
REDUCED-COMPLEXITY DEEP NEURAL NETWORK-AIDED CHANNEL CODE
DECODER: A CASE STUDY FOR BCH DECODER

Chunhua Deng, Siyu Liao, Bo Yuan

Department of Electrical and Computer Engineering, Rutgers University

ABSTRACT

Error-correcting codes are very important in modern com-
munication systems. In this paper, we investigate efficient
reduced-complexity deep neural network (DNN)-aided chan-
nel decoders. Specifically, we leverage DNN training to ob-
tain individual scaling parameters for normalized min-sum al-
gorithms, thereby leading to much faster convergence for the
same target bit error rate (BER). Also, we propose to com-
press the DNN-aided channel decoders via weight sharing. A
case study on DNN-aided BCH decoders is investigated. Sim-
ulation results and hardware complexity analysis show that
our method can reduce 2.59 times of memory cost than non-
compressed DNN-aided BCH decoders. Meanwhile, com-
pared to the conventional BCH decoders, our method can im-
prove convergence rate by 6 times with similar decoding per-
formance.

Index Terms— Neural Network, Weight Sharing, BCH
Decoder

1. INTRODUCTION

Starting from Shannons seminal paper, channel codes have
been used as an important error-correcting and channel-
protecting technique over the last six decades. By adding
well-crafted redundancy to the transmitted messages via
proper encoding methods, channel codes can significantly
reduce the random or burst errors incurred by the channel
noise, and thereby providing strong protection for transmis-
sion quality. To date, various types of channel codes, such
as BCH codes [1], Turbo codes [2], LDPC codes [3] and
Polar codes [4], have been widely adopted and deployed in
numerous communication and storage systems, such as wire-
less communication, deep space communication, solid-state
drives and so on.

On the other hand, in the emerging artificial intelligence
(AI) era, deep neural networks (DNNs) [5] have become the
most popular and important AI technique. Thanks to their
strong learning and representation capability, DNNs have
achieved unprecedented success in numerous intelligence-
demanded tasks, such as object detection, speech recognition,
machine translation, etc. Motivated by these successes, today
DNNs are deeply reshaping the landscape of various appli-
cation domains, such as computer vision, natural language
processing, robotics, autonomous driving, etc. Moreover,

considering the generality and adaptability of DNNs, both
academia and industry firmly believe that DNNs will con-
tinue to innovate a broad spectrum of applications and be-
come the critical “intelligence enabler” for many traditional
science and engineering fields. Specifically, for channel cod-
ing, DNNs are already showing their huge potentials and
bringing promising innovation for this classical field. Several
prior works [6, 7, 8, 9] have observed the error-correcting
performance improvement led by DNN-aided decoding, es-
pecially for short-length codes. According to their reports,
such improvement widely exists for different types of channel
codes (such as BCH codes, convolutional codes, polar codes
etc.), and can be brought by different types of DNN mod-
els (such as fully-connected neural networks, convolutional
neural networks, recurrent neural networks etc.)

However, such DNNs-enabled performance improvement
is not free. Because DNNs are computation intensive and
storage intensive, the DNN-aided channel decoders typically
demand much larger computation consumption and memory
consumption as compared to their traditional non-DNN coun-
terparts. From the perspective of practical implementations,
such increasing cost on computation and storage will greatly
impede the deployment of DNN-aided channel decoders in
many application scenarios, especially for those resource-
constrained energy-constrained embedded applications.

To address this challenge, in this paper, we propose effi-
cient approach to reduce complexity of DNNs-aided channel
decoders with retaining similar error-correcting performance.
First, we leverage DNN training to obtain individual scaling
parameters for normalized min-sum algorithms. Compared
to the conventional normalized min-sum algorithms with uni-
fied scaling parameter, such DNN-based parameter selecting
scheme leads to much faster convergence for the same tar-
get bit error rate (BER). Then, we propose to compress the
DNN-aided channel decoders via weight sharing. By uti-
lizing efficient clustering technique, the unnecessary redun-
dancy existed in the massive amount of scaling parameters
can be removed with negligible performance loss. To val-
idate the proposed approaches, a case study on DNN-aided
BCH decoders is investigated. Simulation results and hard-
ware complexity analysis show that our method can reduce
2.59 times of memory cost than non-compressed DNN-aided
BCH decoders. Meanwhile, compared to the conventional

BCH decoders, our method can improve convergence rate by
6 times with similar decoding performance.

