity of IFFT, the IFFT operation can be
done after summing over all the FFT results, thereby number
of IFFT operations reduced greatly;

2) Since weight matrices have been determined after train-
ing, their FFT transformation can be pre-calculated and saved
in BRAMs buffers of FPGA to reduce computational cost;

3) Considering real-input FFT has conjugate symmetric
property, we only need to store half of the pre-calculated fre-
quency domain weight matrices, thereby further saving mem-
ory cost.

Experiment Setup: The FPGA platform used in the ex-
periment is Alpha Datas ADM-7V3 board consisting off a
Xilinx Virtex-7 (XC7VX690T-2) FPGA chip and a 16 GB
DDR3 memory. The FPGA is plugged into the PCI-e 3.0 X8
of= host motherboard that include an Intel Core i7-8700 pro-
cessor. We develop the C++ model of LSTM and use Xilinx
Vivado HLS 2017.4 to generate RTL model. After that, the

FPGA implementation is done by connecting the LSTM IP
core to the PCIe IP core in the FPGA to handle the DMA
communications.

Design Consideration: For the target LSTM model, its
component weight matrices W and U are of 512× 512 size.
According to Table 1, We choose the block size as 64 to achieve
good balance between compression ratio and task performance.
Therefore, each weight matrix consists of 64 smaller 64× 64
Toeplitz matrices. Regarding FFT, notice that Eqn. 4 shows
that the number of FFT points for fast operation on Toeplitz
matrix is the double of matrix dimension. Therefore, 128-point
FFT and IFFT is used for Toeplitz structure calculation. In
our FPGA implementation, such fixed-point 128-point FFT is
implemented by Xilinx FFT IP core that requires 12 DSP48E1
slices, one 32k BRAM and consumes 5 clock cycles. Also
notice that due to the BRAM budget, unlike the suggestion in
the first paragraph of this section, in this design we do not pre-
calculate FFT of weight matrices or save them in BRAM since
BRAM resource is limited. Instead, those FFT calculations
are performed online during inference time. We suggest that
such pre-calculation can be performed when the underlying
FPGA board has abundant BRAM resource.

Hardware Performance: Table 2 summarizes the hard-
ware performance of the example LSTM FPGA design. Oper-
ated on 200MHz, the FPGA design consumes 1470 cycles to
process one input data, which corresponds to 7.35 µs latency.
Therefore, the throughput of our design is over 130000 frame/s.
Meanwhile, the overall power consumption of the entire FPGA
board is 30W.

Table 2: Hardware performance of FPGA design.

FPGA board FPGA:Virtex-7(690t)(28nm)
Quantization scheme 16 bits

Clock frequency 200MHz
Number of clock cycles 1470

DSP resource usage 3,600 (72%)
BRAM resource usage 1470 (87%)

LUT resource usage 859,200 (67%)
FF resource usage 429,600 (70%)

Latency for data processing 7.35 µs per frame
Power consumption 30 Watt
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6. CONCLUSION

In this paper we propose to impose Toeplitz structure on the
DNN models. By simultaneously reduce storage cost and
accelerate computation procedure, the proposed approach can
enable high hardware performance of DNN accelerator with
retaining high task performance.
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