The rest of this paper is organized as follows. Section 2
briefly reviews the belief-propagation (BP) algorithm that is
the underlying decoding algorithm for many modern channel
codes. The corresponding min-sum approximation is also re-
viewed in this section. Section 3 presents the proposed neural
scaled min-sum (NSMS) algorithm for performance improve-
ment and weight sharing technique for decoder compression.
Experimental validation of the proposed methods on two ex-
ample BCH codes is conducted in Section 4. Section 5 ana-
lyzes the hardware complexity of the example BCH decoders
using our methods. Conclusions are drawn in Section 6.

2. BELIEF PROPAGATION ALGORITHM AND
MIN-SUM APPROXIMATION

According to coding theory, various types of channel codes,
such as BCH codes and LDPC codes, can be decoded over
their corresponding bipartite Tanner graph [10] using BP al-
gorithm. Specifically, BP algorithm propagates and updates
the probabilistic messages among the variable nodes (VNs)
and check nodes (CNs) of Tanner graph. In general, let us de-
note the message from one variable node v to one check node
c and the message from c to v at t-th iteration of BP algo-
rithm as µt

c,v and µt
v,c, respectively. Then, the update of these

messages is as follows:

µt
v,c = lv +

∑
c′∈N (v)\c

µt−1
c′,v (1)

and

µt
c,v = 2 tanh−1

 ∏
v′∈M(c)\v

tanh

(
µt
v′,c

2

) , (2)

where lv is the received log-likelihood ratio (LLR) message
for the variable node v, N (v) is the set of check node c con-
necting to that specific variable node v, andM(c) is the set
of variable node v connecting to that specific check node c.
After several iterations, the final soft output of iteration t is
calculated as follows,

stv = lv +
∑

c′∈N (v)

µt
c′,v. (3)

Notice that Eqn. 2 is computation expensive due to the ex-
istence of hyperbolic tangent function. Hence it is typically
approximated by performing the min-sum operation as stated
in [11]:

µt
c,v = min

v′∈M(c)\v
(|µt

v′,c|)
∏

v′∈M(c)\v

sign
(
|µt

v′,c|
)
. (4)

Moreover, since the min-sum approximation cause perfor-
mance loss as compared with standard BP algorithm [12, 13],

it is always scaled with a parameter to compensate the approx-
imate error. As indicated in [12, 13], such scaled min-sum
(SMS) algorithm usually uses a unified scaling parameter for
all the propagated check-to-variable messages.

3. THE PROPOSED APPROACH

3.1. Neural Scaled Min-Sum Algorithm

Although SMS can partially compensate the performance
loss, the strategy of using the same scaling parameter for all
the check-to-variable messages may not be optimal. This
is because such parameter is typically selected by empir-
ical simulation and may not closely approximate original
computation. Also, since BP algorithm itself is not optimal
over Tanner graph with girth, it is possible that assigning
different scaling parameters for different check-to-variable
messages may lead to better decoding performance. Such hy-
pothesis, though intuitively, coincides with the observation in
[8], where assigning different offsets to different propagated
messages can outperform original BP algorithm.

Next, we describe our proposed neural scaled min-sum
(NSMS) algorithm. As revealed by its name, the proposed ap-
proach uses DNNs to obtain the specific scaling parameter for
each check-to-variable message. Similar to prior DNN-aided
work [8, 9], the transformation of Tanner graph to DNN struc-
ture can be done via unfolding the entire Tanner graph with
the required number of iterations. Here each weight of DNN
model corresponds to the scaling parameter of one propagated
message in one iteration. In that case, the original iterative
propagation over two-layer Tanner graph can be represented
as the forward propagation over multi-layer DNN.

As indicated in [8, 9], after transforming Tanner graph to
DNN, such DNN-aided channel decoder can be trained using
the standard backward propagation. Notice that here the loss
function is the cross entropy based multi-loss function [9]:

L(p,y) = −
I∑

i=1,2,...

(K−1∑
k=0

(
(y(k) log(1− p(i, k))+

(1− y(k)) log p(i, k)
))

,

(5)

where I,K,y,p are the number of iterations, message length,
expected received bit vector, the network output vector, re-
spectively. The variable y(k) and p(i, k) are the k-th expect-
ing received bit and k-th network output at i-th iteration, re-
spectively. After finishing training, the DNN-aided channel
decoders can correct each input received codeword during its
inference phase. Notice that for the computation of check-
node-layer to variable-node-layer, Eqn. 4 is now revised as:

µt
c,v = wc,v min

v′∈M(c)\v
(|µt

v′,c|)
∏

v′∈M(c)\v

sign
(
|µt

v′,c|
)
.

(6)

3.2. Weight Sharing
As mentioned in Section 1, a major disadvantage of DNN-
aided channel decoder is the need of computation and stor-
age overhead. Take the proposed NSMS algorithm for ex-
ample. Because each check-to-variable message has its own
assigned scaling parameter, the corresponding memory over-
head is huge, thereby further increasing the energy consump-
tion incurred by the increase access to the memory.

To address this challenge, we propose efficient weight
sharing (WS) technique to reduce the required number of
scaling parameters in DNN-aided channel decoders. Here
the key idea is to compress the size of DNN-aided channel
decoder since unnecessary redundancy widely exists in the
well-trained DNN models [14, 15, 16]. Specifically, we uti-
lize K-means approach [17] to cluster the weights of DNN
models of channel decoder, as the scaling parameters of mes-
sages, into multiple classes. Then, all the clustered weights
in the same class are replaced by the same centroid value of
the current class. Consequently, when the number of clusters
is small, the required memory cost for storing DNN weights
are significantly reduced. In general, if we assume that the
trained weights are clustered into S sets, after K-means clus-
tering, each weight wi,j belongs to the s-th cluster, where
0 ≤ s < S, and the centroid value of the s-th set is denoted
as centroid(s). Then the clustered weights can be represented
as :

wWS
i,j = centroid(si,j) (7)

where wWS
i,j is the final weight that will be stored in the mem-

ory. Fig. 1 illustrates the process of weight sharing in the
NSMS algorithm. It can be seen that for the example Tanner
graph, using weight sharing with 2-class clustering can signif-
icantly reduce the number of stored scaling parameters from
9 to 2. In general,the entire NSMS algorithm with weight
sharing process is described in Algorithm 1.

Fig. 1. An example of weight sharing process.

4. EXPERIMENTS
To evaluate the performance of the proposed methods, we per-
form experiments on two types of BCH codes: BCH (63,36)
and BCH (63,45). Notice that due to the generality of our
approach, it can be applied to any channel codes using BP
algorithm.

Experiment Setup: The neural networks that aid for
channel coding are trained on TensorFlow platform [18]. The
training dataset is composed of 60000 frames of randomly

Algorithm 1 NSMS-WS algorithm
1: Input : training data, test data
2: Output : Weights wWS

i,j

3: Build the neural network f(r,w) = σ(φ(r,w)), where
r is the received symbols, w is the DNN weights before
WS

4: w← 0
5: Train the neural network F with loss function (5)
6: End training, getting weights w
7: Using Kmeans to cluster the weights w, getting si,j ,
centroid(s)

8: wWS
i,j ← centroid(si,j)

generated data with the signal noise ratio (SNR) equally dis-
tributed in the range of [0, 8] dB. The optimizer we used is
Adam [19] with a learning rate of 0.001. Regarding the chan-
nel condition, all the transmitted codewords are modulated
with BPSK and added with additive white Gaussian noise.

Results: Fig. 2 shows the decoding performance of BCH
(63,36) and BCH (63,45). From this figure it is seen that the
proposed NSMS algorithm can greatly improve the decoding
performance as compared to the conventional BP algorithm.
In particular, we can discover that NSMS with 5 iterations
can achieve the similar BER to the conventional BP algorithm
with 30 iterations. Such phenomenon shows that the assign-
ing individual weights for each propagation message can lead
to fast decoding convergence. Meanwhile, we also evaluate
the effect of different weight sharing schemes by adjusting
the required number of bits for representing clustered classes.
As shown in Fig. 3, n-bit WS means each clustered weight is
replaced by an n-bit centroid, referred as weight index. From
this figure it is seen that for the two example BCH codes even
using aggressive 1-bit weight sharing scheme can still achieve
negligible performance loss. In this case, the memory saving,
which will be analyzed in Section 5, is very significant.

5. HARDWARE COMPLEXITY ANALYSIS

In this section, we analyze the hardware complexity of DNN-
aided BCH decoder using the proposed approach. Consider-
ing the complexity of datapath highly depends on the paral-
lelism, and BP-based channel decoder typically has low de-
gree of parallelism, in this paper we focus on analyzing the
memory cost since it is the dominant factor for the entire hard-
ware consumption and energy consumption.

Based on the proposed NSMS algorithm and weight-
sharing scheme, we develop the hardware architecture of
DNN-aided channel decoder as shown in Fig. 4. In general,
it consists of 5 types of SRAMs in the design, including

• Check SRAM: stores checking matrix information.
• WS-idx SRAM: stores weight sharing index informa-

tion.
• Input SRAM: stores input LLR information.
• V2C SRAM: stores variable-to-check (V2C) messages.

Fig. 2. The decoding performance of BCH (63,36) and BCH
(63,45) code.

Fig. 3. The performance comparison of BCH (63,36) and
BCH (63,45) with different types of weight sharing.

• C2V SRAM: stores check-to-variable (C2V) messages.

At the initialization stage of decoding, the decoderconfigures
input SRAM(1), the check SRAM (1), WS-idx SRAM
(1) and two common weight registers (1). Meanwhile,
the Controller module initializes V2C (2) and C2V (4)
SRAMs by filling all elements in these two SRAMs as zero.
After that, the decoder begins to start the iteration controlled
by the IterCtrl module. At each iteration, the decoder begins
with V2C calculation and then C2V calculation. At stage of
V2C calculation, the Controller reads data from input SRAM
(3) and C2V message (3), reads control information from
Check SRAM, and writes the result to V2C SRAM. At stage
of C2V calculation, the Controller reads data from V2C mes-
sage (2), reads control information from Check SRAM (6)
and from WS-idx SRAM (5), and writes the result to C2V

SRAM (4). The control information includes the check ma-
trix information and the WS index information.

According to the aforementioned decoding procedure, the
hardware system needs to store the message from the check
nodes to the variable nodes (C2V) and from the variable nodes
to check nodes (V2C) of each edge of Tanner graph. In that
case, with typical 8-bit representation for message, as ana-
lyzed in Table 1, the total memory requirement of storing the
C2V and V2C messages are 16Ne bits, where Ne is the num-
ber of edges in the Tanner graph. In addition, all of the input
LLR should be stored, so the memory requirement for the in-
put SRAM is 8N bits, where N is the code length. Then,
consider each edge in each iteration needs to store its own
weight. Therefore, the total number of additional memory
cost after using DNN-aided training is 40Ne bits because each
edge needs storing 8-bit weight for the whole 5 iterations.
On the other hand, after applying our proposed weight shar-
ing scheme, the additional memory requirement is reduced
to 5Ne bits (each edge decreases from 8-bit to 1-bit) with 1-
bit weight sharing. Consequently, the memory saving can be
very significant after using weight sharing. For instance, for
BCH (63,36) code where N = 63, and Ne = 486. The NSMS
without WS needs 27720 bits memory, while NSMS with WS
needs only 10710 bits. Therefore, Weight sharing can reduce
the memory cost by 2.59 times with negligible performance
loss.

Table 1. Memory cost for BCH (63, 36) decoders.
BP NSMS NSMS with WS

Input 8N 8N 8N
Messages 16Ne 16Ne 16Ne

Weight Index 0 40Ne 5Ne

Total 8N+16Ne 8N+56Ne 8N+21Ne

Fig. 4. Hardware architecture of WS-NSMS decoder.

6. CONCLUSION

In this paper, we propose weight sharing-based NSMS algo-
rithm for high-performance reduced-complexity channel de-
coder. Case study on BCH decoder shows our approach can
enable significant saving in iteration time and memory cost.

7. ACKNOWLEDGEMENT

This work is funded by the National Science Foundation
Awards CCF-1854737 and CCF-1854742.

8. REFERENCES

[1] Raj Chandra Bose and Dwijendra K Ray-Chaudhuri,
“On a class of error correcting binary group codes,” In-
formation and control, vol. 3, no. 1, pp. 68–79, 1960.

[2] Claude Berrou, Alain Glavieux, and Punya Thitima-
jshima, “Near shannon limit error-correcting coding
and decoding: Turbo-codes. 1,” in Communications,
1993. ICC’93 Geneva. Technical Program, Conference
Record, IEEE International Conference on. IEEE, 1993,
vol. 2, pp. 1064–1070.

[3] Robert Gallager, “Low-density parity-check codes,”
IRE Transactions on information theory, vol. 8, no. 1,
pp. 21–28, 1962.

[4] Erdal Arikan, “Channel polarization: A method for
constructing capacity-achieving codes for symmetric
binary-input memoryless channels,” IEEE Transactions
on Information Theory, vol. 55, no. 7, pp. 3051–3073,
2009.

[5] Geoffrey E Hinton and Ruslan R Salakhutdinov, “Re-
ducing the dimensionality of data with neural networks,”
science, vol. 313, no. 5786, pp. 504–507, 2006.

[6] Eliya Nachmani, Yair Be’ery, and David Burshtein,
“Learning to decode linear codes using deep learning,”
in Communication, Control, and Computing (Allerton),
2016 54th Annual Allerton Conference on. IEEE, 2016,
pp. 341–346.

[7] Tobias Gruber, Sebastian Cammerer, Jakob Hoydis, and
Stephan ten Brink, “On deep learning-based channel
decoding,” in Information Sciences and Systems (CISS),
2017 51st Annual Conference on. IEEE, 2017, pp. 1–6.

[8] Loren Lugosch and Warren J Gross, “Neural offset min-
sum decoding,” in Information Theory (ISIT), 2017
IEEE International Symposium on. IEEE, 2017, pp.
1361–1365.

[9] Navneet Agrawal, “Machine intelligence in decoding of
forward error correction codes,” 2017.

[10] R Tanner, “A recursive approach to low complexity
codes,” IEEE Transactions on information theory, vol.
27, no. 5, pp. 533–547, 1981.

[11] Frank R Kschischang, Brendan J Frey, and H-A
Loeliger, “Factor graphs and the sum-product algo-
rithm,” IEEE Transactions on information theory, vol.
47, no. 2, pp. 498–519, 2001.

[12] Bo Yuan and Keshab K Parhi, “Architecture optimiza-
tions for bp polar decoders,” in Acoustics, Speech and
Signal Processing (ICASSP), 2013 IEEE International
Conference on. IEEE, 2013, pp. 2654–2658.

[13] Bo Yuan and Keshab K Parhi, “Early stopping criteria
for energy-efficient low-latency belief-propagation po-
lar code decoders,” IEEE Transactions on Signal Pro-
cessing, vol. 62, no. 24, pp. 6496–6506, 2014.

[14] Song Han, Huizi Mao, and William J Dally, “Deep com-
pression: Compressing deep neural networks with prun-
ing, trained quantization and huffman coding,” arXiv
preprint arXiv:1510.00149, 2015.

[15] Chunhua Deng, Siyu Liao, Yi Xie, Keshab K. Parhi,
Xuehai Qian, and Bo Yuan, “Permdnn: Efficient com-
pressed deep neural network architecture with permuted
diagonal matrices,” in Proceedings of the 51th Annual
IEEE/ACM International Symposium on Microarchitec-
ture (to be appear). ACM, 2018.

[16] Caiwen Ding, Siyu Liao, Yanzhi Wang, Zhe Li, Ning
Liu, Youwei Zhuo, Chao Wang, Xuehai Qian, Yu Bai,
Geng Yuan, et al., “C ir cnn: accelerating and com-
pressing deep neural networks using block-circulant
weight matrices,” in Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitec-
ture. ACM, 2017, pp. 395–408.

[17] James MacQueen et al., “Some methods for classifica-
tion and analysis of multivariate observations,” in Pro-
ceedings of the fifth Berkeley symposium on mathemati-
cal statistics and probability. Oakland, CA, USA, 1967,
vol. 1, pp. 281–297.

[18] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.,
“Tensorflow: a system for large-scale machine learn-
ing.,” in OSDI, 2016, vol. 16, pp. 265–283.

[19] Diederik P Kingma and Jimmy Ba, “Adam: A
method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

